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(g - av)p = Hm ± ƒ [ £ (am) + ^ M - w ] rfy 

then 

. (du dv\ . (h—h I , 
+ <^[^-u^) + -^-uv^dx, 

where p is any point within S. 
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The method of proof which is here used depends upon the 
properties of continued fractions. Any irrational number y 
can be expanded as a simple continued fraction 

, 1 1 1 
y = ai+ j : r • • •. 

a2 + az + aA + 
Let Pn/qn be the nth principal convergent,* and P/Q be any 
intermediate convergent lying between pn-z/qn-ï and pnlqn* 
Then 

Pn-2 P Pn Pn+l Pn-l 

^ - ^ — <. y <* <v 
gn_2 V q-a qn+i qn-i 

if n is odd, and 
* The notation used here agrees with that of ChrystaFs Algebra, 

Vol. II, Chap. XXXII. 
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Pr^.2 P Pn Pn+1 . Pn-1 
> 7j > — > y > > —— 

gn_2 y #n #n+l %-l 
if n is even. 

For n either even or odd 

p 
« - * > 

P Pn 
Q Qn 

from which is derived 

Pn-2 + fcffn-l _ p « | 
gw_2 + &#n--i qn \ 

l S f e S ( O n - l ) f 

l ift , "™* A/ 

Since g„ = qn-2 + c^în-i and Q = <7„_2 + &g«_i, we have 

qn= Q+ (an — %»- i < Q + <M„_i < (an + 1)Q. 

Hence 

P 
> 

le"7 

and likewise 

Un 
We have then 

(i) 
and 

an — k ^ JL__ 1 
qnQ

 = qnQ ' Q2(an + 2) ' 

' - 7 > 
1 

> 
?n(?n+l + ?n) ^ Çn2(o*H-l + 2) * 

1 
IP ~ Qy I > 

2>n-l — gn-lY | > 

Q(On + 2) 

1 
tfn-lOn + 2) 

Let us suppose now that an + 2 < M for every n, an 
hypothesis which is certainly satisfied by every simple quad­
ratic surd (m d= Vn)/Z, where l, m and n are integers. Then 
if P/Q is any convergent, principal or intermediate, it follows 
from (1) that 

(2) p-<tr\>MQ' 

We shall show now that for any two integers whatever, 
i and j , 
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i - jy | > 
My 

Let Pi/Qi and P2/Q2 be two successive convergents (principal 
or intermediate) such that Qi Si j Si Q,%. From the general 
theory of continued fractions it is known that PijQi and P2/Q2 
are closer approximations to 7 than any other rational frac­
tions whose denominators are less than Q2. Consequently 

_ y > 
Pi 

Q 
- y > 

MQS' 

and therefore, since j > Qi, 

(4) 

Consider now the series 
i-Jy\>\Pi-Q«\>MQ>Wj' 

Z I 7 xzyJ 

*=o j=o 1 — 37 
(i+j>0), 

where 7 is an irrational number which, when expressed as a sim­
ple continued fraction, satisfies the condition that an + 2 < M 
for every n. Then we will have | i — 37 \ > l/(Mj) and 
consequently 

<Mj; 

so that 
i-J7 

xlyJ ,xl 

«=o *=o* — .77 ~ * ' So ~i% — .77 Z - + Z^Z-^-«5>' 
M 

t?i $?i l - x x \ - x (1 - y)2 

which converges if | x | < 1 and | y | < 1. Therefore the 
series 

HZ 1 
x%y3 

t=o'î=o^ — 37 (* + i>0) 

converges if | x | and | y \ are both less than unity, which is 
somewhat remarkable in that the denominators, which have 
no lower limit, impose no restriction upon the radii of con­
vergence of the series. 
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The restrictions upon y in the above discussion can be 
considerably reduced. It is seen from (1), if P/Q is any 
convergent (principal or intermediate), that 

\P-Qy\> 1 
Q(an + 2) ' 

where an is the first partial quotient above Q. Let us suppose 
now that 

(5) an + 2 < M(qn-i + l)(qn-i + 2)• • • (qn-i + S - 1), 

where S is any positive integer independent of n. Then, since 
Q > %-h 

an + 2<M(Q+l)---(Q + S- 1), 
so that 

\P-Qy\> MQ{Q + 1)...(Q + s^Ty 

Then, just as before, if i and j are any two integers such that 
Q < j < Qu we shall have 

\i-iy\>\P-Qy\> MQ{Q + 1).
1.iQ + 8 _ 1 ) 

l 
> Mj(j+l)---(j+S-l) 

and also 

•< J f j ( j + l ) - " ( i + S - l ) . 
I * — JT 

If then 7 satisfies these new conditions the series 

x%y3 ^ x 

But since 

*=o j=o * — .77 1 — # <=o .?=i 

oo JS / 1 \ Of 

gi0-+ i).. . ( i + S_ i ) ^ - - ^ ( — J = ^ ^ 
we have 00 00 y , y , a?V a; y MS I 
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and therefore convergent provided | x | and | y | are both 
less than unity. 

00 00 

Corollary.—If the series fix, y) = X) £ ciijX^ (i + j > 0) 

converges for | x \ < l/£, | y \ < lfrj, so that 

M ^ ) « ( r - ^ K i - w y - ^ 
and if 7 is an irrational number which satisfies (5), then the 
series 

F(x, y) = £ £ A - *y (* + j > 0), 
1=0 j=o i — jy 

converges provided | a: | < l/£ and | y \ < I/17. Furthermore 

*(z,V) «TZ7&1&+ (1 _ ^)(i _ W)«J-

It will perhaps be interesting to note the character of the 
condition that an+i + 2 < Mqn{qn + 1) • • • (qn + S — 1). Let 
us suppose that an = nl It is found then gn_i = (ti — 1)! 
(n — 2)! • • -2! + • • •• It is sufficient then to take M = 1, 
$ = 2, in order to satisfy the condition. If we suppose that 
an = If)10*1"1 we find that gn_i = lO^-MO10"'8- ••• 1010°+ 
• • -, and it is sufficient to take M = 10, S = 10. If however 
we suppose that an = 10nI then q^i = io("-i)l+(n--2)H-...+2! 
+ • • •, and there do not exist an M and an S which satisfy 
the condition. 

Application of these Series.—(a) The function 

oo oo \m,.n 

w=^<£jUL- | x | < i , | M | < i , 

where z is a complex variable, is a holomorphic function of z 
everywhere except in the neighborhood of the positive real 
axis, which is a line of essential singularities. Nevertheless 
the value of the function is finite for those real, positive 
irrational values of z which satisfy the above condition; 
furthermore the function is continuous across the real axis 
at any one of these points. To show the continuity, let 
z = 7 be such a point and let z = y + t cos a + it sin a be a 
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straight line which crosses the real axis at y making an angle 
ce with the real axis. Then 

\m,,n 

(ra — ny — nt cos ce) — i(nt sin ce) 

^^ [m — ny — nt cos a] 4- i(n£ sin ce) N 

[m — ny — nt cos ce]2 + w2£2 sin2 a 

If now we write W = Wi + %W^ and for brevity suppose 
X and fi real, we have 

^ ^ m — ny — nt cos a 
[ra — ny — w£ cos a]2 + nHl sin2 a, 

^™ nt sin a 
TF2 = 22XwMn 1 [m — 717 — ^ cos a]2 + n2t2 sin2 ce ' 

Consider now 
nt sin ce 

[ra — wy — n£ cos ce]2 + n2tf2 sin2 ce ' 

As a function of the variable t this expression has a maximum 
or a minimum for n2£2 = (ra — f17)2. It has a maximum 
equal to 

1 
(ra — wy)[(l + cos ce)2 + sin2 ce] 

for nt = (ra — wy), and a minimum equal to 

--1 
(ra — ny)[(l + cos a)2 + sin2 ce] 

for nt = — (m — ny). Consequently 

I sin a I ^ \mixn 

[(1 — cos a)2 + sin2 ce] \m — ny \' 

which is absolutely convergent. Whence W2, and in the same 
manner W\, is absolutely and uniformly convergent for all 
real values of t Consequently W is a continuous function of z 
all along this straight line. 

(6) Consider the linear partial differential equation 

d<j> d<f> 
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where 7 is a positive irrational number which satisfies the 
condition an+i + 2 < Mqn(qn + 1) • • • (qn + S — 1), and p\ = 
X'SaijXiiX23'9 P2 = 2)26*7^1*^2^ are two convergent power 
series in X\ and X2. 

We will take first the homogeneous equation 

d<f> d<f> 
Xld^ryX*dÏ2=ipi*> 

and put \p = log <j>. Then 

dé dé 

The solution of this equation is 

\I/ = 22) -— l— x\*X2j + an arbitrary function of (#iY£2), 
% — jy 

and by the above corollary this series has the same region of 
validity as p\ itself. I t follows therefore that <f> = e* also is 
a convergent power series in x± and X2, if the arbitrary func­
tion is taken equal to zero. 

Returning now to the equation 

dcj> d<j> 

let us take </> = cae*, where e* is the function already deter­
mined, and œ is an unknown function. We have then 

do) do) . . 

where X'ZdjXi^' is the expansion of 2 W * and is therefore a 
convergent series. The solution of this equation is 

C ' ' 
co = 2 2 -—lJ~r- a; iV + an arbitrary f unction of (xiyx2), i — jy 

which likewise is a convergent series. Consequently <f> 
= (A + co)^, where A is an arbitrary function of (x{/X2), 
is a solution of the differential equation. 
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