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The object of the present note is to show clearly that G may 
be regarded as a generalization of the dihedral group which 
includes the earlier generalization obtained by considering the 
groups generated by two operators which have a common 
square.* If two operators have a common square, this square 
is clearly invariant under the group generated by these opera­
tors ; but if the squares are invariant under this group they 
evidently are not necessarily the same. From this it follows 
directly that the present generalization includes the earlier one, 
and it gives rise to an almost equally elementary category of 
groups as a result of the equations established in the preceding 
paragraph. If two operators have a common square, it is 
known that the product of either one into the inverse of the 
other is transformed into its inverse by each of the operators. 
The analogous theorem as regards the operators under consid­
eration may be expressed as follows : 

When each of two operators is commutative with the square of 
the other, the product of one into the inverse of the other is trans­
formed by each of the two operators into its inverse multiplied by 
an invariant operator under the group generated by the two 
operators. 
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I F F(X, y) is a real function of the real variables x and y 
which is continuous at and near the point (x0, y0), and vanishes 
at this point, but has one first order partial derivative at the 
point not equal to zero, there are a number of well-known the­
orems about the existence of other values of x and y satisfying 
the equation 
(1) F(x,y) = 0, 

* Archiv der Mathematik und Physik, vol. 9 (1905), p. 6. 
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and about the properties of y as a function of x, or a? as a func­
tion of y, thus defined. The case, however, where both the 
first partial derivatives of F(x, y) vanish at (x0, yQ), seems to 
have received very little attention, although analogous theorems 
for this case are tacitly used in most treatments of the singu­
larities of plane curves. In this subject, of course, it is fre­
quently assumed that F(x, y) is analytic at the point in ques­
tion ; but even where much less than this is demanded, it 
frequently happens that more is required than is at all neces­
sary,* that the exact conditions are not stated, and that exist­
ence proofs are omitted. 

The object of the present paper is to examine the possible 
cases that may arise when the first partial derivatives both 
vanish, and to state theorems analogous to Dini's theorem in 
these cases. No attempt has been made to reduce the sufficient 
conditions to an absolute minimum, but in most cases it seems 
unlikely that any simple statement could be made of conditions 
materially less restrictive. The general statement may be made 
concerning the requirements of continuity, that there must be 
one order of partial derivatives of F(x, y) continuous at and 
near (x0, y0) and not all vanishing at that point, and derivatives 
of any higher orders must be continuous at and near (x0, y0) 
whose values at (x0, y0) are required in order to determine the 
character of the solution or the value of a derivative of y with 
respect to x whose existence is asserted ; i. e., we may perform 
the formal differentiations for ascertaining any desired facts, 
and know that they are justified if all the partial derivatives of 
F(x, y) that we use are continuous at and near (x0, y0). 

In all the following theorems we shall assume that F(x, y), to­
gether with all its partial derivatives of order n or lower, is con­
tinuous at and near (x0, y0), and that F(x, y) and all its deriva­
tives of order less than n, vanish at this point, but that not all the 
derivatives of order n are equal to zero there. The following 
notation will be used throughout : 

h = x-x0, k=y-y0, a = ^ = ^ - — ° , 

ff+mx, y) „ 
F,(x,y)= dx^/>, F^F^y^ 

*E. g., de la Vallée-Poussin, Cours d'analyse, vol. 2, chap. 8. 
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b«~iTJl> bF» = bvF»> 

where 0 ë ^ l , 0 â ^ l . In most cases 0 < 0 = 0l < 1, 
but not always. Moreover 6 or 6X need not preserve the same 
value throughout any one discussion. 

THEOREM 1 .— There is a neighborhood of (x0, y0) in which 
all pairs of values of x and y satisfying equation (1) can be 
grouped into not more than n branches such that on each branch 
a approaches a limit (finite or infinite) equal to some real root 
of the nth degree equation in a 

(2) è^—y-o. 

By Taylor's theorem for two variables there is a neighbor­
hood of (œ0, yQ) in which we can write 

n 

(3) F(x,y) = h^bFn_i>ia
i. 

I f this vanishes when x 4= w0> then 

(4) i>^-M a <=°-
i=0 

From the continuity of the partial derivatives each coefficient 
in (4) approaches the corresponding coefficient in (2) as (x, y) 
approaches (œ0, y0), and hence each root of (4) approaches 
some root of (2). There is, therefore, a neighborhood of (xQ} yQ) 
in which the possible solutions of (1) are separated into not 
more than n branches according to the root of (2) whose neigh­
borhood contains the corresponding value of a. If JP0 n = 0, 
equation (2) must be regarded, of course, as having an infinite 
root ; and accordingly, there may be a branch on which a be­
comes infinite. This includes the case where F(xQf y) = 0 
throughout some interval including y0. Here (3) is satisfied 
by the vanishing of h. I n the subsequent theorems, however, 
we shall always understand by a root of equation (2) a real 
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finite root. The question of a solution belonging to an infinite 
root is easily reduced to this by interchanging the variables x 
and y. 

By a branch here is meant merely a certain aggregate of 
pairs of values. We have not shown that a branch defines y 
as a single valued function of x, nor yet a continuous function. 
We have shown, however, that the values of x and y belonging 
to one branch satisfy a relation 

y - Vo = (x ~ O O i + 0 = A(ai + 0> 

where ax is a root of (2) and f approaches zero with h, and that 
in a sufficiently small neighborhood of (x0> yQ) any solution 
belongs to some one such branch.* 

THEOREM 2 . — Corresponding to any simple root ax of 
equation (2), there is a neighborhood D of (o30, y0) and a 
single-valued function f(x) such that when y =f(x) in D , 
F(x, y) = 0. This function is continuous and has a contin­
uous derivative in D, and represents all the values of x and y 
in D which satisfy (1) and belong to the branch corresponding 
to ax\ 

i. e., there is an interval (ax — 7, ax + 7), such that if (x, y) 
is in D, and ax — 7 < a < ay + 7, then F(x, y) = 0 if and only 
ify=f(x). 

I f (x, y) and (xv yx) are any two points in the neighborhood 
of(^o>2/o)> 

F(x, y) = i ^ , y,) + [F(x, y) - J j ^ yx)]. 

If' œ = xlt 

F(x, y) - J f o , y,) = J fe , y) - 2fo, yt) = A y j ^ a , y, + flAy), 

*NOTB.—For this theorem the conditions of continuity may be slightly 
reduced. It is sufficient to demand that the partial derivatives of F(%> y) of 
order n shall exist at and near (% y0) and be continuous at that point. We 
can then stop the Taylor's development one term sooner and expand each 
partial derivative of order (n — 1) by the unsymmetrical form of the law of 
the mean, 

Fn-i-i,i(x0 + dh,y0+ek) 

=ehFn^>i(x0 + e1ehfy6) + ekFr^i-i,i+i{x0^dh1t/0+d2dk). 

This gives the same result as the Taylor's development except for the factor 
nd, which does not affect the reasoning. 
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where Ay = y — yv In general, 

y = % + «(» - »e)« 

2/1 = 2/0 + «l(* - «•)• 

Ay = y~yt = (a- «,)(» - »„) = ftAa, 

where Aot = a — av Hence 

(5) F(x, y) = F(x, Vl) + hAaF0l(x, yx + day). 

Now by Taylor's theorem, 

[Jan. 

In particular, let 

Then 

(6) F9l(x, y) - A'- 'E^-i-*, iK-i-i , i+i* = hr-^bF^ fh\ 

As h approaches zero and a approaches av the coefficient of 
hn~l in this expression approaches 

n 

^ibFn.itia[-^ M, 

where M =(= 0 since ax is a simple root of (2). If then we take 
any positive e such that e < | M |, we can find a neighborhood 
Z>x of (as0, y0) and an interval ( ^ — 7, ax + 7), such that when 
(x, y) is in Dv and ax — 7 < a < ô  + 7, we have 

Eai^^y)*1-1 
> e . (7) 

Again, from (3), 

(8) F{x,yl) = h»±,bFn_itiai 

Since ax is a root of (2), there is a neighborhood D2 of (x0, 2/0) 
in which 

(9) T,f>Fn_tii(x,y)ai < e | A a | . 

Substituting in (5) from (8) and (6), we have 
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|~ n n ~| 

F{x, y) = A- £ è ^ , , 4«ï + A« £ « - F U *«i"1 • 
L *=o 4=1 J 

From (7) and (9), if (xy y) lies in Dy the region common to Dx 

and D2, and ax — 7 < a < ax + 7, then the first term in the 
bracket is less in absolute value that e | Aa | , and the second is 
greater. I f then we leave h unchanged but replace Aa by its 
negative, we change the sign of F(x, y). Therefore F(x, y) must 
vanish between y = yx — Ay and y = yx + Ay ; and since in 
this interval Fol(x, y) does not vanish, it remains of one sign, 
and hence F(x, y) can not vanish more than once. Thus for 
any value of x in _D, there is one and only one value of y be­
tween y = yQ + h(ax — 7) and y = yQ + h(ax + 7) for which 
F(x, y) = 0. This defines y as a single-valued function of x 
in D, and makes it the complete solution which satisfies the 
condition l i m ^ ^ a = av This last condition shows that f(x) is 
continuous at x = cc0, and that f(x0) = a r When y = ƒ(#) in 
J) and x 4= œ0, we have seen that F0l(xf y) =|= 0. Hence by 
Dini's theorem, f(x) and f{x) are continuous in D when 

I t only remains now to show that f(x) is continuous at 
x = as0. When œ 4= ô* w e know that 

w - l 

11 JLa un-l-i,irn-l-i,i+la 

i=0 
n—1 

Z(«-W,-«,^ 
2=o 

w 

i=l 

As œ approaches cc0 and hence a approaches av the numerator 
and denominator of this both approach limits, and we have seen 
that the limit of the latter is not zero. Therefore limx=Xof(x) 
exists. But since f(x) is continuous at x0) this is sufficient that 
f(x) be continuous there also.* 

This same general method of proof may be extended to the 
case where ax is a multiple root. The method is essentially 
this : to determine an approximate solution and a strip includ-

* Dini, Funzioni di variabili reali, § 75 ; or E. W. Hobson, Theory of 
functions of a real variable, § 220. 

/ (» ) = 
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ing it within which the actual solution must lie, and then to 
show that on the approximation F(x9 y) is so small, and 
throughout the strip F0l(x} y) is so large, that for any value of 
x, F(x} y) must vanish for one and only one value of y in the 
strip. In Theorem 2, the approximation and the boundaries 
of the strip are straight lines. For later cases the approxima­
tion must be closer and the boundaries of the strip must ap­
proach each other more rapidly. 

When w = 1, this theorem reduces to Dini's theorem and the 
proof becomes that given by de la Vallée-Poussin (Cours 
d'analyse infinitésimale, I , \ 142). As in the case of Dini's 
theorem, we can show here that every additional order of partial 
derivatives of F(xy y) which are continuous at and near (cc0, y0) 
insures the existence and continuity of an additional derivative 
of f(x). This is shown in the following theorem, which com­
pletes the treatment of a simple root of equation (2). 

THEOREM 3. — If f(x) is a solution of the sort discussed in 
Theorem 2, and the partial derivatives of F(x, y) of order (n + m) 
are continuous at and near (x0, y0), then f(m+1)(x) exists and is 
continuous at and near x0. 

We know from Theorem 2 that this is true when m = 0. 
To show that it is true in general, we assume that f(m\x) exists 
and is continuous at and near x0. This we know is true when 
m = 0 or m = 1. I t is also true if this theorem holds for all 
values of m less than the particular one in question. The proof, 
then, on the assumption that f{m\x) is continuous, establishes the 
theorem by complete induction. 

We can expand F{x, y) by Taylor's theorem in powers of h 
from hn to An+m with coefficients that are polynomials in a and 
contain no other variable except in the case of the last. From 
the assumption of the continuity of / ^ ( œ ) , we can write 
when y =zf(x) 

(10) a = f + W ' + • • • + 1 A-'(/« + 0, 

where f approaches zero with h. I f we substitute this in the 
expansion of F(x, y) and arrange according to powers of A, the 
coefficients of the powers up to and including hn+m~2 will be 
constants. That of hn+m~l will contain f linearly but no other 
variable. Hence, since F(x, y) = 0 when y =f(x), we have 
an equation of the form, 

Ah" + . . . + An+m_2h^~2 + (B + œ^h^-1 + h^mcj>(h) = 0, 
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where An9 •••, An+m_2, and B are are constants, co and <f> 
approach limits as h approaches zero, and 

l^u)==--!EMw_Ma;=t=o. 

Since £ approaches zero with h, 

A = A, + 1 =--- = A+»-2 = ^ = o 
and 

Therefore £ = A^, where limA=0 ?? exists. If we put this in (10), 
we have a development of a including the power hm, in which 
the coefficient of hm~l is constant. From the continuity of/(m), 
moreover, we have 

where fx approaches zero with A. When y = ƒ (a?) we have also 

-Fiofo 2/) + y'Foi(*> y) = °-

If we expand the partial derivatives by Taylor's theorem and 
replace a and y' by their developments, we find that the powers 
of h in the expansions of the partial derivatives run from hn~x 

to hn+m~l, and hence after the substitution, the coefficients are 
constants up to and including that of hn+m~B

y while the coeffi­
cient of hn+m~2 involves £x linearly and no other variable. In 
the same way as for £, we show that ^ = ht]x where l im,^ rjl 

exists. This extends the development of y' one step further. 
In like manner, by substituting in the successive total deriva­
tives of F(x, y) with regard to x and equating them to zero, 
we add one power of h to the known developments of each of 
the derivatives, y'\ y"', • • •, ?/(m), finally getting yim) =jf(m) + hrjm, 
where lim^^ rjm exists. By Dini's theorem we know that when 
x =|= œ0> ?/(m+1) exists, and hence the (m + l)th total derivative of 
F(x, y) exists and is equal to zero. If we expand this in 
powers of h and substitute for a, y\ • • •, y^m) their developments 
in powers of h, we have an equation for determining £/(m+1), in 
which the coefficient of 2/(m+1> is F0l (x, y), or 

n 
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In the rest of the equation the coefficients are constants up to 
and including that of hn~2; and the coefficient of hn~l approaches 
a limit. We cannot infer here as before that the constant co­
efficients are all zero, because we do not know that y^+V ap­
proaches a limit as h approaches zero. We can infer, however, 
that when h approaches zero, t/(m+1) either approaches a limit or 
else becomes infinite. But since f{m+l\x) exists when x 4= xQf 

we know that y^ = / ( m ) + hf>m+l\x0 + Oh); and we have seen 
that y^=f^ + hrjm. Therefore fim+l\x0 + Oh) = ym, and 
this approaches a limit. But this is impossible if f(m+l>> be­
comes infinite. Therefore \imx=:Xof

(-m+1)(x) exists and from this 
it follows that jim+1\x) is continuous at x = x0. 

There now remains to consider the case of a multiple root of 
equation (2). We know from the theory of plane curves that 
in this case the existence and character of the solution depend 
upon the values of derivatives of an order higher than n. The 
simplest case of this sort is treated in the following theorem. 

THEOREM 4. — Let F(x, y) have all its partial derivatives of 
order (n + 1) continuous at and near (xQ, y0), and let ax be a 
multiple root of order m of equation (2) ; but let 

n+l 

Then the values of x and y in the neighborhood of (x0, y0) for 
which F{x, y) = 0 and a approaches ax are completely given by a 
solution in the form x = x0 + etm, y = y0 + eaxt

m -f tm+1f(t)j 
where e is + 1 or — 1 and f(t) is a single-valued function which 
is continuous at t = 0. 

We shall omit the proof of this and proceed at once to a 
much more general discussion, from which this theorem follows 
as a special case. Let us assume that the partial derivatives 
of F(x, y) of order n + r are continuous at and near (x0, yQ). 
Then we can expand F(x, y) in the form, 

(11) Fix, y) = h«h + A-+V„+i + • • • + h»+'j>n+r) 

where <f>. is a polynomial of degree i in a, having for coefficients 
the partial derivatives of F(x, y) of order i with the arguments 
(x0, y0) except where the dash as in <£n+r indicates the argu­
ments x0 + 0h9 y0 + 6k. Since the coefficients of cf)n+r are con­
tinuous at and near (xQ} y0), we may write 4>n+r = <̂ >n+r + £ 
where f approaches zero with h. Then at any point of a 
solution 
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( 12 ) <f>n + <f,n+1h + $n+ji> + ••• + 4>n+rh? + & = o. 

We have seen in Theorem 1 that for any solution, a must 
approach a root of <£w, which we have called av In Theorems 
2 and 3 we have discussed the case where ax is a simple root. 
Theorem 4 supposes that ax is a multiple root of (f>n but not a 
root of <j>n+v We shall now allow ax to be a root of any number 
of <£'s and of any possible orders, and obtain certain necessary 
conditions for a solution. 

Let ax be a root of each of the polynomials, </>n, <f>n+v • • •, <f>n+r ; 
and let its orders of multiplicity as a root of these be respec­
tively m0, mv • • •, mr. The important case that ax is not a root 
of <£n+r is included here by making mr = 0. We may assume 
without loss of generality that no previous m is zero, as that 
case is treated by taking a smaller value of r. For any solu­
tion belonging to av we have a = ax -f Çx where (̂  approaches 
zero with h. I f we put this value of a in (12) and expand, the 
terms in Çx of degree less than m. in the expansion of <̂  will 
drop out from the vanishing of their coefficients, and we shall 
have 

(is) *o&)sr°+nQK' + ••• + *r w o * + w - o, 
where the ty's are polynomials in ^ with constant coefficients, 
and the constant term in each is not zero. In îact 

Now let c and d be any two integers that are relatively prime, 
and let e be + 1 or — 1, its sign being at present undeter­
mined. I t is always possible, however, to choose its sign so 
thatfor any value of h there is at least one value of t such that 
h = etd. I f we define t in this waj id set rj = f,/f, we have 
Çx = r)tc. Replacing h and (̂  in (13) by these values, we get 

r 

(14) ]T etyfafyrF*?"*** + &rtdr = 0. 
4=0 

From this we may cancel out the lowest power of t that appears 
and get an algebraic equation that rj must satisfy. If now we 
let t approach zero and impose the condition that rj shall 
remain finite, we see that TJ must approach a root of the limit­
ing form of equation (14). This is 
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(is) z^(0>r=0> 
i 

the sum including only such terms as had the minimum 
exponent of t in (14). In general this equation will consist 
of only one term, and hence its only solution is rj = 0. If 
now we wish to exclude the case where rj approaches zero with 
t, we must choose c and d so that two or more exponents of t 
in (14) are equal to each other and less than any others. Let 
X = c/d. Then the exponent cm. + di becomes d(\m. + i). 
As d is independent of i, the exponent is a minimum when 
\m. + i is a minimum. For small values of X, Xm0 < 1, and 
hence the exponent of the first term is less than any other ; 

Xm0 < i + Xm. (i = 1, 2, . • -, r). 

Let XL be the smallest value of X for which this is not true, 
i. e., for which there is an i such that 

Xmft = i + Xm.. 
0 ' % 

Let this value of i be iv or if it happens simultaneously for two 
or more values of i, let ix be the greatest of these. Then it 
is easy to show that for increasing values of X, the exponent 
d(ix + Xm^) becomes and remains the minimum until it becomes 
equal to the exponent of some later term, 

ix + \mh = i2 + \mh ^ i + Xm., 

where i2 > iv If there are two or more possible values of i2, 
then i2 is to indicate the largest of these. In like manner 
d(i2 + Xm 2̂) becomes and remains the minimum exponent until 
it becomes equal to some exponent where i > i2. 

We proceed in this way, determining all possible values of X 
(not more than r in number) for which rj does not become zero 
or infinite as t approaches zero, but subject always to the con­
dition that i + Xm^=r, as otherwise the term Çertdr may become 
the principal infinitesimal, since we have no means of compar­
ing the infinitesimals ? and t. We can take account of this 
condition by setting mr arbitrarily equal to zero. I f mr = 0, 
then r + Xmr(= r) appears in the equation for determining the 
last value of X, and this value is to be treated like any previous 
one. I f mr =|= 0, then the coefficient of rjmr in (15) is zero and 
77 = 0 is a root. In this case there is a possible value of rj 
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which approaches zero for all values of X for which we can 
determine its behavior with the assumptions that we have made. 
We cannot say whether or not it yields a solution unless we 
know the existence and values of derivatives of order greater 
than (n +r). 

If 7] corresponds to an actual solution of (1), the identity of 
this solution is not affected by varying X. Let us consider, 
then, the case that rf belonging to this solution becomes infinite 
for all values of X. This means in particular that the coefficient 
of the highest power of rj in (14) approaches zero with h when 
X has the values which make the exponent Xm0 the minimum. 
This, however, shows that the coefficient of the highest power 
of 7j involves a yfr which is not yfr0. If then we set r = 0, this 
power of rj will not appear. But we know from Theorem 1 
that setting r = 0 gives the necessary condition for all solutions 
which approach (x0, y0). As we are concerned only with these, 
the case that rj becomes infinite for all values of X is disposed 
of. If rj approaches zero for some values of X and becomes 
infinite for others, it is easy to show that there is an inter­
mediate value of X for which it approaches a limit not zero. 

Thus for any solution approaching (x0, y0) whose character is 
determined by the assumed data, we have a certain value of X 
and an equation of the form (15) for determining the limiting 
value of ?7, or to write the equation more explicitly, 

(16) ^ ( O y * + e^q(Q)v
m* + • • • + es±(0)V

m° = 0, 
where 

(17) cm^ + dp = cm + dq = • • • = cms + ds = /x ~ cm. + di. 

Or, since rj 4= 0, 

(18) ep-sylrp(p)rjmp-^ + eq~syjrq(0)vm^~ma + h fa(0) = 0. 

We now have that any possible solution is expressible in the 
form 

ju —— diA-v - j ~ at , 

y = Vo + d*(«i + vtc) = y0 + a ƒ + aj*+* + £ƒ+c, 
where 

ax = eav a2 = lim erj, and lim f2 = 0 ; 

and where c, d, e, and the limiting value of rj, satisfy (17) and 
(18), and e= d= 1. 
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These are the necessary conditions for a solution. If, how­
ever, the limit of r/ is a real simple root of (18), they are 
also sufficient. For let 

2/l = 2/0 + aitd + a2td+C-
Then 

F(x, yx) = hn(j2 e S ^ f ) ^ r ^ + &rtdr\ 

= tnd+tlco(t), where lim œ(t) = 0. 

Developing Fol(x, y) in the same form as (6), we get 

Fa(x, y) = A-1 (£>*%-' + ?*')' 

where ?" approaches zero with h. Substituting a = ax + ^ in 

^ 2/) = ̂  ( g A'frHWü + w) 

= ^-^+^- c f t (^ , 7?), 

where the limit of ft(£, ??) is the partial derivative of the ex­
pression in (16) and hence not equal to zero on the assumption 
that 77 approaches a simple root. Since ft is a continuous 
function of t and 77, we can find small intervals for t and 77 
within which | ft | > €, where € is some positive constant. I f 
now 

y = 2/0 + « / + evtd+c, 

rj having any fixed value in its interval, then 

Ay=zy — y1=z(e7] — a2)t
d+c = eArj • td+c. 

F{x,y)^F{xyyl)^AyFQl{xyyl + eAy)^eAr)>t^^{ty ea2+dAv), 

F{x, y) = f*+* [a>(0 + eAV£l(t, ea2 + 0àv)]. 

As co approaches zero and ft approaches some other limit, we 
can take t so small that 
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I co | < | n • A?7 | , 

and hence the sign of F(x9 y) depends on the sign of A?/. As 
in Theorem 2, it now follows that F(x, y) vanishes once and 
only once in the strip and hence there is a single valued func­
tion of t which yields the complete solution belonging to this 
limiting value of r). A short computation will show that if we 
change the sign of e and make no other change, we either get 
the same solution that we had before or else none at all. 

All this is on the assumption that rj approaches a simple root 
of (18). If, however, rj approaches a multiple root, we sub­
stitute rj = e(a2 -f f2) in (14) and arrange according to powers 
of t, up to tdr. We then have an equation connecting f2 and t 
of exactly the same form as equation (13) connecting ^ and h. 
With this we can proceed in the same way, getting f2 and t ex­
pressed in powers of a new parameter as a necessary condition, 
which becomes sufficient if the equation for the new coefficient 
has a simple root. For a multiple root we must repeat the 
process. With regard to the continued repetition of the proc­
ess, there are three possibilities: (1) it may come to an end at 
some point through the appearance of an equation for the next 
coefficient, which has only simple roots ; (2) it may end on ac­
count of the non-existence of continuous partial derivatives of 
the orders required to carry it on ; or (3) the appearance of 
multiple roots may continue indefinitely. An example of this 
last is the case where F(x, y) is such a function as (y — sin x)2. 
Here 

F(x, y) = x2- 2xy + y2 - \x± + ±xBy + ^x6 - foxfy + . . -, 

and the coefficient of every term in the assumed solution will 
be a double root of the equation for determining it. Hence no 
finite number of terms from the development would enable us 
to determine the character of the solution, or assert that the 
origin is not a cusp, an isolated point, or a point common to two 
distinct branches. 

The question of the derivatives of ^ with regard to h9 rj with 
regard to t, etc., may be treated by expressing x and y in terms 
of these new variables, and finding the derivatives of F(x, y) 
with regard to them, thus reducing the problem to that of 
Theorem 3. 

HARVARD UNIVERSITY, 
September 1, 1909. 


