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If the constants apq are chosen so that the determinants An 
are all positive, Z)n-2(X) and Z)n(X) will have opposite signs 
when Dn_i(X) vanishes, and so the functions 

D(X), A(X), D2(X), •-, Dn(\) 

will form a Sturmian sequence. 
It has been stated that the roots of the functions VW(X) in the 

Sturmian sequence separate one another. This is not always 
true for a Sturmian sequence when the functions are not poly­
nomials, but it can be shown to be true in the present case, 
as follows. Let gn($), gn(t) be the cofactors of the constituents 
fn(t), fn(s) in the determinant Fn; then from the properties of 
determinants 

Fn-i • An — gn(s)gn(t) = Fn • A«_i. 
Dividing out by An_iAw, we have 

hn($, t) = hn„i(s, t) - ———. 
/±n-~l&n 

We can now apply the theorem mentioned before to this equation 
and deduce that the roots of An_i(s, t) are separated by those 
of hn(s, t), there being one root of hn(s, t) between each consecu­
tive pair of roots of hn~i($, t). 

BRYN MAWR COLLEGE, 

November, 1911. 

ON THE CUBES OF DETERMINANTS OF THE 
SECOND, THIRD, AND HIGHER ORDERS. 

BY PROFESSOR ROBERT E. MORITZ. 

(Read before the San Francisco Section of the American Mathematical 
Society, April 8, 1911.) 

WHILE the square of a determinant of any order may be 
readily expressed as a determinant of the same order, I am not 
aware of the existence of a correspondingly simple method by 
means of which the cube of any determinant may be expressed 
in determinant form. For a determinant of the fourth order, 
A4, we have indeed from a well-known property of determinants 

A43 s A4', 

where A4' is the determinant whose constituents are the co-
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factors of the corresponding constituents of A4. Another 
isolated case may be derived from the following general theorem 
due to Faà di Bruno: 

The determinant which has for its first row the constituents 

xn~~xy, xn-y, xyn yn 

and whose other rows are obtained by operating on the con­
stituents of the first row successively by the symbolic operators 

dx + ydy' 1.2 V* dx+y'dyj 
d, ,dy> 

ay. 

nl\x'dx+y'dyj 
is a power, namely the jn(n + l) th power, of the determinant 
xy' — x'y. For n = 2, this theorem yields a determinant 
expression for (xyf — x'y)s. 

On multiplying each constituent of the determinant of the 
second order 

A2 s 

by A2, we obtain 

A2
3 = A2(ai62 — a2h)2 = 

d\ Ü2 

h b2 

ai(ai&2 — ^2&i) ^2(^1^2 — «2&i) 

bi(aj)2 — a2bi) b2(aj)2 — a2b\) \ 

and this in turn is equivalent to the bordered determinant 

ai&i aj)2 — a2b\ a2b2 

0 di(aib2 — a2bi) a2{a^b2 — a2b\) 

0 &i(ai&2 — a26i) &2(ai?>2 ~ a2&i) I 

Now subtract ai times the first row from the second, and add 
bi times the first row to the third, then 

' aj)i 

A2
3 = aibi 

(llh 

— a3i 

aibi2 

aib2 — a2&i 

— 2a\a2b\ 

2aibib2 

a2b2 

- a2
2h 

dib22 
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or, after interchanging the first and second rows and removing 
factors, 

ai2 2aia2 a2
2 

dibi <2i&2 + «261 #2&2 I (1) A2
3 

26i62 

By adding the first and third columns to the second and 
putting 

az = ai+ a2, 63 = 61 + b2, 

we may write (1) in the form 

(2) A 2 * = -

&12 

a? 

a363 

We have then the following 
Rule for the cube of any determinant of the second order: 
Write down two lines of elements 

a>u a*> as( = ai + «2), 

61, 62, 68( = 61 + 62), 

composed respectively of the constituents of the first row 
(or column) and their sum, the constituents of the second row 
(or column) and their sum, of any determinant of the second 
order. Its cube is the negative of the determinant of the third 
order the constituents of whose rows (or columns) are respec­
tively the squares of the elements of the first line, the products 
of the elements of the first line by the corresponding elements 
of the second line, the squares of the elements of the second line. 

II. 
Next consider the determinant of the third order 

fll 

61 

Cl 

a2 

62 

C2 

a3 

63 

C3 

= CIC2C3 

a{ ai «3 

W W W 

1 1 1 
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where 

di = ai/ci, a<2 = «2/^2, a* = «3/^3, 6i' = 61/ci, etc. 

Expressed as a determinant of the second order, 

A3 = C1C2C3 

from which by the use of (2) 

a2 — as a3 — a{ 

62' - W h' - 6/ 

A33 s - (C1C2C3)3 

# r #2
J #3̂  

«iyi 2̂2/2 3̂2/3 

2/iz yt yzz 

where 

xi = a2' — a3', #2 = dz — a/ , #3 = a / — a2', 

2/1 = 62' - 63', 2/2 - W - &i', 2/3 = &i' - 62'. 

But 

«i = a2' 

and similarly 

02 03 __ a2c3 — a3<?2 __ — Bi 
c2 c3 c2c3 c2c3 ' 

-B2 — S3 
X2 = 

C3C1 *8 ! 

2/1 = 
Ai A2 r 

^ 2 = C 3 ^ r*.= 

Cl<?2 

CiC 2 ' 

where the -4's and B's are the cofactors of the corresponding 
constituents of A3. Substituting these values, we obtain after 
a slight reduction 

A? Ai A? 

(3) CiC2C3 
4 i £ i ^ 2 J 5 2 AZBS 

B1 2 B22 B3 2 

A case of special interest is that in which the c's are unity. 
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Thus 

1 ai a2 

h b2 

1 1 

a$ 

h 
1 
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(a2—as)
2 (a3—ai)2 (ai— a2)2 

(a2—a3) (b2—b3) (a3—ai) (63— 61) (ai— 02) (61— 62) 

(62-&3)
2 (&3-&1)2 (&1-62)2 

III . 

Before considering the cubes of determinants of orders higher 
than the third, we will establish the following 

THEOREM I. Let An =s (aj)2 • • • nn) represent any determinant 
of the nth order, and let S denote the substitution wHch replaces 

ai by (a^n+i) = aikn+i — an+ih, 

bi by (6ifen+i) = bikn+i — bn+iki, ,. _ -, 9 v 

^ t b y (Wifcn+i) = fti&n+l — ^n+l&i 

SAn = fc^jAn+i = fc;ïî(aife2 • • • nnkn+1), 
then 

where Aw+i is the determinant of the (n + l)th order, formed by 
bordering An on the right by 

an+i> bn+i, • • •, nn+\, 

and on the bottom by 

Ki, fC2, * * ' fCnt #n+l» 

Proof.—Making the substitution indicated, we have to show 
that 

SAn = 

(aikn+i— an+iki) (a2kn+i— an+Jc2) 

(bikn+i— bn+iki) (b2Jcn+i— bn+ik2) 

(ankn+i<-an+ikn) 

(pnkn-hl Vn+lkn) 

(nifcn+i— nn+ih) (n2kn+i—nn+ik2) ••• (nnkn+i— nn+ikn) 
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« 1 

61 

'til 

\h 

«2 

h • 

ni 

&2 

•• an 

• • bn 

•• nn 

kn 

(ln+l 

&n+l 

Wn+1 

«Vt-i 

But this is merely the well-known identity which results from 
the reduction of any determinant of the (n + l) th order to 
one of order n. 

Definition.—Let us call the substitution S which transforms 
any determinant An 5= (aib2 • • • nn) into An+i = (ai&2- * •wn&rHi) 
the substitution belonging to An. 

THEOEEM I I . If any cof actor Hln) belonging to An is trans­
formed by the substitution belonging to Aw, the result of the oper­
ation is the corresponding cof actor iî/w+1) belonging to An+i 
multiplied by kn

n~l\. 
This theorem is an immediate consequence of Theorem I, 

since the cofactor Hln) of An, when bordered on the right by 
an+u bn+i, etc., and at the bottom by kh k2, etc., becomes the 
cofactor Hln+1) of Anf i. Similar conclusions may be arrived 
at with regard to the transformation of the minors of any order. 

Theorems I and II , though they appear here as immediate 
consequences of well-known results, enable us to derive from 
certain given forms and relations other forms and relations. 
For any identity between a determinant and its minors will, 
when operated on by the substitution belonging to the given 
determinant, give rise to another identity between a deter­
minant of the next higher order and its minors. These the­
orems, therefore, permit us to proceed from relations holding 
for determinants of the second or third orders to corresponding 
relations between determinants of any order. 

IV. 

We now apply the theorems of the preceding section to each 
member of equation (3). A3 being of the third order, the sub­
stitution belonging to A3 is 

i a%f Oiy c% 

S = "j 
[ (aA) , (bide), (CidA) 

(i = 1, 2, 3), 



188 

consequently 

where 
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SAz = d4
2A4, 

A4 = {aib2Csdi), 

[Jan., 

SAi = diAP, SBf = diBP, Sd = d4C/4) (i = 1, 2, 3) 
where Al4), 2?/4), C/4), are the cofactors of the corresponding small 
letters in A4. Finally Se» = (cA) . Hence 

<SA3
3 = cZ4

6A4
3 = 

- c L 6 

(cid^icid^icsdi) 

A^ Ai& Aè^ 

APBl» APBi® APBP 

B^ 52
(4)2 £3

(4)2 

which, on removing the common factor d£ and dropping the 
indices, becomes 

Ai Ai Ai 

(4) - 1 
(pidi)(c2dî)(csdi) 

AiBi A2B2 AzBs 

Bi Bi Bi 

V. 
The general case now offers no further difficulty. The sub­

stitution belonging to A4 is 

8 = 
Q/if Oif Ciy vh% 

(ftA), (&tf5), (G^B), (difi6) J 

Operating on both members of (4) with S we obtain 

(i = 1, 2, 3). 

(5) As3 = -
(CICWB) {c%d^) (c%d±et) 

Ai . Ai Ai 

AxBi A2B2 AsBz 

Bi Bi Bi 
t 

and hence by induction 

•< 
(6) A 8 = ~" " (cidf-nJiCidv ••nn)(c '&di- ••iin) 

Ai Ai Ai 

AiBt A2B2 A3Bs 

Bi Bi Bi 
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where the large letters are the cofactors of the corresponding 
small letters in An. I t will be noticed that each member of 
(6) is of degree 3n, as it should be. 

UNIVERSITY OP WASHINGTON, 
March, 1911. 

NOTE ON THE MAXIMAL CYCLIC SUBGROUPS OF A 
GROUP OF ORDER p*. 

BY PROFESSOR G. A. MILLER. 

(Read before the San Francisco Section of the American Mathematical 
Society, October 28, 1911.) 

I F H is any non-invariant subgroup of a group G of order pm, 
p being any prime number, it is well known that H is transformed 
into itself by at least one of its conjugates under G and hence 
by operators which are not contained in H.* If H is cyclic 
and not contained in a larger cyclic subgroup of 6, it is said to 
be a maximal cyclic subgroup of G. In what follows we shall 
establish the 

THEOREM : A necessary and sufficient condition that every maxi-
mal cyclic subgroup of order pa in a group G of order pm, m > 3, 
is transformed into itself by no more than pa+1 operators of G is 
that G contains one and only one cyclic subgroup of order pm~l. 

If we combine with this theorem some well-known properties 
of the groups of order pm which contain operators of order 
pm~x, it results that there are only three non-cyclic groups of 
order pm which have the property that each of their maximal 
cyclic subgroups of order pa is transformed into itself by only 
pa+1 operators of the group. These three groups are the three 
non-cyclic groups of order 2m which involve one and only one 
cyclic subgroup of order 2m~"1. 

To prove the theorem in question, we shall assume that G 
does not involve any operator of order pm~l

} since the groups 
of order pm which contain operators of order pm~l are so well 
known. We shall also assume in what follows that G satisfies 
the condition that each one of its maximal cyclic subgroups of 
order pa is transformed into itself by exactly pa+1 operators of 
G, pa being the order of any one of the maximal cyclic subgroup 
of G. 

* Cf. American Journal of Mathematics, vol. 23 (1901), p. 173. 


