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Also, the determinant of equations (7)-(9) vanishes, as 
may be seen at once from the fact that (9) may be obtained 
by subtracting /3' times (7) from /3 times (8). Hence* we have 

THEOREM I I . The parameters of the points of contact of the 
three pairs of tangents that can be drawn to the Rs from three 
collinear points of the Rs are harmonic to the same quadratic, 
or form a set in involution. 

Another result which may be derived as a corollary of 
Theorem I we shall state as 

THEOREM I I I . Lines on a point P of an Rs cut the RB in 
pairs of residual points whose parameters are harmonic to the 
parameters of the points of contact of the two additional tangents 
drawn to R? from P. 

Although Theorem I I I may be regarded a corollary of 
Theorem I, it may be established independently. Thus: Let 
P(d0, di, CÜ2) be the point and (KX) E= K0X0 + KI#I + #2̂ 2 = 0 
any line on P. Then (KO) = 0. The parameters of the 
residual points cut out of (1) by (KX) = 0 are the roots of 

(10) (Ka)f + 3(Kb)t + 3(KC) = 0 

and (10) is apolar to (8), for 

3(KC)J8 + 3(/ca)a' - 3(ic6)/3' = 0, 

as may be shown from (3) and the fact that (ad) = 0. 
PENNSYLVANIA STATE COLLEGE, 

March, 1917. 

EXAMPLES OF A REMARKABLE CLASS OF SERIES. 

BY PROFESSOR R. D . CARMICHAEL. 

(Read before the American Mathematical Society, April 28, 1917.) 

Two-Fold and One-Fold Expression of the Properties of Func­
tions. 

1. I N the development of analysis during the past genera­
tion it has frequently happened that functions have arisen 
which are analytic in a sector of the complex plane and in 

* Salmon, Higher Algebra, fourth edition, p. 180. 
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that sector have a determinate asymptotic representation 
(in the sense of Poincaré) by means of a diverging power 
series. The first explicit appearance of these functions in a 
general way was in two memoirs by Poincaré* in 1885 and 1886. 

The importance of these functions was at once put in 
evidence by Poincaré's association of them with the irregular 
singular point at infinity of the linear homogeneous differential 
equation 

p ^ i p ^ J , 4 - p « - n 

in which the coefficients P0 , Pi , • •, Pn are polynomials in x 
subject to the condition that their degrees do not constantly 
decrease as one passes in order from the first to the last 
polynomial in the sequence. Poincaré (Acta Mathematica, 
loc. cit.) has in fact shown that a solution y(x) of such an 
equation is in general asymptotic to an expression of the form 

\ X XT J 

where /x is a constant and Q(x) is a polynomial in x, the asymp­
totic representation being valid for x approaching infinity in 
an appropriate direction. 

In other important investigations functions of the same 
character have often made their appearance, particularly in 
the theory of differential and difference equations. In these 
investigations it has been usual to represent the asymptotic 
character of such a function by means of a diverging power 
series and to find in addition another form through which 
to put in evidence the analytic character of the function in 
the sector. In this connection use has frequently been made 
of the integral on which the Laplace transformation is based 
or of certain generalizations of it. In other cases it has been 
found necessary to resort to expansions of various types, 
particularly of those which arise through use of the method of 
successive approximation. These procedures do not always 
lead to suitably convenient representations of the functions in 
consideration; in particular, the expansions last mentioned 
are often complicated in character. 

* Amer. Jour, of Math., vol. 7 (1885), pp. 203-258; Acta Mathematica, 
vol. 8 (1886), pp . 295-344. Particular instances of such functions appeared 
earlier, notably in the work of Stirling and Cauchy (see BoreFs Séries 
divergentes, p . 30). 
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2. Obviously, it is desirable, if possible, to have a single 
expansion of such character that it is capable of exhibiting 
the asymptotic properties of the function near infinity and 
of yielding at the same time a convenient and workable 
representation of it in the finite plane or in a significant 
portion of the finite plane. I t is hardly to be expected that 
any single class of series will afford a form of such a tool best 
suited to all situations; but it may very well be (and we are 
about to exhibit a class of series in which it is) true that 
certain classes of functions of great importance and very 
frequently recurring in practice are capable of representation 
in one or another sort of series all of which belong to a single 
type and possess a unitary theory. 

Indeed it has recently appeared that factorial series and 
certain immediate generalizations of them serve just such a 
purpose to a remarkable degree. Nörlund* has shown that 
functions which are characterized by being analytic in a half-
plane and having an asymptotic character of a certain broad 
type are expansible in convergent factorial series (of a slightly 
generalized form) and that these series do in fact readily 
show the asymptotic character of the functions represented 
by them. In connection with a range of ideas differing in 
some essential respects from those of Nörlund it was shown 
earlier by Watsonf that a certain form of factorial series 
furnished a sufficient means of representing a very important 
and wide-reaching class of functions. About the same time 
HornJ employed another generalization of factorial series in 
obtaining suitably convenient representations of solutions of 
linear differential equations in the neighborhood of an ir­
regular singular point. Nörlund § has likewise employed fac­
torial series in his fundamental investigation of the solutions 
of difference equations. 

3. In a recent memoir) | I have pointed out that factorial 
series whose fundamental importance has been made manifest 
in these several ways are but an instance of a large class of 
series of simple properties. I t turns out that the latter are 

* Acta Mathematica, vol. 37 (1914), pp. 327-387. 
t Rendiconti del Circolo Matematico di Palermo, vol. 34 (1912), pp. 41-88. 
t Math. Annalen, vol. 71 (1912), pp. 510-532. 
§ Rendiconti del Circolo Matematico di Palermo, vol. 35 (1913), pp. 

177-216. 
|| Transactions Amer. Math. Soc, vol. 17 (1916), pp. 207-232. See 

also a forthcoming paper in the Amer. Jour, of Math. 
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suitable for the representation of functions which are defined 
throughout a sector and have certain types of singularities 
at infinity. Moreover these series afford the requisite informa­
tion concerning the asymptotic character of the functions 
represented by them. 

These series are of the form 

Q(X) = £ C " g{x) ' 
where g(x) is a given function of x and the coefficients cn are 
independent of x. More precise definitions are to be found in 
the next sections. As will be seen from these definitions, the 
fundamental characteristic of g(x) is its asymptotic behavior. 

A detailed study of the more important series included in 
this class and especially of their suitability for the representa­
tion of certain types of functions is desirable and leads to 
important consequences in the theory of functions. From 
these latter the close connection of the series Q(#) with the 
function-theoretic considerations mentioned in the preceding 
sections will become apparent. 

The principal object of the present paper is to show how 
several important series in the literature are included as 
special cases of the series Q(x) and the generalization T(x) of 
it introduced in section 6 and to exhibit certain other interest­
ing examples. I hope that attention may thus be directed to 
the importance of this entire class of series. I add also a 
brief discussion of the region of convergence of the new series 
T(x). 

Definition of the Series Q,(x) and T(x). 

4. The class of series Q(x) is determined primarily by the 
properties of the basic function g(x) through which the series 
are defined. Accordingly it is desirable to begin with a state­
ment of the properties of suitable functions g(x). 

In every case we shall confine our attention to a defined 
portion of the complex plane and usually to a sector formed by 
two rays from zero to infinity and containing in its interior 
the positive axis of reals. In such a portion of the plane 
(appropriately defined) we assume that g{x) is single-valued 
and also that it is analytic when | x | is sufficiently large. 
Moreover it is to have the asymptotic properties expressed in 
the formula 
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(1) g{x)^x^em(^1 + ^+^+...y 
in which P(x) and Q(x) are polynomials which we write in the 
form 

P(x) = /x0 + fiix + fx2x
2 + • • • + VkXk (jik + 0 if h > 0), 

Q(x) = a0 + aix + a2x
2 + • • • + amxm (am =)= 0 if m > 0). 

By rl we mean etlogr, where the principal determination of 
log r is taken. 

In case h = 0 we assume that m > 1 in order to avoid a 
case which is unimportant so far as our present objects are 
concerned. 

The asymptotic relation (1) is to be understood as an 
abbreviation for the infinite sequence of limits 

(2) l ima:^^)^-^^^ - (1 + ^1+5+ •••+^)) 

= 0 (« = 0 , 1 , 2 , . . . ) , 

the limits being taken for x approaching infinity in a sector 
including the positive axis of reals in its interior. 

5. By means of any function g(x) possessing the properties 
just indicated we introduce the series Q(ar) defined by the 
relation 

(3) 0(*) = t c j ^ - , 

where the coefficients c0, Ci, c2, • • • are independent of x. 
In case g(x + n) and g(x) have common zeros we shall 

understand that g(x + n)/g(x) denotes the function obtained 
when the numerator and denominator of this fraction are 
divided by an entire function (preferably a polynomial when 
possible) having for its zeros the common zeros of g(x + n) 
and g{x). 

A value of x for which any one of the functions g(x), 
g(x + l)/g(x), g(x + 2)jg{x), • • • has a singularity will be 
called an exceptional value or an exceptional point for the series 
&(x). Other values of x will be called non-exceptional or 
ordinary. 

In order to avoid cases without value for our purposes we 
shall assume that g{x) is of such character that there is a 
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(two-dimensional) region in the #-plane containing no excep­
tional points for the series. 

6. Let us suppose that we have a finite number v + 1 of 
series Q(x) which, with x replaced by xl where t is a positive 
integer, we write in the form 

w ) = £cni
9(xt + n) a = o, i , 2, • •., v). 

n=0 ÇJ\X ) 

Let us multiply Q^x1) by l/xi (i = 0, 1, 2, • • -, v) and add the 
resulting series term by term. We are thus led to a new 
series 

(4) ^ W - S I P ^ ) ^ ^ , 

where PnV(x) is a polynomial of degree v in I/o:, namely, 

p. , (*)-*-+ c f+^+•••+•*. 
Exceptional points and ordinary points are here defined as 

in section 5, the point x = 0 being now added to the set of 
exceptional points. 

These series T(x) are here introduced for the first time. 
I t is clear that they have a much greater flexibility than 
series Q(x) in adapting themselves to the necessities of repre­
senting a function which is arbitrary save as to general 
properties. 

7. The definitions of series Q(#) and T(x) might be extended 
to the case in which (1) is replaced by the relation 

rtaO-aWW 1 + - + - + 

and P(x) and Q(x) are polynomials either in x or more generally 
in xllv. Suitable functions g(x) for use in defining these more 
general series arise in situations analogous to those mentioned 
in sections 8 and 9 below. The theory of these more general 
series Q(x) and T(x) will not be treated in this paper. 

Convenient Sources of Suitable Functions g(x). 

8. I t is obvious that there exists a large class of series Q(x) 
in accordance with the foregoing definition; for one has the 
subclass of functions g(x) for which the series in the second 
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member of (1) is convergent when | x \ is sufficiently large 
and in particular that in which the series terminates, the case 
in which it consists of the first term alone being of especial 
interest (as we shall see in section 11). 

That there also exist other important basic functions g(x) 
may be readily seen. In fact, as we saw in section 1, solutions 
y(x) of linear homogeneous differential equations of a certain 
broad type are found to possess in general the asymptotic 
representation 

2 / ( x ) ~ ^ ^ ( l + | i + | + - . . ) 

valid for x approaching infinity in an appropriate direction, 
Q(x) being a polynomial in x and \x, ai, a^, • • • being constants. 
Hence a constant c exists such that y (ex) is a function having 
the property specified above for g(x). 

9. Another class of functions g(x) is afforded by the theory 
of difference equations. These functions are usually more 
effective than those defined by differential equations because 
the sequence of functions 

g(g + 1) g(x + 2) g(x + 3) 
g(x) ' g(x) ' g(x) ' 

has in this case very simple properties of interrelation among 
its elements, more convenient for most purposes than in the 
case of functions defined by differential equations. A theorem 
asserting the existence of these functions may be stated as 
follows :* 

Let us consider the linear homogeneous difference equation 
of order n 

F(x + n) + (n(x)F(x + n - 1) + - • • + an(x)F(x) = 0, 

in which the coefficients ak(x) have the property that x~tlkak(x) 
is analytic at infinity for every value of k from 1 to n, /x being 
a constant. By e^a^ we denote the value of x~tx'kajc(x) at 
infinity. We assume that the quantities a&0 are such that the 
characteristic algebraic equation 

an + a^a"-1 + h an0 = 0 

has its roots ai, a2, • • •, an different from each other and from 

* See Amer. Jour, of Math., vol. 38 (1916), pp. 185-220, and the papers 
there referred to. 
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zero. In this case the difference equation has n formal (and 
in general divergent) power series solutions of the form 

Fi(x) = x^afx" ( 1 + — + ~H ) (i = 1, 2, • • -, ri), 
\ X X J 

where \xi, en, c^, • • • are constants which may be reckoned out 
directly by substituting the expansion in the difference equa­
tion and equating like powers of x in the result. 

Then the difference equation has a fundamental system of 
solutions 

Fttx), F2(x), . . . , Fn(x) 

possessing the following properties: 
(1) Each function in the system is analytic throughout the 

finite plane except at the singularities a of the functions 

1 ^L(^1 ^ X 1 _ an-i{%) 
an(x) ' an(x) ' an(x) ' ' an(x) 

and the points a — i where i is a positive integer. 
(2) The functions Fi(x), F2(x), • • -, Fn(x) have with respect 

to x the asymptotic representation 

(5) Fi(x) ~ x»*a?x™ ( 1 + ~ + C-~ + • • • J 

(i = 1, 2, •••, ri), 

this representation being valid for x approaching infinity in 
any sector V formed by two rays from zero to infinity with 
arguments less than ir/2 in absolute value. 

Very useful particular basic functions g(x) for series Q(x) 
and T(x) are afforded directly by the foregoing functions Fi(x), 
especially in the case when ^ is a negative integer. If IJL is 
not a negative integer then a suitable and convenient function 
g(x) in place of Fi(x) is given by 

g(x) = Fi(x) [T(x)]-»-\ 

where k is a positive integer and T(x) denotes the gamma 
function of Euler. For the case when k is unity these func­
tions are especially useful. Moreover, any one of many 
expressions similar to the foregoing readily serves the same 
purpose. 

The case when the difference equation is of the first order 
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deserves special mention on account of the elegance of many 
of the series arising through functions g(x) satisfying equations 
of the form 

g(x + 1) = R(x)g(x), 

where R(x) is a rational function of x. See sections 12-17 
below. 

10. Series Q(x) and T(x) give rise to what appears to be 
the fundamental expansion problem in the theory of difference 
equations; or, more exactly, they give rise to a general 
problem which includes this one as a special case and also a 
corresponding one in the theory of differential equations. 
The general problem is far more comprehensive than either 
of these special cases. 

The total class of series Q(x) and T(x) is very large owing 
to the paucity of restrictions which it is necessary to put 
upon the basic functions g(x). So far as I can see now, how­
ever, it appears probable that the functions g{x) afforded by 
the solutions of linear homogeneous difference equations give 
rise to the most flexible series in the total class and are thus 
likely to prove themselves of the greatest permanent use 
in developing the theory of functions. I t is for this reason 
that I venture to suggest tentatively that the series treated 
in this paper give rise to the fundamental expansion problem 
in the theory of difference equations. 

I t is clear, however, that this expansion problem is not 
analogous to that having to do with orthogonal and bi-
orthogonal functions in the theory of differential equations. 
Owing to the fact that many common properties are possessed 
by difference and differential equations it is natural to expect 
in the theory of the former the analogue of expansions in 
fundamental functions arising in the theory of the latter. 
That such a theory could be developed is highly probable; 
but it is not at present in existence. I t seems improbable, 
however, that the expansions so obtainable are commensurate 
in importance with expansions in the form of our series Q(x) 
and T(x). 

Special Cases of Series Q(x) and T{x) in the Literature, 

11. Let us consider the special case in which g(x) has the 
value 

g(x) = e™\ 
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Then ü(x) is readily reduced to the form 
00 

Q(s) = 12cng(ri)e2<rnx. 

If we make the substitution z = e2(TX the series S2(cc) is trans­
formed into the power series 

00 

]C cng(ri)zn. 

Hence among the special cases of series Q(x) is to be found the 
foregoing elementary transform of a general power series. 

12. I t is well known that the function T(x) has the asymp­
totic character 

T(x) - xx-h~x V2^ ( 1 + j 2 ^ + • • • ) • 

Hence for g(x) we may take the special value 

9{x) = Th~Xi*ieX(ao + ^ + 
) 

Then we have 

g(x + n) T(x) 
g(x) T(x + n) x{x + l)(x + 2) - • • (x + n — 1) * 

Hence for this case our 0-series takes the form 
00 c 

0(a) = co + 2 ^ + 1)(a. + 2 ) . . . ( x + n - 1)' 

This is the well-known factorial series. The so-called series of 
binomial coefficients arises similarly by taking for g(x) the value 

g{x) = I » , 
whence we have 

00 

Q(œ) = c0 + X) cnx(x + 1) • • • (a; + n -- 1). 

13. Another interesting example of our series Q(x) is ob­
tained by taking for g(x) the value 

g&) = ~^}—rrr~\ ^x~x+tlea+lix ( l + — + •.. j , 
yK J axY{x + bja) \ x ' / ' 
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where a and b are constants and a 4= 0. In this case the 
£2-series takes the form 

» cn 

Let us now give to b the value 0 and replace ax by z. Then 
if we put Co = 0 the foregoing series takes the form 

(6) S(z) = g ^ + a ) ( z + 2 a ) . . . ( 3 + ( n - Ï M * 

This series plays the leading rôle in Nörlund's fundamental 
paper on factorial series referred to in section 2. 

Concerning series S(z) Nörlund proposes a fundamental 
problem in the following manner: What is the class of func­
tions which admit an expansion of the form S(z) for appro­
priately chosen real values of a? To this question he finds a 
very interesting answer. He shows that the class of func­
tions is the same as that which gives rise to power series of 
the form 

éi + é* + é*+ ... 
z ^ z2 ^ z* ^ 

which may be divergent but which are absolutely and uni­
formly summable by the exponential method of Borel. An 
infinite number of functions may give rise to the same power 
series; but it is the function which Borel assigns to this 
series as its generalized sum that admits an expansion of the 
form S(s). 

Thus a special class of the ^-series is in close relation with 
one of the most interesting questions of analysis, namely, the 
question as to what we shall mean by the sum of a divergent 
series. 

Moreover the function defined by the series S(z) is asymp­
totic to the power series of which it is the Borel sum; and 
another interesting point of connection for series fl(#) thus 
emerges. 

In later memoirs I intend to exhibit these and other prop­
erties of the series S(z) in their place as special cases of proper­
ties possessed by the 12-series in general. 

14. Again, if we put Mz for x and a + 1 for b/a in the 0-
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series of the preceding section, we obtain a new series which is 
readily reduced to the form 

(7) S(a) = 6 o + ê S (Mz+a+l)(Mz+a+2) • • • (Mz+a+n) 

This series plays the leading rôle in Watson's fundamental 
paper referred to in section 2. Watson shows that most of 
the ordinary functions of analysis (which possess asymptotic 
expansions) are capable of convergent representations in the 
form of series S(z). This statement is justified by three 
leading results which are stated by him as Theorems I, I I , I I I . 
Through such results one sees from another point of view the 
importance of our series Q(#). 

15. In a suggestive paper on the solutions of homogeneous 
linear differential equations in the neighborhood of the ir­
regular point infinity Horn (loc. cit.) has made use of a series 
which he writes in the form 

(8) Ao+i,(An+Bnx) 

( X + l ) ( X + 2 ) . - . ( X + n) 
X (x2/k + X + l)(x2/k + X + 2) - • • (x2/k + X + n) ' 

He treats the equation 

in which the coefficients Po, Pi , Pi are polynomials in x of 
degrees m,m + 1, m + 2 such that the characteristic algebraic 
equation for the point infinity of the differential equation has 
its roots distinct. For such an equation the point infinity 
is irregular of rank 2. Horn shows that the solutions of such 
an equation can be represented by means of convergent 
series (8) and he points out that the results are capable of 
generalization to equations of any order and with any rank 
of irregular point at infinity. 

I t is thus apparent that series (8) are of great importance 
in the theory of differential equations. 

We shall now exhibit series (8) as directly dependent on a 
special case of our series T(x). For this purpose we choose 
for g(x) the value 
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g^x) = Y(x + X + 1) ' 

so that we have 

g(x + n) 1 
g{x) (x + \+ l)(x + X + 2). • .(x + X + n) 

Thence we may write 

W ) = Co + Z 

02(z
2) = Z 

MtU*2 + X + l ) - - - ( * 2 + X + n ) ' 

dn 
'% (a;2 + X + 1) • • • (a;2 + X + n) ' 

Multiplying the first of these series by 1 and the second by x 
and adding, we have 

xT(x) = c0 + 2^: 
S ( * 2 + X + l ) - - . ( * 2 + X + n) ' 

where T(x) denotes an instance of the series Tvt{x) defined in 
section 6. If we now replace x by xj Vyfc it is clear that we 
have a series of the form (8). 

Thus we have exhibited several series of analysis as special 
cases of our general class of 12-series; in this way we have 
tentatively shown the importance of the latter series. 

Some Other Special Cases of Interest. 

16. Let us consider the first order difference equation 

g(x + 1) = R(x)g(x) = a -, ^ 7 -r-r -. —rg (x), 
yK J K jyK J (x — Pi)(x — j82) • • • (x — (3k)

 y K J 

in which the order m -— h of R{x) at infinity is different from 
zero. This equation obviously has a solution of the form 

9W-* r(*-fr)---r(s-ftr 
From the asymptotic representation of T(x), quoted above, 
it follows readily that the foregoing function g(x) has an 
asymptotic representation of the form 
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g(p) (1+71 + § + - ' - ) ' »=m-h 

Hence the function g(x) is suitable for use in defining O-series. 
I t is clear that we have 

g(x + n) g(x + 1) g(x + 2) g(x + n) 
g(x) g(x) g(x + 1) g{x + n - 1) 

= J R O O ^ O + 1) • • -R(* + n - 1). 

Hence our series Q(x) in this case takes the form 

Q(s) = co + T,cnR(x)R(x +i)...R(x + n-l). 

This form of series &(x) essentially includes as special cases 
the three types of series mentioned in sections 12-14. I t 
affords a highly interesting class of expansions in rational 
functions, particularly when R(x) vanishes to the first order 
at infinity, as I intend to show in a future paper. 

Let us consider the special case in which R(x) vanishes at 
infinity to the integral order 5 + 1 . Then /x = — s — 1. 
For this case we have a particularly useful class of series 
T(x), namely, 

T(x) =coo + — + ••• + - 8 -

+ i(cno + °-f+ ••• +C^)R(x)R(x+l)---R(x + n-l). 
n=l \ X X / 

I t is not difficult to show that this series may be formally 
transformed into a descending power series 

and conversely that any such power series may be formally 
transformed into a series T(x) depending on a given R{x) 
vanishing at infinity to the order 5 + 1 . The transforma­
tion is unique in each direction. Moreover the power series 
may diverge for all values of x while the T-series has a half-
plane of convergence. I t i$ in connection with such facts 
that these ÜT-series exhibit their great importance, as I shall 
show in detail in a later paper. 
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17. A certain subclass of the functions g(x) employed in the 
preceding section is of special interest on account of their 
applications. This subclass consists of those functions g(x) 
in which g(x)/g(x + 1 ) is a rational function of x and 
g(x)/g(x -f- n) is a polynomial in x provided that n is sufficiently 
large. A useful more restricted class is that in which this 
polynomial has non-negative real coefficients. We shall now 
exhibit a few such functions g(x). 

We take first a case already treated, namely, that in which 

y v J axT(x+ b/a)' 

Here R(x) has the value If (ax + 6). Hence g(x)/g(x + n) is 
a polynomial in x of degree n. Moreover, its coefficients are 
non-negative and real if a is positive and b is non-negative 
and real. 

Again, we may take 

t > - r ( * + *> 
9{X) T(x)T(x + S)m 

Here it is easy to see that g(x)/g(x + n) is a polynomial with 
non-negative real coefficients provided that n is sufficiently 
large, in fact, provided that n is greater than 2. 

In a similar way one may treat the function 

. T(x+l)T(x+Z) 

and with a like result. 
In the foregoing cases R(x) vanishes to the first order at 

infinity. In the following it vanishes to the second order: 

T(x + 1) 
T(x)T(x + 3)T(x + 4) ' 

Y{x + l)Y(x + 3) 
T(x)T(x + 2)T(x + 4:)T(x + 5) 

I t is obvious in what way one may form other functions g(x) 
so that R(x) vanishes at infinity to any desired order while 
g(x)/g(x + w) has the desired polynomial character. 

18. If we take for g(x) a function of the general type of 
those defined by difference equations in accordance with the 
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theorem quoted in section 7, namely, 

(9) g(x) ~ ar<«+»*+V* ( l + ^ + § + - • • ) ' 

it is easy to see that g(x + n)jg{x) has an asymptotic repre­
sentation of the form 

g(x + ft) 
ff(s) 

^ r—(s+1) •(*- + T + ^+-)-
If we take for the value of s a non-negative integer this func­
tion g{x) gives rise to the jT-series 

(10) T(x) = PoXx) + Z P„(aO ~J^~ > 
n==i g\x ) 

where 

PUx) = Cno + Cf + Cf+ •••+Cf ( n - 0 , 1 , 2 , . . . ) . 

If we take z> = st + £ — 1 it is easy to see that this T-series 
may be formally transformed uniquely into a descending 
power series 

Po ^ x ^ x2 ^ 

and conversely that any such descending power series may 
be formally transformed uniquely into a series T(x) defined 
by means of any basic function gix) having the asymptotic 
character (9). 

A special case of the foregoing series of particular interest is 
that depending on a function g{x) for which in (9) we have 
/z = a = 0 = C i = C2 = C3= • • •. 

It may be added that the function T(x) defined by (10) is 
asymptotic to the power series into which the series T(x) 
is transformable; a proof will be given in a later paper. 

Character of the Regions of Convergence. 
19. In my Transactions paper referred to in § 3 above I 

have proved for the general series Q(x) in (3) the following 
theorem: 

If o- denotes Om or fxj, according as m is or is not greater than 
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k, then there exists a unique real number X [/JL] such that the 
region of convergence (absolute convergence) (exclusive of the 
exceptional points) of the series Q(x) is bounded by the straight 
line R(ax) = X [R(<rx) = JJL] and lies on that side of this line 
for which R(<rx) < X [R(ax) < /*]. 

We shall now extend this theorem to the case of the series 

In view of the theorem just quoted it is easy to see that the 
series 

(11) Qi(x*) = 2L, cm ,%, -
n=o g\% ) 

has a region of convergence (absolute convergence) bounded 
by the curve 

R(axl) = X,- [R(axl) = m], 

where X* [JUJ is an appropriately determined constant, and 
that it lies on that side of this curve for which 

Riax*) < X; [R((TX*) < /*<]. 

Let us now consider the *> + 1 series (11) for which i takes 
the values 0, 1, 2, ---,v. Multiplying O^z') by 1/x* (i = 0, 
1, • • •, v) and adding the resulting series term by term we have 

(i2) TM = %p~MgJ^r> 
where 

Pnv(x) = cn0 +
 Cf + • • • + £ ? . 

Let p [r] be a number of the set 0, 1, 2, • • -, v such that 

\> ^ Xw i = 0 , 1 , • • -,v, i + P K ^ Mo i = 0 , 1 , • • -, v, i 4= r] . 

Then it is clear that 2\,f0*0 converges (converges absolutely) 
for any value of x such that 

(13) R(ax*) < Xp [Rfaz') < / i j . 

If furthermore Xp < X; when i 4= P, then the region of con­
vergence of Tvt(x) is bounded by the curve 

R(axt) = Xp. 

If on the other hand Xp [JUT] is equal to some other X [JJL], then 
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Tvt(x) may converge (converge absolutely) for certain non-
exceptional values of x outside of the region defined by (13). 
This is put in evidence by the series 

i[(s+2)H T(x)T(n) 
T(x + n) ' 

Here Xo = Mo = Xi = Mi = 1> as one may show without great 
difficulty by making use of the asymptotic character of T(x). 
This series converges absolutely for the non-exceptional value 
x = — 2 although both relations in (13) now reduce to 
R(- x) < 1 or R(x) > - 1. 

In view of this possibility that Tn(x) may converge (con­
verge absolutely) outside of the common part of the regions 
of convergence (absolute convergence) of the component 
series (11) it seems desirable to state the following theorem, 
the proof of which is immediate in view of relation (10) in 
my Transactions paper already referred to : 

Let Xo and xi be two values of x which are non-exceptional 
for the series Tvt(x) and suppose that Tvt(xo) converges abso­
lutely. Then Tvt(xi) converges absolutely if Rivxi1) < RicrxJ) 
and the quotient 

P«,(si)/ iU*o) 
is bounded. 

20. We should examine briefly the nature of the curves 

(14) R(<rx*) = v 

which bound the regions of convergence and absolute con­
vergence of series Tvt(x). For this purpose we write 

<r=\cr\ e^~\ x = r ^ " 1 , 

where r is real and not negative. Then (14) reduces readily 
to the relation 
(15) r* cos (t6 + <p) = m 
where 

rji = 7j/\a |. 

In case rji = 0 equation (15) represents 2t rays from zero 
to infinity and dividing the space about zero into 2t equal 
parts or sectors. The quantity denoted by the first member 
of (15) is negative within alternate sectors of this set (the 
sectors of convergence) and positive within the others (in 
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general the sectors of divergence). If rji is negative then (15) 
represents a curve of t branches lying within the aforemen­
tioned sectors within which the first member of (15) denotes 
a negative quantity; and each branch approaches asymp­
totically the rays of the sector including it. In this case the 
region of convergence consists in general of t separated regions 
each bounded by a curve somewhat resembling one branch 
of an hyperbola. In case 771 is positive the branches of the 
curve denoted by (15) lie in the aforementioned sectors 
within which the first member of (15) is positive; and again 
each branch approaches asymptotically the rays of the sector 
including it. In this case the region of convergence is in 
general the portion of the plane excluded by the t branches, 
which again resemble branches of hyperbolas. 

UNIVERSITY OF ILLINOIS, 

April 14, 1917. 

SHORTER NOTICE. 

Interpolated Six-place Tables. Edited by HORACE WILMER 
MARSH. New York, John Wiley and Sons, 1916. xii + 
155 pp. 
T H I S volume contains logarithms of numbers and the natural 

and logarithmic trigonometric functions, also tables of length, 
area, volume, weight, metric conversion, decimal equivalents, 
and specific gravity. In view of the many logarithmic tables 
on the market, a new compilation is expected to present 
valuable improvements. Only one such is evident in this 
book, viz., the use of a heavy ruling to denote " the change 
in leading figures when occurring in the line, thereby making 
the use of the wrong leading figures possible only by 'jumping 
the fence.'" Unfortunately on page 39, an omitted "fence" 
gives wrong values for log tan 3° 0', 20", 30", 40", and 50". 

In the logarithms of numbers no horizontal spacings or 
rulings are used and the number of rows on a page varies from 
13 to 31, so that the position of the desired logarithm on the 
page is never known " a priori." In the logarithmic trig­
onometric tables the lines are separated into groups of ten 
for 6 pages only, though this grouping is used throughout the 


