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is negative for sufficiently small positive values of a, it follows 
that F(z) decreases from the value zero to a certain negative 
minimum value, as z increases from 0 to z0 ; then as z increases 

FM 

from z0 to + co, F(z) increases continually and approaches for 
z = + GO the limit + w/2. Hence the equation (12) has one 
and but one real positive root. 

This root being found, the equations (11), (10), and (9) yield a 
unique solution coQ) œv of (7) and (8), satisfying the inequality (4). 
Finally the values of h are z follow unambiguously from (3). 

The existence and uniqueness of the solution of the proposed 
problem are therefore proved. 

UNIVERSITY OF CHICAGO, 
November 2, 1903. 

ON THREE TYPES OF SURFACES OF THE THIRD 
ORDER REGARDED AS DOUBLE SURFACES 

OF TRANSLATION. 
BY DR. A. S. GALE. 

(Read before the American Mathematical Society, October 31, 1903.) 

T H I S note serves the double purpose of making a slight addi­
tion to the theory of three types of surfaces of the third order 
and of exhibiting the double surfaces of translation of lowest 
order. The latter surfaces enjoy all the properties of the double 
minimum surfaces * except those immediately dependent on the 

*Lie, Math. Annalen, vol. 14 (1879), p. 346 et seq. ; Darboux, Théorie 
des surfaces, vol. 1, p. 348 et seq. 



1904.] SURFACES OF THE THIRD ORDER. 189 

minimum property ; and as Henneberg's minimum surface of 
order fifteen is the simplest of the real double minimum sur­
faces, it is not uninteresting to see what very simple surfaces 
have many of the same properties. 

By a double surface of translation is meant a surface whose 
equations have the form 

8: x = A(u) + A(v)9 y = B{u) + B{v\ % = C(u) + C(v) 

Such a surface may be generated in either one of two ways 
1° by a curve 
C: x — A(u)9 y = B(u), z = C(u), 

subjected to the one-parameter system of translations 

x = x + A(y), y' =y + B(y), z = z + C(v) ; 

2° by the middle point of a chord of the curve 

x = 2A(u), y = 2B(u), z = 2 C(u). 

If the surface 8 be subjected to a projective transformation, 
the transformed surface may evidently be regarded in two ways : 
1° as the locus of a curve subjected to a one-parameter system 
of projective transformations of which the invariant configura­
tions are surface elements with a common plane; 2° as the 
locus of the fourth harmonic to two points of intersection of a 
secant of a curve C and the point in which tKat secant meets a 
fixed plane. 

Since two surfaces of the third order belong to the same type 
if one may be projected into the other, it is evident that these 
projective definitions will afford means of generating any sur­
face of the third order if a surface of the same type may be 
regarded as a double surface of translation. The surface S will 
be of the third order, by Lie's theorem on the order of surfaces 
of translation,* if C is a twisted cubic ; and if the axes be suit­
ably chosen the elimination of u and v presents no difficulty, 
thus giving the equation of 8 in rectangular coordinates from 
which the nature of the singularities of S may be readily 
determined. 

We find in this way that, if C cuts the plane at infinity in 
three distinct points P , Q and P , then 8 will be a surface of 

*L. c , pp. 359, 354 ; see also Darboux, 1. o., p. 369. 
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the third order with three conical points, C2, situated at P , Q 
and P . If, however, C cuts the plane at infinity at P and is 
tangent to it at Q then the only singularities of 8 are a conical 
point C2 at P and a binode B5 at Q whose axis lies on S, 
one of the biplanes being tangent to 8. Finally, if the plane 
at infinity is an osculating plane of (7, then S is Cayley's ruled 
surface * of the third order. 

The second projective definition then affords a simple means 
of generating any surface of these three types. When, however, 
O is a twisted cubic, that definition declares that 8 is the trans­
formed of a plane by the involutory cubic transformation of 
space under which corresponding points lie on a secant of C and 
are harmonically situated with respect to the points of inter­
section of that secant with Ö. The above results have already 
been given from this point of view f but attention does not 
seem to have been called to the fact that the surface corres­
ponding to the plane at infinity is a surface of translation. 

Remarking that a projective transformation transforms a con­
jugate system of curves on a surface into a conjugate system on 
the transformed surface, the properties of double surfaces of 
translation afford the following theorem : 

On the surfaces of the third order whose singularities are 
three conical points, or a conical point and a binode whose 
axis lies on the surface, one of the biplanes being tangent to 
the surface, and on Cayley's ruled surface of the third order, 
there is a singly infinite system of twisted cubics any one 
of which may be transformed into any other by a projec­
tive transformation of a system similar to a system of transla­
tions under a projective transformation T. Two of these cu­
bics pass through each point of general position on the surface. 
These cubics form a conjugate system ; they have an envelope 
into which any one may be transformed by a projective trans­
formation similar under T to a nomothetic transformation 
whose ratio is two. This envelope is the locus of points through 
which but one curve of the system passes and is an asymptotic 
line of the surface. The surface may be regarded as the locus 

*Lie, 1. c , footnote, p. 353. 
t Cantonne, Napoli Rendiconti, vol. 25 (1886), pp. 186, 189 and 190. The 

transformation is studied by Reye, Geometrie der Lage, 3d éd., part 3, p. 129 
and Schoute, Nieuw Archief, 2d series vol. 4 (1899). If we consider the 
transformation in which the cubic is replaced by any twisted curve, Lie's 
theorem on the order of a surface of translation affords the order of the sur­
face corresponding to a plane. 
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of the fourth harmonic to two points of this envelope and the 
point of intersection of the secant through these two points 
with the plane of the singularities of the surface. 

Y A L E UNIVERSITY, 
October, 1903. 

ON T H E GENERATION O F F I N I T E FROM I N F I N ­
I T E S I M A L TRANSFORMATIONS — 

A CORRECTION. 

BY PROFESSOR H. B. NEWSON. 

(Read before the Chicago Section of the American Mathematical Society, 
January 2, 1903.) 

I N a paper entitled " Continuous groups of circular transfor­
mations " which the author read before this Society, April 24, 
1897, and which was published in the BULLETIN (2) series, 
volume 4, pages 107-121, there occurs a serious error* which 
I desire to correct. 

The error in question is a misstatement of the number of 
logarithmic spirals of the family p = e^cJri)e (where e is a para­
meter) that pass through a given point of the plane. I t was 
stated on page 114 of the above mentioned paper that in gen­
eral only two spirals of the family pass through a given point. 
In fact there are an infinite number of these spirals through a 
point P . 

To show this let, the coordinates of P be (pv 6X + 2w/7r). Since 
Pi = e(c+i)(01+2mr)^ t h e n 

log ft = log r + 2im7T = c (6X + 2nir) + i (6l + 2WTT) ; 

whence log r = G (6l + 2nrr) or c = log r/(0l + 2mr). Since 
n is any integer, e may have any one of an infinite number of 
values. Thus there are an infinite number of spirals of the 
family through the point (pv 6X + 2ft7r). When n = 0, 1, 2, 
3, • • • the corresponding spiral, starting from the origin, makes 
0, 1, 2, 3, • • • turns about the origin before passing through the 
point P . 

The last paragraph on page 114 and the first on page 115, in­
cluding theorems 7 and 8, of the above-mentioned article should 
be corrected to read as follows : 

* My attention was first called to this error by Professor Frank Morley. 


