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and making a set of five assumptions. It appears that the
most general solution, when n is greater than 2, is ¢ f"p(2),
where the integer r is prime to n. The case n = 2 is discussed
separately and a simple algorism is given for reducing all
differentiable functions of order 2 to a single type.

F. N. CoLE,

Secretary.

THE LEGENDRE CONDITION FOR A MINIMUM OF
A DOUBLE INTEGRAL WITH AN ISOPERI-
METRIC CONDITION.

BY DR. CHARLES ALBERT FISCHER.

(Read before the American Mathematical Society, February 28, 1914.)

THE Legendre, or second necessary, condition for a mini-
mum of a double integral, where there is no isoperimetric
condition, has been derived by Kobb,* where the equations
of the surfaces involved are in parametric form, and by
Mason,t where « and y are the independent variables. The
analogous condition for the isoperimetric problem has been
proved to be sufficient to insure a permanent sign to the
second variation,] but it has not been proved to be necessary.

In the present paper this condition,

hop(@, Y 2, Dy @5 Moo, Y, 2, D, G N) — k@, ¥, 2, 0, ;M) 20,
or expressed in parametric form,
Hu(x, y, 3, Tuy Ty =+ +y 205 N Hoo(2, Y, 2, Tuy Ty =+ +5 203 N)

— Hp’(®, ¥, 2, ®uy Xvy ***, 203 N) 2 0,

is proved to be necessary for either a maximum or a minimum.
Given two functions f(z, y, 2, p, ¢) and g(z, y, 2, P, ¢) and a
surface

S: 8= Z(CIJ, 3/)

* ¢ Sur les maxima et les minima des intégrales doubles,” Acta Mathe-
matica, vol. 16 (1892), p. 108.
A necessary condition for an extremum of a double integral,” BuLLE-
TIN, vol. 13 (1907), p. 293.
1 Kobb, Acta Mathematica, vol. 17 (1893), p. 331.



1915.] THE LEGENDRE CONDITION FOR A MINIMUM. 381

which satisfies the Lagrange differential equation

i)
(1) hZ(x! Y, 3 D, (IJ\) - ahpcvr Y%, D q; >\)

a ok
- ay hQ(x: Y2, P q; )‘) = 0;

it is desired to find a second condition which must be satisfied
if the surface S gives a value to the integral

@ 7= [ [ $@ v 5 oddy

as small as that given by any other admissible surface in the
neighborhood of S. The region © is assumed to be bounded
by a curve L of class D', without double points, and the
number of its intersections with any line parallel to either
of the axes is assumed to be less than a fixed constant. The
function z(z, y) is assumed to be of class C” in Q, as are also
the functions f and ¢ in the neighborhood of S. A surface is
said to be admissible if it is of class D’, intersects S along a
space curve which projects into L, and gives the same value
as S to the double integral

K=yﬁ£ﬂ%%&pwﬂwy

It will also be assumed that z(z, y) is not a solution of the
equation

d
(3) gz(x’ Y, % P, Q> - a_xgll(x; Y, % Dy ‘J)

3
—@%M%%n®=&

If a one parameter family of admissible surfaces

S: z = 3z(a, y) + 6?(23, Y, €)

is given, where the function {(z, y, 0) and its partial derivative
¢e(, y, 0) are of class D, and this value substituted for 2 in
the function f, the first variation of J must vanish because of

* Bolza: Vorlesungen iiber Variationsrechnung, p. 662.
1 Bolza, loc. cit., p. 63.
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equation (1). The second variation is found to be

4) & = é ffn (fzz?2 + 2fzp?§‘z + 2fzq§'—§-y + fpp?f
+ 2qu—§:x?u + faals® + feSe + folze + fq?Ue)dwdy'

Since the surfaces considered are admissible, 62K, which can
be evaluated in the same way, vanishes. If it is multipled by
\ and added to 6%/, and then Green’s theorem* is applied,
equation (4) becomes

62J = 52 fj; (hzz?2 + 2th§?z + e + hqq?z;)dxdy

3 o .
1+ e ffﬂ(h,—ahp—@hq)gg dady,

where as usual & = f+ Ng. The last integral vanishes on
account of equation (1), leaving

3) o =é f f (hasB? + 2hBTe + -+ + hogl,)dady.

It will now be proved that if there is a point on S where the
inequality

(6) hpphqq - hpq2 <0

is satisfied, the function {(z, y, €) can be chosen in such a way
that 62J will be negative, and consequently there is no mini-
mum.

If there is such a point there must be a region including
the point where inequality (6) is satisfied. Two distinct
points Py and Py’ in such a region can then be chosen, whose
coordinates will be called @, yo, 2(0, ¥o) and x¢’, yo', 2(x0’, yo')-
Since 2(z, ) is not a solution of equation (3), it can be assumed
that

d
(7) gz(x()’) 3/0', cee)— %‘07 yp(xo', yo', cee)

0
- 5‘%‘;%(%0', yo-++) 0.

* Bolza, loc. cit., p. 654.
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The expression
hpp(@o, Yo, =+ +) cos? o 4+ 2hpq(@o, Yo, +++) cOS @ sin &
+ hqq(xO, Yo, * ') Sin2 o

must vanish for two positive values of « less than =, and
changes its sign when and only when « passes through one
of them. It follows that a positive constant %2 and a finite
interval can be chosen in such a way that if o4 and o, are any
two angles in the interval, the inequalities

(8)  hpp cos® a; + 2hpq cOs a; Sin o + hgq sin® oy < — k2
(¢=12),

are satisfied at Py, and since kpp, hyq and hy, are continuous,
they are satisfied at every point of S in a neighborhood of Pj.
If there is given any positive constant 8 it is possible to select
two distinct angles au’ and oy’ near to a root of the equation

hoo (0 Yo'y + ¢ +) cos? a + 2hpq(20’, Yo'y <+ +) cOs a sina
+ Reo(@d, yo, +++) sinfa = 0,
such that the inequalities
(9) | hop cos? o’ + 2hpg cos @ sin o’ + hygsin? oy’ | < 8
(¢=1,2),

are satisfied at every point of S in a neighborhood of Py’
For convenience these angles will be chosen so that oy — o
= — oy

Two rhombuses R and R’ will be defined as follows:*
R is bounded by the lines

d— =0, d—uw=0d+wu=0, d+ uw=0,
where
u; = (x — @) cosa; + (¥ — o) sine;, (2= 1, 2),
and R’ by the lines
d—w' =0, d—uw'=0, d4+uw' =0, d+ w =0,

where
u' = (@ — zy) cosa’ + (y — yo) sinay’.

* Compare with Mason, loc. cit., p. 295.
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The constant d will be taken so small that R and R’ do not
overlap, and are entirely within the projections on the x, y-
plane of the respective neighborhoods in which the inequalities
(8) and (9) are satisfied. A function {(x, y) will be defined
as identically zero outside of R, and inside of R as equal to the
distance of the point z, y from the nearest side of R. That is,

g‘(x’ y) =dF Uz, (?::= 1’ 2)’

where the sign and subscript of % are chosen so as to make ¢
as small as possible. The function {’(z, y) will be chosen in
the analogous way. Since @z — oy = a’ — oy’ the rhombuses
R and R’ are of the same size and shape and the equation

f fR §(z, y)dady =f fzz ' (z, y)dady

is satisfied. _
The function {(z, y, €) will now be defined by the equation
§(x, y, ) = (2, y) + € (@, ¥),

where €' () is to be determined by the condition that the sur-

faces S be admissible. The first variation of K is found to
be equal to

9 9
fj;(gz _a—xg"_a_ygq> {dedy

de'(0 9 3\,
+j‘l—e—)-ffw(gz—5igp—@gq>§dxdy = 0.

If the mean value theorem is applied to these integrals and
the equation is solved for de’(0)/de, it becomes

—
dé’(0)= _ gz axgp aygq w=t, y=1

de ( _ 9 _i ’
e~ 029 ™ 0y 9%) gy, e

where £, 1 is a point in R and £, 9’ a point in R’. The de-
nominator cannot vanish if d is sufficiently small, because of

inequality (7). Consequently a finite constant m can be
chosen such that

de' (0)
de

<m
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If the second variation of K is equated to zero, the coefficient
of d%'(0)/de is also equal to

ff (g‘_a I~ 3y gq)i"dxdy#().

Consequently this second derivative exists. Therefore the
functions
de (0)

Ty, 0) = f(, y) +——

2 ’
am%m—i@ru>

(@, ),

exist and they have the required continuity.

When {(z, y, €) is determined in this way equation (5)
may be written

&8 = é -fJR-l-R' (hzz—§:2 + 2th§§z + 2hzq§§u)dxdy

+ é f f (Ppp COS® @i + 2hpq COS 0 sin a; + hgq sin® a;)dady

iy (de (0)) ff (hpp cOS? i’ + 2hpg cOs o sin o
+ hgq sin® a”)dady,

where ¢ takes the values 1 and 2 in the appropriate parts of
R and R’. It can now be easily proved that

0 < — @Ak — Md(d + 4 + m?) — m?),

where M is the largest of the maxima of the numerical values
of ks hep and h.y, and A is the area of R.* Since d and &
can be taken as small as is desired without affecting %%, they
can be taken so small that 6%/ will be negative and there
is no minimum.

In a similar way it can be proved that there is no maximum
if inequality (6) is satisfied, and the following theorem will be
proved:

A necessary condition that the surface S furnish either a
maxtmum or a minimum for the double integral (2), relative to

* Compare with Mason, loc. cit., pp. 295-6.
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the admassible surfaces, is that
hoo(®, Y, 2, P, 45 Mheo(%, Y, 2, D, 45 N)

(10)
. — i@, ¥, 2, 0,4;N) 20,
at every point of S.

If the surface S is represented by the parametric equations
z =z, y=yuo), 2==2u,o),
the functions f and g must be replaced by F(z, y 2, Zu, 2o, - - -
%) and G(x, Y, 2, Tu, Ty, *+-, %) respectively. Then if the
equations of S are written

x = x(u, v) + e&(u, v,¢), y= yu, v) + enu, v, ¢,
z = z(u, v) + €f(u, v, €),

the second variation becomes

a1 &J =é f f (Hool? + 2Hoyty + - ++ Hop 02)dud,
Q

The values of J and K are assumed to be unchanged by any
change in the parametric representation of S which leaves the
surface S itself invariant. This furnishes a number of rela-
tions between the partial derivatives of F and @, among
which are the following:*

qux,, = F11X2: F:cuy,, = F12XY, Fx z, = F12X2,

quy,, + Fx,,y“ = 21?12XY: Fx,,z. = F22X2: Fa:,,y,, = F22XY’

and the other formulas derived from these by permuting the
letters @, y, z and X, Y, Z in the same way. The functions
Fy, Fi; and Fy are continuous and X, Y and Z are the direc-
tion cosines of the normal to S.

It will now be assumed that there is a function w(u, v, €),
such that

(12)

£(u, v, ) = w(u, v, X,
7(u, v, €) = w(u, v, €)Y,
C(u, v, €) = w(u, v, €)Z.

If these values are substituted in the integrand of equation
(11), it becomes a quadratic form in w, w,, w,. The coefficient

* Kneser: Lehrbuch der Variationsrechnung, p. 282.
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of w,? is seen to be
H,.X*+°2H,,XY+H,,Y*+ 2H,,XZ
+2H,,YZ+ H,, 7%
Equations (12), with F replaced by H, reduce this to the form
Hy(X2+ Y2+ Z%)* = Hu.

Similarly the coefficients of w,w, and w,? can be proved equal
to 2Hy, and Hj, respectively. The other coefficients will be
called Hy, 2Hy and 2H respectively, and equation (11)
becomes

8J = ¢ ff (Hoow?* + 2Hgww, + 2Hpww, + Hyuw,?
o
+ 2Hpwuwy + Hpw,?)dudo.

This equation is in the same form as equation (5), and from
this point on the argument is so nearly the same as in the non-
parametric case that it need not be repeated here. The
analogue of inequality (10) is seen to be

Hll(x’ Y, By Ly ***y Bw; )\)ng(ﬂf, Ys 8 Tuy **°y Ry )‘)
— H’(@, §, 2 Tuy =+ 203 ) 2 0.

CorLumBIiA UNIVERSITY.

NOTE ON THE DERIVATIVE AND THE VARIATION
OF A FUNCTION DEPENDING ON ALL THE
VALUES OF ANOTHER FUNCTION.

BY PROFESSOR G. C. EVANS,

(Read before the American Mathematical Society, January 2, 1915.)

1. IN a recent article,* Fréchet has given a treatment of
the differential of a function depending on a curve, by making
use of and evaluating Riesz’s expression of a linear relation
in terms of a Stieltjes integral. According to Fréchet, if

b
Fl¢] depends on all the values of ¢(x) between a and b, then

* M. Fréchet, “Sur la notion de différentielle d’une fonction de ligne,”
Trg:ti(étitions of the American Mathematical Society, vol. 15 (1914), pp.
13 .



