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54. The varieties of self-projective quartic and quintic 
curves have been tabulated for the general case by Ciani 
and Snyder respectively. Dr. Winger in his paper presents 
the protectively distinct types of the most general rational 
curves of these orders which are invariant under the different 
finite collineation groups. The quartics are readily obtained 
from the consideration of the Stahl binary sextic. Six types 
are found with characteristic groups of orders 2, 3, 4, 4, 6 and 
24, the first three being cyclic, besides one with an infinite 
group. 

Of the quintics, two admit a one-parameter group. The 
others belong to cyclic groups of orders 2, 3, 4, 5 (two types), 
and dihedral groups of orders 4, 6, and 10 (two types),—eleven 
in all. 

F. N. COLE, 
Secretary. 

THE PRODUCT OF TWO OR MORE GROUPS. 

BY PROFESSOR G. A. MILLER. 

(Read before the American Mathematical Society, December 31, 1912.) 

§ 1. Introduction. 

I F HI and Hi are any two groups, the symbol Hi • H2 denotes 
the totality of the products obtained by multiplying each 
operator of Hi on the right by every operator of Hi. A 
necessary and sufficient condition that this totality constitutes 
a group is that Hi • H2 = H2 • Hi. As Hi • H2 is always 
composed of the inverses of all the operators represented by 
H2 • Hi, irrespective of whether this product is a group or 
does not have this property, we may also say that a necessary 
and sufficient condition that Hi • H2 is a group is that it includes 
the inverse of each one of its operators. 

Suppose that Hi and H2 have exactly h0 operators in 
common. These common operators constitute a subgroup 
H0, which is known as the cross-cut of Hi and H2. I t is easy 
to prove that the number of the distinct operators in Hi • H2 

is always hh/ho, where h± and h represent the orders of 
Hi and H2 respectively. To see that Hi • H2 cannot involve 
more than this number of distinct operators, it is only neces-
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sary to arrange all the operators of H\ and H2 in augmented 
left and right co-sets,* respectively, as follows: 

Hi= Ho + s2Ih + ssHo + • • • + sniH0, 

H2 = H0 + Hok + Hok + • • • + H0tn2. 

The fact that hihz/ho of the operators in Hi • II2 are distinct 
results from the following equations: 
If 

saH0 - Hotp = saJIo - Hotpv 
then 

As the first member of the last equation represents an operator 
of Hi while the second member represents an operator of H2, 
it results that the last equation implies a\ = a and ft = /3. 
Hence the elementary theorem: If Hi and II2 have exactly ho 
common operators, then Hi • II2 involves hifh/ho distinct opera­
tors, and each of these operators appears exactly ho times among 
the operators of Hi • H2. 

While the theory of the product of two groups is very 
elementary, the theory of the product of more than two groups 
is much more complex. We observe in the first place that if 
Hi, H2, • • •, Hx represent any X groups, then Hi • II2 • • • HK 

and Hk • • • H2 • Hi are composed of operators which are re­
spectively the inverses of each other, independently of whether 
these products are groups or do not have this property. If 
one of these products is a group, the other is evidently also a 
group. Moreover, it is clear that Hi - H2 - - - HK is a group 
whenever its factors Hi, H2, • • •, HK can be permuted according 
to all of the substitutions of the cyclic group generated by the 
substitution (HiH2 • • • Hx), without affecting the value of 
this product. In fact, if the function Hi • II2 • • • H\ admits 
all the substitutions of this cyclic group, the product of any 
two of its operators is again an operator in this product since 

HVH,- • -H.H^Hf -H^HvHr • -Hx-HvIh- • -H^ 

Hence the theorem: If the product Hi • II2 - • • HK admits 
the cyclic group on its factors, in order, it must also admit the 
dihedral group on these factors. 

* Transactions Amer. Math. Society, vol. 12 (1911), p. 326. 
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§ 2. Substitutions which Transform a Product of Groups into 
Itself. 

One of the most useful theorems in the theory of substi­
tution groups is often stated in a somewhat indefinite form as 
follows: All the substitutions on n letters which transform into 
itself a given function of these letters constitute a group. Hence 
it may be desirable to direct attention to an important limita­
tion of this general statement of the theorem, which exhibits 
interesting properties of the product of three groups. The 
main point in question can be illustrated by means of the 
simple group of order 60, which we shall represent by the 
symbol G throughout the present section. 

Let three Sylow subgroups of G whose orders are 3, 4, and 5 
be represented by the symbols Gh G2, and G?3 respectively, and 
suppose that (?i and G2 have been so selected that they gener­
ate a subgroup of order 12 while G% is any one of the sub­
groups of order 5 contained in G. From the fact that the 
number of the distinct operators in the product of two groups 
which have only identity in common is equal to the product 
of the orders of these groups, it results that every operator of 
G is found once and only once in each of the products 

G H n n n n 
The second of these products may be obtained from the 

first by means of the substitution {G\G%G2), and hence we 
may say that G = Gi • G2 • G3 is transformed into itself by 
this substitution. We proceed to prove that G is not trans­
formed into itself by the square of this substitution, and 
hence it will result that the substitutions on the letters (?i, 
G2y G% which transform G into itself do not constitute a group. 
This fact will be established if we prove that G =)= G2G%G\. 

We proceed to prove the more general theorem that G 
cannot be the product of three Sylow subgroups of different 
orders if the middle one of these subgroups is of order 5. 
Since the 60 operators of G\ • G% • G2 are the inverses of those 
of G2 - G% • Gi, it is only necessary to prove that it is impossible 
to find in G three Sylow subgroups G2, 6r3, G\ of orders 4, 5, 3 
respectively such that G = G2 • G3 • G\. 

If G were equal to G2 • G% • G\9 all the transforms of this 
product under the symmetric group of order 120 would also 
be equal to G. Since all the subgroups of order 4 in G are 
conjugate, we may select any one of these five subgroups for 
G2. If we represent G as the alternating group of degree 5, it 
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may therefore be supposed that 

G2 = 1, (ab)(cd), (ac)(bd), (ad)(be). 

The substitutions which transform both G and G2 into 
themselves transform also the six subgroups of order 5 con­
tained in G among themselves, and hence we may assume that 

Gs = 1, (abede), (acebd), (adbec), (aedcb). 

The four substitutions 1, (ad) (be), (abdc), (aedb), which 
transform each of the three groups G, (J2, Gs into itself, trans­
form also the ten subgroups of order 3 contained in G into 
three complete sets of conjugates, two sets being composed of 
four subgroups each, while the remaining set involves only 
two such subgroups. Hence it remains only to prove that G 
cannot be represented by any one of the following three 
products of three Sylow subgroups of different orders : 

1 
(ab) (cd) 
(ac) (bd) 
(ad) (be) 

1 
(abede) 
(acebd) 
(adbec) 
(aedcb) 

1 1 
(abc) (ab) (cd) 
(acb) (ac) (bd) 

(ad) (be) 

1 
(ab)(cd) 
(ac) (bd) 
(ad) (be) 

1 ! 

(abede) 
(acebd) 
(adbec) 
(aedcb) 

1 
(abede) 
(acebd) 
(adbec) 
(aedcb) 

1 
(abe) 
(aeb) 

1 
(ade) 
(aed). 

The fact that none of these products represents 60 distinct 
operators results immediately from the following equations: 

(ac)(bd)(abede)(acb) = (adbec), (ac)(bd)(aeb) — (acebd), 

(ac) (bd) (abede) (ade) = (aedcb). 

Hence it results that the substitutions on G\, Cr2, G?3 which 
transform the product G± • G2 • C?3 into itself do not constitute a 
group.* The theorem stated at the beginning of this section, 
relating to all the substitutions which transform a given func-

* This theorem is closely related to the theorem that all the substitutions 
which transform a function into those having the same numerical value do 
not always constitute a group. 
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tion into itself, applies therefore only to a special class of func­
tions. In particular, it applies to the formal values of rational 
functions of the roots of an equation. In fact, it was first 
formulated with a view to these functions. 

§ 3. Groups which are Products of Sylow Subgroups. 

The illustrative example above directs attention to groups 
which are the product of non-conjugate Sylow subgroups.* 
I t is evident that every group whose order is of the form 
paqp, p and q being prime numbers, is the product of any two 
arbitrary Sylow^ subgroups of orders pa and q13 respectively. 
On the other hand, the icosahedral group is the product of 
Sylow subgroups provided these subgroups occur in a given 
order and have been properly chosen. The question whether 
a group is a product of Sylow subgroups or does not have this 
property is, in general, very complex when the number of the 
distinct prime factors of the order of the group exceeds two. 
Even in the case when the number of these factors is only 
three there are great difficulties. We proceed to give a few 
theorems relating to this case. 

Suppose that the order of C? is paq^ry, where p, g, r are three 
distinct prime numbers, and let Gi, G2, Gs be three Sylow 
subgroups of orders pa, q**, ry respectively. From the facts 
that the two double co-sets G\SiGs and G^Gs, where si and S2 
are any operators of G, either have no operator in common or 
have all their operators in common, and that the number of 
the distinct operators in each of these double co-sets is a 
multiple of each of the numbers pa and ry, it results that 
the number of the distinct operators in Gi • 6?2 • C?3 is always of 
the form paq®ry — kpary. 

A necessary and sufficient condition that G = G\ • 6?2 • G3 

is that h — 0 in the formula which closes the preceding para­
graph, and a necessary and sufficient condition that this 
h = 0 is that the equation GisGs — s has exactly q^ solutions 
when s represents successively each of the operators of 6?2 

once and only once. In other words, a necessary and suffi­
cient condition that h = 0 is that G1SG3 = s, where s represents 
any operator of G2, can be solved only when the operators from 
G\ and 6r3 are both identity. If G\sG$ has exactly n operators 

* Some properties of these groups were determined by E. Maillet, Bull. 
Soc. Math, de France, vol. 28 (1900), p. 7. 
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in common with 6?2, s being some operator of G2, then each 
of these n operators occurs exactly n times in G\ • (?2

 # G%. 
In fact, each of the pary distinct operators of GisGs occurs 
exactly n times in Gi • C?2 • 6?3. Hence 

m — 1 W2 — 1 . nA — 1 

ni TH nk 

where ma (a = 1, 2, • • -, X) is the exact number of the distinct 
operators of 6?2 which occur na times in G\ • 6?2 • G3. I t is 
clear that ma is always a multiple of na. 

If G is any solvable group, it is known that we reach 
identity by forming the successive commutator subgroups, 
and that the group H which precedes identity in this series 
of commutator subgroups is an invariant abelian sub-group 
of G. If we can prove that 6? is a product of non-conju­
gate Sylow subgroups, provided we assume that the quotient 
group G/H has this property, we can evidently establish by 
complete induction that every solvable group is a product of 
Sylow subgroups. 

Suppose that G/H is the product of non-conjugate Sylow 
subgroups. To every Sylow subgroup of order pa in G/H 
there corresponds at least one Sylow subgroup of order p1* in 
G. If we select any set of Sylow subgroups of G which 
correspond, in order, to the set of such subgroups whose 
product is G/H, we evidently obtain a set of non-conjugate 
Sylow subgroups of G whose product, in order, constitutes all 
the operators of G. Hence we have established the interesting 
theorem: Every solvable group is the product of non-conjugate 
Sylow subgroups, and the order of the factors in this product is 
arbitrary. 

While every solvable group is the product of non-conjugate 
Sylow subgroups, it is not true that a group which is a product 
of non-conjugate Sylow subgroups is always solvable, as may 
be seen from the case of the icosahedral group cited above. 
A more interesting example is furnished by the simple group 
of order 360, whose non-conjugate Sylow sub-groups are of 
orders 5, 8, 9 respectively. Although this group does not 
contain a subgroup whose order is the product of two of the 
orders of its Sylow subgroups, yet it is possible to find three 
non-conjugate Sylow subgroups such that their product gives 
this group. In fact, it is not difficult to verify that the fol-
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lowing product gives this simple group in the form of the al­
ternating group on six letters : 

1 
(bcedf) 
(befcd) 
(bdcfe) 
(bfdee) 

1 
(ab)(cd) 
(ac)(bd) 
(ad) (be) 
(ac)(ef) 
(bd)(ef) 
(abcd)(ef) 
(adcb)(ef) 

1 
(acf) 
(afc) 
(bde) 
(acf) (bde) 
(afc) (bde) 
(bed) 
(acf) (bed) 
(afc) (bed) 

I t is not possible to select three non-conjugate subgroups 
Gi, G2, G3 such that the simple group G of order 360 is their 
product, if the middle factor is either of order 5 or of order 9. 
That is, if G = Gi • (T2 • G3, it is necessary that the order of 
G% is 8. Hence the product G\ • G2 • G3 = G is trans­
formed into itself only by the substitution (GiG3) and identity. 
The substitutions which transform this product into itself 
must therefore constitute a group. The proof of the fact, 
stated above, that G cannot be the product of three non-
conjugate Sylow subgroups if the order of the middle factor 
is either 5 or 9, is not difficult when G is represented as the 
alternating group on six letters, but it is somewhat long and 
hence we omit it. 

The preceding results give rise to two important questions 
which remain unanswered. The first of these may be stated 
as follows: Is there a simple group of composite order which 
is the product of each one of its possible sets of non-conjugate 
Sylow subgroups? If this question can be answered nega­
tively, then it follows from what precedes that a necessary and 
sufficient condition that a group is solvable is that it is the 
product of each one of its possible sets of non-conjugate 
Sylow subgroups, taken in every possible order. I t is evident 
that the simple group of order 168 is the product of some sets 
of non-conjugate Sylow subgroups taken in any one of the 
six possible orders, but it is not the product of every possible 
set of non-conjugate Sylow subgroups, since it contains two 
operators of orders 2 and 3 respectively whose product is of 
order 7, as was observed by Dyck.* A group which is the 
product of each one of its possible sets of non-conjugate Sylow 

* Dyck, Math. Annalen, vol. 20 (1882), p. 41. 
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subgroups cannot involve two operators whose orders are 
powers of prime numbers and whose product has an order 
which is a power of another prime number. In particular, 
a solvable group cannot involve two such operators. 

The second question to which we referred above is as 
follows: Is there a group which is not the product of some 
one of its possible sets of non-conjugate Sylow subgroups? 
I t is well known that a necessary and sufficient condition that 
a group is the direct product of its Sylow subgroups is that we 
arrive at identity by forming the successive groups of inner 
isomorphisms, but no general criterion as regards whether 
a group is a product of a set of non-conjugate Sylow sub­
groups seems to have been found. 

T H E MATHEMATICS OF M A H A V I R Â C Â R Y A . 

The Ganita-Sâra-Sangraha of Mahâvïrâcârya with English 
Translations and Notes. By M. RANGÂCÂRYA, M.A., Rao 
Bahadur, Professor of Sanskrit and Comparative Philology 
in the Presidency College, and Curator of the Government 
Oriental Manuscripts Library, Madras. Sanskrit text and 
English translation. Madras, Government Press, 1912. 
27+325 pp. 

I T was announced at the Fourth International Congress of 
Mathematicians, at Rome, in 1908, that Professor Rangâcârya 
had for a number of years been engaged in the laborious task 
of translating a work of great importance in the history of 
mathematics, the Ganita-Sâra-Sangraha of Mahâvïr the 
Learned. Now, after four years more, the work has been 
brought to completion, and the mathematical world is the 
debtor to Professor Rangâcârya for his arduous labor and to 
the Government Press for publishing the volume that is 
before us. 

We have so long been accustomed to think of Pataliputra on 
the Ganges and of Ujjain over towards the western coast of 
India as the ancient habitats of Hindu mathematics, that 
we experience a kind of surprise at thinking that other centers 
equally important existed among the multitude of cities of 
that great empire. We have known for a century, thanks 
chiefly to the labors of such scholars as Colebrooke and Taylor, 


