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ON A NEW M I X E D PROBLEM OF THE PARTIAL 
DIFFERENTIAL EQUATION OF TELEGRAPHY. 

BY PROFESSOR ARTHUR GORDON W E B S T E R . 

(Read before the American Mathematical Society, September 13, 1911.) 

DURING the last twenty years the question of the propaga­
tion of electric waves in wire lines or cables has been the subject 
of a very great number of researches, on the one hand on 
account of its practical importance in connection with teleph­
ony, rapid telegraphy, wireless telegraphy, and the transmis­
sion of energy by means of alternating currents, and on the 
other on account of its purely mathematical interest and of 
the great increase in our knowledge of partial differential 
equations of the hyperbolic type. In all these researches the 
point of view has been very different in the different cases 
and may be roughly classified as follows. The electrical 
engineer, whether interested in transmission, telephony, or 
wireless, has been mainly concerned with phenomena depend­
ing upon simple harmonic functions of the time, that is, with 
standing wave phenomena after the steady state of oscillation 
has been established. For these the methods of trigonometric 
series suffice perfectly, and with them we are not here con­
cerned. In these cases the line is of finite length, and we deal 
with series of functions. On the other hand the mathe­
matician has been interested in problems connected with 
propagation in a line of infinite length, especially as depending 
on the data of the initial state of the line. For this case 
instead of infinite series we should use definite integrals of 
Fourier, but the method of Riemann has furnished a more 
powerful and interesting method of attack, which should 
interest the physicist on account of the clearness with which 
the results may be interpreted. I t would be impossible to 
cite all the important memoirs that have appeared on this 
subject, but it would be equally impossible to omit the names 
of Heaviside, Picard, Poincaré, Boussinesq, Goursat, Brillouin, 
and Hadamard. 

The first appearance of the so-called telegraphist's equation 
is in a paper by Kirchhoff,* which is remarkable in that it 

* Kirchhoff, "Ueber die Bewegung der Elektricitât in Drâhten," 
Pogg. Ann., vol. 100 (1857); Ges. Abh., p. 131. 
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appeared before MaxwelPs theory of electricity was invented. 
Twenty years later the equation was first given on the basis 
of that theory by Heaviside, in a very remarkable paper,* 
which, like KirchhofTs, remained unnoticed. Both Kirch-
hoff and Heaviside used the method of Fourier's series of 
what are now called normal functions. The treatment of the 
infinite line began with Poincare,t who employed the Fourier 
integral, Boussinesq,J who gave a new modification of the 
method used by Poisson for the wave equation, and Picard, § 
who used the method of Riemann. 

All these writers were interested in the propagation of the 
waves as determined by the initial data in the whole line, 
that is, in the so-called Cauchy problem. Later appeared 
papers by Brillouin, || in which propagation in three dimensions, 
and the effect of sources of waves was discussed. But in 
none of these papers was the problem touched which is often 
of great importance to the experimental physicist, namely the 
effect upon the waves of the terminal apparatus, composed of 
any arrangement of coils, condensers, and resistances, which 
are connected to one or both ends of a line of finite length, and 
to which is applied at some point an electromotive force which 
varies according to a given function of the time. I t is true 
that the influence of the terminal apparatus was completely 
discussed by Heaviside ̂ [ in a very powerful paper written in 
1882, but published first in 1892, and in a series of others, well 
characterized by M. Brillouin, as "une prodigieuse série de 
mémoires à la fois condensés et touffus," in which the method 
is throughout that of development in series of normal func­
tions. I t is for this reason that Heaviside remarks : " i t is an 
enormous and endless subject, admitting of infinite develop­
ment." I t is believed that for this reason anything that will 
throw light upon or simplify the matter will be of interest. 

* Heaviside, "On the extra current/' Phil. Mag., Aug., 1876; Electrical 
Papers, vol. I, p. 53. 

t Poincaré, "Sur la propagation de l'électricité," Comptes Rendus, vol. 
117 (1893), p. 1027. 

% Boussinesq, "Intégration de l'équation du son pour un fluide indéfini," 
Comptes Rendus, vol. 118 (1894), p. 162. 

§ Picard, "Sur l'équation aux dérivées partielles qui se rencontre dans 
la théorie de la propagation de l'électricité," Comptes Rendus, vol. 118 
(1894), p. 16. 

|| Brillouin, "Propagation dans les milieux conducteurs," Comptes 
Rendus, vol. 136 (1903), p. 667, 16 mars; p. 746, 23 mars. 

ÏT Heaviside, "Contributions to the theory of the propagation of current 
in wires," Electrical Papers, vol. 1, p. 141. "On the self-induction of wires, 
Phil. Mag., 1886-7; Papers, vol. 2, p. 168. 



246 DIFFERENTIAL EQUATION OF TELEGRAPHY. [Feb., 

If I denote the current, V the potential at a point at a 
distance z from the origin at the time t, the equations of 
propagation are 

where L is the self-inductance, K the capacity, i? the resistance, 
and S the leakage conductance of the line, all referred to unit 
of length. If we change the units of length and potential, 
and remove an exponential factor, putting 

\~T 7? S 
I = e-t'u, V = - ^g-e-o'v, 2q = ^ + ^ , 

(2) 

x = VKLz, y = t, 2p = ^ - ^ , 

we reduce to the simple form 

/ r i . du dv dv du 
( 3 ) te-ty-V' te = ~dy+pU' 

from which we obtain at once 

d2u d2u 

dx2 dy2 (4) ^ - ^ + 2 ^ = 0» 

which equation is also satisfied by v. This is the telegraphist's 
equation which by the substitution px = £ + y, VV — £ "" *l 
is reduced to the normal form 

When p = 0 we have the simple equation for the motion of 
a stretched string 

d2u d2u 

This , called b y Heaviside t he distortionless case, was t h a t 
t r ea t ed by Kirchhoff. T h e researches of Picard, Goursat , 
a n d H a d a m a r d have been on the more general equat ion 

._ d2U du , . du , 

(7) — - + a — + b T- + cu = 0, 
to which most of the results here reached will apply. 
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The ordinary, or Cauchy problem, consists in determining 
the solution by giving the values of u and du/dy for the whole 
line y = 0. I t has been shown by Darboux, Goursat, and 
Picard, that instead we may give the values of u alone, not 
giving the normal derivative, along two lines meeting at an 
angle.* I t has been remarked by Hadamardf this is not the 
problem that interests the physicist, but that, as in the present 
case, we have Cauchy's data for only a portion of the line 
y = 0, while at the end x = 0 we have a different condition, 
not being able to give both Cauchy data, but only one, namely 
the values of u. This he terms the mixed problem. 

We are here concerned with a line infinite in one direction J 
which ends at the point x = 0, but instead of giving either u 
or its normal derivative along the line x = 0, y = 0, we give 
a relation between them in the form of a linear differential 
equation in y. I t may be easily shown that if we have any 
combination of coils, with self or mutual inductance and 
resistance, with condensers; connected to the end of the line, 
with an electromotive force applied somewhere in the com­
bination, the effect will be to make 

du d2u , , dnu 

dv dnV _ 

from which, eliminating v by the first of equations (3) and an 
equation (18) or (33), deduced below, we get a differential 
relation between u and the normal derivative du/dx. Speaking 
mechanically, the usual end conditions have been u = 0 f or a 
string fixed at the end, or du/dx = 0 or du/dx — hu = 0 which 
have been used for other problems. If the string is fastened, 
however, to a movable point on an apparatus possessed of 
elasticity, inertia, and dissipation, the condition will be as 
stated in (8). The writer was led to consider this condition 
in 1893, from electrical experiments that he was then making, 
but on account of lack of mathematical knowledge, the ques­
tion was laid aside. I t appears that the method used by 
Hadamard leads without difficulty to the result. 

* See also Mason, New Haven Mathematical Colloquium. 
t Hadamard, "Sur un problème mixte aux dérivées partielles," Bull, 

de la Soc. Math, de France, vol. 31 (1903), p. 208. 
t If the second end is at a finite distance, the reasoning here given may 

be applied to it. 
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I t seems intuitively evident to the physicist that in the 
present case neither u nor the normal derivative can be given 
for x = 0, but that both are completely determined by the 
condition (8). The calculation shows this to be the case. 
For simplicity let us first consider the case of no distortion, 
p = 0. We have then, if we give the initial distribution of 
current and potential 

(9) 
du dv 
dx" by 

du dv 
~dy~~ dx' 

d2u 
dx2 dtf u ' 

du 
(10) u = f(x), v = g(x), — = g'(x), y = 0, x = 0. 

Let P be any point with coordinates £, rj from which two 
characteristics meet the axes in A, B, and from A draw the 

%+v,o 

characteristic meeting the #-axis in C. The fundamental 
equation of Riemann's method is 

ai) ƒ*{£*+-* by }-.{ dy + —dx\ = 
dx dy 

0 

for a closed contour, where u and G are solutions of the given 
equation and its adjoint respectively (here the same equation). 
In the present simple case the function G is constant and equal 
to unity, so that we have 

(12) ƒ{*->+:» 0. 

Applying (12) to the closed quadrilateral PACBP, we have 
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PA, dx = dy, I du = uA — uP, 

\, dx = — dy, — I du = uB —- Up, 

— I du = uA — uc, 
(13) ^ ° 

^ *-°> r s & " X -r- dx — VB —Vc 
dx 

Adding these results 

(14) 2wP = 2uA + uB — uc +VB — vc. 

Accordingly it is necessary to determine only the value of uA, 
when we have the result as in Hadamard's case. 

If we apply the formula (12) to the triangle AOC, we have 

(15) 0 = J ~ dy + uA- uc+ Vo — Vc, 

so that 

(16) uA = Uc+Vc— v0 — J ( ~ J dy. 

Inserting in (14), we have 

(17) up = ^{uB + uc) + g fe + vc) - vo - ) ( ^ ) _ dy, 

so that the problem is merely shifted to determining the normal 
derivative dujdx along x — 0. Differentiating (16) by Y, 

as) *£).ƒ-<„ + ,(„-(£)_. 
Differentiating the equation (8) and substituting for dvjdy 
its value 

a» £-f»+ •«-£. 
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we have the linear differential equation 

( 2 0 ) ( ° o - 6 o ) ^ + ( « i - 6 i ) ^ 

+ •.. = ny)-b0(f(y)+g'(y))-h(f"(y)+g"(y))+--.. 

Solving this with the proper initial conditions given by the state 
of the line and the terminal apparatus at the start completely 
determines uA, so that (14) gives the desired solution. This 
simple result could have been obtained in a perfectly elemen­
tary manner from the solution 

u = Fi(x + y) + F2(x - y) 

or by the method of the Fourier integral. 
As a very simple example, let us consider the case of a line 

initially free from current and potential to which a constant 
electromotive force E is suddenly applied through a coil of 
inductance Z0 and resistance 2?0. Then we have 

(21) x = 0, Loft + R0I+V=E, 

or 

U—^ + (JRO - L0q)u - ^~v = Ee™ 
du 

]dy ' vx*ü ~ w " \K 

and the solution is 

1 = 0, x > t/VKL; 

(22) E _ __ — 
R^+VL/K{l ~~ e~iR0+ JLIK)it~xJKL)ILo} (O^x^t/VKL). 

We thus see the discontinuity at the wave front, and we find 
that the line reacts on the terminal system like an extra 
resistance equal to the inductance of the length of line trav­
ersed by the wave in unit of time. 

Let us now pass to the case of an actual line p 9e 0. 

w £ - $ + «*-* 
du 

(24) « = ƒ(*) , ^ = *(*)> y = 0, ^ 0 . 
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(24) 

The so-called Riemann function G is not now constant, but is 
such a solution as is equal to the constant unity along the 
characteristics PA, PB, and accordingly depends not only 
on the coordinates x, y, but on £, rj, the coordinates of P. 
We will therefore write G(x, y, £, rf). If we should integrate 
our formula (11) around PACBP we should now obtain the 
integral along the line AC, involving values of u which are 
unknown. To avoid this we integrate along the quadri­
lateral PAOBP, obtaining 

PA, I G du — udG = (uG)A —- (uG)P = uA — uP, 
Jp 

rp 

BP, I udG — Gdu = (UG)B — (uG)P ~ uB — uP, 

lGh(x) -fW^yjdx 

As before, we have to obtain the values of u, du/dx along OA. 
Proceeding as before, we apply our formula to the triangle 
OAC, but as we wish the Riemann function to be constant 
along i C we do not use the same G as before, but consider 
P moved to A, so that we put & = G{x, y; 0, Y). We thus 
obtain 

(25) 

(26) 

{G1h(x)-f(x)-^~)dx 

-I {G'7x~ uit)dy-
We have now to put, according to Picard, 

(27) G(x, y; f, y) = j{f[{y - v)2 - (* - ^)2]}, 

where j(x) = JQ(V — x), J 0 representing the Bessel function of 
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order zero. We easily find the values 

— =2f(i;-x)j' {P*[(y-v)2-(x-m}, 

Yy^2V\y-n)j'{f[i.y-r,f-{x-m}, 

( 2 8) OB, G(x, 0; £, „) = j { p V - ( * - Ö 2 ] } , 

^=-2pV{fw-(x-m}, 

00, Gx(x, 0; 0, Y) =j{f[Y*-x*)]}, 

—1 = -2p»ri'{p»[p-a?]}, 

OA, G(0, y; £, ,) = j{p*[(y - u)2 - ?)}, 

— =2pWp*[(y-„)*-**]}, 

0,(0, y; 0, Y) =j{p*[(y - 7)21}, -j£ = 0. 

Inserting these in (26) 

(29) uA=u0+ f (h(x)j{p*[Y*-x*]}+2tff(x)Yj'{p«[P-a*]})<k 

All the functions in the first integrand being known, the inte­
gral is a known function of its limit F, so that (29) is an 
integral equation between u and du/dx of the form 

(30) u{y) = <p(y) - f "K(x, y)F(x)dx, 
Jo 

where the kernel is symmetrical, 

(Sl)K(x,y)=j{p'[x-yf}, K(y,y) = l, F(y)= ( | j ) „ „ 

reducing to (16) when p = 0. 
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Differentiating successively by y, we obtain 

frS(y)-F(y)-£fyF(x)dx, 
(32) &u 

dtf 
/ d K \ Hd2K 

From the differential equation (3) by integration we have 

(33) ~ - pv = F(y), v = fep(v-x)F(x)dx + v0, 

from which we may obtain the derivatives of v linearly in 
terms of those of F and an integral. Substituting all deriva­
tives in the boundary condition (8) we have 

Aç>F(y)+AxF
f{y)+A2F"(y) + • • • + f W , y)F(x)dx = ¥(»), 

Jo 

which is a linear integro-difïerential equation of Volterra's 
form.* Solving this for F(y) and inserting in (29) we obtain the 
desired solution from (25). 

We thus see that the question of the reflection of waves at 
any terminal apparatus is contained in the values of u and 
dujdx along the line OA. 

After the preceding paper was completed, I succeeded in 
seeing Goursat's paper in the Annales de V Université de Tou­
louse, volume 6 (1904), page 117, and found that he had solved 
the case of u given along two lines making an acute angle, by 
means of a Volterra integral equation, which is a particular 
case of the above solution, f 

CLARK UNIVERSITY, WORCESTER, 
July 5, 1911. 

* Rendiconti delV Ace. dei Lincei, 1909, 1910. 
f An abstract of the above paper was presented in the Comptes Rendus, 

Aug. 28, 1911. 


