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POINCARÉ'S MÉCANIQUE CÉLESTE. 

Les Méthodes nouvelles de la Mécanique Céleste. Par H. 
POINCARÉ. Tome I, Paris, Grauthier-Viltars, 1892. 8vo. 

T H E publication of this new work on Celestial Mechanics, 
embodying some of the results of the labors of mathema­
ticians in that direction during the last fifteen years, comes 
as a welcome addition to our knowledge of this subject. Until 
lately, nearly all treatises have been written with a special ob­
ject, that of obtaining expressions which can be used by the 
Ï)ractical astronomer ; the mathematical aspects of the prob-
ems solved have been almost entirely neglected. These latter 

have an interest of their own apart from any use which can 
be made of them, and it is to the study of such questions that 
M. Poincaré largely devotes himself. At the same time he 
points out where they can be applied usefully in the case of 
the problem of three bodies. But this is not all. Most of 
the results obtained can be applied equally to the general 
problems of dynamics where there is a force function, and by 
the use of a dissipation function could doubtless be applied 
to any natural problem whatever. 

The applications are, however, more particularly made to a 
satellite system, in the special case when the three bodies 
move in one plane, as well as in the general case. The limi­
tation generally imposed consists in making the ratios of the 
masses of two of the bodies to that of the third a small 
quantity, an assumption which, nevertheless, does not limit 
greatlv the usefulness of the results. M. Poincaré says, 
" Le out final de la Mécanique céleste est de résoudre cette 
grande question de savoir si la loi de Newton explique à elle 
seule tous les phénomènes astronomiques," and for this end 
to be attained it is absolutely necessary to know whether 
the developments of the expressions for the position of any 
heavenly body do mathematically represent that position. In 
general, the series obtained must be convergent, and it is to 
the questions on the convergence of such series that M. 
Poincaré has been able to give some definite answers. 

In his introduction, the author points out that the starting 
point of the present developments of the lunar theory, was 
the publication in Vol. I. of the American Journal of Mathe­
matics of a paper by Dr. Hill entitled, " Researches in the 
lunar theory." It is true that in this memoir, Dr. Hill has 
largely occupied himself in obtaining exact numerical and 
algebraical values for certain inequalities in the motion of the 
moon; but the general considerations involved at the be­
ginning and end of it are of a far-reaching nature. In par-
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ticular, a superior limit to the radius vector of the moon is 
found, and a general study of the surfaces of equal velocity is 
made. His consideration in a particular case of the moons 
of different lunations with respect to the primary, will be men­
tioned below. 

M. Poincaré's book is principally based on his own memoir, 
"Sur le problème des trois corjos et les équations de la 
dynamique."* The arrangement is not quite the same. In 
the treatise, many of the demonstrations are more completely 
explained, the applications are more numerous, and much 
matter that is entirely new has been added. In what follows, 
I have not in any sense attempted to give a complete account 
of the book. Much that is given there is outside the scope 
of an article such as this ; the results that are mentioned 
are chiefly noticed either because they can be given in a few 
words, or because from their peculiar interest they merit a 
somewhat longer treatment. 

The first chapter deals with some general well-known the­
orems with respect to differential equations. Two types are 
selected. The general form which it is necessary to consider 
is shown by the system 

C^=X, (» = 1 , 3 , . . . » ) . 

The X€ are analytic and single-valued functions of the xt and 
may or may not contain the time explicitly. This type in­
cludes the system of canonical equations 

^j _ àF cLyj _ dF 
dt ~ dyi9 dt ~~ dXi ' 

which possess a set of properties special to themselves. Some 
space is devoted to the consideration of these properties, and 
special attention is directed to changes of variables for 
which the system still remains canonical. The proofs for 
these theorems are sketched very briefly in cases where they 
are well-known. 

In all the particular cases of the applications of canonical 
equations to the problem of three bodies, M. Poincaré works 
out the results with some detail. The masses are taken to be 
ml9 mfi> m% ; mx is the mass of the primary while ra2, m2, satisfy 

ßu =
 m*m* ffu = K + ***) m* 

H mx + m / mi -f m% + m* 

* Acta Mathematica, Vol. XIII. 
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such that pi is small while ß9ß' remain finite quantities. It is 
then possible to expand F in a series arranged in ascending 
powers of pi : 

F=F0 + JJLFX + pfFt + . . . 

In general F0 will be independent of one system of canonical 
elements, say, the yt. 

The canonical equations given above correspond to n de­
grees of liberty. If we know an integral of the system, this 
number can be lowered by one unit. In general, if we know 
q integrals, Poisson's conditions must be fulfilled between 
these integrals taken two and two, in order that the number 
of degrees of liberty may be lowered by q units. The amplica­
tion of this to the general problem of three bodies is imme­
diate. The three integrals for the motion of the centre of 
mass of the system being known and fulfilling the conditions, 
we can reduce the number of degrees of liberty from nine to 
six. The three known integrals of areas are also integrals of 
the system thus reduced, and by using two combinations of 
these latter, it is possible to reduce the system to four degrees 
of liberty ; also in the case when the bodies move in one plane, 
the system can be reduced to three degrees of liberty. The 
usual transformations are then effected so as to leave the 
equations still in the canonical form and to carry only 
the smallest number of degrees of liberty. 

The form of the disturbing function is also discussed, and 
it is considered under what circumstances we can develop it 
in ascending powers. 

The second chapter deals with the general conditions for 
integration in series, and in particular with the conditions that 
these series may be convergent. It is here that M. Poincaré's 
penetrative genius especially shows itself. The complicated 
forms which appear in the lunar problem render it an almost 
impossible task to attack directly the question of convergence 
of the series obtained. But by going back to the differential 
equations themselves, and considering the disturbing function, 
he is able to obtain definite results, with respect to the prob­
lem of three bodies, for the convergence of those series which 
may be taken to represent certain particular solutions. 

The notation introduced by M. Poincaré a short time back 
for dealing with questions of convergence is an especially 
happy one. It is as follows :—If we have two functions ç>, ip, 
expanded in ascending powers of x, y, 

?<£:$ (arg. x9 y) 

denotes that the coefficient of every term in ty is greater in 
absolute value than the corresponding term in <p, the " argu-
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ments " in terms of which the expansion is made being written 
as above. This can of course be used for any number of 
arguments. An extension of this notation is given at the end 
of the chapter. The coefficients, instead of being constants, 
are supposed to be periodic functions of the time ; then, if 
every coefficient of ip in its expansion according to powers of 
x, y, e±u is real, positive, and greater in absolute value than 
the corresponding coefficient in cp, 

<p <^tp (arg. x, y, e ±u). 

Cauchy's general theorems on convergence are quoted and 
extended to the case in which the function is expanded in 
terms of several variables. If we have a system of differential 
equations 

g = d{x,y, », M), § = <?>(*, y, *,M), % = *H*,y, », A 

where 0, cp, ip are expanded in powers of x0, y0, zQ, and JA, t, 
there will exist three series expanded in powers of x0, y0, 
z0 and ß, t which will satisfy these equations and reduce re­
spectively to xo9 yQ, z0 when t = 0. For these to be convergent 
it is necessary that \x0\, \y0\, \z0\, \ju\, \t\ should be sufficiently 
small. The restriction jt\ sufficiently small is evidently incon­
venient, and Poincaré is able to get rid of it and to say that 
the series are convergent if t lies between given limits pro­
vided that \JJL\ be sufficiently small. 

In most cases, however, expansion is not made in powers of 
the time, but in trigonometrical functions of it, and it there­
fore becomes necessary in the first instance to examine a system 
of differential equations, 

dx 
_ ! = cpiAxx + (pit2x2 + . . . + <pitnXn (i = 1, 2, . . , n) 

where the cp are all periodic functions of the time. The gen­
eral solution found is, 

Xi = cx e
a>6 A h i + c2 e

a*f X2ii + . . . + cn efiJKti 

the X being periodic functions of the time only, the ^depend­
ent on the roots of a determinantal equation, and the c( arbi­
trary constants. 

These ax are called the characteristic exponents {exposants 
caractéristiques) of the solution. On them depends the 
whole nature of the various solutions. Thus if two of the ex­
ponents are equal, the time appears as a factor ; if they are all 

14 
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pure imaginaries, the general solution contains periodic terms 
only, and soon. Also,on them depend the "asymptotic solu­
tions." Chapter IV. is devoted to the consideration of these 
exponents. 

Chapter III. , which deals with periodic solutions, is perhaps 
the most interesting from the point of view of its immediate 
application to some of the problems in the lunar theory. In 
this connection, a periodic solution is defined as being such 
that the system at the end of a finite time T comes into the 
same relative position as at the beginning of that time. The 
period is then T. Thus if <p(t) represent a periodic solution 
of period T 

cp(t +T) = <p(t) ; 
also if 

cp{t + T) = cp(t) -f %kn (k = whole number) 

<p(t) is still said to be a periodic solution. These two types 
are analogous to linear and angular coordinates, respectively. 
In the canonical system of coordinates as applied to dynamical 
problems, one set of elements belongs to the first type, and the 
conjugate set in general to the second type. It is to be noted 
that by defining a periodic solution in this way, the system 
can, so to speak, be separated from its external relations. The 
motions both of rotation and translation of the system as a 
whole can be detached, and those of its various parts amongst 
themselves considered. 

The question which is put forward for examination is as 
follows : If for ja = 0 we have a periodic solution, what are 
the conditions necessary in order that the solution shall still 
remain periodic when ju is not zero but a small quantity ? It 
must be remembered that in this and in what follows, the 
term " periodic " has the meaning which has just been given 
to it. In order to answer the question, M. Poincaré considers 
the system 

where the X{ are functions of the time periodic and of period 
27T, as well as of the xt. Space will not permit me to re­
produce the argument, which finally reduces the answer 
to the consideration of the properties of a certain curve 
in the neighborhood of the origin. This curve is ex­
amined in certain particular cases and notably in the case 
where there are an infinite number of periodic solutions for jn 
zero, i.e. when the period is an arbitrary constant of the 
general solution. Generally, it is found that in these cases 
the equations do admit periodic solutions. In another partie-
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nlar case, the equations when /A = 0 admit a solution of period 
%n, and when ju is small but not zero, save in an exceptional 
case, the equations admit a solution of period %kn (Jc being a 
whole number) which is different from the solution of period 
2;r, and is only not distinct from this latter when /Â becomes 
zero. 

If the Xi are periodic with respect to the time, the solution 
in general if periodic must have the same period. When 
however the time does not enter into the Xi explicitly, the 
period of the solution can be anything whatever. Suppose 
that the period selected when jx = 0 be T. The question 
resolves itself into finding under what circumstances a solu­
tion of period T+ r is possible when /Â is small. The argu­
ment proceeds in a somewhat similar manner as in the first 
case and similar results follow. 

To apply these results to the problem of three bodies, sup­
pose /i = 0. Then two of the bodies describe ellipses about 
the third. At the end of a certain period measured by the 
difference of their mean motions, the system is found in the 
same relative position as at the beginning of the period. The 
solution f or \x = 0 is then periodic. Will periodic solutions 
be still possible when /*, instead of being zero, has a small 
positive value? Prom what has been proved above, we can 
say that such solutions are in general possible. M. Poincaré 
distinguishes thr.ee classes :—(1) when the inclinations and 
eccentricities are zero, (2) when the inclinations only are zero, 
(3) when the latter are not zero. He then examines these in 
detail. 

Under (1) comes, as a particular case, Dr. Hill's now classic 
solution, where the mass of one body is supposed to be infi­
nitely great and at an infinite distance, but to have a finite 
mean motion, and the mass of the other is infinitely small. The 
solutions are referred to axes moving with the infinitely dis­
tant body which takes a circular orbit. The period is one of 
the arbitraries and can be anything whatever. When }x = 0 
the motion is circular, and when \x is small, the curve does not 
differ mucli from a circle, and is somewhat elliptical in shape 
with its shorter axis directed constantly towards the sun. [If 
the sun be not infinitely distant, the only change in the curve 
is a loss of symmetry with regard to the line joining the earth 
and the sun.] Dr. Hill calculated the various shapes which 
the curve takes for different values of the arbitrary period, 
corresponding to gradually decreasing values of the constant 
of vis viva. As this latter constant diminishes, the ratio 
of the magnitude of the axes becomes greater, until for one 
particular value of it a cusp appears at each end of the 
greater axis. This gives what Dr. Hill calls, " t h e moon 
of maximum lunation/' At the cusp and therefore in quad-

thr.ee
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rature, the moon becomes for a moment stationary with 
respect to the sun. 

He did not pursue the calculations beyond this point. It 
•was stated however that any member of tnis class of satellites 
if prolonged beyond the moon of maximum lunation would 
oscillate to and fro about a mean place in syzygy, never being 
in quadrature, M. Poincaré points out an inaccuracy in this 
statement. The satellites which are never in quadrature, 
are indeed possible but belong to a different class of solution, 
and are not the analytical continuation of those studied by 
Dr. Hill. He shows that if we prolonged them beyond the 
critical orbit, they would cross the line of quadratures six 
times, cutting their own orbits twice and forming a curve with 
three closed spaces. The class to which the moons without 
quadrature belong has, as a limiting case, a moon which is 
stationary with respect to the sun and which is always either 
in conjunction or opposition. 

M. roincaré next goes on to consider the canonical system 
when F0 is supposed independent of the yt. This is the 
general problem of dynamics where the forces depend on the 
distances only and where we proceed by successive approxi­
mations. The first approximation is 

Xi = const = ai9 -& = const = nt. 
at 

If the solution is to be periodic and of period T9 all the 
n{T must be multiples of 27t. It is then shown that unless 
the Hessian of F0 with respect to the x( vanish, we can have 
a periodic solution of period T or differing little from T 
when }x is small. If this Hessian vanish we can sometimes 
find a function of F0 whose Hessian does not vanish. If we 
cannot do this the case must be otherwise examined. Such 
an examination shows, that when the Hessian of F0 vanishes, 
if the mean value R of Fl9 with respect to t, admits of a 
maximum or a minimum, periodic solutions are still possible. 

In the problem of three bodies, F1 corresponds to the dis­
turbing function, and we are led to periodic solutions of the 
second and third kinds. Here R does admit of a maximum 
or a minimum, and hence such periodic solutions are always 
possible. The periodic solutions of the first kind only cease 
to exist when n' is a multiple of n •— n\ When, however, 
this ratio n' : n — n' is nearly a whole number, as happens in 
several cases in the solar system, a large inequality will exist 
and its principal part can be calculated suitably by the help 
of these periodic solutions. 

In the next chapter M. Poincaré passes on to the considera­
tion of the characteristic exponents. One solution of a 
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system of differential equations being known, it is required 
to find a solution differing little from it. The equations of 
variations are formed in the usual way, and these bring in 
the equations given above, which involve the characteristic 
exponents. As an example of the use of these equations, Dr. 
Hill's work on the motion of the lunar perigee is quoted, 
where he obtains the principal part of it accurately to a large 
number of places of decimals. * 

It is then considered under what circumstances one or more 
of the exponents become zero, and their effect on the ex­
istence of a periodic solution. The argument and result 
depend chiefly on two things : first, the presence in, or ab­
sence from, the X{ of the time explicitly, and, secondly, the 
existence or non-existence of single-valued integrals of the 
system. If canonical equations be used, the exponents are 
equal and opposite in pairs. With the limitation that F0 
does not depend on the yi9 two exponents will be zero, and 
unless certain conditions be fulfilled, two exponents only will 
be zero. In the periodic solutions of the problem of three 
bodies, whether in one plane or not, two exponents and two 
only are zero. The solutions corresponding to these ex­
ponents are called " solutions dêgênêrescentes," and are of 
the form 

St = SI', Vi = Tl', 

s, = s; + t s;', Vi = T; + t T?, 

in which the 8, T are periodic. 
The canonical system given above has an integral which is 

known, namely the integral of vis viva. The author de­
votes himself in Chapter V. principally to prove that, save in 
certain exceptional cases, there does not exist any single-
valued algebraic or transcendental integral other than that 
of vis viva. For this a function $ is supposed to be analytic 
and single-valued for all values of x, y, JJ within a certain 
region, and within this region to be developable according 
to powers of //, thus : 

0 = $0 + M $x + jl <£2 + . . 

As long as $0 is not a function of F0, it is proved that $ = 
const, cannot be an integral of the system. If #0 be a func­
tion of F0, it is possible to find another integral which is 
distinct from F, and which does not reduce to F0 when JA is 
zero. In case, however, the Hessian of FQ be zero, an excep­
tional case arises, and it is in this exceptional case that the 

* Acta MatJiematica, Vol. VIII. See also a note by the writer in 
Mo. Not. B. A. S., Vol. XVII. No. 6. 
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importance of the principle applied to problems in dynamics 
is seen. A general set of conditions is found, necessary but 
not sufficient for the existence of another integral of the 
equations. These conditions take the form of relations be­
tween the co-efficients in the development of F. 

Applying these to the problem of three bodies, the author 
arrives at the conclusion, that there cannot exist any new trans­
cendental or algebraic single-valued integral of the problem of 
three bodies other than the well-hnown ones, whether we con­
sider the particular cases of two, three, or the general case of 
four degrees of liberty mentioned above. This important 
result is of course applicable here to the case only when /Â 
is small, a restriction which nevertheless occurs in most 
problems of celestial mechanics. It is pointed out, however, 
that M. Bruns has demonstrated that there cannot exist any 
other algebraic single-valued integral for any values of the 
masses. In actual application M. Poincaré's theorem will be 
found the more useful, since he includes transcendental as 
well as algebraic forms in his demonstration. 

The most interesting example given to illustrate the general 
theorem is that of the motion of a solid suspended from a 
fixed point and acted on by gravity only. The distance of 
the centre of mass of the body from the point of suspension 
is supposed small. Two integrals are known : is it possible 
that a third can exist ?* When the conditions are applied it 
is found that there is nothing to prevent the existence of a 
third integral, but since the conditions are necessary and not 
sufficient nothing proves that it does exist ; such an integral 
however cannot be algebraic. 

Chapters VI. and VII. treat of the disturbing function and 
M. Poinearé's asymptotic solutions, respectively. In the con­
sideration of the latter a series appears which is divergent in 
a manner analogous to Sterling's series. 

ERNEST W. BROWN. 
HAVERFORD COLLEGE, P A . , April, 1892. 

* For an elementary discussion of this problem, see Routh's Rigid Dy­
namics (4th ed.) Vol. IL , Chaps. IV., V. 


