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NOTE ON A NEW NUMBER THEORY FUNCTION. 

BY MR. B. D. CARMICHAEL. 

(Read before the American Mathematical Society, September 13, 1909.) 

T H E present note deals with the properties of a number 
theory function defined by means of Euler's ^-function in the 
following way : 

X(pa) = <£(pa) when p is an odd prime ; 
X(2a) = <j>(2a) if a = 0, 1, or 2 ; X(2«) = %<t>(2a) if a > 2 ;* 

X(2ap^ • • -pf) = the lowest common multiple of X(2a), X ^ 1 ) , 
' ' 'y Mi9?)? Pv ' ' '? Pi being different odd primes. 

Throughout, in a congruence such as 

xa = 1 (mod n) 

it will be assumed that x is prime to n. Then we have the 
theorem 
(1) œ ^ a ) = l (mod/1) 

for every prime p and integer a. For, by Fermâtes theorem, 
(1) is true when p is an odd prime and also when p = 2 and 
a = 1 or 2, in view of the definition of X. Then we have to 
examine only the case where p = 2 and a > 2. 

Now by Fermâtes theorem we have 

X<K2«) s ! (m o d 2«^ (a > 2). 

But it is known that the foregoing congruence has no primitive 
root ; that is, for any odd x the congruence is true when <£(2a) 
is replaced by some factor of <£(2a) less than the number itself. 
But # ( 2 a ) = X(2a) is the largest factor of <£(2a) less than itself 
and contains all other such factors. Then 

»**<*> = 1 (mod 2a), (a > 2). 

Hence the theorem of congruence (1) is proved. 
This result may be employed to obtain a simple demonstra­

tion of the following analog of Fermâtes general theorem : 

* It is in respect to this part of the definition alone that h(n) differs from 
ip(n) defined by Bachmann, Niedere Zahlentheorie, I, p. 157. 
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I . For any given n the congruence 

x-m = l (mod n) 

is satisfied by every x prime to n. 
For suppose 

and let /3 be any number prime to n. Then since \(ri) is a 
multiple of every \(pa), p = 2, pv • • -, p., we have 

£*(») =- ! (mo(j 2«), £*(») == l (modjpf), 

. . . , £A(W) = 1 (modp?). 

From these congruences the theorem follows. 
I f aAcw) is the first power of a congruent to 1 modulo n9 we 

may say that a is a primitive X-root (mod n). To distinguish, 
we may speak of the usual primitive root as a primitive <£-root 
(mod n). I t follows immediately from the theory of primitive 
<j(>-roots that primitive X-roots always exist when n is the power 
of any prime ; for this is but another statement of well-known 
results for the modulus pa. The X-function introduces a sim­
plification and allows the principal theory of the existence of 
primitive roots to be summarized into the following theorem : 

I I . In every congruence 

(2) xMn) = 1 (mod n) 

a solution g exists which is a primitive \-root, and for any such 
solution g there are <fi{\(n)} primitive roots congruent to powers 

If any primitive root g exists, ga is or is not a primitive root 
according as a is or is not prime to X(n) ; and therefore the 
number of primitive X-roots which are congruent to powers of 
any such root g is <j>{\(n)}. 

The existence of a primitive X-root in every case is easily 
shown by induction. If n is a power of a prime the theorem 
has already been established. We will suppose that it has been 
established when n is the product of powers of r different primes 
and show that the theorem still remains true when n is the prod­
uct of powers of r + 1 different primes ; and from this follows 
the theorem in general. 
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Put 
n=,p<*p% --pa/pa/+\, 

and let h be a primitive X-root of 

(3) a M 1 • "Kr) = 1 (mod p? • . . pa/) ; 

whence h + p™1 • • • ^*as is another form of the same root if x is 
any integer. Likewise, if c is any primitive root of 

(4) xM-K^V = 1 (mod pa;+\), 

another form of the root is c + p^\y, where y is any integer. 
I f x and y can be so chosen that 

h + p<* • • -^ ;œ = c + jpjfty, 

either member of this equation will be a common primitive 
root of congruences (3) and (4) ; that is, a common primitive 
root of the two congruences may always be obtained provided 
that the equation 

has always a solution in which x and y are integers. But since 
the coefficients of x and y are relatively prime, the equation has 
always a solution in integers. 

Now let g be the common primitive X-root of congruences 
(3) and (4) and write 

ga = 1 (mod n), 

where a is to be the smallest integer for which the congruence 
is true. Since g is a primitive X-root of (3), a is a multiple of 
X(p^ • • -pa

r
r). In the same way it is a multiple of X(/)"y1

1). 
But X(n) is the lowest common multiple of M^pf1 • - • p"r) and 
^(Pr+\) > therefore a is a multiple of X(n), and hence a = \(n) 
in view of the analogue of Fermat's theorem already demon­
strated ; for g = h -f p^1 • • -j^as = c + pa

r
r^\y is evidently prime 

to n. Therefore g is a primitive X-root of 

Â(n) s -̂  (mod w). 

The theorem announced follows by simple induction. 
There is nothing in the preceding argument to indicate that 

the primitive X-roots of (2) are all in a single set obtained by 
taking the powers of some root g ; in fact this is not even usually 
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so when n contains more than one prime factor. By taking 
powers of a primitive root g a set of primitive roots is obtained 
which evidently is identical with the set obtained by taking 
powers of any other root belonging to the set. We may say 
then that the set thus obtained is the set belonging to g. Then 

III. If \(n) > 2, the product of the primitive roots in the set 
belonging to any g is congruent to 1 (mod n). 

These primitive roots are 

9> 9C1> gc*, • • -, gCv> 

where 1, ol} c2, • • -, cv are the integers less than \{n) and prime 
to it. If any one of these is c, another is \(n) — c when A,(w) > 2. 
Hence 

1 + cx + c2 + • • • + cv = 0 [mod X(n)]. 
Therefore 

01 + ci + c2+--- + ev = 1 (modn). 

Hence the theorem. 
COROLLARY. The product of all the primitive \-roots of 

xX(n) = 1 (mod n) is congruent to 1 (mod n) when \(n) > 2. 
When n is given it is of course a very easy matter to find 

X(n). But the inverse problem, to find every x such that 

(5) \(x) = a or X_1(a) = x} 

is more difficult. We construct a method for solving this problem. 
I V . If xx is the largest value of x satisfying (5), any other 

solution x2 is a factor of xv 

Suppose that pa is the highest power of any prime p such 
that X(pa) is a factor of a. Then evidently pa is a factor of xx ; 
but no higher power of p is a factor of x2, and therefore the 
theorem follows. Hence the following method for solving the 
problem in consideration : 

Obtain the largest solution xx of (2) ; examine every divisor d 
of xx and retain those dysfor which \{d) = a. These are all the 
solutions of (5). 

To make the rule effective we require a means of computing 
xY. I t is evident that the following method leads to the desired 
result : Separate a into its prime factors and find the highest 
power pa of each prime p contained in a such that X(pa) is equal 
to or is a factor of a. Suppose that the following prime powers 
are found : p\l, pi*, • • -, pa\ Then write out all the divisors of 

file:///-roots


236 A NEW NUMBER THEORY FUNCTION. [Feb . , 

a and take every prime q such that q •—1 is equal to any one of 
these divisors, but q is not equal to any p ; and say we have qv 

Î2> • • • > & • T h e n 

(6) Mi=p?pv--pï%q2'-qjc-

V . COROLLARY. If yY and x} respectively are the largest 
solutions of the equations 

(5a) \~\ma) = y, X_1(a) = x, 

where m is any integer > 1, then yl'> xv 

(I t is to be observed that in equations (5) and (5a), a and 
ma are assumed to be numbers such that each equation has at 
least one solution.) 

By aid of theorem I V and the rule based on it I have con­
structed the following table containing every n for each X(n)>l 
and = 2 4 . I t is interesting to notice that X(x) = 12 has 84 
solutions. 
a(n) I 

2 

4 

6 

8 

10 

12 

16 

18 

20 

22 

24 

3, 4, 6, 8, 12, 24. 

5, 10, 15, 16, 20, 30, 40, 48, 60, 80, 120, 240. 

7, t), 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 136, 168, 252, 504. 

32, 96, 160, 480. 

11, 22, 33, 44, 66, 88, 132, 264. 

13, 26, 35, 39, 45, 52, 65, 70, 78, 90, 91, 104, 105, 112, 117, 130, 140, 
144, 156, 180, 182, 195, 208, 210, 234, 260, 273, 280, 312, 315, 336, 
360, 364, 390, 420, 455, 468, 520, 546, 560, 585, 624, 630, 720, 728, 
780, 819, 840, 910, 936, 1008, 1040, 1092, 1170, 1260, 1365, 1456, 
1560, 1638, 1680, 1820, 1872, 2184, 2340, 2520, 2730, 3120, 3276, 
3640, 4095, 4368, 4680, 5040, 5460, 6552, 7280, 8190, 9360, 10920, 
13104, 16380, 21840, 32760, 65520. 

17, 34, 51, 64, 68, 85, 102, 136, 170, 192, 204, 255, 272, 320, 340, 408, 
510, 544, 680, 816, 960, 1020, 1088, 1360, 1632, 2040, 2720, 3264, 
4080, 5440, 8160, 16320. 

19, 27, 38, 54, 57, 76, 108, 114, 133, 152, 171, 189, 216, 228, 266, 342, 
378, 399, 456, 513, 532, 684, 756, 798, 1026, 1064, 1197, 1368, 1512, 
1596, 2052, 2394, 3192, 3591, 4104, 4788, 7182, 9576, 14364, 287k8. 

25, 50, 55, 75, 100, 110, 150, 165, 176, 200, 220, 275, 300, 330, 400, 
440, 550, 600, 660, 825, 880, 1100, 1200, 1320, 1650, 2200, 2640, 
3300, 4400, 6600, 13200. 

23, 46, 69, 92, 138, 184, 276, 552. 

224, 288, 416, 672, 1120, 1248, 1440, 2016, 2080, 2912, 3360, 3744, 
6240, 8736, 10080, 14560, 18720, 26208, 43680, 131040. 
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V I . Let a be that divisor of a for which \~l(a) = x has a 
greatest solution xx greater than such a solution when for a 
any other divisor of a is taken. Then xx is the largest divisor 
of za — 1 for every % prime to the divisor. 

That xx divides za — 1 follows from Theorem I . Let yx be 
any number greater than xv Then in view of the conditions 
in the proposition X{yx) is not a divisor of a. Hence, from 
the foregoing theory of primitive roots, it follows that there is 
some number z such that za — 1 is not divisible by yv Hence 
the theorem. (From V. it is seen that a = a when \~l(a) = x 
has a solution.) 

In a previous paper * I tabulated a function M(a) for 
possible values of a up to a = 150. A reference to the defini­
tion of M(a) there given will show that 2M(a) is identical with 
our present xv the largest solution of \ _ 1 (a) = x, provided this 
equation has a solution. That table will therefore serve for 
determining xy for a = 150, Thus it is seen that the largest 
divisor of zlu — 1 for every z which is prime to the divisor is 
685,933,859,520. Further, the table for M(a) may also be used 
in continuing the table of the present paper. 

Professor J . H. Jeans f and more recently Mr. E. B. EscottJ 
have discussed the converse of Fermais theorem, showing that 
the relation 
(7) en~l = 1 (mod n), 

which is always true, when n is prime, for any value of e prime 
to n, is for any particular value of e true for values of n which 
are not prime. This result will be extended by proving the 
theorem that there are values of composite n for which relation 
(7) is true when e is any number prime to n. In view of the 
foregoing theory of the congruence 

eW = l (mod ri), 

it is evidently necessary and sufficient for this result that n has 
the property 
(8) w - l s O [modX(n)]. 

When n > 2, \(n) is even ; and therefore (8) can be true for 
composite n only when n is odd. Further, since X(n) is prime 

* BULLETIN, ser. 2, vol. 15, no. 5 (February, 1909), p. 222. 
t Messenger of Mathematics, vol. 27, p. 174. 
% Messenger of Mathematics, vol. 36, p. 175. 
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to n it follows that n contains no repeated prime factor ; and 
hence nis a product of odd primes no one of which is repeated» 

That n is not the product of two odd primes is easily shown. 
Suppose n=px p2, p2 > pv Then 

p, p9 —-1 ». — 1 
p2-l ^ i ^ ^ - l " * " e 

But \(w) contains the factor p2 -— 1 and is therefore not a divi­
sor of n — 1 :=ip]p2 — 1. 

On the other hand it is easy to find values of n=p1p2ps) 

satisfying relation (8). I t is necessary and sufficient that 

mPj^A B M i ( f t Z l l ) + f t A = I _ integer, 

(î  j , & = 1, 2, 3 in some order) ; 

that is, that (PjPk — 1)/Cpt- — 1) = integer. The following 
values of n have been found by inspection using this relation : 

3 1 1 1 7 , 5 13 17, 7 13 31, 7 31-73. 

By a similar method one may seek values of n for which n is 
the product of four or more primes ; but the work will not be 
carried out here. 

An example given by Lucas, * illustrating the failure of the 
converse of Fermais theorem, belongs to a different class of 
exceptions. He shows that 

2n~l = 1 (mod >i), when n = 73 • 37. 

Here X(w) = 72 while n — 1 = 36 • 75 ; or n —• 1 is a multiple 
of ^(n). Then we can easily find other values than 2 and its 
powers for which the preceding congruence is true. In fact 
every number prime to n belongs to some index which is a divi­
sor of \(ri). But every divisor of \(n) = 72 except 8, 24, 72 
is a divisor of n — 1. Hence the congruence a n _ 1 = 1 (mod n) 
is true for any integer a prime to n and not belonging to the 
index 8, 24, or 72 (mod n). Most of the examples given by 
Escott in the paper already referred to are similar to this one. 
These, however, are not so interesting as those for which con­
gruence (7) is true for any e prime to n. 

* Théorie des nombres, p. 422. 


