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C O L L I G A T I O N S UK A PLANE W I T H INVAEIANT 
QUADEIC OB CUBIC CUEVES. 

BY PEOFESSOE H. S. WHITE. 

(Bead before the American Mathematical Society at its Fourth Summer 
Meeting, Toronto, Canada, August 17, 1897. ) 

A LINEAR substitution applied to a ternary form will 
change, in general, the ratios among its coefficients. Un­
less the substitution is a specialized one, there are three in­
dependent linear forms which it leaves unchanged save by 
a multiplicative constant, but no such forms of higher order 
except those that are reducible to products of these three 
linear factors. So much being premised, it is apparent 
that if any irreducible forms of higher order are unchanged 
by a particular linear substitution, it must be by reason of 
some relation among the coefficients of that substitution ; 
and further, that such a relation must be unaltered when 
this first substitution is transformed by (not compounded 
with) a second. Such relations are expressible in fact 
by equations involving only the invariants of the first 
linear substitution. The expression of a conditional relation 
in invariant form when there is a quadric invariant of the 
substitution has been effected by integrating a differential 
equation to determine transcendental invariant forms, then 
discussing what relations among the parameters will reduce 
those forms to quadrics. This method is indeed exhaust­
ive ; but for the special problem an exhaustive method is 
not indispensable. I t is possible to obtain the invariant 
conditional equation by quite elementary processes, not 
only when quadric forms are to be left unchanged, but also 
when beside the quadrics there are proper cubic invariants. 
As preliminary to this main theme I will restate well-
known formulée concerning linear invariants and funda­
mental invariants of a linear substitution or collineation. 

A ternary linear substitution or collineation may be rep­
resented by the equation (in Clebsch-Aronhold notation): 

the equation in line coordinates (it) of the point into which 
any point (x) is transformed. More explicitly it is writ­
ten : 
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yx = a1«1o;1 + a2axx2 + a8a^s 

y2 = axa2xx + a2a2x2 + a9a& 

ys = axa^ + a2«8#2 + a^x,. 

Any invariant of the mixed form or connex axua is called 
an invariant of the collineation. There are three inde­
pendent invariants, represented by iv i2, %;* 

The three linear forms unaltered by the collineation are 
determined by the aid of the characteristic equation. If 
the equation of one invariant line were Ax = 0, and that of 
its transformed equivalent Ay = 0, since the two can differ 
only by a multiplicative constant X, we must have identi­
cally 

A9=Aaam=Uu. 

Separating this into three, and eliminating the (A), we 
find the characteristic equation : 

axax — k 
a2ax 

azai 

axa2 

a2a2 — X 

V2 

«!«» 
<V*8 

V s 

or reduced 

^8 ~ *'/ + Wi ~ S)x - * W - 3 v , + 2Î8) = 0. 

If the three roots are kv X2, Xv the corresponding linear 
forms are found by solving the identical equation for Ax ; 
or by factoring the bordered determinant : 

¥ i " 
a A 

*a a i 

*i 

K a±a2 

a2a2 — Xi 

<*3«2 

x2 

aias 
a2% 

«3«3 

* 3 

Excluding arbitrarily the case of degenerate collineation, 
where the absolute term in the characteristic equation 
would be zero, we have corresponding to the three roots 
three linearly independent forms <p^(x), <p2(x), <ps(x), and 

* Clebsch and Gordan use the designations i, i^ t2, respectively. I 
adopt the subscript showing their degrees in the coefficients of the colli­
neation. 
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may adopt them as independent variables xv x2) xs. The 
connex then has the simplified expression : 

uaa« = Puixi + nx2 + ru*xs-

We shall assume also that the quantities p, q, r are all dif­
ferent. These are obviously the roots of the characteristic 
equation, so that we have the relations : 

p + q + r =iv 

qr + rp +pq = J O Ï ~ %), 

pqr = Kh*-&!*% +Zh)-

The three invariants are seen to be the sums of first, sec­
ond and third powers respectively of these three roots 
p, q, r. 

That a quadric A* may be transformed into itself by the 
collineation uaax = 0, the condition must be identically ful­
filled 

Resolving this identity into six equations and eliminating 
the unknown coefficients Aik, we have the characteristic 
equation for the factor À : 

(Pa - V (<f ~ J) 0* - X) (jr - A) (rp - A) (pq - A) = 0. 

If the roots of this equation are all different, there are 
six determinate quadric forms A*, and no more. These 
six, however, are obviously nothing more than products of 
the invariant linear forms. For example, 

to A = jp2 corresponds A2 = x2, 

to A =pr corresponds A* = xYxz, etc. 

How then can any irreducible quadric occur with the invari­
ant property ? Certainly only when two roots of this charac­
teristic equation are equal. In that case there will be not 
only one, but a simple infinity of quadric forms satisfying 
the condition. Of possible equalities among the roots, the 
following comprise all types : 

(1) p2 = q2, (3) pq=qr, 

(2) p2 = pr, (4) pq= r*. 

These we will consider in their order. 
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1. Corresponding to p2 = q2 we should find the system of 
quadrics with arbitrary parameter m : 

x2 — mx2, 

all of which are reducible. 
2 and 3. If p2 = pr, or pq = qr, it follows that p = r, and 

the corresponding quadrics are the two systems, all reduci­
ble : 

Ax2 + Bxxxz + Cx3
2, 

Dxxx2 + Ex2xd 

4. Accordingly if any non-singular collineation can leave 
invariant any irreducible quadric, it must satisfy a condi­
tion of the type pq = r\ The quadrics corresponding con­
tain one arbitrary parameter m : 

These are certainly irreducible except for m = 0 or m = oo. 
Rationalizing now this typical condition pq = r2 in terms of 
the three invariants, we find 

/ pq + qr 4- rp \8 

pgr = \J-A—~—:—— I > or 

3(V ~ i2Y - ±\* W - 8 y , + 2i3) = 0.* 

Since also the argument is reversible, the result may be for­
mulated thus : 

If any proper conic is left unaltered by a non-singular collinea­
tion of the plane, then every conic of a simply infinite sheaf must 
share the invariant property ; and the necessary and sufficient con­
dition for the occurrence of such invariable conies is the following 
relation among the three rational invariants of the collineation : 

Kh2 - %Y ~ ±h* W - *h% + *h) = 0. 

Before taking up cubic curves, it is useful to review a 
part of the above argument in geometric language. Con­
sider as before a collineation that leaves unaltered the three 
lines of a non-vanishing triangle. If also some proper conic 
is to be transformed into itself, then the poles of these three 

* The coefficient 4 of the second term of this condition equation is er­
roneously omitted in Clebsch-Lindeman, Vorlesungen über Geometrie, 
I., p. 994. 
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lines with respect to the conic must be invariant points. 
Such points cannot lie on a line, they must be therefore the 
three vertices of the invariant triangle. Further, this self-
polar triangle must have two sides tangent to the conic ; 
for if none were tangent, the six points in which they cut 
the conic would need to lie in involution, whence their 
three join-lines must meet in one point, contrary to our 
hypothesis. One side accordingly must be tangent to the 
conic, and since the triangle is self-polar a second si'de also 
is tangent, while the third is the chord of contact. The 
conic referred to this triangle has the equation : 

Axxx2 + Bx* = 0 

while the collineation is of the form : 

Substituting in the equation of the conic, we find as before 
the condition for its invariance, 

pq = r2, 

and this gives the same relation among the invariants. 
The collineation has three invariants, and if two condi­

tions are imposed upon these, they determine its absolute in* 
variants ; no more conditions can be imposed without speci­
alizing the invariant triangle. We know that there are 
general collineations transforming a plane cubic into itself. 
Let it be required to determine their two invariant charac­
teristics. If a proper non-singular cubic is transformed into 
itself, so are also necessarily both the conic polars and 
the linear polars of the three fixed points of the collinea­
tion. Two conic polars can never be doubly tangent while 
their poles are distinct, and so cannot belong to any such 
invariant sheaf as that discussed above. There must be 
three different sheaves of invariant conies, one in each 
sheaf being the conic polar of one vertex of the fixed trian­
gle, and touching two sides where they are met by the 
third. Now two sorts of coordination are possible ; either 
each vertex lies on its conic polar and on the cubic, or else 
each is the pole of the opposite conic and line ; the other 
two hypotheses are excluded by the order of the cubic. Of 
the two possibilities the former covers two distinct coordi­
nations of pole and polar, the latter of course but one. 

For both cases alike, since an invariant conic occurs in 
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each of the three possible systems, the three conditions 
must be fulfilled : 

qr = p2, rp = q2, pq = r2. 

Of these only two are independent. From them result the 
three sets of equalities of third degree : 

(1) ptq^q'r^r'p, 
(2) pq2 = qr2 = rp2, 

(3) p3 = qs = r3 = pqr. 

The equivalent relation among the invariants is : 

^ i = 0 , Î . - 0 , ;, + 0 ( t 8 = 3 p 3 ) . 

Corresponding to the three sets of equal roots of the char­
acteristic equation for invariant cubics, there are three sys­
tems having the following equations : 

(1) Ax*x% + Bx2\ + Cx2xx = 0, 
(2) Axxx

2 + Bx2x
2 + Cx,x2 = 0, 

(3) Ax? + Bx* + Cxf + DXXXJC% = 0. 

For each of the first two systems the triangle is simultane­
ously inscribed in and circumscribed about each cubic of 
the system, and these cubics are of the special kind called 
cequianharmonic* For every cubic of the third system 
the triangle consists of three lines of inflexion. This result 
is recapitulated in the statement : 

In order that a non-singular collineation may leave unaltered a 
non-singular plane cubic curve, it is necessary and sufficient that its 
invariants of first and second degree should vanish, while its invari­
ant of third degree remains different from zero ; and then three 
discrete systems of cubics enjoy the invariant property, the one con­
taining a threefold infinity of general cubics, the other two contain­
ing each a twofold infinity of œquianharmonic cubics. All of the 
former system have their inflexions upon the fixed triangle, all oj 
the latter systems are simultaneously inscribed in and circum­
scribed about the fixed triangle. 

I t will be remembered that every non-singular cubic has 
eight collineations into itself, besides the identity, as well 

* Clebsch-Lindemann, Geometrie, I., p. 579. 
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as nine others of a sort excluded from the present consider­
ation, namely perspective transformations. I t is of inter­
est to observe that the three other inflexional triangles of 
each invariant cubic of the third class are themselves mem­
bers of the system, and are therefore transformed into 
themselves, not interchanged, by the eight non-perspective 
collineations of the cubic. 

Of plane curves of higher order than the third, it is easily 
shown that only highly specialized classes are collinear 
with themselves, and that of these classes the groups are 
correspondingly small. I t appears possible, however, to ex­
tend this method of inquiry to such interesting topics as 
these : 

(1) What simultaneous invariant conditions must two 
non-singular collineations satisfy in order to belong to the 
group leaving a common conic unaltered ? 

(2) What invariant conditions are met by collineations 
which leave unaltered a quadric surface ? a twisted cubic? 
a twisted quartic curve ? 

NORTHWESTERN UNIVERSITY, 
August, 1897. 

A GENERATING FUNCTION FOR THE NUMBER 
OF PERMUTATIONS W I T H AN ASSIGNED 

NUMBER OF SEQUENCES. 

BY PROFESSOR F. MORLEY. 

(Read before the American Mathematical Society at the Meeting of 
May 29, 1897.) 

§ 1 . Andre's Recurrence-formula. In Liouville's Journal, 
1895, and in earlier memoirs there referred to, M. André 
proves the formula 

Pn,s=sPn 1>s + 2 P _ M _ 1 + (n - s)Pn_1>8_2 (1) 

where Pns is the number of permutations of n things (say 
of the numbers 1, 2,-• n) with s sequences; and shows that 
(taking the number of sequences as great as possible) 
the numbers ^Pn+i, n are the coefficients of xn/n ! in 
1/(1 — sin#), when expressed as a Maclaurin series. 

My object is to obtain a function of x and y which when 
developed in positive integer powers of x and y will have 
Pnj t as the general coefficient. 


