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being assigned at will, to find the functional relation between 
the intercepts, <3>(a, /3) = 0 (i. e., the law governing the motion 
of the line), in order that the given point may trace an envel­
ope and, finally, to obtain the equation of the envelope. The 
required relation is given by either of the differential equations 

X' - 4>(a, fi) = ç—?p-^f y' = t (3 , fi) = •p_*dfJlda 

In general both equations will be needed in order to determine 
the constants of integration. Having thus obtained the func­
tion <I>, which is, in effect, the tangential equation of the envel­
ope, the equation in rectangular coordinates readily follows. 

Several examples applying the principles were presented 
and its application to other families of loci was suggested 
as a promising field of investigation for the amateur mathe­
matician. LAENAS GIFFORD W E L D , 

Secretary. 
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T H E theorem that a Jordan curve divides the plane into 
two regions, an interior and an exterior, has in recent years 
received much attention. The proofs which have been given 
may be roughly divided into two classes, those in which the 
object has been to prove the theorem with the fewest possible 
hypotheses on the curve,* and those in which generality has to 
a certain extent been sacrificed for simplicity.f The following 
proof belongs to the second class. In § 1 it is assumed that 
the curve considered is continuous and has a continuously turn­
ing tangent at every point ; but in § 3, by extending the proof 
of one of the auxiliary theorems, curves with a finite number 

* Veblen, Trimactiom Amer. Math. Soriefy, vol. 6 (1905), p. 83. 
f Ames, Amer. Jour, of Math., vol. 27 (1905), p. 353. Bliss, BULLETIN, 

vol. 10 (1904), p. 398. For further references, see the paper by Ames. 
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of corner points and singularities are also included. The proof 
is presented here because it seems shorter and simpler than those 
heretofore given. 

§ 1. Hypotheses on the Curve, 

The curve to be considered is for the present supposed to be 
closed, but otherwise non-intersecting, continuous with a con­
tinuously turning tangent at every point, and to have no singu­
lar points. If its equations are given in the form 

C: * = *(*), y = W), 

these conditions may be expressed analytically as follows : 
(a) The functions $ and yfr are periodic with period <w, but 

the points (x, y) defined by two different parameter values ty t' 
are distinct unless t and t' differ by a multiple of co. 

(b) (f> and i/r are continuous for all values of t. 
(c) The derivatives <£' and yjr' are continuous for all values 

of t. 
(d) (j>'2 + ^ ' > 0 for all values of t. 
Let (£, n) be a point of the curve G defined by a parameter 

value T. On account of (d) and (c) one of the derivatives, say 
<£>', is different from zero in an interval [T — 8, T + 8] , and as t 
traverses the interval x varies monotonically between two 
values ft and £2. Under these circumstances t is similarly a 
monotonie continuous function of x in the interval [£l? £2], 
and this function substituted for t in y = $(f) gives an equation 
in the form y=f(x). 

For any point (f, v) of the curve G there exists an interval 
[£i> £2] including the value £, such that all the points of G near 
(|, 7]) satisfy an equation 

(i) y=A»), (M*^&); 
or else there exists an interval \_nv ??2] including v, such that 

The function f or g, is single-valued and continuous. 
With the help of the last statements the following important 

auxiliary theorem can be readily proved : 
A U X I L I A R Y THEOREM I . At any point (£, rj) of the curve G, 

a rectangle ivith its center at (£, n) and sides parallel to the axes 
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can be constructed, in such a way that it is intersected only twice 
and divided into hvo continua by the curve. 

To fix the ideas consider a point near which the curve has 
the form (1). A square of side 2e with, its center at (£, rj) 
will be intersected only by the arc (1) if the half-diagonal € A/2 is 
taken less than the shortest distance from (£, rf) to other parts 
of the curve. If another positive constant 8 is now taken so 
that in the interval [f — 8, £ + 8] the absolute value of/(x) — rj 
is less than e, then the rectangle whose sides are x = £ =fc 8, 
y = rj ± e is of the desired kind. In one of the two continua 
f(x) — 77 is positive, in the other negative. 

§ 2. Existence of at most Two Continua. 

The curve C divides the plane into continua R., perhaps in­
finite in number, whose only boundary points are points of the 
curve. With the help of the auxiliary theorem of § 1 it may 
be shown that the number of continua is at most two. 

AUXILIARY THEOREM I I . Each continuum E. has every 
point of the curve C as a boundary point. On the other hand 
the (x, yYpoints near any point of C belong to at most two con­
tinua, so there are in all at most two. 

I t is evident that any continuum E. must have at least one 
boundary point (f, rj) on the curve C. I t follows that Ei must 
include one of the continua into which the rectangle about (f, 77) 
is divided according to the first auxiliary theorem, and must 
therefore have all the points of Cnear (£, rf) as boundary points. 
Consider now the largest interval r = t < T (T Êir + a>) of 
parameter values all of which define boundary points of E.. 
The upper boundary T can not be less than T + œ, for the point 
(%, y) defined by it is a limit point of boundary points, and 
therefore is itself a boundary point of R.. With the help of 
Auxiliary Theorem I it follows as above that all the parameter 
values near T also define boundary points of Rv and the interval 
T Êit < T with T< T + « could not be the largest. 

§ 3. Existence of at least Two Continua. 

The existence of at least two contiuua is shown by means of 
a function N(a, b) which is constant as long as (a, b) remains 
in one of the continua Rif but which takes at least two different 
values at points of the plane not on the curve C. This function 
is the integral 
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whose primitive is the function u defined by the equations 

<f> — a . yfr — b 
cos u = — , sin u = — -—. 

It is evident from (2) that N(a, b) is a continuous function 
of a and b when (a, b) is not on the curve O, and on account 
of the periodicity of <j> and yfr its value is always some multiple 
of 2TT. Since any two points in the same continuum M. can 
be joined by a curve along which N varies continuously, the 
values of N at points in the same region must be always equal 
to the same multiple of 2TT.* 

In order to show that N(a9 b) has at least two different 
values in the plane, consider again a point (£, rj) near which 
the curve C has the form (1 ), and let h > 0 be so chosen that 
the only point of G on the ordinate x = £ between TJ — h and 
7] + h is (£, rj). Denote by N, Nv u, ux and r, rx the values of 
N(a, 6), the angles, and the radii corresponding to the two 
points a = f, b = y db h. The difference N — Nx is an inte­
gral whose primitive is the function u — ux defined by the 
equations 

sin (w- —• M.) = ^- —. 

On account of the periodicity of <£ and yjr the values of u — ux 

at t and £ + to differ by a multiple of 2TT. Furthermore, as £ 
varies through an interval cof u — ux passes once and only once 
through the value ir. For when u — ux = TT, 

*-f-o, (i-#-i2=_i, ... lf-vl<h> 

*The quotient iV/27r has been called by Ames the *' o rder" of the point 
(a, b) ; loc. cit., p. 353. The proof given in this section is similar to his, 
and to one about to be published by Osgood in his Lehrbuch der Funktion-
entheorie, vol. 1, p. 136. 
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and the point (<£, yjr) must be the point (£, w), the only point 
of the curve Con the ordinate^ = £ between rj — h and y + h. 
That n — uY actually passes through the value TT follows because 
</> — | and consequently sin (u —• t^) change sign when t passes 
through the value T. I t is evident, then, that the values of 
u — ux at t and £ + co differ by ± 27r, and hence 

N-Nl=±z2ir. 

AUXILIARY THEOREM I I I . The function N(a, b) is a con­
stant in any continuum R{ and takes at least two different values 
at points (a, b) not on the curve C. There exist therefore at least 
two continua, M.. 

i 

The theorem which was the object of the present paper fol­
lows at once from the last two auxiliary theorems : 

PRINCIPAL THEOREM. Any Jordan curve having the prop­
erties stated in § 1 divides the plane into tv-o continua, an interior 
and an exterior. 

§4. Extension to Curves with Corners and Singular Points. 

The proof given in the preceding sections can be extended 
without much difficulty to curves having a finite number of 
points where the conditions (c) and (d) of §1 are not both sat­
isfied. In order to effect the extension it is only necessary to 
show that a rectangle with the properties described in Auxiliary 
Theorem I can be constructed at the exceptional points as well 
as at the others. The further steps in the proof remain the 
same. 

The exceptional points admitted are points where conditions (c) 
and (d) of § 1 do not both hold true, but it is supposed that the 
direction of the tangent defined by the equations 

à>' t llr' 
cos a = —=^===^ , sin a = —-=:==^=z, 

l/<£'2 + ^ ' 2 Vçj)'2 + i/r/2 

approaches definite limiting values as the parameter t approaches, 
from either direction, the value r defining the exceptional point. 
The two limits corresponding to the two directions of approach are 
not necessarily the same. 

Such points include corner points where all the conditions of 
§1 are satisfied except that <$>' and i/r' are discontinuous, and 
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singular points where both <j>f and yjr' are zero provided that 
higher derivatives of <p and yfr exist which do not vanish simul­
taneously at the value T. 

Suppose that the X-axis is taken so as not to be perpendicular 
to any of the limiting directions of the tangent at exceptional 
points. Then there is an interval r — Sl = t < T in which cos a 
and </>' are different from zero, although at t == r the deriva­
tive (j>f may vanish. In such an interval x is a monotonie 
function of t, varying from ^ to £. Conversely t, and there­
fore also y, is a single-valued continuous function of x in the 
interval \J*V f ] . In a similar way y may be expressed as a func­
tion of x in an interval [f, £2] corresponding to parameter 
values between r and T + S2. Let these two functions be de­
noted by y = f(x) and ;*/ =f2{%) respectively. 

There are two cases to be considered. If fx and | 2 include 
the value £ between them, then y is a single-valued continuous 
function of x in the whole interval [£,, £2] and the rectangle 
can be constructed exactly as in § 1. If %x and £2 are both on 
the same side of f, then the intervals [£1? £] and [£, £2] over­
lap, but jf̂ œ) is always different from f2(x) in the common in­
terval. The construction of the rectangle is the same except 
that in this case the two arcs of C cut the rectangle on the same 
ordinate. One of the two continua into which the rectangle is 
divided consists of points (#, y) for which x is in the interval 
common to [£1? £] and [f, £2], and y is between the corre-
responding values of fx{x) and/2(cc). The other points of the 
rectangle form the other continuum. 

If a curve has a finite number of exceptional points of the hind 
described above, but elsewhere satisfies the condition of § 1, it 
divides the plane into tivo continua, an interior and an exterior. 

PRINCETON UNIVERSITY, 
December, 1905. 


