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IN the theory of definite integration, the central position is 
occupied by the definitions of integration due to Riemann 
and to Lebesgue. There have however been given a number 
of other definitions, some of which are related to and in part 
equivalent to the Lebesgue integral, and some of which are 
extensions of it; viz., in the direction of giving an integral 
for a function for which the Lebesgue definition is not appli­
cable either on account of the fact that the set of points at 
which it is defined is not measurable, or on account of the fact 
that the function is not absolutely integrable; and in the 
direction of integration with respect to functions of bounded 
variation. We purpose in this paper to discuss briefly some 
of the definitions of integration which have been proposed 
and consider their relations to the Lebesgue integral. We 
shall divide the work into four sections. 

In the first section we discuss the types of definition of 
integration which are extensions of the Darboux upper and 
lower integral method of defining a Riemann integral. Es­
sentially the process involves three steps, (a) the selection of 
a simple class of functions and the definition of integration 
for functions of this class, (6) the extension of this class of 
functions by the addition of functions which are the limits 
of sequences converging either uniformly or monotonically, 
the integral of the limit being defined to be the limit of the 
integrals, (c) the further extension of this class by the addition 
of all functions f(x) for which there exist functions <p and \f/ 
belonging to the classes defined in (a) or (b), with equal 
definite integrals, and such that <p ^f^xp. We find ideas 
of this kind in the Lebesgue integration, the last of these steps 
suggesting, in particular, the distinguishing feature between 
Borel and Lebesgue measurable sets. Step (6), when the 
convergence is uniform, is present in the Lebesgue definition, 
while, when we take rather the monotonie sequence, we have 
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the ideas underlying the Young definition which we consider 
here. This definition is, as we shall show, equivalent to that 
of Lebesgue in the sense that every function integrable ac­
cording to either definition is integrable according to the other 
and the values of the integrals are the same. Very much of 
the same order is the definition due to Pierpont, which differs 
from the definition of Young only in that it gives an integral 
for functions defined on non-measurable sets—assuming that 
such sets exist. We point out that the Pierpont integral is 
an extension only in a limited way, in that the functions which 
are integrable according to this definition are non-measurable 
in the sense that they are defined on non-measurable sets; 
in particular we show that if ƒ is Pierpont integrable on a 
non-measurable set E then there exists a measurable set M 
containing E and a function <p defined on M which is equal 
to ƒ on E, such that the Lebesgue integral of <p on M is the 
same as the Pierpont integral of ƒ on E. Perhaps by stretching 
the meaning of the word equivalence a little, we might say 
that the Pierpont and Lebesgue integrals are equivalent. 

The second section is devoted to a consideration of the 
definitions of the integrals of functions which are not integrable 
according to Lebesgue's definition, because the latter are 
always absolutely integrable. We consider two types of 
definitions. The first type depends upon the ability to find 
a set of intervals whose total length may be made to ap­
proach zero, and such that it is possible to define an integral 
for the function when defined only on the complementary set 
of points. If these latter integrals approach a limit as the 
total length of the complementary intervals approaches zero, 
the limit is the integral over the interval. The integral is 
thus defined as a result of a single limiting process, and all 
the singularities are treated simultaneously. The definitions 
of this type are the Jordan-Harnack-Moore definitions, in 
which the enclosing intervals are finite in number, and the 
Borel definitions, in which the intervals may be denumerably 
infinite in number, i. e., the first are based on content and the 
second on measure. The other type of definition depends 
upon the arrangement of the singularities of the function to 
be integrated in some order, the arrangement and the singu­
larities being dependent upon the integration process used, the 
ultimate value of the integral being obtained by at most a de-
numerable infinity of steps and limiting processes. In this cate-
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gory belong the Dirichlet extension of the Cauchy integral 
for unbounded functions, and the extension of this to the case 
when the points in the vicinity of which f(x) is not bounded 
form a reducible set. It is this idea also which Denjoy has 
applied successfully in order to obtain a definition of integral 
of unbounded functions which includes as special cases 
practically all those which have been previously suggested, 
an integral which proves of importance in the treatment of 
the relation between a continuous function and its derivative. 

The third section is devoted to the Stieltjes integral, which 
has recently come into the foreground on account of the rôle 
which it plays in the theory of linear functional operations on 
continuous functions. We point out that a Stieltjes integral 
is expressible in terms of a Lebesgue integral of another func­
tion, and conversely, but that in spite of this, the Stieltjes 
integral seems to be applicable where the Lebesgue is not. 
We give an extension of the Stieltjes integral modelled on 
the Lebesgue extension of the Riemann integral, as well as 
the Fréchet generalization of the Lebesgue and Stieltjes inte­
gral, so as to apply to a class of general elements. This latter 
integral depends for its definition on the existence of an 
absolutely additive function whose range is a set of sub­
classes of the fundamental class. 

The last section gives the definition of the Hellinger integral 
and also the generalizations of this due to Radon and E. H. 
Moore. 

In the course of the paper we have occasion to point out 
certain equivalences. They are of two types. The first might 
be called a complete equivalence, i. e., one in which two defini­
tions of integration yield the same class of integrable func­
tions, and give the same value when applied to a given function. 
Of this character are the equivalence between the Young and 
Lebesgue, and one of the Borel definitions and that of Lebes­
gue;—and we might call attention in passing to what seems, 
to be an indication of the felicity of the Lebesgue definition, 
that it can be approached from so many distinct and inter­
esting points of view. The other type of equivalence is that 
which arises in connection with the Stieltjes and Hellinger 
integrals, each of which is by a transformation reducible to a 
Lebesgue integral, and conversely; but in either case the 
function to be integrated is no longer the same. We are 
inclined to consider this type of equivalence in the light of a 
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pseudo-equivalence, in so far as it is rather a reduction from 
one form to the other for purposes of evaluation. 

The extension of the Lebesgue integral idea in the future will 
undoubtedly be in the direction of the formulation of a satis­
factory integral operation for the case in which the field of 
integration is a space of a denumerable infinity of dimensions, 
and the function space. Thus far, there have been given two 
suggestions for such operations. One is due to Fréchet, who 
forms, for a general class, the natural extension of the Lebesgue 
and Stieltjes definition of integration. It depends upon the 
existence, in a general class of elements, of an absolutely 
additive function v whose range is a class of subclasses of the 
fundamental class, i. e., a function such that 

the En being mutually distinct and finite or denumerably 
infinite in number. The examples of this which have been 
given for the general space are trivial in that they reduce 
either to an infinite sum or an integral extended over a field 
in a finite number of dimensions. There is still lacking a 
really effective and desirable absolutely additive function 
for the higher type of spaces. The other suggestion for 
generalization is due to E. H. Moore. It is essentially an 
operator of the bilinear or quadratic type, the Fréchet gen­
eralization being of the linear type. It depends upon the 
existence of a function e(p, q) of two variables p, q, each of 
which ranges independently over the fundamental class of 
general elements, and satisfies the condition that for any 
finite set of elements pi, •••, pn, the quantities e(p*, py), 
i, j = 1, •. -, n, form the coefficients of a positively definite 
Hermitian form in n variables. The operator is determined 
as a double least upper bound, and is theoretically given as 
soon as the proper type of e is specified. Moore has given in­
stances of this e in various general spaces which are not trivial. 
While these two generalizations point the way in which one 
may go towards the generalization of the Lebesgue integral, 
they are not entirely satisfactory, the Fréchet generalization, 
as indicated above, because his instances are trivial, the 
Moore because it reduces to a Lebesgue integral only after a 
transformation. There is still room for considerable improve­
ment and investigation in this field. 

We restrict ourselves throughout this paper to functions 
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which are single-valued and take finite values at points 
belonging in most cases to a finite interval (a, b), or a set of 
points on such an interval. The functions are not, however, 
necessarily bounded on the interval (a, b). Many of the 
results are immediately extensible to fields of integration in 
7z-dimensional space. Further, some of the theorems are still 
valid if f(x) be definitely infinite or many-valued at a set of 
points of measure zero. 

For the sake of convenience we have collected here the most 
important references which we have consulted in the com­
pilation of this paper, and shall cite them only by number. 

1. BLISS, G. A. "Integrals of Lebesgue," BULLETIN of the American 
Mathematical Society, vol. 24 (1917), pp. 1-47. 

2. BOREL, E. (a) "Le calcul des intégrales définies," Journal de Mathé­
matiques, ser. 6, vol. 8 (1912), pp. 159-210; (b) La théorie de la 
mesure et la théorie de l'intégration, Leçons sur la Théorie des 
Fonctions, 2d edition (1914), pp. 217-256. 

3. DENJOY, A. (a) "Une extension de l'intégrale de M. Lebesgue," 
Comptes Rendus, vol. 154 (1912), pp. 859-862; (b) "Calcul de la 
primitive de la fonction dérivée la plus générale," ibid., pp. 1075-8. 

4. DENJOY, A. "Sur la dérivation et son calcul inverse," (a) Journal de 
Mathématiques, ser. 7, vol. 1 (1915), pp. 105-240; (b) Bulletin de la 
Société Mathématique de France, vol. 43 (1915), pp. 161-249; (c) 
Annales de VEcole Normale Supérieure, vol. 33 (1916), pp. 127-223. 

5. FRÉCHET, M. "Sur les fonctionnelles linéaires et l'intégrale de Stielt­
jes," Comptes Rendus du Congrès des Sociétés savantes en 1913, 
pp. 45-54. 

6. FRÉCHET, M. "Sur l'intégrale d'une fonctionnelle étendue à un en­
semble abstrait," Bulletin de la Société Mathématique de France, vol. 
43 (1915), pp. 249-267. 

7. HAHN, H. "Ueber die Integrale des Herrn Hellinger," Monatshefte 
fur Mathematik und Physik, vol. 23 (1912), pp. 161-224. 

8. HAHN, H. "Ueber eine Verallgemeinerung der Riemannschen In-
tegraldefinition," Monatshefte fur Mathematik und Physik, vol. 26 
(1915), pp. 3-18. 

9. HARNACK, A. "Die allgemeinen Sâtze über den Zusammenhang 
der Funktionen einer reellen Variabeln mit ihren Ableitungen," 
Mathematische Annalen, vol. 24 (1884), pp. 217-252. 

10. HAUSDORFF, F. Grundzüge der Mengenlehre (1914), pp. 408 ff. 
11. HELLINGER, E. "Neue Begründung der Theorie quadratischer For-

men von unendlichvielen Variabeln," Journal für Mathematik, vol. 
136 (1909), pp. 210-271. 

12. JORDAN, C. Cours d'Analyse, 2d edition, vol. II, pp. 50, 51. 
13. LEBESGUE, H. Leçons sur l'Intégration (1904). 

14. LEBESGUE, H. "Sur l'intégrale de Stieltjes et sur les opérations 
linéaires," Comptes Rendus, vol. 150 (1910), pp. 86-88. 
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15. MOORE, E. H. "Concerning Harnack's theory of improper definite 
integrals," Transactions of the American Mathematical Society, vol. 2 
(1901), pp. 296-330. See also pp. 459-475. 

16. NALLI, P. Esposizione e confronto critico delle diverse definizioni 
proposte per Fintegrale definito di una funzione limitata o no. Palermo 
thesis (1914). 

17. PERRON, O. Die Lehre von den Kettenbrüchen (1913), pp. 362-374. 
18. PIEBPONT, J. Theory of Functions of Real Variables, vol. II (1912) 

pp. 343 ff. 
19. RADON, J. "Absolut additive Mengenfunktionen," Wiener Sitzungs-

berichte, vol. 1222a (1913), pp. 1295-1438. 
20. RIESZ, F. " Système integrierbarer Funktionen," Mathematische 

Annalen, vol. 69 (1910), pp. 449-497. 
21. RIESZ, F. "Sur certains systèmes singuliers d'équations intégrales," 

Annales de VEcole Normale Supérieure, ser. 3, vol. 28 (1911), pp. 33-62. 
22. RIESZ, F. "Les opérations fonctionnelles linéaires," Annales deV Ecole 

Normale Supérieure, ser. 3, vol. 31 (1914), pp. 9-14. 
23. STIELTJES, T. J. "Sur les fractions continues," Annales de la Faculté 

des Sciences de Toulouse, vol. 8 (1894), pp. J71 ff. 
24. DE LA VALLÉE POUSSIN, C. J. Intégrales de Lebesgue, Fonctions d'En­

semble, Classes de Baire, Paris 1916. Cf. also Transactions of the 
American Mathematical Society, vol. 17 (1916), pp. 435-501. 

25. VAN VLECK, E. B. "Haskins' momental theorem and its connection 
with Stieltjes's problem of moments," Transactions of the American 
Mathematical Society, vol. 18 (1917), pp. 326-330. 

26. YOUNG, W. H. "On the general theory of integration," Philosophical 
Transactions, vol. 204A (1905), pp. 221-252. 

27. YOUNG, W. H. "On the new theory of integration," Proceedings of the 
Royal Philosophical Society, vol. 88A (1913), pp. 170-178. 

28. YOUNG, W. H. "On a new method in the theory of integration," 
Proceedings of the London Mathematical Society, ser. 2, vol. 9 (1910), 
pp. 15-50. 

29. YOUNG, W. H. "On integration with respect to a function of bounded 
variation," Proceedings of the London Mathematical Society, ser. 2, 
vol. 13 (1914), pp. 109-150. 

I. T H E YOUNG AND PIERPONT DEFINITIONS OF 
INTEGRATION. 

1. The Darboux Integrals.—In so far as the Young and 
Pierpont definitions of integration which we consider in this 
chapter are extensions of the Darboux treatment of the 
Riemann integral by means of upper and lower integrals, we 
recall briefly the definition of these integrals for functions f(x) 
bounded on an interval (a, b) and a few of their properties. 

Definition.—Suppose a partition of the interval (a, b) has 
been effected by means of the points a= x0<Xi< • • • <xn= b. 
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Let Mi be the least upper bound and m* the greatest lower 
bound of the values of ƒ(x) on (a^_i, Xi) and form the sums 

n n 

S = £ ) Mi(xi — Xi-i) and s = 23 #&*(#» ~~ #<-i)« 

Then the greatest lower bound of S and the least upper bound 
of s exist, if we consider all possible partitions of the interval 
(a, b) into a finite number of subintervals. These bounds are 
the upper and lower Darboux integrals, respectively, of f(x) 
on (a, b) and are denoted by 

I f(x)dx and I f(x)dx. 

We note the following properties: 

(1) If m ^ f(x) ^Mîorx on (a, 6), then 

m(jb - a) ^ s S Cf(x)dx £ fhf(x)dx ^S <>M(b- a). 

(2) The value of 8 is not increased, and that of s is not 
diminished by a repartition of a partition of (a, 6). 

(3) There exists a sequence of partitions of (a, b) each a 
repartition of the preceding and with norms approaching zero 
such that, if sn and Sn are the corresponding sums s and 8, 
we have 

J
r*b 7*b 

' f(x)dx and lim„ Sn = I f(x)dx. 
Evidently si ^ s2 ^ • • • and /Si ^ S2 ^ • • •. Moreover if 
<pn{x) = MUti and ^n(#) = WW in the ith interval (#t_i 
^ x < Xi) of the nth partition, then limn <pn = <p and 
lim» ^» = $ exist and we have 

tâfSv, and f<p = ff and ƒ ^ = ƒƒ . 

(4) A necessary and sufficient condition that ƒ(#) be Rie-

mann integrable is that ƒ = ƒ = ƒ . 

From this, other necessary and sufficient conditions for Rie-
mann integrability can be deduced. Perhaps the simplest is 
the following, due to Lebesgue ((13), page 29); 
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(5) A necessary and sufficient condition that fix) be Rie-
mann integrable is that the points of discontinuity of f(x) 
form a set of measure zero. 

2. The Young Definition of Integration.—(Cf. Young (26), 
(27), (28) ; Nalli (16), pages 97-103.) The Riemann-Darboux 
definitions of integration depend upon a division of the interval 
of integration into subintervals; the Lebesgue definition on a 
division of the interval of variation of the function, which 
for the interval of integration results in a partition into 
measurable sets. The question naturally arises whether it is 
possible to find a definition of Lebesgue integral by replacing 
in the Darboux definition intervals by measurable sets.* 
Young ((26), page 243) therefore suggests the following 

DEFINITION. Divide the interval (a, b) into a finite or a 
denumerably infinite number of measurable sets Ei of measure di. 
Let Mi be the least upper bound and mi the greatest lower bound 
of f(x) on Ei and form the sums 

S = HfiMidi and s = S midi. 

Then the greatest lower bound of S and the least upper bound of s 
for all possible divisions of {a, b) into measurable sets are defined 
to be the Young (or (Y)) upper and lower integrals of fix) on 
(a, b). f(x) is said to be Young (or (Y)) integrable if the upper 
and lower integrals are finite and equal, i. e., 

(Y)f=(Y)f=(,Y)f. 
Obviously this definition is also applicable in case the 

interval (a, b) is replaced by any measurable set of points E. 
This definition was originally suggested only for functions 

f(x) bounded on (a, b). In that case the upper and lower 
integrals always exist, and we obtain the same value for each 
of them, whether the partition be into a finite or a denumer­
ably infinite number of measurable sets. The same definition 
will apply also if jf(œ)f is not bounded, provided we assume 
that f(x) is such that there exist partitions of (a, b) into a 
denumerable infinity of measurable sets on each of which ƒ (x) 

* De la Vallée Poussin (24), pp. 54-56, has pointed out that the Riemann 
integral is characterized by being a function of intervals, the Lebesgue 
integral being a function of measurable sets. 

f While not expressed explicitly in Young's work, it seems that he 
considered this extension. Cf., for instance, (28), p. 35. 
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has a finite upper and lower bound. In determining the upper 
and lower integrals in this case, we restrict ourselves to par­
titions of this latter kind. 

We are then able to show that, if the upper integral has not 
the value — <x>, the terms of the sum 2f-M *d», in which Mi is 
negative, form a convergent series, i. e., for every such par­
tition, H/iMidi either diverges to + °° or converges absolutely. 
For, if the negative terms of this sum are divergent, then by 
suitable repartitions of (a, b) and rearrangement of the terms, 
we can make the sum approach — <x>. An analogous result 
holds for the lower integral, i. e., if it is not + <x>, then it 
either diverges to — co or converges. It follows from this 
that a necessary and sufficient condition that the upper and 
lower integrals of f(x) be finite is that there exist a partition 
of (a, b) such that if we form the sum S^ilf^- for \f(x) | this 
sum is convergent.* 

In the following list of properties we exclude the case in 
which (7) ƒ = — oo or (Y)f = + oo. Then the proofs are 

very much as in the case of the Darboux integrals, in so far 
as the series which enter will be absolutely divergent or con­
vergent. We have 

(1) (Y)f>(Y)f. 
If f(x) is bounded, i. e., ra ^ ƒ ^ M, for every x on (a, b). 
then 

m(b- a) S(D)f S (Y) f S (Y) f £(D) f £M(b-a). 

(2) The values of S are not increased, nor those of s dimin­
ished by a repartition of a partition of (a, b) into measurable 
sets. 

(3) There exists a sequence of partitions of (a, b) into 
measurable sets, each a repartition of the preceding, such that 
if Sn and sn are the corresponding values of S and $, then 

limn 8n = (F) ƒ and limn sn = (F) ƒ 

and 
Si ^ S2 ^ • • • and Si ^ s2 ^ • • •. 

If we let cpnix) = Mnfi and \[/n(x) = ??W o n the ith set of 
* Cf. Fréchet (6), p. 257. 
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the nth partition, then the functions <pn(x) will form a mono-
tonic non-increasing sequence and the yf/n(x) a monotonie 
non-decreasing sequence of measurable functions such that 

limn \{/n(x) = ip(x) Sf(x) ^ <p(x) = limn <pn(x). 

Evidently the Lebesgue integrals of <pn{x) and \pn(x) exist 
and are equal to the values of Sn and sn respectively. Hence 
by the properties of Lebesgue (or (L)) integrals relative to 
monotonie sequences (cf. (13), page 98), we have 

limn Sn = Hmn (L) ƒ <pn= (L)f<p = (Y)ff 

and 
limn sn = limn (L) ƒ fn = (L) ƒ * = (7) ƒƒ. 

3. The Relation between the Young and Lebesgue Integrals.— 
(Cf. Young (26), pages 243 ff.; Nalli (16), pages 97-106.) 
A direct consequence of (1) of § 2 is that if f{x) is Riemann 
integrable, it is also Young integrable. More generally we 
have: 

The Young and Lebesgue definitions of integration are equiva­
lent, and the values obtained by the two definitions the same. 

(a) Suppose f(x) (L) integrable on (a, b). Let U (i = — °o 
to + °°) be points of division of the interval (•— oo, + oo). 
Then the sum 

a = Xik X meas (E(U ^ ƒ < h+i)) 

will be an s and the sum 

2 = Xik X meas (E(lM < ƒ ^ U)) 

will be an S. Hence 

Since a and 2 approach the (L) f as the maximum value of 

the difference k+i — k approaches zero, it is apparent that 

(L)f=(Y)f=(Y)f=(Y)J\ 
(b) On the other hand suppose that f(x) is ( Y) integrable 

on the interval (a, b). Then by property (3) of § 2 



1917.] INTEGRALS RELATED TO LEBESGUE INTEGRALS. 123 

( i )JV= (F) _ƒƒ = (F) ƒƒ = (7) ƒƒ = (L)f<p, 

i. e., (L)f(<p — \p) = 0. Hence <p differs from \(/ at most 
at a set of points of measure zero, and consequently, 
since \// ̂  ƒ ^ <p at every point, ƒ differs from the measurable 
and (L) integrable functions <p and \f/ at most at a set of 
measure zero, and hence is measurable and also (L) integrable. 

Closely allied with the idea used in this last proof is the 
following definition of Lebesgue integration due to Riesz 
((20), page 453). 

The integral is defined first of all for functions which are 
constant on measurable sets of points. If f(x) is equal to a* 
on the set Ei of measure di, then 

J' f(x)dx = Hiididi, 
a 

the series on the right being assumed to be absolutely con­
vergent if infinite. If we extend this class of functions by the 
addition of all limits of uniformly convergent sequences of 
such functions, we get the class of Lebesgue integrable func­
tions. The integral of the limiting function is of course, by 
definition, the limit of the integrals. This definition lends 
itself admirably to the proof of theorems of the nature of the 
Schwarz inequality for summable functions. 

In reality the above proof suggests the extension of the 
class of functions constant on measurable subsets of {a, b) 
by the addition of the limits of monotonie sequences of these 
functions, together with the functions which lie between a 
limit <p of a non-decreasing sequence, and a limit yp of a non-
increasing sequence for which the integrals are equal in value. 
Young (cf. (27) and (28)) has developed the theory of Lebesgue 
integration on the basis of monotonie sequences as just 
sketched, excepting that the initial functions for which integ­
ration is defined are upper and lower semi-continuous. 

4. Excursus on Upper and Lower Measure.—(Cf. Hausdorff 
(10), pages 408-411.) Before taking up the discussion of the 
Pierpont integral it may be advantageous to derive a few 
elementary properties relating to upper and lower m'easure. 
We recall that the upper measure of a set is the greatest lower 
bound of the total lengths of the sets of open intervals 
which are such that each interval contains at least one point 
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of the set; that the lower measure is the measure of an interval 
containing the set, diminished by the upper measure of the 
complementary set with respect to the interval. 

If for two sets E\ and E2 we denote by Ex + E2 their least 
common superset, and by E1E2 their greatest common sub­
set, i. e., their logical sum and product, respectively, we have 
the following fundamental formula on intervals Ix, I2: 

(1) meas (Ix + I2) + meas Ixh = meas Ix + meas I2, 

which is immediately extensible to a finite or a denumerably 
infinite set of intervals. An immediate consequence of this 
formula is 

(2) meas (Ex + E2) + meas ExE2 ^ meas Ei + meas E2 

and by taking complements with respect to an interval in­
cluding both Ei and E2 

(3) meas (Ex + E2') + meas Ex'E2 ^ meas Ex + meas E2'9 

where Ex = CEi and E2 = CE2 ; i. e., this formula holds 
for any Ei and E2. From these two inequalities we conclude 
at once that if E\ and E2 are measurable, then the sets E\ + E2 
and E\E2 are also measurable and 

(4) meas (Ei + E2) + meas E\E2 = meas Ei + meas E2. 

From (2) we conclude for every Ei and E2 

(5) meas (Ei + E2) ^ meas .Ei + meas E2; 

and from (3), if Ei and £̂ 2 have no points in common, 

(6) meas {Ex + E2) ^ meas Ex + meas E2. 

Further, since for every Ex and E2 

CEx S C(Ex + E2) + E2} 

we obtain by applying (5) 

meas CEx ^ meas E2 + meas C(Ex + E2), 
or 

(7) meas Ex + meas E2 ^ meas {Ex + E2). 

Similarly if Ex and E2 are distinct, we can apply (6) to 
CEx = C(Ex + E2) + E2 
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and obtain 

(8) meas Ei + meas E2 ^ meas (E± + E2). 

If, then, Ei and E2 are distinct, we can write down the fol­
lowing series of inequalities: 

(9) meas E\ + meas E2 ^ meas (E\ + E2) ^ meas Ei 

+ meas JB2 

<̂  meas (Ei + £2) ^ meas E% 

+ ineas 2?2. 

5. Relative Measurability; Separated Sets.—(Cf. Hausdorff 
(10), pages 415-6; Pierpont (18), pages 366-370.) We 
define: 

Eo will be said to be measurable relative to E, if there exists 
a measurable set M such that E0 = ME, i. e., E0 is, so to 
speak, a section of the set E by a measurable set. 

Evidently E is measurable relative to itself. Also, if E0 is 
measurable relative to E, then E — E0 will also be measurable 
relative to E. Finally by (4) of § 4, we have that if E is 
measurable, then relative measurability reduces to ordinary 
measurability. 

We note the following propositions : 
(1) If E is divided into a finite or a denumerable infinity of 

sets Et measurable relative to E, then 

meas E = 2»- meas Ei and meas E = 2» meas Ei. 

For the case of two sets Ei and E2 with Ei + E2 = E and 
Ei — ME, where M is a measurable set, we have by (2) of § 4 

meas M + meas E 2> meas (Jtf + E) + meas IfÜJ 

= meas (M + -#2) + meas 2<a, 
and so by (8) of § 4 

^ meas M + mëas ÜJ2 + meas Ei. 

Since If is measurable, we obtain by using (5) of § 4 

meas E = meas Ei + meas E2. 

The property for lower measure can be obtained in an analo­
gous way by using (3), (7), and (6) of § 4. The corresponding 
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properties for any finite number, or denumerable infinitude 
of sets, follow at once from a recurrent use of the result for 
the case of two sets, and the properties 

mëâs XEi ^ Sj- meas Ei; 

and if limn En = 0, then limn meas En = 0. 
The following converse of this proposition holds: 
(2) If E is divided into a finite or denumerable set of sets 

Ei for which we have meas E = 25 »• meas Ei, then the Ei are 
measurable relative to E and meas E = S« meas E{. 

We indicate the proof for two sets only, the case for a 
denumerably infinite number of sets being easily deducible 
from this. Suppose E = Ei + E2f Ei and E2 being distinct, 
and suppose Mi and M2 are measurable sets such that E\ is 
contained in Af i and E2 in AT2, and meas Mx = meas Ei and 
meas Af2 = mëâs E2. Then by (4) of § 4 

meas E = meas Af i + meas AT2 = meas (Afi + M2) 

+ meas AfiAf2 ^ meas E + meas AfiAf2, 

i. e., meas AfiAf2 = 0. Hence meas M2Ei = 0, i. e., M2Ei 
is measurable. Consequently, since 

(ilf 2 - M2E{)E = M2E - M2E1 = E2, 

E2 will be the set common to E and the measurable set 
Af2, — M2E\ and so measurable relative to E. 

As a consequence of these two propositions we have 
(3) If E\ ^ E2 ^ • • • are a sequence of sets, each con­

taining the preceding, and each measurable relative to the 
succeeding set in the sequence, then every set as well as the 
difference of any two sets, will be measurable relative to 
E = limn En. 

(4) If ilf is a measurable set containing E such that meas 
M — meas E, then for any division of E into sets measurable 
relative to E, there exists a division of M into measurable 
sets Mi such that 

meas Mi = meas Ei and Ei = MiE. 

Pierpont ((18), page 366) uses in his work the notion of 
separated division, defined as follows : 

E is divided into the separated sets Ei and E2 if it is 
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possible to enclose E± and E2 in measurable sets Mi and M % 
in such a way that meas MiM2 = 0.* 

Pierpont ((18), page 379) shows that if Ei and E2 are 
separated then 

meas E = meas Ei + meas E2. 
By using proposition (2) and its proof, we then have: 

A necessary and sufficient condition that Ei and E2 con­
stitute a separated division of E is that Ei and E2 be measur­
able relative to E, or that 

meas Ex + meas E2 = meas (E± + E2) = meas E. 

Consequently, we have also 
meas Ex + meas E2 = meas E. 

The same result holds if the division is into a finite or denumer-
ably infiiiite number of separated sets. 

Evidently, then, if E is measurable, any separated division 
of E is always into measurable sets.] 

We shall use the term relatively measurable in preference 
to separated, on account of the close relationship to measur­
able sets. 

6. The Pierpont Definition of Integration.—(Cf. Pierpont 
(18), pages 371 ff.) We are now in a position to give the 
Pierpont extension of the Young definition of integration. 

Suppose E is any set of points on a finite interval, and f(x) 
defined on E. Divide E into a finite or denumerable set of sets 
Ei measurable relative to E, and let Mi be the least upper bound, 
and mi the greatest lower bound of f(x) on Ei. Form the sums 
8 = XiMi meas Ei and s = Ŝ m»- meas Ei. The greatest lower 
bound of 8 and the least upper bound of s for all possible divisions 
of E into sets measurable relative to E are the upper and lower 
integrals, respectively, of f(x) on E. f{x) is said to be (P) 
integrable on E if these two integrals are finite and equal, i. e.9 

(P) f=(P) f=(P) f. 
uE *J E JE 

*We shall assume that E\ and E* are distinct. Pierpont allows E\ 
and Ei to overlap, but since meas MiM2 — 0 we have also meas E1E2 = 0, 
i. e., they overlap only to the extent of a set of measure zero. The results 
obtained are the same with either definition, the treatment being slightly 
simpler as here given. 

f It seems that recognition of this fact would have obviated the recent 
Fréchet-Pierpont controversy in these columns, vol. 22, 295-302; vol. 23, 
172-5. Cf. also W. A. Wilson, vol. 22, pp. 384-386. 
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Evidently when the set E is measurable this definition is 
identical with that of Young. Although stated only for 
bounded functions by Pierpont, it is immediately applicable 
to functions not bounded on E. As a matter of fact the 
remarks made in connection with the Young integral can be 
immediately transferred to the Pierpont integral if we replace 
measurable by relatively measurable, and measure by upper 
measure. In particular, if we say that f(x) is measurable 
relative to E (Pierpont, separable, cf. (18), page 403), if the set 
Ei of points of E for which f(x) > I is measurable relative 
to E, we can build up an integral along the lines of Lebesgue. 
If we call a function integrable in this way summable relative 
to E, we have the theorem: 

(1) Pierpont integrability on E is equivalent to summahility 
relative to E, the values obtained for the two integrals being the 
same.* 

We note further the property 
(2) If E is divided into a set of sets Ei measurable relative to 

E, and if ƒ is integrable on each Ei, then ƒ is also integrable 

on E and I = %i I . 
JE JjSi 

On the other hand we have the following: 
(3) If ƒ is (P) integrable on E, and E0 < E, then ƒ is also 

(P) integrable on E0. 
This holds, if we restrict ourselves to (Y) integrals, only in 

case both EQ and E are measurable. 
On account of the fact that, for a division of the set E into 

sets measurable relative to E, we also have 
meas E = 2* meas Ei, 

we can obtain a definition of integration on sets E by replacing, 
in the Pierpont integral, upper measure by lower measure. 
If we call integrability after the manner of this last definition 
(P0) integrability, then if f(x) is (P) integrable on E it is 
also (P0) integrable. The converse does not seem to hold, 
because a set of lower measure zero does not necessarily have 
zero measure. 

While the Pierpont integral gives an integral for a function 
defined on a non-measurable set, it is an extension of the 

* Cf. Lamond, Transactions Amer. Math. Society, vol. 16 (1915), p. 393, 
where we find a similar theorem for ƒ bounded. 
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Lebesgue definition only in a limited sense. For if we enclose 
any non-measurable set E in a measurable set M of such a 
nature that meas M = meas E, then there exists on M a 
function f0(x) measurable on M and equal to f(x) on E, such 
that 

(L) fux) = (P) ƒƒ(*); 

i. e., a function ƒ(#) measurable relative to a set JS is a section 
of a measurable function defined on a measurable set in­
cluding E. By using (4) of § 5, we can construct the function 
fo(x) by taking the function <p of § 2, corresponding to ƒ, but 
defined on M, and modifying it at the points of E of measure 
zero, in such a way that it agrees with ƒ on E. 

We gain insight into the Pierpont integral also from the 
geometrical point of view. If ƒ > 0, and we consider the 
planar set [x on E, 0 ^ y < f(x)], then the (P) integral gives 
us the upper planar measure of this set, the (P0) integral the 
lower planar measure. These will be equal f or ƒ > 0 only if 
the set E for which ƒ > 0 is measurable, i. e., ƒ is Lebesgue 
integrable. 

The (P) integral has proved of value in connection with the 
reduction of a double integral to an iterated integral, in so 
far as a linear section of a planar measurable set is not neces­
sarily linearly measurable. 

It seems, however, that the question of giving a definition 
for the integration of essentially non-measurable functions, 
i. e., for instance functions defined on a measurable set which 
are not measurable, has not yet been satisfactorily solved. 

7. The Pierpont Definition of Integration for Unbounded 
Functions.—(Cf. (8), pages 405 ff.) We note finally Pier-
pont's treatment of integrals of functions which are not 
bounded on a set E, very briefly. Let Ea$ {a, /3 > 0) be the 
subset of E for which — (i ^ f(x) ^ a. Suppose that the 

(P) I f(x)dx exists for every a, (3 > 0. Then I is defined 

to be the 

lim f 
a, 3=00 J Eap 

provided this limit exists and has a finite value. 
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This definition is equivalent to the one given above in § 6. 

For, if we assume that (P) I ƒ exists, then ƒ will be relatively 
JE 

measurable on E, and hence (P) I will exist for every 
JE„Q 

a and /3. We show that 

lim (P) f =(P) f 
a, j8™oo J Ea& E 

by using the property (2) of § 6. On the other hand if 

(P) I exists for every a, /3, then we can show that the 

Eap are measurable relative to E, and to each other by using 
property (3) of § 5, from which we conclude that ƒ is measur­
able relative to E. The existence of 

(P)f=lim f 
JE a, j8 ^ ^ a j 3 | 

follows from property (2) of § 6. 

II. T H E BOREL AND DENJOY DEFINITIONS OF INTEGRATION. 

Suppose that, in an interval (a, 6), f(x) is not bounded in 
every vicinity of a point c; suppose further that the definite 
(Biemann) integral exists in the intervals (a, c — e') and 
(c + e", b) for every e' and e". Then consistent with the 
continuity of the definite integral as a function of its limits 
we define (as suggested by Cauchy) 

f ƒ(*) = lim f 6 f(x) + lim f ƒ (a). 

Evidently the extension of this to the case in which the 
number of points of (a, b) in every vicinity of which f(x) is 
not bounded is finite, is immediate. 

When the number of points in the vicinity of which f(x) is 
not bounded becomes infinite then there are two types of 
definition. One of them gives a definition by means of a 
single limiting process, the other by a denumerable set of 
such processes. The first of these leads to the Harnack-
Jordan-Moore and Borel types of integration, the other to 
the Dirichlet, extended by Hoelder and Lebesgue, and Denjoy 
definitions of integration. 
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1. The Harnack-Jordan Definition.—(Cf. Harnack (9), pages 
220 ff.; Jordan (12), pages 50, 51; Moore (15); Nalli (16), 
pages 20-27.) We note first of all that the set of points in 
every vicinity of which f(x) is not bounded constitute a closed 
set. We call this set for the present the set of singularities, 
and denote it by Z. Then Harnack defines the integral of 
ƒ(#) as follows: 

Suppose the set Z of singularities of f(x) is of content zero. 
Enclose them in a finite set of intervals of total length e. Let 
fi(x) be zero in the interior of the enclosing intervals, and equal 

to ƒ(#) everywhere else and suppose that I fi(x)dx exists. 
Ja 

If this integral approaches a finite limit as e approaches zero, 
this limit is said to be the integral of fix) from a tob. 

Jordan gives a definition which is equivalent to this in 
case the content of Z is zero. His definition is as follows: 

Divide (a, b) into any finite number of intervals of maximum 
length ô. Exclude the intervals containing points of the 
set Z, and suppose that the (Riemann) integrals of f(x) exist 
on the remaining intervals. If the sum of these integrals 
approaches a definite finite limit when S approaches zero, 
this is defined to be the integral oîf(x) from a to b. 

Moore ((15), pages 300-302) observes that the Harnack 
definition can be applied when the set Z is replaced by another 
Z0 containing it, and that the resulting integral is in reality a 
function of the set ZQ. Further, that in case the set of singu­
larities Z is non-existent then the integral of ƒ (x) on the basis 
of the set Z0 is equal to the ordinary integral of f(x) if and 
only if the set Z0 is of content zero. For that reason it is 
desirable to restrict the consideration of these integrals to 
sets Z of content zero, and it is to be supposed that Jordan 
assumed this to be the case even though he does not state 
this fact explicitly.* 

2. The Borel Integral—(CL Borel (2a), pages 199-205; 
(26), pages 249-252; Hahn (8).) Borel has given a definition 
similar to that of Harnack except that he assumes that the 
set of singularities Z is of measure zero, and may be every­
where dense, i. e., in general not closed. In this case Z is 
not necessarily the set of all points in every neighborhood of 
which the f unction ƒ (x) becomes unbounded. 

* No change, however, is made in the definition in the 3d edition of his 
Cours d'Analyse. 
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Before taking up the definition which Borel gives, it may be 
desirable to observe that it is possible to define a Riemann 
integral of a function fix) on a perfect or closed set P . Viz., 
if in the sum 

n 

Z)/(&)(3t ~ Si-l) 

we replace the length of the interval (xi, Xi~i) by the content 
h{ of the part of P contained in the interval, and choose & to 
belong to the ith interval and P , then the limit of this sum 
as the length of. the maximum subinterval approaches zero 
is the Riemann integral of fix) on P . We note that a 
necessary and sufficient condition for the existence of a 
Riemann integral on P is that the set of points of P at which 
fix) is discontinuous of measure be zero. 

BoreF s definition is then equivalent to the following 
DEFINITION. Suppose the set Z of singularities is of measure 

zero, and such that if it is enclosed in a set of intervals of total 
length e, each interval containing at least one point of the set Z, 
then the Riemann integral of fix) exists on the complementary 
setP€. If 

lim I fix) 

exists, for all possible enclosures of the type described, it is 
defined to be the (P) integral of'fix) on (a, 6). 

Borel assumes that this definition is to be applied to func­
tions which are not bounded on (a, b), but it can obviously 
be applied also to functions which are bounded. The relation 
of this definition to the one of Lebesgue has been discussed 
by Hahn (8). He proves the following theorems: 

(1) If fix) is absolutely (P) integrable, i. e., if (P) J \fix)\dx 
exists, then fix) is also Lebesgue integrable. 

Apparently this includes as a special case that in which f(x) 
is a bounded function. 

By way of proof we note that (P) I = (P) I for any ƒ for 
JP€ Jpe 

which the first integral exists. Let now ei, • • •, en, • • •, be such 
that limn en = 0, and let Pn = P€n be the corresponding closed 
sets of measure greater than b — a — en, which are chosen in 
such a way that Pn contains P n - i . If then fn = ƒ on Pn and 
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zero everywhere else, then the \fn | will form a monotonie non-
decreasing sequence of functions approaching |/1 except pos­
sibly at a set of measure zero. Hence by the properties of 
(L) integrals 

(B) f \f\ = lim„ f |/1 = lim„ (i) f |/1 

= lim»(i) f |/»l = (i) f\f\. 

From this we conclude the existence of (L) I ƒ and since 

meas P€ approaches b — a, its equality to (B) I ƒ. 

(2) A necessary and sufficient condition under the hypo­
thesis of the definition that ƒ be (2?) integrable is that (a) ƒ be 
(L) integrable, i. e., summable, on the set Z + Z', where Z' is 
the derived set of Z; and (6), if un = (an, 6n) are the intervals 
complementary to the closed set Z + Z', and W(un) is the 

JI ƒ for all intervals wn' interior to un, 

form a convergent series. Moreover 

maximum value of 

then 3}nW(un) shall 

where 

(B) I f(x)dx = Sn f ƒ(*)<& + (i) f ƒ(*)<**, 
t /a «/wn Jz+ Z' 

f = lim f . 

We refer to the original memoir of Hahn for the proof of 
this theorem. In case the set Z + Z' is of measure zero, and 
therefore of content zero, the Borel definition may be reduced 
to that of Harnack-Moore and the above equality lacks the 
second term on the right, in which form it was originally 
derived by Moore (cf. (15), pages 324 ff.). We shall refer to 
this theorem as the Moore-Hahn theorem. 

(3) The Borel definition is not equivalent to the Lebesgue 
definition of integration, in particular there exist functions which 
are Borel integrable without being Lebesgue integrable, and 
functions which are Lebesgue integrable without being Borel 
integrable. 



134 INTEGRALS RELATED TO LEBESGUE INTEGRALS. [Dec, 

For, as given, the definition of Borel includes functions which 
are not absolutely integrable (cf. Moore (15), page 327), while 
any Lebesgue integrable function is absolutely integrable. 
On the other hand the function f(x), which is zero except 
at the points of a non-dense perfect set of measure greater 
than zero, at which it has the value 1, though (L) integrable, 
is not (B) integrable. For Hahn has shown that there does 
not exist any set of measure zero such that for every enclosure 
of this set, each interval of the enclosure containing a point 
of this set, the function ƒ(x) is Riemann integrable on the set 
of points complementary to the intervals. 

We can give a definition which will include as special 
cases the Lebesgue and Borel integrals by assuming that 
f(x) is bounded and Lebesgue integrable on the sets Pe and 
that the integral on the interval is the limit of the integrals 
on the sets Pe . Then a theorem similar to the Moore-Hahn 

theorem will hold, the integrals I being now taken in the 

sense of Lebesgue. 
A further extension is to assume that on the sets P6, f(x) 

is not necessarily bounded, but only Lebesgue summable. 
That this actually is an extension can be shown by a simple 
example. 

Suppose that the interval is (0, 1) and f(x) is defined as 

follows: (a) in the interval in = ( - , , , ) , f(x) > 0 if n i 

even and f(x) < 0 if n is odd; 

(b) I ff(x)dx 

(c) f(x) is continuous throughout in except that 

l im|/( i + e ) |==o . 

IS 

1 
n 

6 = 0 

Then it can be shown* that the Borel integral of this function 
in the interval (0, 1) does not exist, the set of singularities 
being the points §, f, J, • • -, 0; if, however, we apply the 
last definition suggested above with the set of singularities 
Z = (0), we obtain an integral. 

* Cf., for instance, Moore (15), p. 329. 
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We note finally that the Harnack-Borel integrals do not 
have the property which we find in the case of Lebesgue and 
Riemann integrals that if ƒ and g are integrable, then ƒ + g 
is also integrable. Borel has suggested that in such a case we 
set by definition 

f(f+g)~ff+fg-
3. The (£*) Integral—{CI Hahn (8), page 9; Nalli (16), 

pages 84-97.) In the Borel definition of integral we note (a) 
that the set of singularities Z is a fixed set of points (i. e., in a 
way the integral is a function of the set Z) ; (6) every allow­
able set of intervals is such that each interval of the set con­
tains at least one point of the set Z. A definition has been 
suggested* in which both of these requirements are dropped. 
It is as follows: 

DEFINITION. Suppose (a) f(x) is such that for every e > 0, 
there exists a perfect set Pe of measure greater than b — a — e, 

for which the Riemann integral I ƒ exists) further suppose 

(b) that 

e=0 Jp„ 

exists. Then this limit is said to be the (2?*) integral of f(x) 
on (a, b). 

Obviously since for every € we can find in any measurable 
set E a perfect set Pe such that meas E — meas Pe < € 
we can apply the same type of definition to the definition of 
an integral extended over a measurable set E. 

We note the following propositions: 
(1) A necessary and sufficient condition that there exist a 

(JB*) integral is that for every e > 0 there exists a 5e such 
that if Pi and P2 have measures greater than b — a — ô( e) 

and I and I exist, then 

ƒ-ƒ * 
I "Pi JPz I (2) If the (B*) integral oîf(x) exists on (a, 6), then for any 

sequence of e's such that €1 ̂  e2 ^ • • • and limn en = 0 
* Cf. Hahn (8), p. 9. Nalli (16), p. 85, erroneously asserts that BorePs 

definition is the one which we now give. 
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we can find a sequence of perfect sets Pn of measure greater 

than b — a — €n, each containing the preceding, such that I 
Jp* 

exists and limw I = (2?*) I . 
Jpn J a 

For this purpose we obtain a series of P e : Pei_e2, Pe2-e3> 
For Pn we take the greatest perfect set common to the sets 
P€m-em+1, for m ^n. This will evidently have measure greater 
than b — a — en, and be contained in Pn + i -

(3) If f(x) is bounded in {a, b) and fulfils condition (a) of 
the definition, then the (B*) integral exists. 

(4) If ƒ and g are (£*) integrable, then ƒ + g is (5*) inte-
grable and we have 

(£*)ƒ(ƒ + g)= (B*)ff+(B*)fg, 
a proposition which does not hold for the (B) integral. 

(5) If ƒ is integrable according to the Lebesgue definition, then 
ƒ is also (B*) integrable, the values of the integrals being the 
same. 

For if ƒ is (L) integrable, then ƒ is measurable. From the 
theorem of Lusin* on measurable functions: 

If ƒ is measurable in an interval (a, b), then for every e > 0 
there exists a non-dense perfect set P e of measure greater than 
b — a — e on which ƒ is continuous, 
it follows that the condition (a) of the definition is satisfied, 
i. e., for every e > 0 there exists a P e of measure greater than 

b — a — e f or which the (R) I exists. Evidently 
Jpe 

(R) f = (X) f . 
Jp€ Jp€ 

Moreover we know that the ( i ) integral is absolutely contin­

uous, i. e., if limn meas-En==meas E, then limn (X) I = (L) I . 

Hence since 
lim meas P € = b — a, 

it follows that 

* Cf. Comptes Rendus, vol. 154 (1912), p. 1689. Cf. also Lebesgue, 
Comptes Rendus, vol. 137 (1903), p. 1229. 
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lim (R) f = lim (i) f = (i) f, 

i. e., the (2?*) integral exists and is equal to the (L) integral. 

The same method of reasoning would show that if (L) j 
JE 

exists, where E is any measurable set, then (B*) I exists also. 
JE 

We note in passing that the Hahn example of a function 
not (B) integrable is obviously (2?*) integrable. 

On the other hand we also have 
(6) If f(x) is (B*) integrable on (a, 6), then it is also (L) 

integrable. 
We observe that if we show that an ƒ which is (2?*) integrable 

is absolutely (2?*) integrable, i. e., (P*) ƒ \f\ exists, we can 
apply the method of proof used for (1) of § 2 above, for the 
case of (P) integrability. We therefore proceed to show 

(7) If f(x) is (P*) integrable then |/ | is also (2?*) integrable. 
Suppose if possible that | / | is not (2?*) integrable. Then from 

(2) above it would follow that (JB*) ƒ | / | is infinite. Hence 
if h = *(|/l + ƒ) and f2 = 1(1/1 - ƒ), then by (4) &*)/& 
and (JB*) f f2 are both infinite. For every M we can then 
determine a perfect set Pu of measure greater than b — a — e 
such that I / i > M. For the same e we can determine a 

perfect set P2e on which (R) I f2 exists, and consequently f2 
JPU 

is bounded on P2e. Suppose /2 < m on P2e. Then (R) I f2 
J*2e 

< m(b —• a). Let the set E be the sum of the measurable 
sets: (a) the subset of Pu for which/i > 0 and hence/2 = 0; 
(6) the subset of P2e for which/2 > 0; (c) the greatest common 
subset of Pie and P2e. Then the measure of E will be greater 
than b — a — 2e and 

(X) f ƒ = (P) f h-iR) f f2>M- m(b - a). 
«/.» * / P l e *AP2e 

However, by (5) we can find a perfect set P€ of measure greater 
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than or equal to b — a — 2e, contained in E, such that the 

difference between (i) I ƒ and (R) I ƒ is as small as we 

please, i. e., such that 

(R) f f^M-m(b- a). 

Since M has been chosen arbitrarily, it follows that 

lim f ƒ 

does not exist, i. e., ƒ is not (5*) integrable, which is a con­
tradiction. Hence the theorem. 

We thus have the result 
(8) (£*) integrability is equivalent to (L) integrability, the 

values of the integrals being the same. 
The absolute convergence of the (£*) integral is another 

instance of a phenomenon observed by Stolz* and Moore, t 
In the (£*) integration while the singularities are enclosed 
in a set of intervals of total length less than e, it is not re­
quired that every interval contain a point of the set, i. e., 
we have a broad enclosure. On the other hand, in the (B) 
integration, every interval must include a point of the set of 
singularities, i. e., we have a narrow enclosure. The broad 
enclosures yield absolutely convergent integrals, the narrow 
enclosures may lead to non-absolutely convergent integrals. 

4. The Dirichlet-Lebesgue Extension of the Cauchy Defini­
tion.—(Cf. Lebesgue (13), pages 9-14.) The Cauchy defini­
tion of integral of a function f(x), which has only a finite 
number of points in every neighborhood of which f(x) is not 
bounded, can be extended so as to give the Harnack and Borel 
definitions of integration as a result of a single limiting process. 
We turn now to the other type of definition which requires a 
finite or denumerable infinitude of limiting processes. 

The first step in this direction was taken by Dirichlet, who 
extends the Cauchy definition to the case in which the interval 
(a, b) has a set of singularities Z whose derived set Z' contains 
a finite number of points xi, • • •, a». For in any subinterval in­
terior to the interval (#<-i, xi) we have only a finite number of 

* Wiener Berichte, vol. 1082a (1899), p. 1235. 
t (5), pp. 302-304, 323. 
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I f(x)dx} for any two positive e 
%i-A—e 

and e', we can then apply the Cauchy definition. If the limit 
of this integral exists as e and e' approach zero, it is the 
integral in the interval (œ*-i, xî), and the integral in (a, b) is 
the sum of these integrals. 

We observe that the Cauchy-Dirichlet definitional process 
makes use of the following two conditions: 

(a) If an integral exists on each of a finite set of consecutive 
intervals {a\, a2); (a2, a3); • • S («w-i, an), then 

J
r*an w - l /»a i + i 

I exists for every e' and e"', and if this integral 
a-{-e' 

approaches a limit as e' and e" approach zero, this limit is de­

fined to be I . 
Evidently the Dirichlet manner of reasoning is immediately 

extensible to the case in which Z" and then Z(a), a being any 
finite or transfinite number of the first and second classes, 
contains a finite number of points,* i. e., if Z is a closed 
reducible set, then this method will give a definition of inte­
gration over the interval (a, b). Lebesguef shows that this 
same result may be attained by the following definition: 

A function f(x) has an integral in the finite interval (a, b) 
if there exists a continuous function F(x), unique except for 
the addition of a constant, such that we have in every interval 
(a, j8) where f(x) is continuous 

f *f(x)dx = Ftf) - F(a). 

F(x) is the indefinite integral of f(x) and we have 

f f(x)dx = F(b) - F{a). 

In applying the process just discussed we start from Z{a), 
and work back to Z by a denumerable set of limiting proc-

* Cf. Schoenfliess, Bericht über die Mengenlehre, I (1900), p. 185. 
t Cf. (13), pp. 10-14. See also Holder, Math. Annalen, vol. 24 (1884), 

pp.90ff. 
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esses, in every interval into which Z(a) divides (a, b). We 
can obtain the same result in case Z is reducible, by starting 
with Z and working up to Z(a). For consider the intervals 
complementary to Z'. By the two conditions of the Cauchy-
Dirichlet process, we can then define an integral in each of 
these intervals. Evidently the same holds true of the inter­
vals complementary to Z", and so on. By a well-known 
theorem in the theory of point sets* we arrive finally at 
the intervals complementary to a set Z(a) which is either 
zero or perfect. If it is zero, then we have an integral for the 
entire interval. If perfect, then we have obtained an integral 
in each interval complementary to this perfect set Z(a) = P. 

If W(un) is the maximum absolute oscillation of I , un' 
Jun' 

being any interval interior to un, and ljW{un) is convergent, 
and P is of content zero, then the Moore-Hahn theorem (2) 
of § 2 would suggest that we define 

f(x)dx = J2 I f(x)dx. 

We observe that this will include the Harnack integral as a 
special case.t 

We might proceed to a discussion of the case in which the 
content of P is not zero, or the series of oscillations or integrals 
over the complementary intervals un is not absolutely con­
vergent, but we prefer to take up briefly the Denjoy definition 
of integration which combines the two definitional conditions 
of Cauchy-Dirichlet with the Moore-Hahn theorem, and 
includes as special cases almost all of the definitions so far 
considered in this chapter. 

5. The Denjoy Definition of Integration.—(Cf. Denjoy (3); 
Nalli (16), pages 122 ff.) We give first a few definitions. 

(a) A function f(x) is said to be not summable at a point x0 

of an interval, if f(x) is not summable in every interval con­
taining the point xo. Similarly f(x) is not summable at a 
point xo on a perfect set P , if the function <p = ƒ on P and 
zero at points not on P is not summable at xo. In either case 
the points at which f(x) is not summable form a closed set. 

(b) Let [un] be the set of intervals complementary to a 
perfect set P , relative to an interval (a, 6), and suppose that 

* Cf. Hobson, Theory of Functions, pp. 92, 93. 
t Cf. Moore (15), p. 330. 
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for every n there is defined a constant W(un). Then the 
series HiW(un) is said to be absolutely convergent on an interval S 
if the part of the series ZW(un) which corresponds to the in­
tervals interior to S is absolutely convergent. I t is absolutely 
convergent at a point x0 of the perfect set P if there exists an 
interval containing x0 in which 2nW(un) is absolutely con­
vergent. Evidently the points of P at which 2nW{un) is 
not absolutely convergent form a closed set. 

Then Denjoy defines an integral V(a, b) on the interval 
(a, b) as follows : 

(A) The integral of f(x) in an interval in which f(x) is 
summable is the Lebesgue integral. 

(B) If the integral has been defined for a finite number of 
consecutive intervals : (ai, a2) ; (a2, as); • • • ; (an~i, an) then 
V(a\, an) is defined to be 

w - l 

V(ah an) = X V(aif ai+i). 

(C) If (a) f{x) is summable on a perfect set P, whose com­
plementary intervals relative to an interval (c, d) are u^ ; 
(b) V(un

f) has been defined on every interval un' containing 
no points of P in its interior and W(un) is the least upper 
bound of |F(^nO| f ° r a l l possible un

r interior to un; and 
(c) 2nW(un) is convergent, then 

V(c, d) = S / W + jf{x)dx. 

The function ƒ(x) is said to be Denjoy (or (Dri)) integrable, 
if the following conditions are fulfilled: 

I. The set of points of any perfect set P at which f(x) is 
not summable on P is not dense on P . 

I I . If V(c', d') has been defined for every interval (c', d') 
interior to V(c, d), then 

lim V(c',d') 
C^-fi'y dijt' 

exists and is defined to be V(c, d). 
I I I . The set of points of any perfect set P at which the 

series of maximum oscillations W(un) of V on the intervals 
complementary to P is not absolutely convergent is not 
dense on P . 

The proof that these three definitional conditions and the 
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three integrability conditions suffice to determine for a func­
tion fix) a finite number, its integral, is rather long. We 
mention only the chief features of the proof. 

A central position is occupied by the theorem on point sets: 
If we have a series of closed sets Eia), corresponding to the 

transfinite numbers of the first and second class, each contained 
in the preceding and not dense on it, then there exists a trans-
finite number a with a precedent, such that jE(a~1} # 0 and 
Eia) = 0. 

Condition I when applied to the interval (a, b) gives a 
closed set Ei, not dense on (a, b) at every point of which ƒ is 
not summable on (a, b). We break up E\ into Pi + Pi, where 
Pi is perfect and Pi is reducible. Then we replace (a, 6) 
by Pi and apply condition I again. This yields E% = P2 + P2. 
And so we continue. The theorem just given shows that 
this process must terminate after a denumerably infinite 
number of steps. 

Condition II, with the definitional condition P, when 
applied to the intervals complementary to E\ gives a value 
for the intervals complementary to the derived set E\ of E\. 
The same two conditions lead us to the intervals comple­
mentary to E\f and eventually to the intervals comple­
mentary to Pi. 

In the same way, definitional condition C together with the 
conditions II and III give us a value for V(g, h) in any interval 
igf h) which contains points of Px but not of E2, i. e., in any 
interval complementary to E2. Similarly we find the value 
of V(g, h) for every interval complementary to Ea+i, the 
values in the intervals complementary to P a having been 
determined. 

We thus obtain a value for the integral V(a, b) in the 
interval (a, b) after a denumerably infinite number of steps. 

We note the following properties: 
(1) If fix) is such that \f(x) \ is Denjoy integrable, then fix) 

is Lebesgue integrable. 
For evidently if fix) ^ 0, and there existed a point at 

which fix) were not summable on (a, b), then F(a, b) would 
also be infinite. 

(2) From the Moore-Hahn theorem of § 2 it follows that if 
fix) is (P) integrable it is also Denjoy integrable, the defini­
tional condition C being an immediate extension of the 
expression for the (P) integral. The same result holds true 
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if in the (B) integral we replace the Riemann integrals by 
Lebesgue integrals. Just how the definitions compare when 
Riemann integrability on Pe is replaced by Lebesgue sum-
mability, we do not know, except that there are functions 
which are Denjoy integrable without being (B) integrable in 
any extensions of the definition, an immediate consequence of 

(3) If ƒ and g are Denjoy integrable, then ƒ + g is also 
Denjoy integrable, and we have 

(Dn) ƒ ƒ + (Dn) ƒ g = (Dn) ƒ (ƒ + g). 

We have further 
(4) The indefinite Denjoy integral V(a, x) is a continuous 

function and has as derivative f(x) except for a set of measure 
zero. 

(5) If the continuous function F(x) has at every point a 
finite derivative f(x) then this derivative is Denjoy inte­
grable, and the Denjoy integral of f(x) has the value 
F(x) - F(a)^ 

This result is of importance in the theory of the derivatives 
of continuous functions. In the case in which the derivative 
is finite at every point, it gives a means of returning from the 
derivative to the original function. For the Riemann integral, 
the derived function f(x) must be Riemann integrable; for 
the Lebesgue integral, f(x) must be summable, and this 
carries with it that F(x) be of bounded variation; but f(x), 
finite at every point, is Denjoy integrable.* 

For the proofs of these theorems we refer to the Denjoy 
articles, as well as the Nalli thesis, which contains a careful 
analysis of the Denjoy first notes on the subject. 

Quite recently Khintchinef has pointed out that in order 
to obtain an integral by the Denjoy method of definition, it is 
sufficient to replace the condition of convergence of the 
maximum oscillations W(un) in the intervals un, in the defini­
tional condition C and the integrability condition III, by the 
weaker condition of convergence of the series of variations of 
the integrals XnV(un), in as much as XnV(un) and not ZnW(un) 

* Cf. in this connection Lusin: Comptes Rendus, volume 155 (1912), 
pp. 1475-7. See also Annali di Matematica, ser. 3, vol. 26 (1917), pp. 77-
131. Pp. 118-131 contain a very interesting suggestion for extending the 
definition of integration by the use of Fourier series. 

t "Su r une extension de l'intégrale de M. Denjoy," Comptes Rendus, 
vol. 162 (1916), pp. 287-291. Cf. also pp. 377-380. 
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appears in the integration expression. However, for an inte­
gral defined in this way it is no longer true that the derivative 
of the indefinite integral V(a, x) is the function f(x) except 
for a set of measure zero. By defining the term " integrals 
approaching zero asymptotically at a point xo of a perfect 
set P " to mean that if dn is the distance between x0 and 
the nearest extremity of the interval un complementary to P, 
then 

lim» — - j — = 0, 

he shows that a necessary and sufficient condition that the 
derivative of V(a, x) be f(x) except for a set of measure zero, 
is that the definitional condition C be replaced by 

C'. If ƒ is summable on P in an interval (c, d), if, more­
over, the integrals approach zero asymptotically except for 
a set of measure zero on P, then 

V{c,d)= (L) ff+2nV(un); 

and the integrability condition I I I by 
I I I ' . For every perfect set P , there exists a portion* TV 

of P such that if ôi, • • •, ôn, • • • are the intervals complemen­
tary to ir, the series XnV(ôn) converges and the integrals 
approach zero asymptotically on w except for a set of measure 
zero on ir. 

Both of the Khintchine suggestions give actual extensions 
of the Denjoy definition, i. e., give an integral for a function 
not integrable by the definition as given by Denjoy. 

* Cf., for instance, Denjoy (4(a)), p. 120. 

(To be continued.) 


