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and making a set of five assumptions. It appears that the 
most general solution, when n is greater than 2, is (p~~1Sr(p{x)9 
where the integer r is prime to n. The case n = 2 is discussed 
separately and a simple algorism is given for reducing all 
differentiable functions of order 2 to a single type. 

F. N. COLE, 
Secretary. 
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THE Legendre, or second necessary, condition for a mini­
mum of a double integral, where there is no isoperimetric 
condition, has been derived by Kobb,* where the equations 
of the surfaces involved are in parametric form, and by 
Mason,f where x and y are the independent variables. The 
analogous condition for the isoperimetric problem has been 
proved to be sufficient to insure a permanent sign to the 
second variation,:! but it has not been proved to be necessary. 

In the present paper this condition, 

hpP(x, y, z, p, q; \)hqq(x, y, z} p, q; X) - hpq
2(x, y, z, p, q; X) ^ 0, 

or expressed in parametric form, 

Hn(x, y, z, xu, xv, ••-,*,; X)#22<>, yy z, xuy xv, • • -, zv; X) 

— H12
2(x, yy z, xu, xv, • • -, zv; X) ^ 0, 

is proved to be necessary for either a maximum or a minimum. 
Given two f unctions ƒ (a:, y, z, p, q) and g(x, y, zy p, q) and a 

surface 
S: z = z(x, y) 

* " Sur les maxima et les minima des intégrales doubles," Acta Maihe-
matica, vol. 16 (1892), p. 108. 

t " A necessary condition for an extremum of a double integral," BULLE­
TIN, vol. 13 (1907), p. 293. 

J Kobb, Acta Mathematica, vol. 17 (1893), p. 331. 
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which satisfies the Lagrange differential equation 

(1) h,(x, y, z, p, q;X) - ^h p (x , y, z, p, q; X) 

- fy h(x> V> 2, p, q; X) = 0;* 

it is desired to find a second condition which must be satisfied 
if the surface S gives a value to the integral 

(2) J= J J f(x, y, z, p, q)dxdy 

as small as that given by any other admissible surface in the 
neighborhood of S. The region O is assumed to be bounded 
by a curve L of class D',f without double points, and the 
number of its intersections with any line parallel to either 
of the axes is assumed to be less than a fixed constant. The 
function z(x, y) is assumed to be of class C" in 0, as are also 
the functions ƒ and g in the neighborhood of S. A surface is 
said to be admissible if it is of class Df, intersects S along a 
space curve which projects into L, and gives the same value 
as 8 to the double integral 

K = J J g(x, y, z, p, q)dxdy. 

It will also be assumed that z(x, y) is not a solution of the 
equation 

pi 

(3) g»(x, y, z, p, q) - ô^gP(x> y, 2, p, q) 

d , , „ 
-Yyg^X,Vi%yV,(U = 

If a one parameter family of admissible surfaces 

8: z = z(x, y) + ej(x9 y, e) 

is given, where the function J(x, y, 0) and its partial derivative 
fe(#> y y 0) are of class D', and this value substituted for z in 
the function f, the first variation of J must vanish because of 

* Bolza: Vorlesungen über Variationsrechnung, p. 662. 
t Bolza, loc. cit., p. 63. 
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equation (1). The second variation is found to be 

(4) *J = ê ƒ X ifz*r + 2fzvTU + 2fzqffv + fvv~U* 
+ Zfpqfxïv + faafy2 + ƒ*?« + Ivf** + foïvùdxdy. 

Since the surfaces considered are admissible, ô2K, which can 
be evaluated in the same way, vanishes. If it is multipled by 
X and added to 8V, and then Green's theorem* is applied, 
equation (4) becomes 

8V = e2 ƒ ƒ (*„?* + 2hzpffx + • • • + hqqfy*)dxdy 

where as usual h = ƒ + X#. The last integral vanishes on 
account of equation (1), leaving 

(5) SV = €2 ƒ ƒ Qizz? + 2hzptfx + • • • + hqqÇy
2)dxdy. 

I t will now be proved that if there is a point on S where the 
inequality 

(6) hpphqq — hpq
2 < 0 

is satisfied, the function f(x, y, e) can be chosen in such a way 
that ö2J will be negative, and consequently there is no mini­
mum. 

If there is such a point there must be a region including 
the point where inequality (6) is satisfied. Two distinct 
points Po and Po' in such a region can then be chosen, whose 
coordinates will be called xo, yo, Z(XQ, yo) and Xo', yo, z(xo', y0

f). 
Since z(x, y) is not a solution of equation (3), it can be assumed 
that 

ft 
(7) g»(xo', yo, --)-Qp 9PW> yo, • • ' ) 

ft 
-Q^,9<i(xo,yo, •••) 4=0. 

* Bolza, loc. cit., p. 654. 
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The expression 

hpv(xo> yo, • • •) cos2 ce + 2hpq(x0, y0, • • •) cos a sin ce 

+ hqq(x0, y0, •••) sin2 a 

must vanish for two positive values of ce less than T, and 
changes its sign when and only when ce passes through one 
of them. I t follows that a positive constant k2 and a finite 
interval can be chosen in such a way that if cei and ce2 are any 
two angles in the interval, the inequalities 

(8) hPp cos2 ai + 2hpq cos ce* sin ce* + hqq sin2 a* < — k2 

(i = 1, 2), 

are satisfied at Po, and since tippy llpq and hqq are continuous, 
they are satisfied at every point of S in a neighborhood of Po. 
If there is given any positive constant ô it is possible to select 
two distinct angles ce/ and ce2' near to a root of the equation 

hpp(x0', yo', • • •) cos2 a + 2hpq(x0', yd, • • •) cos a sin ce 

+ hqq(x0', yo', • • •) sin2ce = 0, 

such that the inequalities 

(9) | hpp cos2 a/ + 2^pg cos a/ sin ce/ + Agg sin2 ce/ | < ô 

(* = 1, 2), 

are satisfied at every point of S in a neighborhood of Po'. 
For convenience these angles will be chosen so that ce2 — OL\ 
= ce2r — ce/. 

Two rhombuses P and R' will be defined as follows:* 
R is bounded by the lines 

d —• u\ = 0, d — -W2 = 0, d + u\ = 0, d + ^2 = 0, 

where 

w* = (x — a?0) cos a* + (y — y0) sin on, (i = 1,2), 

and R' by the lines 

rf — u\ = 0, d — W = 0, d + u\ = 0, d + WL = 0, 

where 
w/ = (a; — #</) cos ce/ + (y — yo') sin a / . 

* Compare with Mason, loc. cit., p. 295. 
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The constant d will be taken so small that R and R' do not 
overlap, and are entirely within the projections on the x, y-
plane of the respective neighborhoods in which the inequalities 
(8) and (9) are satisfied. A function f (x, y) will be defined 
as identically zero outside of R, and inside of R as equal to the 
distance of the point x, y from the nearest side of R. That is, 

f (a, y) = d =F ui9 (ï= 1, 2), 

where the sign and subscript of u are chosen so as to make f 
as small as possible. The function Ç'(x, y) will be chosen in 
the analogous way. Since a* — a\ = a2

f — a± the rhombuses 
R and Rf are of the same size and shape and the equation 

J j j ^ x > y^dxdy == J J^'fa y)dx<J>y 
is satisfied. 

The function Ç(x, y, e) will now be defined by the equation 

«?fo y, e) = ef (x, y) + e'(e)Ç'(x, y), 

where e'(e) is to be determined by the condition that the sur­
faces S be admissible. The first variation of K is found to 
be equal to 

If the mean value theorem is applied to these integrals and 
the equation is solved for de'(0)/de, it becomes 

de'(O) ('•-a*-£'«).. =£» ?/=*? 

(g*-Lg*-lyg)^ 
de 

where £, rj is a point in R and £', rf a point in R'. The de­
nominator cannot vanish if d is sufficiently small, because of 
inequality (7). Consequently a finite constant m can be 
chosen such that 

|de'(0)| 
de < m. 
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If the second variation of K is equated to zero, the coefficient 
of d2e'(0)/de is also equal to 

fil9*-fx9»-ly°*)t'dxdy*°-
Consequently this second derivative exists. Therefore the 
functions 

?(*, V, 0) = t(x, y) + ^ f'Gr, y), 

d2e'(0) 

U^y,0) = ~dyt'(.x,y) 

exist and they have the required continuity. 
When f(x, y, e) is determined in this way equation (5) 

may be written 

b2J = e2 f ( (hzzf
2 + 2hjfx + 2hjfy)dxdy 

+ e2 I I (hpp cos2 ai + 2hvq cos a* sin a* + hqq sin
2 ai)dxdy 

mu' + €* ( ~~J7~ ) I I (̂P2> C0S2 <**' + %Kd C0S « / Sîn <*i 
+ ĝg sin2 a/)dxdy, 

where i takes the values 1 and 2 in the appropriate parts of 
R and R'. It can now be easily proved that 

d2J < - e2A(k2 - 3fd(rf + 4)(1 + m2) - Ôm2), 

where M is the largest of the maxima of the numerical values 
of hzz, hzp and hzq, and A is the area of .R.* Since d and 8 
can be taken as small as is desired without affecting k2, they 
can be taken so small that b2J will be negative and there 
is no minimum. 

In a similar way it can be proved that there is no maximum 
if inequality (6) is satisfied, and the following theorem will be 
proved : 

A necessary condition that the surface S furnish either a 
maximum or a minimum for the double integral (2), relative to 

* Compare with Mason, loc. cit., pp. 295-6. 
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the admissible surfaces, is that 

hpp(x, y, z, p, q; \)hqq(x, y, z, p, q; X) 

- hpq
2(x, y, z, p, q; X) ^ 0, 

at every point of S. 
If the surface S is represented by the parametric equations 

x = x(u, v), y = y(u, v), z = z(u, v), 

the f unctions ƒ and g must be replaced by F(x, y z, xu, xv, • • • 
zv) and G(x, y> z, xu, xv, •••, zv) respectively. Then if the 
equations of S are written 

x = x(u, v) + e£(u, v, e), y = y(u, v) + erj(u, v, e), 

z = z(u, v) + eÇ(u, v, e), 

the second variation becomes 

(11) Ô2J = e2 ƒ ƒ (Hxx? + 2Hxyfr + • • • + HZvZSv2)dudv. 

The values of J and i£ are assumed to be unchanged by any 
change in the parametric representation of S which leaves the 
surface S itself invariant. This furnishes a number of rela­
tions between the partial derivatives of F and G, among 
which are the following:* 

Fx&u = F\iX2, FXuVu = FuXY, FXuXv = Fi2X
2, 

F*Wv + ^ = 2^12X7, FXyXv = F22X2, J'aw, = F22XY, 

and the other formulas derived from these by permuting the 
letters x, y, z and X, Y, Z in the same way. The functions 
J^ii, F12 and F22 are continuous and X, Y and Z are the direc­
tion cosines of the normal to S. 

I t will now be assumed that there is a function <a(u, v, e), 
such that 

£(u, v, e) = œ(u, v, e)X, 

rj(u, v, e) = <a(u, v, e) Y, 

f O, fl, e) = <a(u, v, e)Z. 

If these values are substituted in the integrand of equation 
(11), it becomes a quadratic form in co, oou, <av. The coefficient 

* Kneser: Lehrbuch der Variationsrechnung, p. 282. 
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of o)u is seen to be 

HXuXJ> + 2HXuVuXY + HMJ* + 2HXu,uXZ 

+ 2H^JZ+H^Z\ 
Equations (12), with F replaced by H, reduce this to the form 

Hn(X>+ P + Z 2 ) 2 = F n . 

Similarly the coefficients of œuœv and ccv
2 can be proved equal 

to 2Hi2 and H22 respectively. The other coefficients will be 
called #00, 2Hoi and 2H(& respectively, and equation (11) 
becomes 

52J = e2 ƒ ƒ ( i W + 2H0iœœu + 2H^œœv + Hnœu
2 

+ 2Hi2u)uœv + H220ov
2)dudv. 

This equation is in the same form as equation (5), and from 
this point on the argument is so nearly the same as in the non-
parametric case that it need not be repeated here. The 
analogue of inequality (10) is seen to be 

Hn(x, y, z,xu, --,zv; X)H22(x, y, z, xu, • • -, zv; X) 

— #i22(#, y, z,xu, • • -, zv; X) ^ 0. 
COLUMBIA UNIVERSITY. 

NOTE ON THE DERIVATIVE AND THE VARIATION 
OF A FUNCTION DEPENDING ON ALL THE 
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BY PROFESSOR G. C. EVANS. 

(Read before the American Mathematical Society, January 2, 1915.) 

1. IN a recent article,* Fréchet has given a treatment of 
the differential of a function depending on a curve, by making 
use of and evaluating Riesz's expression of a linear relation 
in terms of a Stieltjes integral. According to Fréchet, if 

b 

F[(p] depends on all the values of <p(x) between a and b, then 
a 
* M. Fréchet, "Sur la notion de différentielle d'une fonction de ligne," 

Transactions of the American Mathematical Society, vol. 15 (1914), pp. 
135-161. 


