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D-brane probes, branched double covers,

and noncommutative resolutions

Nicolas M. Addington, Edward P. Segal and Eric R. Sharpe

This paper describes D-brane probes of theories arising in abelian
gauged linear sigma models (GLSMs) describing branched dou-
ble covers and noncommutative resolutions thereof, via nonper-
turbative effects rather than as the critical locus of a superpoten-
tial. As these theories can be described as IR limits of Landau-
Ginzburg models, technically this paper is an exercise in utilizing
(sheafy) matrix factorizations. For Landau-Ginzburg models which
are believed to flow in the IR to smooth branched double covers,
our D-brane probes recover the structure of the branched dou-
ble cover (and flat nontrivial B fields), verifying previous results.
In addition to smooth branched double covers, the same class of
Landau-Ginzburg models is also believed to sometimes flow to
‘noncommutative resolutions’ of singular spaces. These noncom-
mutative resolutions are abstract conformal field theories without
a global geometric description, but D-brane probes perceive them
as a non-Kähler small resolution of a singular Calabi-Yau. We con-
jecture that such non-Kähler resolutions are typical in D-brane
probes of such theories.
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1. Introduction

For many years it was thought that gauged linear sigma models (GLSMs)
could only describe geometries built as global complete intersections, and
that all geometric phases of GLSMs were birational to one another. This lore
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has been contradicted by a series of recent papers [1–6] describing examples
of GLSMs in which

• geometries are built via nonperturbative effects [1–4], instead of per-
turbatively as the critical locus of a superpotential,

• geometries not described as global complete intersections are con-
structed (sometimes via nonperturbative effects, and more recently,
sometimes perturbatively [5, 6]),

• geometric phases are not birational to one another. (It is now believed
that phases are instead related by ‘homological projective duality’ [3,
4, 7–10].)

In addition, and perhaps even more importantly, new (2,2) SCFT’s
describing examples of ‘noncommutative resolutions’ were also constructed
[4], as IR limits of certain GLSMs. Since the term ‘noncommutative geome-
try’ has been applied to describe a variety of situations in string theory, let
us take a moment to clarify. One popular usage is as a way of understanding
D-branes in a certain coupling limit, as in [11]; another is in [12]; but neither
of these usages is precisely what we have in mind. Instead, the noncommu-
tative resolutions described in [4] are closed string SCFT’s with open string
sectors (described via matrix factorizations in UV Landau-Ginzburg models)
realizing structures described in e.g. [7–10, 13–18]. Briefly, the closed string
theories were understood as abstract conformal field theories, which had a
geometric interpretation in some local patches, but not globally. In other
patches, the open string theory could only be understood as a noncommu-
tative or nc resolution of a naive singularity (not present physically in the
abstract conformal field theory), described mathematically in the references
above.

This paper will study D-brane probes of the various geometries, both
ordinary and noncommutative, arising in [4]. That paper described nonlin-
ear sigma models on smooth branched double covers and nc resolutions of
singular branched double covers, arising via nonperturbative effects, and so
D-brane probes provide both a useful check of the results as well as insight
into the properties of the new CFT’s.

For GLSM’s describing nonlinear sigma models on smooth branched
double covers, D-brane probes will recover the same results as [4] — we will
get an alternative derivation of the results described in that paper.

For noncommutative resolutions, our methods will provide some novel
physical insights. Specifically, in our analysis, D-brane probes of noncommu-
tative resolutions will see a non-Kähler small resolution of the singularities.
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As the D-brane probe moduli space is not1 compatible with (2,2) worldsheet
supersymmetry, we do not interpret it as the closed string sector. (Indeed,
D-brane probes often see different geometries from closed string sectors;
for another example, see [19, 20] for a discussion of how D-brane probes
of orbifolds see resolutions of quotient spaces, instead of the closed string’s
target-space geometry.) We will very briefly discuss how this may generalize
to other cases.

In all cases, we can understand the results of [4] in terms of low-energy
behaviors of certain Landau-Ginzburg theories, so at a technical level this
paper will concern D-brane probes of certain Landau-Ginzburg models. D-
branes in Landau-Ginzburg theories are described by ‘matrix factorizations’,
and our D-brane probe arguments will utilize ‘sheafy matrix factorizations’,
i.e., matrix factorizations supported over subvarieties of the space, rather
than complexes of locally-free sheaves.

Other examples of noncommutative resolutions pertinent to physics in
different ways have appeared in [21–24]. We will focus on D-brane probes of
the nc spaces appearing in [4] in this paper.

We begin in Section 2 with an overview of the methods and results of [4].
We describe the particular GLSMs that flow in the IR to branched double
covers, both smooth and nc resolutions. In this paper we construct D-brane
probes, which we will realize via sheafy matrix factorizations in intermediate-
energy Landau-Ginzburg theories. Ordinary matrix factorizations are now
a staple of the literature, but sheafy matrix factorizations are still relatively
new, so in Section 3 we review some pertinent properties of sheafy matrix
factorizations, beginning with their physical derivation and running through
both a mathematical description of their RG flow, as well as an analysis of
what it means for a sheafy matrix factorization to be ‘point-like’ (which
plays a crucial role in D-brane probes).

In Section 4 we apply that technology to compute D-brane probe moduli
spaces of GLSMs and Landau-Ginzburg models that flow in the IR to non-
linear sigma models on smooth branched double covers. That double cover
structure is realized via nonperturbative effects, and so D-brane probes can
provide a useful consistency check of other analyses. We begin the section
with a brief overview of how D-brane probes work in Landau-Ginzburg mod-
els that flow to smooth manifolds realized perturbatively, instead of nonper-
turbatively, and then go on to describe various examples. Most of our anal-
ysis is local, but we conclude the section by describing global gluing issues

1 It is not believed to possess a generalized Calabi-Yau structure in the sense of
Hitchin’s generalized complex geometry.
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that exist, and how they sometimes predict the presence of a topologically
nontrivial B field.

In Section 5 we construct moduli spaces of D-brane probes of Landau-
Ginzburg theories that flow in the IR to nc resolutions of singular branched
double covers. As outlined above, in examples, we find that the D-brane
probe moduli spaces are (non-Kähler) small resolutions of the singular
branched double covers. We also outline more general statements which
suggest that D-brane probes of nc resolutions will always see (typically non-
Kähler) small resolutions.

We also provide a few appendices to make this paper self-contained.
Appendix A concerns mathematical technology for manipulating sheafy
matrix factorizations and computing Ext groups between them. Appendix B
gives a general argument for why the prototype for ‘point-like’ matrix fac-
torizations is, indeed, pointlike.

2. Branched double covers, nc resolutions, and GLSM’s

In this section, we review the results of [4], in which branched double covers
and noncommutative resolutions were realized in abelian GLSMs.

The simplest example discussed in [4] was the GLSM for the complete
intersection Calabi-Yau P3[2, 2]. The superpotential for this theory is of the
form

W =
∑
a

paGa(φ) =
∑
ij

φiφjA
ij(p)

where the φ’s act as homogeneous coordinates on P3, the Ga’s are the two
quadrics, and Aij is a symmetric 4× 4 matrix with entries linear in the p’s,
determined by the Ga’s.

At the Landau-Ginzburg point of this theory, where the pa are not all
zero, the superpotential acts as a mass matrix for φ’s. Naively, this is prob-
lematic: we are left with a theory containing only p’s, which looks like a
sigma model on P1, which cannot possibly be Calabi-Yau. However, a closer
analysis reveals subtleties. First, since the p’s are charge 2, there is a trivially-
acting Z2 here (technically, a Z2 gerbe structure), which physics interprets
[1] as a double cover. Second, the mass matrix Aij(p) has zero eigenvalues
along the degree four hypersurface {detA = 0}. With a bit of further anal-
ysis discussed in [4], one argues that this flows in the IR to a nonlinear
sigma model on a branched double cover of P1, branched over a degree four
hypersurface — an example of a Calabi-Yau. In fact, both P3[2, 2] and the
branched double cover are elliptic curves.
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Analogous analyses apply to many other examples. The next simplest
involves the GLSM for P5[2, 2, 2], which is a K3 surface. Its Landau-Ginzburg
point is interpreted as a branched double cover of P2, branched over a degree
six locus, which is another K3.

If the projective space is even-dimensional, then the analysis is somewhat
more complicated. Examples of this form were outlined in [4], but not studied
in as much detail. Briefly, in such cases, instead of a branched double cover
(which turns out not to exist globally), instead one gets a single cover with
a locus of Z2 orbifolds replacing what would have been the branch locus,
{detA = 0}.

For some examples of this form, this is the complete story, and the
Landau-Ginzburg model is indeed believed to RG flow to a branched double
cover. However, in many higher dimensional examples, there are further
wrinkles to the story. Consider, for example, the GLSM for P7[2, 2, 2, 2]. This
is a Calabi-Yau, and the analysis above suggests that its Landau-Ginzburg
point should flow in the IR to a nonlinear sigma model on a branched double
cover of P3, branched over a degree eight locus. However, there is a problem
with this interpretation: the branched double cover above is singular, but
the GLSM is smooth. This was interpreted in [4] as a ‘noncommutative
resolution’ of the singularities, one specifically discussed in [8], based on
the fact that the corresponding Landau-Ginzburg model, intermediate along
RG flow, had matrix factorizations in precise correspondence with sheaves
defining the noncommutative resolution in [8]. (We will describe the details
of that noncommutative resolution shortly.)

In passing, the geometries above (the complete intersection P7[2, 2, 2, 2],
the branched double cover of P3 branched along the octic) are not birational
to one another, violating unproven old lore concerning geometric limits of
GLSM’s. Instead, it was proposed in [4] that they are related by “homological
projective duality” [7–9] which predicts relationships of exactly the form
above, including noncommutative resolutions.

Let us review the highlights so far:

• In this GLSM, geometry is realized in a rather novel fashion, via non-
perturbative effects.

• The resulting (nearly) geometric phases are not birational to one an-
other.

• We have a physical realization of a closed string theory corresponding
to a noncommutative resolution of a space — in other words, a physical
realization of a new kind of (2,2) SCFT in two dimensions.
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• There exists a mathematical understanding of how to relate both
spaces and noncommutative resolutions appearing at different ends of
GLSM Kähler moduli spaces, known as “homological projective dual-
ity.”

The first two points were also described in nonabelian GLSM’s in [2, 3, 5].
Their different geometric phases are also related by homological projective
duality. (In addition, we have been told [25] that even in the examples of
[2, 5], there are special points in the moduli space at which the dual the-
ories are mathematically singular, but should, according to the predictions
of homological projective duality, be understood as noncommutative resolu-
tions.)

Now, let us describe in detail the noncommutative resolution of a
branched double cover appearing at one end of the GLSM Kähler moduli
space for P7[2, 2, 2, 2]. Mathematically [8], it is described by a noncommuta-
tive variety (P3,B), where B ∈ Coh(P3) is the sheaf of even parts of Clifford
algebras associated with the universal quadric defined by the matrix Aij(p).
(In other words, each point on P3 defines a symmetric 8× 8 matrix Aij(p)
(up to overall rescaling), to which we can associate a Clifford algebra.) Equiv-
alently, we could consider the double cover f : Z → P3, together with a sheaf
of algebras A → Z for which f∗A = B.

Intuitively, we can think about how this nc resolution resolves a singu-
larity as follows. The nc resolution adds more sheaves over the singularity, as
if the singularity were resolved. For example, if one small resolves a conifold
singularity, the resolution has extra sheaves supported over the inserted P1

than the original singularity has supported at the singularity. Part of the
story here is that a nc resolution adds extra sheaves to similarly ‘resolve’
the singularity (though the result lacks a simple geometric understanding).

Physically, we can understand how the GLSM realizes this structure
as follows. (This analysis was also presented in [4, Section 2.6.2].) At the
Landau-Ginzburg point, we can go to an intermediate point in RG flow,
where the theory is a Landau-Ginzburg model on

Tot
(
O(−1)8 π−→ P

3
[2,2,2,2]

)
with superpotential

W =
∑
ij

φiφjA
ij(p)
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(see [26, Section 4] for more examples of this sort of analysis), or, more simply
but slightly less accurately, a Z2 orbifold of a Landau-Ginzburg model on
P3 with a quadric superpotential.

Now, matrix factorizations for quadratic superpotentials were studied in
[27], where it was argued that D0-branes in such Landau-Ginzburg mod-
els have a Clifford algebra structure, and other branes are naturally acted
upon by the D0-branes. In the present case, applying a Born-Oppenheimer
analysis, we have immediately that all D-branes should be modules over a
sheaf of Clifford algebras, and taking into account the Z2 orbifold structure,
modules over a sheaf of even parts of Clifford algebras, which is precisely
the sheaf B appearing in the mathematical definition of the noncommutative
resolution. (A mathematically rigorous discussion of matrix factorizations in
this example has also been worked out [28].)

Broadly speaking, this sort of structure should be fairly universal in
GLSM’s describing complete intersections of quadric hypersurfaces, and,
indeed, a number of other examples were discussed in [4].

In this paper we shall use D-brane probes to study both the branched
double covers and these noncommutative resolutions. For Landau-Ginzburg
models believed to flow to smooth branched double covers, our D-brane
probe analysis will confirm this interpretation. For Landau-Ginzburg models
believed to flow to noncommutative resolutions, our D-brane probe analysis
will give insight into the corresponding closed string conformal field theories.

Our analysis of D-brane probes revolves around nontraditional matrix
factorizations, involving sheaves with support on positive codimension sub-
varieties, so in the next section we will review such ‘sheafy’ matrix factor-
izations.

3. Sheafy matrix factorizations

Our D-brane probes of Landau-Ginzburg models will involve ‘sheafy’ matrix
factorizations, involving pairs of maps between coherent sheaves supported
over subvarieties of the base.

Most matrix factorizations discussed in the literature involve pairs of
maps between bundles, not sheaves. However, as we shall review, the Warner
problem only exists for Neumann boundary conditions, so for example,
matrix factorizations supported over a submanifold are allowed. The sheafy
matrix factorizations that we will utilize have been discusssed in a few recent
mathematics papers (see e.g. [10, 29–33]), but not often, and we will need a
number of properties of these matrix factorizations. Since they are still not
entirely common, and we will need a number of results, in this section we will
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review their properties. We begin with a physics analysis, rederiving matrix
factorizations in this more general context (see also one of the authors’ lec-
ture notes [34]), and then turn to mathematical properties of sheafy matrix
factorizations. We use mathematics as a guide to understand renormaliza-
tion group flow of sheafy matrix factorizations in Landau-Ginzburg models,
and in doing so we will uncover some surprising behaviors.

For an orthogonal overview of traditional matrix factorizations, see [35].
For a more traditional approach to matrix factorizations and D-brane probes,
see for example [36, 37].

3.1. Physics analysis

The most general Landau-Ginzburg model (over a space) that one can write
down has the following (bulk) action:

1

α′

∫
Σ
d2z

(
1

2
gμν∂φ

μ∂φν +
i

2
Bμν∂φ

μ∂φν +
i

2
gμνψ

μ
−Dzψ

ν
−

+
i

2
gμνψ

μ
+Dzψ

ν
+ +Rijklψ

i
+ψ

j
+ψ

k
−ψ

l
− − gij∂iW∂jW

+ iψi
+ψ

j
−Di∂jW + iψı

+ψ
j
−Dı∂jW

)
whereW is the superpotential, a holomorphic function over the target space
X, and

Di∂jW = ∂i∂jW − Γk
ij∂kW

The action possesses the supersymmetry transformations:

δφi = iα−ψi
+ + iα+ψ

i
−

δφı = iα̃−ψı
+ + iα̃+ψ

ı
−

δψi
+ = −α̃−∂φi − iα+ψ

j
−Γ

i
jmψ

m
+ + α+g

ij∂jW

δψı
+ = −α−∂φı − iα̃+ψ

j
−Γ

ı
jmψ

m
+ + α̃+g

ıj∂jW

δψi
− = −α̃+∂φ

i − iα−ψj
+Γ

i
jmψ

m
− − α−gij∂jW

δψı
− = −α+∂φ

ı − iα̃−ψj
+Γ

ı
jmψ

m
− − α̃−gıj∂jW

(See [26] for a discussion of closed string A- and B-twisted Landau-Ginzburg
models on nontrivial spaces. In this section we will focus on open strings.)
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Under a supersymmetry transformation, the bulk action picks up the
following total derivative terms:

1

α′

∫
Σ
d2z

[
∂

(
− i
2
α−∂jWψj

−

)
+ ∂

(
i

2
α+∂jWψj

+

)
(1)

+ ∂

(
− i
2
α̃−∂iWψi

−

)
+ ∂

(
i

2
α̃+∂iWψi

+

)]

If we take Σ to be the upper half-plane for simplicity, so that∫
Σ
d2z ∂ =

1

2i

∫
∂Σ
dx,

∫
Σ
d2z ∂ = − 1

2i

∫
∂Σ
dx

then we see the total derivative terms above become

1

α′
1

2i

∫
∂Σ
dx

[
− i
2
α∂ıWψı

− −
i

2
α∂ıWψı

+

]
= − 1

α′
1

4

∫
∂Σ
dx

[
α∂ıW

(
ψı
+ + ψı

−
)]

1

α′
1

2i

∫
∂Σ
dx

[
− i
2
α̃∂iWψi

− −
i

2
α̃∂iWψi

+

]
= − 1

α′
1

4

∫
∂Σ
dx

[
α̃∂iW

(
ψi
+ + ψi

−
)]

where we have defined α = α− = α+, α̃ = α̃+ = α̃−, using an identity that
exists for both Dirichlet and Neumann boundary conditions2.

In the special case of Dirichlet boundary conditions, ψμ
+ = −ψμ

−, so we
see the terms above cancel out. However, for Neumann boundary conditions,
ψμ
+ = +ψμ

−, and so the terms above do not cancel out.
To solve this problem along Neumann directions, we introduce a bound-

ary action describing a brane, antibrane, and tachyons. The boundary action

2 Our analysis neglects an aspect of Chan-Paton fields coupling to a bundle
with nonzero curvature, namely that such curvature modifies boundary conditions
[38], which often plays an important role, such as in [39]. That said, the complete
role of such curvatures is only understood when the Chan-Paton factors couple
to line bundles; the resulting modifications induced by nonabelian gauge fields do
not seem to be currently understood, essentially because of technical issues with
path-ordered exponentials in this context. For simplicity, in this section, we shall
implicitly specialize to the case that curvatures are trivial, and we will assume
later that the results obtained in this special case generalize in the obvious fashion,
following the same pattern as most other physics papers on derived categories.
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is then ([41, Section 5.1.2], [42, Section 4], [43, Section 2], [44])

− 1

4α′

∫
∂Σ
dx

[
hααhaaη

αadηαa + iψi (∂iPαa) η
αa + iψı

(
∂ıPαa

)
ηαa

+ iψi (∂iQ
αa) ηαahααhaa + iψı

(
∂ıQ

αa
)
ηαahααhaa

− iPαaPαah
ααhaa − iQαaQ

αa
hααhaa

]
where ψi = ψi

+ + ψi−, ψı = ψı
+ + ψı−, and η, η are fermions that only live

along the boundary ∂Σ. If we let E0, E1 denote the two holomorphic vector
bundles appearing along the boundary, then hαα, haa, respectively, are their
hermitian fiber metrics (which we have assumed constant in stating that
the connections vanish). The boundary fermions η, η couple to E∨0 ⊗ E1 and
E0 ⊗ E∨1 , respectively (which is slightly obscured by our notation). The fields
Pαa, Q

αa are holomorphic sections of E∨0 ⊗ E1 and E0 ⊗ E∨1 . P and Q are the
two tachyons mentioned earlier, connecting the brane to the anti-brane.

Take the supersymmetry variations of φ, ψ along the boundary to be
the restriction to the boundary of the bulk supersymmetry transformations,
and take the boundary fermions η, η to have supersymmetry variations

δηαa = −ihααhaaPαaα− iQαaα̃

δηαa = −ihααhaaPαaα̃− iQαa
α

then the supersymmetry variation of the boundary action above is given by

(2) − 1

4α′

∫
∂Σ
dx

[
−αψı∂ı

(
PαaQ

αa
)
− α̃ψi∂i (PαaQ

αa)
]

Comparing to Equation (1), it is easy to see that the Warner problem
will be solved, the total boundary term in the supersymmetry variations will
vanish, if we choose P , Q such that

PαaQ
αa =W

(up to an overall constant shift).
This is the solution to the Warner problem: to introduce two bundles E0,

E1, living on the submanifold defined by the Dirichlet boundary conditions,
together with maps P : E0 → E1 and Q : E1 → E0 such that P ◦Q =W Id,
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up to a constant shift. We shall typically denote this data as

E0
P

��
E1

Q

��

Since P and Q are matrix-valued functions that ‘factorize’ W , this data is
known as a matrix factorization. Each such matrix factorization defines a
D-brane (or collection thereof) in the Landau-Ginzburg model.

For example, skyscraper sheaves over any point define easy examples of
sheafy matrix factorizations. If x is any point, then

Ox

��
0

��

is an example of a matrix factorization, for the trivial reason that since W
is constant on the support, it suffices to find maps P , Q whose composition
vanishes.3

In fact it is not necessary to assume that E0 and E1 are supported on the
same submanifold, as long as W is constant along the locus where only one
of the two bundles is supported. We can also allow E0 and E1 to be general
coherent sheaves, with different ranks at different points, by stacking D-
branes of different dimensions on top on one another.

Next, let us review the possible R symmetries of this theory. First, for
any superpotential over X, there is a Z2 R symmetry under which ψ �→ −ψ
and η �→ −η, and X is invariant. We will denote this symmetry as ZR

2 . This
R symmetry distinguishes branes from antibranes — one is an invariant
eigensheaf under ZR

2 , the other is an anti-invariant eigensheaf. We shall
assume E0 is invariant and E1 is anti-invariant.

Sometimes, for some spaces and some superpotentials, the ZR
2 can be

extended to a C× symmetry. We will let C
×
R denote a C× action on X,

together with C×-equivariant structures on E0, E1, such that
3There is an issue here - if x and y are distinct points on which W takes differ-

ent values, then the space of morphisms between the two skyscraper sheaves (see
Appendix A.3) will fail to be a complex. This can be remedied by the introduction
of curved dg structures, but we will instead assume that we have a C

×
R symmetry,

as we discuss shortly. Then a point x defines a matrix factorization only if it is fixed
by this symmetry, which implies that W (x) = 0.
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1) the superpotential W has weight4 two,

2) −1 ∈ C× acts trivially on X,

3) the same −1 ∈ C× generates the universal ZR
2 ,

4) in matrix factorizations, P and Q each have weight one.

This definition of a C×R symmetry was introduced, at least into the math-
ematics literature, in [45]. In local coordinates, we can describe this vector
C
×
R action on the closed string sector as follows:

δφi = εXi

δφı = εX ı

δψi
± = −αεψi

± + εψj
±∂jX

i

δψı
± = +αεψı

± + εψj
±∂jX

ı

δW = 2αεW

where Xi are the components of a holomorphic Killing vector, ε a small
parameter, and α an arbitrary constant, whose presence reflects the fact
that, if one omits the superpotential, the C× actions on the base and on
the fermions are decoupled, which is the reason that the third axiom above
suffices to ensure that the entire C×, not just a Z2 subgroup, acts as an R
symmetry.

Let us briefly describe an example in detail. Consider the special case
that X = C2, with coordinates x, y, and W = xy. Define C

×
R to act on y

with degree 2 and x with degree 0, so that W has weight two and −1 ∈ C
×
R

acts trivially on X. Consider the matrix factorization

O
P=x

��
O

Q=y

��

In order to discuss the degrees of P and Q, we must pick C
×
R equivariant

structures on the two O’s. Since they are trivial line bundles, C×R equivariant

4 Physics only depends upon dW , not W , so we are free to add a constant to W
without changing the physics. Unfortunately, the definition above does not respect
this symmetry, as adding a constant would spoil the quasi-homogeneity of W and
hence the first part of the definition. One way to proceed would be to define the
R symmetry in terms of dW instead of W ; instead, in this paper we define W to
include whatever constant shift is needed in order for an R symmetry to exist.
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structures are in one-to-one correspondence with the integers. Denote the
equivariant structure with brackets, as O[n], and for example take them to
be

O[0]
P=x

��
O[−1]

Q=y

��

Under the C×R action, each module C[x, y] decomposes as

C[x, y] = C[x]⊕ yC[x]⊕ y2C[x] + · · ·

with a degree shift determined by the equivariant structure. Shifting appro-
priately, we find that the maps P , Q act as follows between sections:

0 1 2 3 4

O[0] : C[x]

x

��

0 yC[x]

x

��

0 y2C[x] · · ·

O[−1] : 0 C[x]

y
��

0 yC[x]

y
��

0 · · ·

In this fashion, we see that x and y each have degree one. Note that the
degrees of x and y are dependent upon the equivariant structures placed on
E0, E1. For example, if instead of O[−1] we had used O[−2], then P would
have degree two and Q degree zero.

The C×R symmetry described above does not always exist — for example,
Landau-Ginzburg mirrors to non-Calabi-Yau spaces do not admit such an
R symmetry.

Given the R symmetry, we can give an alternative description of matrix
factorizations. Specifically, define a matrix factorization to be a pair (E , dE),
where E is a C

×
R-equivariant sheaf on X, and dE is an endomorphism of E

with C
×
R weight one and such that d2E =W1E .

Since −1 ∈ C
×
R acts trivially on X, E splits into eigensheaves E0, E1 for

the action of that Z2 ⊂ C
×
R, and dE exchanges the two factors. In this fashion

we recover the definition of a matrix factorization given earlier. (Conversely,
take E = E0 ⊕ E1 and proceed in the obvious fashion.)

If the action of all of C×R is trivial on X (as happens in an ordinary
nonlinear sigma model), then necessarilyW ≡ 0 and E breaks into Z-graded
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eigensheaves, giving a complex of sheaves

· · · d−→ E−1 d−→ E0 d−→ E1 d−→ · · ·

in which d2 = 0. In this case, one recovers the objects of the ordinary derived
category.

In Appendix A, we review mathematical definitions of maps between
matrix factorizations, homotopies between maps, and so forth, and briefly
compare them to corresponding physics notions in the spirit of [34, 40].

3.2. RG flow, quasi-isomorphism, and
matrix factorizations

In this paper we wish to understand D-brane probes of Landau-Ginzburg
models, which means technically constructing moduli spaces of matrix fac-
torizations which RG flow to D0-branes or other point-like objects. There-
fore, we need to understand the behavior of the renormalization group.

In the physical realization of ordinary derived categories of coher-
ent sheaves, renormalization group flow realizes localization on quasi-
isomorphisms: quasi-isomorphic complexes define boundary states in the
same universality class of renormalization group flow.

Here, one would expect that renormalization group flow should similarly
correspond to inversion of quasi-isomorphisms. However, since our ‘com-
plexes’ are no longer complexes (successive maps do not compose to zero),
we first need to find a suitable definition of ‘quasi-isomorphism’, that relates
different matrix factorizations that are in the same universality class.

There is another problem related to RG flow: in many interesting exam-
ples a Landau- Ginzburg model RG flows to a non-linear sigma model on
some target Y . In these examples, we seek a functor from the category of
matrix factorizations to the derived category of coherent sheaves on Y , spec-
ifying where the D-branes flow.

3.2.1. Quasi-isomorphisms between matrix factorizations. For
matrix factorizations, the standard definition of quasi-isomorphism (a map
between complexes that induces an isomorphism on homology) does not
make sense, since unless W vanishes identically our D-branes are not hon-
est complexes, so we cannot talk about their homology. However, finding
a suitable notion of quasi-isomorphism is important for physics, as it will
surely generalize criteria for two matrix factorizations to be in the same uni-
versality class. Fortunately, an appropriate definition has appeared in the
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mathematics literature (e.g. [30]). We will discuss it in this section, focusing
on a few basic examples. More details are given in Appendix A.

Firstly, recall that for ordinary complexes, a map f is a quasi-isomorphism
if and only if the cone C(f) is acyclic [46, corollary 1.5.4], i.e. C(f) has no
homology. If f is instead a map between matrix factorizations, then we can
still define the cone C(f) in exactly the same way, but now C(f) is also
a matrix factorization so it makes no sense to ask if C(f) is acyclic. How-
ever, if we can come up with a definition of an ‘acyclic’ matrix factorization,
then we can get a definition of ‘quasi-isomorphism’ for free, because we can
declare that f is a quasi-isomorphism iff C(f) is acyclic.

Suppose E ,F ,G, . . . are ordinary complexes, and that we have an exact
sequence of complexes

0→ E f→ F g→ G → · · ·

i.e. f, g, . . . are chain maps, and in each degree they define an exact sequence
of sheaves. Then the iterated cone on the maps f, g, . . . defines a single
complex, and this complex will be acyclic. Conversely, every acyclic complex
arises in this way, because an acyclic complex is precisely an exact sequence
of sheaves, and we can view each sheaf as a complex of length one.

Now suppose that E ,F ,G, . . . are instead matrix factorizations. Then it
still makes sense to ask if the maps f, g, . . . define an exact sequence, because
we just ask if we have an exact sequence of sheaves in each degree. So we
can define a matrix factorization to be acyclic iff it is (homotopy equivalent
to) an iterated cone over an exact sequence of matrix factorizations. Then
as we said above, we define a map f to be a quasi-isomorphism iff C(f) is
acyclic.

Let us work through some simple examples. Suppose we have a Landau-
Ginzburg model (X,W ) where X is the total space of a line bundle

π : L → B

and the superpotential isW = pπ∗s, where p ∈ ΓX(π
∗L) is a fiber coordinate

and s ∈ ΓB(L∗). It is possible to put a C
×
R R-charge on this model, but we

won’t worry about this for the moment.
On X we have a sheafy matrix factorization

OB

��
0

��
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(where OB is supported on the zero section of L), which we shall often
denote merely OB. We claim that this sheafy matrix factorization is quasi-
isomorphic to the traditional matrix factorization

OX

s
��

π∗L∗
p

��

To see this, consider the cone over the map

(3) OX
		

s
��

OB

π∗L∗
p

��

This is homotopy-equivalent to the iterated cone over the exact sequence

(4) L∗ p 		

W
��

OX
		

s
��

OB

π∗L∗ 1 		

1

��

π∗L∗
p

��

since the matrix factorization

π∗L∗
W

��
π∗L∗

1

��

is (easily checked to be) contractible. So by definition, the map (3) is a
quasi-isomorphism (see Appendix A for more details). Thus, we propose
that renormalization group flow identifies OB and the traditional matrix
factorization

OX

s
��

π∗L∗
p

��

(Note that we have not yet discussed endpoints of RG flow, which we will
cover in the next section; we are merely proposing that these two matrix
factorizations flow to the same endpoint, whatever that endpoint might be.)
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Physically, we think of the contractible matrix factorization

π∗L∗
W

��
π∗L∗

1

��

as merely providing spectators, that drop out of renormalization group flow
but illuminate its direction.

A closely related example is as follows. In the Landau-Ginzburg model
above, we have another sheafy matrix factorization O{π∗s=0} (in general
when we list a single sheaf as a sheafy matrix factorization, we mean to
indicate that the second sheaf vanishes identically, as in the notation of the
previous example). It is quasi-isomorphic to the traditional matrix factor-
ization

OX

p

��
π∗L

s

��

by virtue of the short exact sequence of matrix factorizations

(5) π∗L
W

��

s 		 OX

p

��

		 O{π∗s=0}

π∗L
1

��

1 		 π∗L
s

��

Next, let us consider the sheafy matrix factorization O{s=0}, supported
on the locus {s = 0} ⊂ B ⊂ X. Let us find a quasi-isomorphic traditional
matrix factorization. Here, the support has codimension two, so we will
have to work a bit harder than in the last examples. Appendix A outlines a
general procedure for computing resolutions of sheafy matrix factorizations
supported on {W = 0}; we shall explicitly describe some of the details in
this example.

Let us begin with the Koszul resolution of the sheaf O{s=0} on X:

0 −→ OX
[−p,s]T−→ π∗L ⊕ π∗L∗ [s,p]−→ OX

1−→ O{s=0} −→ 0
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We can fold the Koszul resolution into a two-term complex:

OX ⊕OX

a
��

π∗L ⊕ π∗L∗
b

��

where

a =

[ −p 0
s 0

]
, b =

[
0 0
s p

]
However, this is not itself a matrix factorization, as ab = 0 = ba. To get a
matrix factorization, we must add ‘backwards’ maps so as to get the com-
position to be proportional to W . It is straightforward to check that if we
replace a, b above by

a′ =
[ −p p/2

s s/2

]
, b′ =

[ −s/2 p/2
s p

]
then a′b′ = b′a′ =W · Id, as needed for a matrix factorization.

To show that O{s=0} is quasi-isomorphic to the matrix factorization
above, what we have to do is essentially tensor together the two exact
sequences (4) and (5) (and throw in some factors of 1

2). This produces an
exact sequence with the shape

OX ⊕OX

��

		 π∗L ⊕OX ⊕ π∗L∗ ⊕OX

��

		 OX ⊕OX

a′

��

[0,1] 		 O{s=0}

OX ⊕OX

��

		 π∗L ⊕OX ⊕OX ⊕ π∗L∗

��

		 π∗L ⊕ π∗L∗
b′

��

in which the first two matrix factorizations are contractible.
In fact it is always possible to replace a sheafy matrix factorization by a

quasi-isomorphic traditional matrix factorization (just as any sheaf can be
resolved by vector bundles). However, allowing matrix factorizations to be
sheafy gives us much more flexibility when working with them, as well as
making certain aspects of their behavior more explicit.

As an aside, if we only work with traditional matrix factorizations, and
additionally assume that X is affine, then it can be shown that quasi-
isomorphism reduces to homotopy-equivalence (essentially from the fact
that every short exact sequence of vector bundles splits). For this reason,
references such as [47] build categories of matrix factorizations in which
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one merely quotients out homotopy equivalences (see e.g. the category DB
defined in [47]), and do not need to localize further on quasi-isomorphisms.

3.2.2. Functors from matrix factorizations in LG to sheaves in
NLSM. Suppose, as a slight generalization of the above examples, that
we have a Landau-Ginzburg model (X,W ) where X is the total space of a
vector bundle

π : X → B

and the superpotential is W = pπ∗s, where p ∈ ΓX(π
∗X) is a fiber coordi-

nate and s ∈ ΓB(X
∗). Let us further assume that the locus {s = 0} ⊂ B is

smooth, so that the critical locus of W is

Y := {dW = 0} ⊂ X

= {s = 0} ⊂ B

We will also define an R-charge C×R so that it fixes B, and acts on the fibers
with weight two, so p has weight two, and π∗s has weight zero.

Under RG flow, this model should flow to the non-linear sigma model
on Y . Consequently, there should be a functor from matrix factorizations on
X to sheaves on Y which is an equivalence of categories. This equivalence,
which is a family version of classical Knörrer periodicity [48], is well-studied
in the mathematics literature (e.g. [31, 49, 50]), and also appeared in [44].
For a given sheafy matrix factorization (E0, E1, P,Q), the functor consists of
the following steps:

1) Replace the sheafy matrix factorization by a quasi-isomorphic tradi-
tional matrix factorization built from vector bundles.

2) Restrict to the locus {π∗s = 0}, which is a vector bundle over Y . Now
we have a matrix factorization of W = 0.5

3) Push down to Y .

4) Now that we are on Y , the C×R acts trivially, so our matrix factorization
can be unrolled into a complex. It will have finite homology, and so
lives in Db(Y ).

If we are interested in the homology of the complex just obtained, we can
take the homology of the matrix factorization obtained at the second step,
which is an C

×
R-equivariant sheaf, and push it down to get a graded sheaf on

5One should think of these first two steps together as ‘derived restriction.’
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the critical locus. (Since the pushdown functor is exact, it commutes with
the operation of taking homology.)

We will present several examples of the results of this functor, and dis-
cuss their interpretation, to give consistency checks that this mathematical
description of renormalization group flow is correct.

Let us specialize to X being the total space of a line bundle π : L → B,
and consider the sheafy matrix factorization given by the sheaf OB, which
we discussed in the previous section. We showed that OB is quasi-isomorphic
to the traditional matrix factorization

OX

s
��

π∗L∗[−1]
p

��

Note that we are now taking account of the R-symmetry — the pulled-up
line bundle L∗ comes with a natural trivial C×R-equivariant structure6, and
we are writing L∗[−1] to denote the twist of this equivariant structure by the
−1 character of C×R. In the previous section we neglected the R-symmetry,
but including it does not change the argument.

When we restrict to {π∗s = 0}, the map s becomes the zero map, so this
matrix factorization becomes a two-term complex of bundles with homology
given by OY . Pushing down gives the sheaf OY in Db(Y ).

For a second example, start with the sheafy matrix factorizationO|{π∗s=0}.
This is equivalent to the traditional matrix factorization

OX

p

��
π∗L[1]

s

��

Restricting to {π∗s = 0} and pushing forward, we get the object LY [1] in
Db(Y ).

Now suppose we start with the sheafy matrix factorization OY , the
skyscraper sheaf along the critical locus. This is quasi-isomorphic to the

6Because over any single orbit the bundle is canonically trivial.
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traditional matrix factorization

OX ⊕OX

a′

��
π∗L[1]⊕ π∗L∗[−1]

b′

��

where

a′ =
[ −p p/2

s s/2

]
, b′ =

[ −s/2 p/2
s p

]
When we restrict to {π∗s = 0} this becomes a complex, which we can write
as

0 −→ π∗L∗[−1] [p,0]
T

−→ OX ⊕OX
[p,0]−→ π∗L[1] −→ 0

(we have changed basis in OX ⊕OX). Taking homology and pushing-down,
we get

OY ⊕ LY [1]

i.e. the direct sum of the previous two examples. Since this functor is an
equivalence, this means that OY must be quasi-isomorphic, as a sheafy
matrix factorization, to the direct sum of OB and O{π∗s=0}. In fact, if you
replace all three by quasi-isomorphic traditional matrix factorizations in
the way that we have described, it is easy to find an explicit isomorphism
between the first one and the direct sum of the second two.

This last example is particularly curious, in that we start with D-branes
on the critical locus Y = {dW = 0}, which RG flow to a different set of
branes on Y , whereas one might naively have thought that RG flow would
leave invariant anything supported only on the critical locus. However, as
pointed out in [27], even a massive Landau-Ginzburg model can have mass-
less open string states, so we must be careful about the ‘massive’ directions
in the noncompact Landau-Ginzburg model above.

As a consistency check, let us compare Ext groups. Using the result from
Appendix A, Ext groups (open string states) between the sheafy matrix
factorization above and itself are given by

Ext∗MF (OY ,OY ) = H∗(Y,
∧∗(NY/X [1]))

(we are using the fact that since dW = 0 on this locus, the differentials in
the spectral sequence are all trivial). By contrast, Ext groups in the category
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of sheaves on the critical locus are given by

Ext∗Y (OY ,OY ) = H∗(Y,OY )

If the sheafy matrix factorization OY RG flowed to the sheaf OY on the
critical locus, then the open string states in the B model (the Ext groups)
would be preserved, but we see that is not the case. There are more Ext
group elements in the category of matrix factorizations (arising ultimately
from the fact that there are extra θ fields in the worldsheet B twist), Thus,
the sheafy matrix factorization OY cannot RG flow to the sheaf OY on the
critical locus. On the other hand, our claim that it flows to OY ⊕ LY [1] is
entirely consistent with this calculation, because

Ext∗Y (OY ⊕ LY [1], OY ⊕ LY [1]) = H∗(Y,OY ⊕ LY [1]⊕ L∗Y [−1]⊕OY )

= H∗(Y,
∧∗(LY [1]⊕ L∗Y [−1]))

and NY/X = LY ⊕ L∗Y [−2].

3.3. Point-like objects in matrix factorizations

This paper is concerned with using sheafy matrix factorizations to provide
D-brane probes of SCFT’s obtained from certain Landau-Ginzburg models
describing branched double covers and (sometimes) noncommutative resolu-
tions thereof. In nonlinear sigma models, D-brane probe moduli spaces are
moduli spaces of D0-branes, which on a space have pointlike support. In the
present case, because we are working in Landau-Ginzburg models, we have
to be slightly more careful.

Since all of the Landau-Ginzburg models we consider will RG flow to
nonlinear sigma models on either smooth manifolds or noncommutative res-
olutions, morally we want our ‘point-like’ matrix factorizations to RG flow
to D0-branes in the IR nonlinear sigma model.

If we only ever worked with Landau-Ginzburg models that RG flowed to
nonlinear sigma models on smooth manifolds, this definition would suffice;
however, we are also interested in Landau-Ginzburg models that RG flow
to CFT’s defined by noncommutative resolutions of singular spaces, and so
we need a different notion of point-like, one that is well-defined in greater
generality.

To begin to grasp the pertinent issues, let us walk through some special
cases. One example of a matrix factorization that should be considered point-
like is implicit earlier in this section: a skyscraper sheaf supported at a point
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is a trivial example of a matrix factorization (trivial, as since there is no
Warner problem to contend with, no second brane or tachyon maps are
required).

However, that is not the only possibility. For example, a skyscraper sheaf
could be quasi-isomorphic to a nontrivial matrix factorization, involving
sheaves not necessarily supported over the critical locus of the superpoten-
tial. In such a case, the point-like nature of the matrix factorization would
not be immediately apparent.

In this section we will describe two procedures for checking, to at least a
partial degree, whether an object is ‘pointlike’. The first method is as follows:
we can define the (set-theoretic) support of a matrix factorization to be the
smallest locus S ⊂ X such that the matrix factorization is contractible on
X − S.

Here is a simple example. Consider the Landau-Ginzburg model on X =
C2, with W = xp. Consider the matrix factorization

O
x
��
O

p

��

First, let us show that its support lies within the locus {p = 0}, by
showing that it is contractible elsewhere. To do this, we need to find maps
s, t : O → O such that

1 = ps+ tx

This is easily solved by taking t = 0 and s = p−1, hence, the matrix factor-
ization is contractible if we restrict to the locus {p 
= 0}. Similarly, it can also
be shown to be contractible on the locus {x 
= 0}, and hence the set-theoretic
support of this matrix factorization consists of the point {x = p = 0}.

As an aside, notice that there is a general result here: for an arbitrary
superpotential, the matrix factorization

O
λ

��
O

Wλ−1

��

is contractible for any never-vanishing function λ. We’re using the special
case W = xp, and λ = x (or p).

However, this criterion of set-theoretic support is not completely ade-
quate. The reason is that there may be multiple coincident skyscraper sheaves
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at a single point, in which case, the set-theoretic support would still be a sin-
gle point, but sheaf-theoretically we would be describing multiple coincident
points.

Therefore, we supplement the notion of set-theoretic support with a
second test, utilizing homological algebra. We say that a matrix factorization
E is homologically pointlike if it has the same Ext groups with itself as the
skyscraper sheaf of point in the ordinary derived category, i.e. if there is
some n such that

dimExtkMF (E , E) =
(
n

k

)
for each k (since these are the dimensions of the self-Ext groups of a sky-
scraper sheaf on a point of an n-dimensional manifold).

Let’s apply this homological test in our previous simple example where
we had X = C2 with coordinates x and p, and superpotential W = xp. For
more precision, let’s recall that we can equip the model with a C

×
R R-charge

by letting p have weight 2, and x have weight 0. Then we have a matrix
factorization E given by

O
x




O[−1]
p

��

We follow the procedure and notation from Appendix A to compute
ExtiMF(E , E). We have

Hom0 = Hom(O,O)⊕Hom(O[−1],O[−1]) = O ⊕O

and

Hom1 = Hom(O,O[−1])⊕Hom(O[−1],O) = O[−1]⊕O[1]

with maps

P =

[
x −x
−p p

]
, Q =

[
p x
p x

]
Next we take global sections of these local Hom bundles. Since we have

a C
×
R R-symmetry, the global sections split up into integer-graded pieces,



1394 N. M. Addington, E. P. Segal and E. R. Sharpe

and we get an honest chain complex of vector spaces:

−1 0 1 2 3

0 C[x]⊕ C[x] [
x −x
−p p

]

��

0 pC[x]⊕ pC[x] [
x −x
−p p

]

��

0 · · ·

C[x]

[xx ]
��

0 C[x]⊕ pC[x]

[ p x
p x ]





0 p2C[x]⊕ pC[x] · · ·

Taking homology of this chain complex, we compute the result:

Ext0MF(E , E) = C,ExtiMF(E , E) = 0 for i 
= 0.

This is consistent with the self-Ext’s of a skyscraper sheaf of a point living
in a 0-dimensional manifold, i.e. an isolated point not embedded in a higher-
dimensional space.

Notice that these calculations are consistent with our calculations of RG
flow in the previous section. If we let B be the 1-dimensional space C with
coordinate x, then X is theof total space of the trivial line-bundle

π : X = C
2 → C = B

This is a very simple case of the more vector bundle general model consid-
ered previously, the section s in this case is just the function x. Therefore,
this model should RG flow to the sigma model whose target space is just
the single point Y = {x = p = 0}. By our previous arguments, the matrix
factorization E , which is quasi-isomorphic to the sheafy matrix factorization
OB, must RG flow to the structure sheaf OY . So it is fortunate that the Ext
groups agree.

We have given two criteria now for ‘point-likeness’, but we will not claim
that our criteria are either complete or fool-proof. For example, on Fano
varieties there is a slightly stronger notion of point-like which allows one to
single out the actual skyscraper sheaves of points in purely categorical terms
[51]. In the Calabi-Yau case, which is our primary interest, this stronger
criterion is not applicable, and there may be several classes of point-like
objects, reflecting the possibility of several Calabi-Yau manifolds having
equivalent derived categories.
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4. D-brane probes of smooth branched double covers

In this section, we will discuss D-brane probes of Landau-Ginzburg models
that are believed to flow in the IR to nonlinear sigma models on smooth
branched double covers, following the pattern described in [4].

We begin by reviewing basic aspects of D-brane probes of Landau-
Ginzburg models over nontrivial spaces, realized via sheafy matrix factoriza-
tions, and also general aspects of the branched double cover realization. We
then turn to particular examples. Most examples of interest are related (via
Kähler moduli) to complete intersections of quadric hypersurfaces, for which
the one quadric special case forms the prototype for behavior in fibers. Our
analysis of examples involving multiple quadrics is primarily local in nature,
but at the end of this section, we discuss global gluing issues, and how
topologically nontrivial B fields sometimes arise.

The results in this section are not particularly surprising, in that they
merely recover the results of [4] (namely, that certain Landau-Ginzburg mod-
els will flow in the IR to nonlinear sigma models on branched double covers),
albeit via novel methods. In the next section, we study D-brane probes of
non-geometric ‘nc resolutions’ also encountered in [4], which gives genuinely
new results and insight into the nature of those conformal field theories.

The mathematics outlined in this section is already present in [52], and
we refer the interested reader there for greater detail. Our contribution here
is the application of that mathematics via sheafy matrix factorizations to
physics questions of D-brane probes.

4.1. D-brane probes of standard vector bundle models

A D-brane probe of a Landau-Ginzburg model is, at least morally, a D0-
brane propagating inside the Landau-Ginzburg model. In this paper, we are
primarily interested in Landau-Ginzburg models that RG flow to branched
double covers, but as a warmup exercise, let us briefly consider a more
standard case.

Consider (as we have previously) a Landau-Ginzburg model defined on
the total space of a vector bundle

X = Tot
(
V π−→ B

)
with superpotential W = pπ∗s, where p is a fiber coordinate and s is a
transverse section of the dual bundle V∗ over the base B. In the IR, this
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model flows to a nonlinear sigma model on the critical locus

Y := {s = 0} ⊂ B

Because of the RG endpoint, we should be able to find Y as a moduli space
of ‘point-like’ branes in the original model. Let’s verify this.

Pick a point y ∈ Y , and consider the fiber Vy of the bundle over this
point. This is a submanifold of X, and it lies within the locus {W = 0}.
Hence OVy

is a well-defined sheafy matrix factorization7.
We claim that this sheafy matrix factorization satisifies both the criteria

for point-likeness given in Section 3.3. To see this, we use the general result
from the end of Appendix A.4 to conclude that

RHomMF (OVy
,OVy

) =
∧
(NVy/X [1])

where the right-hand-side carries the differential ‘contract with dW ’.
This answer is only sensitive to a first-order neighborhood of Vy, so we

are free to reduce to the case that B = Cn with origin at y, the bundle V is
trivial (of rank k say), and the section s is

s = (x1, . . . , xk) ∈ Γ(B,Ok)

(the xi are coordinates on B). Then W is given by the degenerate quadratic
form

W = x1p1 + · · ·+ xkpk

and Vy is the isotropic subspace {x1 = · · · = xn = 0}. Then it is a straight-
forward explicit calculation (which we give in Appendix B) to show that

Ext∗MF (OVy
,OVy

) =
∧
(TyY [1])

(which verifies homological point-likeness) and also that that the set-theoretic
support of this matrix factorization is just the point y.

7 Alternatively, we could consider a sheafy matrix factorization defined by a
skyscraper sheaf. Since there is a potential term |dW |2, and we wish to describe
zero-energy motions, we should restrict to skyscraper sheaves supported on the locus
{dW = 0}. This gives another way of thinking about moduli spaces of D0-branes in
this model, and also reflects the fact that the bulk theory localizes on maps into the
critical locus {dW = 0}, since δθ ∝ dW . That said, this example need not RG flow
to a single skyscraper sheaf on the critical locus, and should not be interpreted as
a single D0-brane, but in general will RG flow to a collection of skyscraper sheaves
moving in sync, and so can also be used to map out the D0-brane moduli space.



D-brane probes, branched double covers, and · · · 1397

Obviously, we can identify the set of all such branes with the set of points
in Y . Furthermore, the above calculation tells us that the deformation theory
of these branes matches exactly with the deformations of the corresponding
points in Y , so the moduli space of these branes really is the space Y .

For completeness, we should discuss the effect of RG flow on these branes.
As a first guess, one might expect that OVy

flows to the sky-scraper sheaf
Oy ∈ Db(Y ). However, careful application of the recipe from Section 3.2.2
shows that in fact it flows to the object

(detV)|y [rk(V)]

Fortunately these objects have the same moduli space as the sheaves Oy,
since they are related by the operation ‘twist by the line-bundle (detV),
then shift by rk(V)’. This is an autoequivalence of Db(Y ), so in particular
it preserves moduli spaces.

Here’s a quick consistency check on the above claim: if we stick all these
branes together into a family, we get the sheafy matrix factorization OVY

. It
follows that this should RG-flow to the shifted line-bundle (detV)[rk(V)] ∈
Db(Y ). We verified this in Section 3.2.2 in the case that V has rank 1.

4.2. Branched double covers

In the previous section, we studied some simple examples of D-brane probes
of Landau-Ginzburg models that RG flowed to ordinary NLSM’s. In this
section we will study some slightly more complicated examples, involving
Landau-Ginzburg models on bundles over gerbes, that RG flow to branched
double covers and related objects. The structure of such Landau-Ginzburg
models was discussed previously in [4, 8]. Briefly, these appear in GLSM’s
describing complete intersections of quadric hypersurfaces. For example, for
a complete intersection of k quadric hypersurfaces in Pn, there is a GLSM
which, at large positive radius, flows to an intermediate Landau-Ginzburg
model on

(6) Tot
(
O(−2)k −→ P

n
)

with superpotential of the form

W =

k∑
a=1

paQa(φ) =

n+1∑
i,j=1

φiφjA
ij(p)
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which further flows to a NLSM on a complete intersection of k quadrics. At
large negative radius, the intermediate Landau-Ginzburg model is on8

(7) Tot
(
O(−1

2)
n+1 −→ P

k−1
[2,2,··· ,2]

)
.

If n+ 1 is even, then as discussed in Section 2 and [4], flows to a (possibly
noncommutative resolution of a) branched double cover of Pk−1. If n+ 1 is
odd, then this flows to a (possibly noncommutative resolution of a) single
copy of Pk−1, with a hypersurface of Z2 orbifolds. In this paper we will
mostly focus on cases where n+ 1 is even, but we will make some mention
of the odd case.

In this section, we will study simple cases in which there is no noncom-
mutative resolution, in which the branched double cover (or single cover
with Z2 orbifolds) is smooth. We will study D-brane probes of such Landau-
Ginzburg models. We will study D-brane probes of noncommutative resolu-
tions obtained similarly, in the next section.

4.2.1. One quadric. Let us begin with simple examples involving just a
single quadric hypersurface, i.e. k = 1. In this case, the Landau-Ginzburg
model we are interested in lives on

Tot
(⊕n+1

1 O(−1
2) −→ [pt/Z2]

)
=

[
C
n+1/Z2

]
where the Z2 acts by sign flips. This will be the prototype for fibers in cases
we will examine later. For a generic quadric, there is a single isolated critical
point, at the origin of V ≡ Cn+1, and all normal directions are massive. In
the language of GLSM’s, this means that in this subsection we will only
consider cases where the superpotential

W =
∑
ij

Aij(p)φiφj

has detA 
= 0. (We will consider more general cases later.)
We will take the R symmetry C

×
R to act on all fields with weight one (as

this is the fiber version of the families we will discuss next). Note that this

8 The notation O(− 1
2 ) indicates a line bundle over P

n
[2,··· ,2] (an example of a “Z2

gerbe”) defined by a nontrivial equivariant structure under a Z2 that acts trivially
on the base space. The point is that the first total space, in (6), is birational to the
second total space, in (7). See for example [1, 4, 26] for further information on this
notation.
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is consistent with the constraint that −1 ∈ C
×
R act trivially on X, since X is

the Z2 orbifold in which the action of −1 ∈ C
×
R on the cover is quotiented.

To start with, we will assume that n+ 1 is even. From the analysis of
[4], for generic W (i.e. detA 
= 0), since there is a Z2 gerbe structure at
the critical point, and other directions are massive, we interpret RG flow as
generating two distinct points, corresponding essentially to two different Z2-
equivariant structures. We’ll now show that we can draw the same conclusion
using sheafy matrix factorizations.

• n = 1
We begin with the simplest example, namely n = 1. In this case

we are working on the orbifold [C2/Z2], and we choose the generic
superpotential W = xy. Of course we have seen this example several
times already, albeit without the orbifold structure.
The line y = 0 lies within the locus W = 0, so we have a sheafy

matrix factorization O{y=0}. It’s quasi-isomorphic to the traditional
matrix factorization

(8) O
x



O(12)

y

��

where O(12) denotes the trivial line bundle with nontrivial Z2 equiv-
ariant structure. This matrix factorization is point-like - we saw this
calculation in Section 3.3, we also do the calculation in greater gener-
ality in Appendix B. So this brane gives us one of our points.
To get our second point we take the sheafy matrix factorization

O{y=0}(12). This lives on the same line y = 0 but carries a different
Z2-equivariant structure. Obviously this brane is also point-like, and
we claim that it represents a different point from the previous one. To
justify this, we will show that

Ext∗MF

(O{y=0},O{y=0}(12)
)
= 0

so that homologically these two objects behave like two distinct points.
This is not difficult to show: if we were to forget the orbifold structure,
then we already know that Ext∗MF

(O{y=0},O{y=0}
)
is 1-dimensional

(and lives in degree zero). If we twist the second brane, and then follow
the Z2 charges carefully, we see that this single morphism becomes
anti-invariant under the Z2 action. Therefore it doesn’t descend to
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give a morphism on the orbifold. In other words, we have

ExtMF

(O{y=0},O{y=0}(12)
)
= O0(

1
2)

(the twisted sky-scraper sheaf at the origin), but

Ext∗MF

(O{y=0},O{y=0}(12)
)
= Γ

(ExtMF

(O{y=0},O{y=0}(12)
))
= 0

If we consider the line x = 0 instead of y = 0, then we get two more
point-like objects, namelyO{x=0}, andO{x=0}(12). However this doesn’t
give us additional points at the RG-flow endpoint, because we have
quasi-isomorphisms

O{y=0} ∼=q O{x=0}(12) and equivalently O{y=0}(12) ∼=q O{x=0}

To see this, observe that O{x=0}(12) is quasi-isomorphic to the tradi-
tional matrix factorization

(9) O(12)
y

��
O

x

��

Obviously this is closely related to the matrix factorization (8), indeed
it appears to be a shift of it. However, despite appearances, it is in
fact exactly the same matrix factorization as (8). This is a slightly
subtle point, and we need to recall our discussion of R symmetry from
Section 3.1. When we work on an ordinary manifold (rather than an
orbifold), we require that the subgroup ZR

2 ⊂ C
×
R acts trivially. Con-

sequently, every matrix factorization decomposes into a pair of eigen-
sheaves (a brane and an anti-brane), which is why we write our matrix
factorizations as pairs of sheaves. However in our current example the
subgroup ZR

2 does not act trivally on the orbifold chart C2 (it only acts
trivially up to gauge transformations), and so it is not true that matrix
factorizations split up into ZR

2 -eigensheaves on the covering space
9. So

9If the reader prefers to avoid this issue, there is a solution. Instead of working
on the chart [C2

x,y/Z2], use the alternative chart [C
2
x,y × C

∗
p /C

∗], where the C
∗

acts with weight 1 on x and y and weight −2 on p, and the superpotential is
W = xyp. This is is an equally valid coordinate system for the same model, and
has the advantage that we can choose the R-charges of x, y and p to be 0,0 and 2
respectively, so that ZR

2 acts honestly trivially.
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our notation is misleading us; we sould have written both (8) and (9)
as

E = O ⊕O(12) dE =
(
0 y
x 0

)
whence they are manifestly the same. We continue to use the “up-and-
down” notation because it is more customary and more compact.
The goal of this paper is to understand D-brane probes of Landau-

Ginzburg models which generically correspond to branched double cov-
ers. This case is the prototype for generic smooth points in such double
covers; the fact that there are two matrix factorizations corresponds
to the fact we have a double cover.

• n = 3
Now set n = 3, so we work on [C4/Z2] with the generic superpoten-

tial W = xy + zw. We again look for point-like sheafy matrix factor-
izations.
In the n = 1 case we used the lines x = 0 and y = 0, the correct

generalization of these are given by planes in C4 which are isotropic,
i.e. they lie in the locusW = 0. There are infinitely-many such planes,
but they come in two families each indexed by P1: for each α ∈ P1 we
have the lines

{x/w = −z/y = α} and {x/z = −y/w = α}

For concreteness, let’s choose the plane U = {x = z = 0}. Then we
have a sheafy matrix factorizationOU , or if we prefer, a quasi-isomorphic
traditional matrix factorization

(10) O2

[
y −z

w x

]




O(12)2

[
x z

−w y

]��

(As we discussed above, we should really write this as O2 ⊕O(12)2 with
an endomorphism given by a 4× 4 matrix.)
One can now verify explicitly that this matrix factorization is point-

like, we present the details in Appendix B. More specifically, it behaves
like an isolated point, not embedded in a higher-dimensional space, and
thus it has no non-trivial deformations: it is rigid.
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Now suppose we vary U within the P1, giving a family of sheafy
matrix factorizations. Since the matrix factorizations have no defor-
mations, they all must be isomorphic, defining the same object of the
category. So this family of isotropic planes contributes a single point
at the RG-flow endpoint.
Now we proceed just as we did in the n = 1 case. By choosing the

non-trivial Z2-equivarant structure, we get a second point-like brane
OU (

1
2), and the same argument as we gave before shows that this

really does represent a distinct point. If we instead choose an istropic
plane U ′ from the the other P1 family, we get the same two point-like
objects, but just as before we have to flip the Z2-equariant stuctures.
To see this, choose the plane U ′ = {x = w = 0}. Then OU ′(

1
2) is quasi-

isomorphic to the traditional matrix factorization

O2

[
x w

−z y

]




O(12)2

[
y −w

z x

]��

This is isomorphic to (10) using the isomorphism where we swap the
two basis vectors in both bundles.

• Higher even cases
As long as n+ 1 is even, and the superpotential is generic, the

description continues essentially unchanged. We look for subspaces
U ⊂ Cn+1 which are isotropic and have maximal dimension, which
will be (n+ 1)/2 for non-degenerateW . For every such U we have two
sheafy matrix factorizations OU and OU (

1
2), and they behave categor-

ically like two distinct isolated points.
Further, it is a standard fact that the maximal isotropic subspaces

come in two disjoint connected families, as we saw explicitly for n = 3
(it was trivial for n = 1). If U and U ′ are in the same connected family
then OU and OU ′ are quasi-isomorphic, since as a matrix factorization
OU has no deformations, and if U and U ′ live in different families then
OU is quasi-isomorphic to OU ′(

1
2).

• Odd cases
We’ll now briefly discuss cases where n+ 1 is odd. We can produce

point-like sheafy matrix factorizations in exactly the same way, by
finding maximal isotropic subspaces U ⊂ Cn+1 (for generic W these
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will have dimension n/2). Then each OU or OU (
1
2) defines a sheafy

matrix factorization that behaves like an isolated point.
However, in the odd case these subspaces form a single connected

family, so all the OU are quasi-isomorphic. Furthermore, we claim that
we also have a quasi-isomorphism between OU and OU (

1
2). So up to

quasi-isomorphism we have only one point-like object, and thus after
RG-flow we will see a single isolated point. This agrees with the con-
clusions of [4].
Let’s illustate these claims in the simplest case, when n = 0. We

work on the space [C/Z2], with the superpotential W = x2. There is
only one maximal isotropic subspace U , namely the zero-dimensional
subspace! So we do indeed see a single connected family. We have a
point-like sheafy matrix O0 (the sky-scraper sheaf at the origin), and
it’s quasi-isomorphic to the traditional matrix factorization

O
x



O(12)

x

��

This is invariant under twisting by O(12) (since the ordering of the pair
of bundles is irrelevant), and henceO0 andO0(

1
2) are quasi-isomorphic.

As a quick aside, let’s note a subtlety of the calculation of point-
likeness in this case. We see immediately that

ExtMF (O0,O0) = O0 ⊕O0(
1
2)

and so Ext∗MF (O0,O0) is indeed 1-dimensional as required. However,
the orbifold structure is crucial here - if we do the calculation on the
un-orbifolded vector space then we would get a 2-dimensional space,
and the matrix factorization would not behave like an isolated point.10

This phenomenon occurs in all the odd cases, it’s related to the fact
that in the odd case it’s impossible to put a C∗R symmetry on the
un-orbifolded model.
It is straight-forward to do a similar explicit analysis of the n = 2

case, we leave this as an exercise.

10One might guess that it behaves like a point in a 1-dimensional space, but this
is also wrong - the algebra structure on the Ext groups is incorrect.
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4.2.2. P3[2, 2]. Now, consider the GLSM describing P3[2, 2], a complete
intersection of the two quadrics q1, q2. At large radius, the GLSM describes
a complete intersection of two quadrics, which is an elliptic curve. At the
Landau-Ginzburg point, we have a Landau-Ginzburg model on

X = Tot
(
O(12)4 −→ P

1
[2,2]

)
with superpotential W = p1q1 + p2q2, where p1, p2 are homogeneous coordi-
nates on P1

[2,2]. If we fix a point p ∈ P1
[2,2], then on the fiber over p we simply

have a quadratic superpotential on an orbifold [C4/Z2]. For generic points p
this superpotential will be non-degenerate, and we see exactly the n = 3 case
of the single quadric examples considered in the previous section. However
at four points the superpotential becomes degenerate, dropping from rank 4
to rank 3. Consequently, as discussed in Section 2 and [4], the model should
RG flow to a nonlinear sigma model on double cover of P1, branched over
these four points. This branched double cover is an elliptic curve; in fact it
turns out to be isomorphic to the first elliptic curve.

Let us see how this IR branched double cover appears using matrix
factorizations in the Landau-Ginzburg model.

Our D-brane probes will now consist of sheafy matrix factorizations sup-
ported in the fibers over points in the base P1

[2,2]. Specifically, they are of

the form OU or OU (
1
2), where U is an isotropic subspace of a single fiber.

Let us fix a generic point p in the base. As we saw in the previous section,
the possible subspaces U in the fiber over p come in two P1-families. We
also saw that, within a fixed fiber, the objects OU and OU (

1
2) are pointlike,

and that up-to-quasi-isomorphism we only get two pointlike objects. In our
current example the fiber sits inside a family, so we need to repeat the
calculations taking into account the directions which are transverse to the
fiber. But we can certainly use the results of the previous section as a guide.

Fortunately, by the general argument at the end of Appendix A.4, the
calculations are only sensitive to a first-order neighborhood of the fiber. So
we may reduce to simple local model, namely

X = [C4
x,y,z,w /Z2]× Cp W = xy + zw

Then one possible U is given by the subspace {x = z = p = 0}. We calcu-
late in Appendix B that OU is set-theoretically supported at the origin,
and homologically behaves like a point living in a 1-dimensional space. Fur-
thermore, this single degree-of-freedom corresponds to the p coordinate, and
therefore deforming U within a fiber cannot change the quasi-isomorphism
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class, just as before. It’s also straight-forward to verify that OU and OU (
1
2)

are distinct, and that if U ′ lives in the other P1 family of subspaces over
p then OU ′ is quasi-isomorphic to OU (

1
2). So we have moduli space of D0-

branes and it forms a (trivial) double cover of the base Cp.
We pause to compare this analysis with the one in [37, Section 3.6].

Aspinwall and Plesser study P7[2, 2, 2, 2] and the associated double cover of
P3 which we will treat more fully later, but we are already in a position to
clarify an issue they encounter. They see a two D0-branes for each point
of the P3, which suggests a double cover, but they see no monodromy as
the point in P3 varies, which suggests a trivial (disconnected) double cover.
What is happening is that their D0-branes are traditional (vector bundle)
matrix factorizations, not quasi-isomorphic to OU and OU (

1
2) where U is

a maximal isotropic space in the fiber, but rather to O0 and O0(
1
2), where

0 is the origin in the fiber. These in turn are both quasi-isomorphic to a
direct sum of several copies of OU ⊕OU (

1
2), so they are not seeing the two

points of the double cover separately, but several copies of both together;
this explains why they see no monodromy.

Returning to our analysis, let’s see what happens as we approach one
of the non-generic points where the superpotential degenerates. Physically,
in the GLSM, at these points some minimally-charged fields become light,
and the gerbe-based analysis is no longer applicable. Instead of a pair of
points, we expect only a single point. The mathematics is as follows. A
local-coordinate picture of this situation is given by

X = [C4
x,y,z,w/Z2]× Cp W = xy + z2 − pw2

For a fixed p, the possible subspaces U come in two families indexed by
α ∈ P1:

{x/(z −√pw) = −(z +√pw)/y = α}
and {x/(z +√pw) = −(z −√pw)/y = α}

When p goes to zero the two families coincide, so immediately it is reasonable
to guess that the moduli space of D0-branes forms a branched double cover
of Cp. However there are still some things to check, namely that we really do
have only one point-like object over p = 0, and that this object still behaves
like a point in a smooth one-dimensional space.

To make life easier for ourselves, let’s ignore the x and y directions.
These are massive, and decoupled, so we can safely ignore them without
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affecting the results. So we can study the model

X = [C2
z,w/Z2]× Cp W = z2 − pw2

For general p, we have two isotropic subspaces (in fact lines) in the fiber,
given by {z = ±√pw}. At p = 0, they coincide as the line U = {p = z = 0}.
We need to study OU .

A quasi-isomorphic traditional matrix factorization is given by

(11) O ⊕O(12)[
z −p

−w2 z

]




O(12)⊕O

[
z p

w2 z

]��

So RHom(OU ,OU ) is given by

OU OU (
1
2)⊕OU

[0,−w2]�� OU (
1
2)

[w2,0]T��

(we have unrolled it for clarity). Taking homology we get that ExtMF (OU ,
OU ) is, as a C[z, w, p]-module,

C[w]/(w2) ⊕ C[w]/(w2)(12)

As a sheaf, C[w]/(w2) is a fat point, thickened in the w-direction up the fiber,
and the other summand is the same sheaf with the twisted Z2-equivariant
structure.

Now recall that w is anti-invariant under the Z2 action. Therefore when
we take global sections the element w in the first summand disappears, but
the element w in the second (twisted) summand survives. So we’ve computed

ExtMF (OU ,OU ) = C⊕ C

If we keep track of the R-charges we can check that it’s in fact C⊕ C[−1].
So OU still looks like a point in a smooth 1-dimensional space. Just as
before, this implies that deforming U within the fiber cannot change the
isomorphism class of the matrix factorization, and it is also easy to check
that, up to isomorphism, (11) is invariant under twisting by O(12). So we
really do only have a single pointlike object over p = 0, and we are justified
in concluding that moduli space of D0-branes is a branched double cover of
Cp. Extrapolating to the global model, we conclude that the moduli space
of D0-branes is a branched double cover of P1, as claimed.
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Notice that over the branch points the rank of W becomes odd, and
indeed the category of matrix factorizations looks more like it does in the
odd-dimensional single-quadric examples that we analyzed in the previous
section. But to calculate the Ext algebra of OU and find that it was point-
like, we couldn’t just work within the single fiber over the branch point —
we had to take the transverse directions into account.

For completeness, let us also describe how to modify the RG functor
described in Section 3.2.2 to apply to this case. We will work in our simplified
local model, X = [C2

z,w/Z2]× Cp, but the generalization to the global model
is straight-forward (modulo the gluing issues to be discussed in Section 4.3).

Let Cq be the line that double-covers Cp, i.e. q
2 = p. Let Y be the

associated double cover of X, i.e.

Y = [C2
z,w/Z2]× Cq,W = z2 − q2w2

Pick a sheafy matrix factorization on (X,W ). The functor acts as follows:

1) Replace it with a quasi-isomorphic traditional matrix factorization
built from vector bundles.

2) Pull up the matrix factorization to Y . (This operation commutes with
the first, so they can be done in either order.)

3) Restrict to the locus {z = qw}.
4) Push down to Cq.

Let’s apply this to one of our pointlike sheafy matrix factorizations OU .
Let q0 be a fixed complex number, and let U be the line {z = q0w} sitting
in the fiber over the point p = q20. We need to find a traditional matrix
factorization quasi-isomorphic to OU . First, write

W = (z − qw)(z + qw) + (q2 − p)w2

and then follow the usual recipe. We take the Koszul resolution of the torsion
sheaf over U = {z = q0w, p = q20}, which is given by

O(12) −→ O(12)⊕O −→ O
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Then we add backwards maps, to get the matrix factorization

O ⊕O(12)[
z − q0w w2

p − q20 z + q0w

]




O(12)⊕O

[
z + q0w −w2

−p + q20 z − q0w

]��

Pull this up to Y and restrict to {z = qw}, to get a matrix factorization of
W = 0

O ⊕O(12)[
(q − q0)w w2

q20 − q2 (q + q0)w

]




O(12)⊕O

[
(q + q0)w −w2

q20 − q2 (q − q0)w

]��

The homology of this consists of

C[q, w]/(w, q − q0),C[q, w](12)/(w, q + q0)

After pushing down to Cq (taking Z2 invariants), we get a skyscraper sheaf
at q = q0, exactly as desired.

4.2.3. P2g+1[2, 2]. An example discussed in Section 4.1 of [4] is a com-
plete intersection of two quadrics in P2g+1. When g 
= 1, this is not Calabi-
Yau, but we can still consider B-type D-branes and matrix factorizations in
the corresponding untwisted physical theory.

As discussed in [4], at large radius the GLSM describes the complete
intersection above, and at the Landau-Ginzburg point, describes a Landau-
Ginzburg model on

Tot
(
O(12)2g+2 −→ P

1
[2,2]

)
which RG flows to a branched double cover of P1, giving a hyperelliptic
curve of genus g.

The analysis of matrix factorizations in this example is identical to that
of matrix factorizations in the theory associated to P3[2, 2], discussed in the
previous section. It concludes that we can see this hyperelliptic curves as a
moduli space of pointlike sheafy matrix factorizations.
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4.2.4. P5[2, 2, 2]. A closely related example involves the GLSM associ-
ated to P5[2, 2, 2], discussed in Section 4.3 of [4]. Here, at the Landau-
Ginzburg point, one has a Landau-Ginzburg model on the total space of

Tot
(
O(12)6 −→ P

2
[2,2,2]

)
It was argued in [4] that this example RG flows to a branched double cover
of P2, branched over a degree 6 locus. We can analyze matrix factorizations
in this model in the same fashion as above — at generic points on P2, we
see two pointlike matrix factorizations, but over the branch locus, there is
only one. Furthermore, these matrix factorizations behave like points in a
smooth 2-dimensional space, even over the branch locus. Hence the moduli
space of D0-branes really is the branched double cover.

4.2.5. Degree 4 del Pezzo P4[2, 2]. The GLSM for this example was
discussed in Section 4.4 of [4], and is somewhat different from the previous
examples. Here, we have a Landau-Ginzburg model on the total space of

Tot
(
O(12)5 −→ P

1
[2,2]

)
It was argued in [4] that this should RG flow to a single copy of P1, with

five Z2 orbifold points. These orbifold points occur at the points where the
fiber-wise superpotential becomes degenerate.

We can construct matrix factorizations as before, but here the prototyp-
ical fiber example from Section 4.2.1 is the case V = C3, W = xy + z2. In
this case, there is a single point-like matrix factorization, and if we analyze
the transverse directions as well (the calculation is very similar to the one
done in Appendix B) we see a point moving in a smooth one-dimensional
space. So near generic points, the moduli space of D0-branes is a single-cover
of P1, in agreement with [4].

Unfortunately at degenerate points this kind of analysis is not much
use, for the following reason: the moduli space of D0-branes is never an
orbifold! This is a familiar fact, D0-brane probes of orbifolds do not recover
the orbifold, they recover a manifold that resolves the orbifold singularity.
The mathematical reason for it is simple, it’s because sheaves (or complexes,
or matrix factorizations) never have finite non-trivial automorphism groups.

It is however possible to show that the category of sheafy matrix fac-
torizations is equivalent to the derived category of coherent sheaves on this
P1-with-orbifold-points, and to construct an RG-flow functor between the
two. But we shall not pursue this here.
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Very similar remarks apply to the example P6[2, 2, 2] discussed in Sec-
tion 4.5 of [4].

4.3. Global gluing issues

So far in our analyses of D-brane probes of Landau-Ginzburg models cor-
responding to various complete intersections of quadrics, we have worked
locally over the base space, in a Born-Oppenheimer approximation.

However, there is also some interesting global information that can be
extracted, pertinent to the B field. In this section, we will outline such global
gluing issues.

In general, in our D0-brane moduli space, over each point of the base
space we have described a D0-brane by picking an isotropic subspace U .
The set of isotropic subspaces of a vector space with a quadratic form is
known as an isotropic Grassmannian11, so the set of choices of U ’s over every
point forms a bundle over the base whose fibers are copies of an isotropic
Grassmannian.

In general, that bundle of isotropic Grassmannians will not have a global
section. Since the D0-branes given by different choices of U are isomorphic
but not canonically so, we can only glue together our choices of U ’s up
to an overall (C×) automorphism. Physically, this obstruction to gluing D-
branes globally corresponds precisely to having a nontrivial B field. Recall
that in the presence of a topologically nontrivial B field, the Chan-Paton
factors couple to a twisted bundle, where the twisting is determined by the
topological class of the B field. Here, the C× automorphism obstructing a
global gluing precisely corresponds to a choice of C× gerbe, and hence a
topologically nontrivial B field.

That said, in the case of the Landau-Ginzburg model corresponding to
P3[2, 2], there will be a section. Briefly, there are two quadratic forms q0, q1
on P3, and X = {q0 = q1 = 0} is an elliptic curve. For any point x ∈ X, for

11 As isotropic Grassmannians are not commonly used in the physics community,
we collect here a handful of pertinent facts. The isotropic Grassmannian denoted
OGr(p, n) is defined to be the space of p-dimensional complex vector subspaces
U of a fixed n-dimensional complex vector space V , such that U is isotropic with
respect to a fixed symmetric bilinear form. If n is even, then OGr(n/2, n) always
has two components. For example, the components of OGr(2, 4) are copies of P1;
the components of OGr(3, 6) are copies of P3; the components of OGr(4, 8) are
copies of a six-dimensional quadric. In odd-dimensional cases, OGr(n, 2n+ 1) is
isomorphic to one component of OGr(n+ 1, 2n+ 2).
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any quadratic form

q = a0q0 + a1q1

there is at least one line (singular quadrics) and typically two (smooth
quadrics) on the quadratic surface containing x, hence the bundle of isotropic
Grassmannians has a section in this case, so the B field is topologically triv-
ial.

More generally, for P2g+1[2, 2] there will also be a section of the bundle of
isotropic Grassmannians, and hence a topologically-trivial B field, which can
be argued by choosing a Pg−1 on the intersection of two quadrics. However,
this argument only works for the intersection of two quadrics; for intersec-
tions of three or more quadrics, in general the B field will be topologically
nontrivial.

5. D-brane probes of nc spaces

So far we have discussed D-brane probes of Landau-Ginzburg models that
are believed [4] to flow to nonlinear sigma models on branched double covers,
and we have recovered precisely that structure in the D-brane probes.

Next, we consider D-brane probes of Landau-Ginzburg models that are
believed [4] to flow to noncommutative resolutions of branched double covers.
At the level of Landau-Ginzburg models, these examples are very similar
to the branched double cover examples discussed previously. The primary
difference is that the previous analysis yields a singular branched double
cover, whereas other analyses of the Landau-Ginzburg model (or UV GLSM)
suggest the model should be nonsingular.

We will repeat exactly the same analysis as for D-brane probes of
branched double covers. In the case of noncommutative resolutions, the D-
brane probes will yield (non-Kähler) small resolutions of the singularities.
As discussed elsewhere, such non-Kähler resolutions cannot12 themselves
consistently be the target of (2,2) supersymmetric nonlinear sigma models,
and so we do not interpret this result to mean that the closed string theory
has target space a non-Kähler small resolution. Instead, we recall that D-
brane probe moduli spaces are always, by construction, spaces, even when
the closed string CFT does not admit a geometric interpretation (see e.g.
[19, 20] for discussion of other examples).

12 In particular, these are not believed to be generalized Calabi-Yau in the sense of
Hitchin’s generalized complex geometry, so their non-Kähler property is inconsistent
with the structure of a (2,2) SCFT.
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5.1. P7[2, 2, 2, 2]

Now, let us turn to the nc spaces arising in [4] as homological projective
duals to P7[2, 2, 2, 2]. As discussed in [4] and Section 2, we have a Landau-
Ginzburg model on

X = Tot
(
O(−1

2)
8 −→ P

3
[2,2,2,2]

)
(a fiber bundle over P3 with fibers [C8/Z2]), and superpotential

W =
∑
a

paGa(φ) =
∑
ij

φiφjA
ij(p)

The noncommutative resolution is described by (P3,B), where B ∈ Coh(P3)
is the sheaf of even parts of Clifford algebras associated with the universal
quadric defined by W , and describes the possible matrix factorizations in
this case.

As in the last section, we will work locally, and furthermore, we will
work with a slightly simplified toy model of the noncommutative resolu-
tion (P3,B), in order to understand D-brane probes. Specifically, consider a
Landau-Ginzburg model on

Tot
(O ⊕O −→ C

3
)
/Z2

where the Z2 acts trivially on the base, and by sign flips along the fibers,
with superpotential

W =

2∑
i,j=1

Aij(a, b, c)φiφj

where

(Aij) =

[
a b/2
b/2 c

]
so that

W = aφ21 + bφ1φ2 + cφ22

In this toy model, we have a double cover of

C
3 = SpecC[a, b, c]

branched over the locus detA ∝ b2 − 4ac. (That branched double cover could
be described algebraically as the conifold b2 − 4ac+ d2 = 0 in C4.)
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Now, let us consider matrix factorizations in this toy model, defined by
sheaves over points in C3. Define

φ± ≡ 2aφ1 + bφ2 ±
√
b2 − 4ac φ2

and note that φ+φ− ∝W . (We can absorb the proportionality factor into
an automorphism of one of the Op’s, and so we omit it.) If F is the fiber
over the point with coordinates (a, b, c) then for generic points on C3 we
have two matrix factorizations:

OF

φ+




OF (

1
2)

φ− ,

�� OF

φ−




OF (
1
2)

φ+

��

which correspond to the two points on the double cover.
Along the curve detA = 0, φ+ = φ−, so these two matrix factorizations

become a single matrix factorization, reflecting the fact that the two sheets
coincide along that curve.

At the point a = b = c = 0, something more interesting happens. At that
point, then for any linear combination φ of φ1, φ2, we have two matrix
factorizations:

OF

0




OF (
1
2)

φ ,

�� OF

φ




OF (
1
2)

0

��

The possible linear combinations φ are described, up to the rescaling afforded
by automorphisms, by a point on P1, so we see that the two choices above
correspond to two choices of points on P1, and precisely describe the two
possible small resolutions.

In an actual D-brane probe moduli space, to pick one particular small
resolution, one would need to impose a notion of stability, as indeed happens
with Kähler parameters in D-brane probes of orbifolds as discussed in [19].
We have not picked a notion of stability, so we should expect to see both,
as indeed we have.

In the previous toy model, we saw a small resolution, but its structure
seemed to be interrelated to having only two φ’s. Let us now generalize
slightly to four φ’s, to illustrate how the toy example above will general-
ize, and how we will again get small resolutions. In this case, we have the
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superpotential

W =

4∑
ij=1

φiφjA
ij(p)

For example, over a point such that W is the smooth quadric

W = φ1φ2 + φ3φ4

we have the matrix factorizations

O2
F

φ+




OF (

1
2)

2

φ− ,

��
O2

F

φ−




OF (
1
2)

2

φ+

��

where

φ+ =

[
φ1 −φ3
φ4 φ2

]
, φ− =

[
φ2 φ3
−φ4 φ1

]
,

just as in the corresponding one-quadric example discussed in Section 4.2.1.
Over a point such that W is the singular quadric

W = φ1φ2 + φ23

we have the matrix factorization

O2
F

P




OF (
1
2)

2

Q

��

where

P =

[
φ1 −φ3
φ3 φ2

]
, Q =

[
φ2 φ3
−φ3 φ1

]
,

exactly as in the corresponding one-quadric example in Section 4.2.1. As in
that section, the matrices P , Q are conjugate:

UPU−1 = Q for U =

[
0 1
1 0

]
so one does not get a new matrix factorization from exchanging them.
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Over a point such that W is the even more singular quadric

W = φ1φ2

we have the matrix factorization

O2
F

P




OF (
1
2)

2

Q

��

where

P =

[
φ1 f
0 φ2

]
, Q =

[
φ2 −f
0 φ1

]
= φ1φ2P

−1,

as in the corresponding example in Section 4.2.1, where f is a linear function
of the φ’s.

Without loss of generality we can take f to depend only upon φ3, φ4.
This is because[

1 −b
0 1

] [
φ1 aφ1 + bφ2 + cφ3 + dφ4
0 φ2

] [
1 −a
0 1

]
=

[
φ1 cφ3 + dφ4
0 φ2

]
,

(and similarly for Q,) hence any φ1, φ2 dependence can be reabsorbed into
automorphisms of the OF ’s. We can similarly rescale, thus, the coefficients
c, d of φ3, φ4 act as homogeneous coordinates on a P1, which is precisely a
small resolution of this singularity.

If we swap P , Q, or equivalently13 take the transpose, then in the same
fashion we recover a second small resolution. In order to form a moduli space
in which only one of the small resolutions are present, as discussed earlier,
we must pick a stability condition, as in [19]. We have not done so, hence
we see all possible small resolutions with these methods.

Then, for 2n φ’s, we have matrix factorizations of 2n−1 × 2n−1 matrices.

13 To see that swapping and transposing are equivalent, conjugate by the isomor-
phism defined by (

0 1
1 0

)
.
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5.2. P6[2, 2, 2, 2]

Now, let us consider the GLSM associated to P6[2, 2, 2, 2], as described in
[4, Section 4.6].

Here, the theory at the Landau-Ginzburg point has odd-dimensional
fibers, so instead of a branched double cover, from the analysis of [4] one
gets in the IR a single cover of P3 with a degree 7 hypersurface of Z2 orbifolds.
In addition, this space has several ordinary double points, and hence there
is a noncommutative resolution structure.

As in our analysis of P4[2, 2] in Section 4.2.5, a purely local analysis
away from the locus {detA = 0} gives a single cover, consistent with the
story above. As the details are nearly identical to what has been described
elsewhere, we omit them. However, the structure at the locus {detA = 0} is
more complicated, and cannot be properly straightened out without impos-
ing some sort of stability condition.

Therefore, our results in this case are only partial. We do see a struc-
ture compatible with that claimed in [4], but we also cannot completely
independently verify all aspects of the description given there.

5.3. Summary

So far we have seen that D-brane probes of the nc resolutions appearing in
[4] yield (non-Kähler) small resolutions of singular spaces. In particular, the
D-brane probes see a different space than the closed string sector. This is
neither novel nor unanticipated:

• By construction, D-brane probe spaces are spaces, even when the
closed string sector does not have a geometric interpretation.

• Another example appears in [53, Section 6.2], [20, Section 8], where
D-brane probes of orbifolds were discussed. It is an old fact that D-
brane probes of orbifolds see (not necessarily Calabi-Yau) resolutions
of the singularity. However, the closed string sector is a sigma model
on a simple quotient stack, not a resolution of a quotient space. (The
fact that the resolutions are not necessarily Calabi-Yau is already one
indication of a difference; the fact that the structure of twisted sectors
does not appear anywhere in resolutions is another indicator.)
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5.4. More general statements

There are suggestions, due to B. Toen and M. Vaquie [25], that this structure
generalizes, in the sense that D-brane probes of noncommutative resolutions
will always see (not necessarily Kähler) small resolutions of the underlying
singular spaces.

We will not attempt to work out the details here, but instead merely
outline their statements and a conjecture. Toen and Vaquie (in unpublished
work) define a notion of point objects, and consider a moduli stack of defor-
mations of those point objects. When that moduli stack is nonempty (appar-
ently not all nc spaces admit point objects of their form), it is a C× gerbe
over a proper algebraic space, which in the present context would translate
to the statement that it is a (not necessarily Kähler) small resolution.

We conjecture that when applied to noncommutative resolutions, when
that space exists, it is the D0-brane moduli space. (Checking such a state-
ment would require a more functorial definition of D0-brane moduli spaces.)

We leave such considerations for future work.

6. Conclusions

In this paper we have used D-brane probes to study the results of [4], involv-
ing Landau-Ginzburg points of some GLSMs that flow in the IR to nonlinear
sigma models on branched double covers (realized nonperturbatively, instead
of as the critical locus of a superpotential), and noncommutative resolutions
thereof.

For cases corresponding to smooth branched double covers, our D-brane
probe moduli spaces see the branched double cover structure explicitly, ver-
ifying the results of [4].

For nongeometric cases, corresponding to noncommutative resolutions of
singular branched double covers, the D-brane probe moduli spaces are (usu-
ally non-Kähler) small resolutions of the singularities. This is not interpreted
as the target space of a closed string (2,2) SCFT, but rather illustrates how
D-brane probe moduli spaces can differ from the closed string interpretation,
as also happens in e.g. orbifolds.

The noncommutative resolutions appearing in [4] represent new (2,2)
SCFT’s, and the investigations in this paper and in [4] represent just the
beginning of work that should be done to understand their properties.
An example of a future direction would be to compute Gromov-Witten
invariants of noncommutative spaces, perhaps by working in a UV Landau-
Ginzburg description via A-twisted Landau-Ginzburg models [26, 54, 55].
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Appendix A. Technical definitions

As this paper is written for a physics audience, it may be useful to review
some technical definitions and lemmas involving matrix factorizations. We
do not claim this material is new; rather, we are merely collecting it here to
make this paper self-contained.

A.1. Homotopies

Given two matrix factorizations

E0
PE

��
E1

QE ,

�� F0

PF
��
F1

QF

��

(in which P ◦Q =W Id and Q ◦ P =W Id), a map between them f : E → F
is a pair of maps f0 : E0 → F0, f1 : E1 → F1 such that PF ◦ f0 = f1 ◦ PE and
QF ◦ f1 = f0 ◦QE , making the following diagram commute:

E0 f0 		

PE
��

F0

PF
��

E1 f1 		

QE

��

F1

QF

��

Equivalently, if there is an R symmetry, if we express the two matrix factor-
izations as pairs (E , dE) and (F , dF ), then a map between matrix factoriza-
tions is an R-symmetry-invariant map f : E → F that commutes with the
d’s:

E f 		

dE
��

F
dF
��

E f 		 F
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We say two maps f, g : E → F are homotopic (and write f ∼ g) if there
exist maps s : E0 → F1, t : E1 → F0 such that

(A.1) f0 − g0 = QF ◦ s+ t ◦ PE , f1 − g1 = s ◦QE + PF ◦ t

(Just as in [34, 40], homotopy in the mathematical sense above corresponds
physically to BRST-exactness of the difference.) If a map f ∼ 0, we say f
is null-homotopic. We say two matrix factorizations E , F are homotopy-
equivalent to one another if there exist maps F : E → F , G : F → E such
that

G ◦ F ∼ 1E , F ◦G ∼ 1F

The maps F and G, in this case, are known as homotopy equivalences. As a
result, E is homotopy-equivalent to 0 (the zero matrix factorization) precisely
when 1E ∼ 0; in such a case, we say that E is contractible.

A.2. Cones

We define the cone over f , C(f), to be the matrix factorization

F0 ⊕ E1
P̂

��
F1 ⊕ E0

Q̂

��

where

P̂ =

[
PF f1
0 −QE

]
, Q̂ =

[
QF f0
0 −PE

]
It is straightforward to check that P̂ Q̂ and Q̂P̂ are both W Id, as expected.

An iterated cone over a complex can be defined similarly. Suppose we
have a complex of matrix factorizations

E f−→ F g−→ G

or in detail,

E0 f0 		

PE
��

F0
g0 		

PF
��

G0
PG

��
E1 f1 		

QE

��

F1
g1 		

QF

��

G1
QG

��
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The cone over the complex, C(f, g) is defined to be the matrix factorization

G0 ⊕F1 ⊕ E0
P̂

��
G1 ⊕F0 ⊕ E1

Q̂

��

where

P̂ =

⎡⎣ PG g1 0
0 −QF −f0
0 0 +PE

⎤⎦ , Q̂ =

⎡⎣ QG g0 0
0 −PF −f1
0 0 QE

⎤⎦
It is straightforward to check that P̂ Q̂ and Q̂P̂ are both W Id so long as
gifi = 0.

As the name suggests, we can also think of the iterated cone as a cone
over a cone. Given the complex of matrix factorizations above, the map g
defines a map g̃ : C(f)→ G, given by

F0 ⊕ E1
P̂

��

[g0,0] 		 G0
PG

��
F1 ⊕ E0

Q̂

��

[g1,0] 		 G1
QG

��

It is straightforward to check that C(g̃) = C(f, g).
In the other direction, the map f defines f̃ : E [1]→ C(g), as

E1
QE

��

[0,f1]T		 G0 ⊕F1

��
E0

PE

��

[0,−f0]T		 G1 ⊕F0

��

Although C(f̃) is not quite identical to C(f, g), it is isomorphic, with iso-
morphism F : C(f̃)→ C(f, g) defined by F0 = Id, F1 = diag(1, 1,−1).

In Section 3.2.1, we discuss a notion of quasi-isomorphisms between
matrix factorizations. Briefly, a map f of matrix factorizations is defined
to be a quasi-isomorphism if the cone C(f) is homotopy-equivalent to the
iterated cone over an exact sequence.

As a simple example, if f : E → F defines a homotopy equivalence, then
we shall show momentarily that C(f) is homotopy-equivalent to C(1E),
hence homotopy equivalences are also quasi-isomorphisms (since their cones
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are homotopy-equivalent to cones over exact sequences). Now, let us quickly
review how C(f) ∼ C(1E). Let g : F → E be the homotopy inverse, so that
fg ∼ 1F , gf ∼ 1E (with corresponding homotopies sF , tF , sE , tE , respec-
tively). The maps f, g induce f̃ : C(1E)→ C(f), g̃ : C(f)→ C(1E), defined
as, respectively,

E0 ⊕ E1

[
f0 0

0 1

]
		

��

F0 ⊕ E1

��
E1 ⊕ E0

��

[
f1 0

0 1

] 		 F1 ⊕ E0

�� F0 ⊕ E1

��

[
g0 tE
0 1

]
		 E0 ⊕ E1

��
F1 ⊕ E0

��

[
g1 sE
0 1

] 		 E1 ⊕ E0

��

It can be shown that g̃ ◦ f̃ is homotopic to 1C(1E), and f̃ ◦ g̃ is homotopic to
1C(f). Putting this together, we have that C(f) ∼ C(1E), hence homotopy
equivalences are also quasi-isomorphisms.

Next, we derive some small lemmas that will be useful later. Firstly,
suppose f : E → F is any map, and that E is contractible. Then we claim
that C(f) is homotopy-equivalent to F .

Let s : E0 → E1 and t : E1 → E0 be two maps that make 1E ∼ 0, in the
sense of the formula (A.1). Then we define two maps F : F → C(f) and
G : C(f)→ F by

F0

PF
��

[1,0]T		 F0 ⊕ E1
P̂

��
F1

QF

��

[1,0]T		 F1 ⊕ E0
Q̂

�� F0 ⊕ E1
P̂

��

[1,f0t] 		 F0

PF
��

F1 ⊕ E0
Q̂

��

[1,f1s] 		 F1

QF

��

Then GF = 1F exactly, and FG ∼ 1C(f) using the maps

S =

[
0 0
0 −t

]
: F0 ⊕ E1 −→ F1 ⊕ E0

T =

[
0 0
0 −s

]
: F1 ⊕ E0 −→ F0 ⊕ E1

Here is a a consequence of this result: suppose we have a short exact
sequence of matrix factorizations

0 −→ E f−→ F g−→ G −→ 0

and E is contractible. Then, G is quasi-isomorphic to F .
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To see this, recall the map g above defines a map g̃ : C(f)→ G and C(g̃)
is the iterated cone over the sequence. Then C(g̃) is homotopy-equivalent to
(in fact, identical to) the iterated cone over an exact sequence, hence g̃ is
a quasi-isomorphism, and G is quasi-isomorphic to C(f) (by the definition
of ‘quasi-isomorphism’), but C(f) is homotopy-equivalent, and hence quasi-
isomorphic, to F .

A.3. Duals, local Homs, and tensor products

Given (E , dE) = (E0,1, PE , QE) a matrix factorization of a Landau-Ginzburg
model with superpotential W , and (F , dF ) = (F0,1, PF , QF ) a matrix fac-
torization of a Landau-Ginzburg model with superpotential W ′, we shall
define a dual ∨, local Hom, and tensor products.

First, for E a matrix factorization

E0
P

��
E1

Q

��

(of superpotential W ), the dual matrix factorization E∨ is defined to be

E∗0
−Q∗

��
E∗1

P ∗

��

where

Q∗ : HomOX
(E0,OX) −→ HomOX

(E1,OX) as ◦Q
P ∗ : HomOX

(E1,OX) −→ HomOX
(E0,OX) as ◦ P

It is easily checked that this is a matrix factorization of the superpotential
−W .

Next, we define Hom(E ,F) to be the matrix factorization

Hom0(E ,F)
P̂

��

= HomOX
(E0,F0)⊕HomOX

(E1,F1)

P̂
��

Hom1(E ,F)
Q̂

��

= HomOX
(E0,F1)⊕HomOX

(E1,F0)

Q̂

��
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where

P̂ =

[
PF∗ −P ∗E
−Q∗E QF∗

]
, Q̂ =

[
QF∗ P ∗E
Q∗E PF∗

]
This is a matrix factorization of the Landau-Ginzburg model with superpo-
tential W ′ −W .

Note that if W ′ = 0 and we take F to be the matrix factorization

OX

��
0

��

then Hom(E ,F) is the same matrix factorization of −W as E∨.
Finally, let us define tensor products. Given matrix factorizations E , F

as above, define E ⊗ F to be the matrix factorization

(E0 ⊗F0)⊕ (E1 ⊗F1)

P̂
��

(E0 ⊗F1)⊕ (E1 ⊗F0)

Q̂

��

where

P̂ =

[
1⊗ PF −QE ⊗ 1
PE ⊗ 1 1⊗QF

]
, Q̂ =

[
1⊗QF QE ⊗ 1
−PE ⊗ 1 1⊗ PF

]
This defines a matrix factorization the superpotential W ′ +W . More com-
pactly, we can express the tensor product of (E , dE) and (F , dF ) to be E ⊗ F
with differential

dE⊗F = dE ⊗ 1 + 1⊗ dF
with signs determined by the Koszul convention.

It is straightforward to show that E ⊗ F is isomorphic to F ⊗ E , and
also easy to check that E∨ ⊗F is the same as Hom(E ,F).

A.4. Ext groups

Next we need to discuss the space of massless open strings between two
matrix factorizations, i.e. the morphisms in the category of topological B-
branes.

In the case that W ≡ 0, and so B-branes are described by ordinary com-
plexes of sheaves, it is well known that the space of massless open strings
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between two branes is given by the Ext groups between the two complexes.
When we have a non-zero W , and our branes are matrix factorizations, we
can use a similar construction to define the space of massless open strings.
We’ll denote this space by

Ext∗MF (E ,F)
for E ,F a pair of matrix factorizations. Let’s describe its construction.

To start with, let’s assume we’re working on an affine space X, and fix
a superpotential W . If E and F are matrix factorizations of W , then (as
described above) we can form Hom(E ,F), which is a matrix factorization
of W −W = 0. If we take global sections of this, we get a Z2-graded chain
complex of vector spaces

ΓXHom0(E ,F)
P̂ 		 ΓXHom1(E ,F)
Q̂

��

When we have a C
×
R R-symmetry, we get something slightly better. The

spaces of global sections split up into eigenspaces for the symmetry, so we
actually have an honest (Z-graded) chain-complex

· · · → (ΓXHom(E ,F))0 → (ΓXHom(E ,F))1 → (ΓXHom(E ,F))2 → · · ·

In either case, the zeroeth homology of this chain-complex describes maps
between E and F , modulo homotopies.

As long as E and F are traditional matrix factorizations built out of vec-
tor bundles (and we continue to assume that X is affine) then we are basi-
cally done: the homology of the above chain complex defines Ext∗MF (E ,F).
However, for sheafy matrix factorizations the recipe is more complicated,
let’s break it down into steps:

1) Find a traditional (vector bundle) matrix factorization Ê that is quasi-
isomorphic to E .

2) Form Hom(Ê ,F), a matrix factorization of 0.
3) Take global sections to get ΓXHom(Ê ,F), a chain-complex of vector

spaces.

4) Take homology of this chain-complex to get Ext∗MF (E ,F).14

14For some purposes it is appropriate to stop at step 3, and declare that the set
of morphisms between two matrix factorizations is actually a chain-complex (rather
than its homology). This makes the category of matrix factorizations a dg-category.
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This recipe is very closely analogous to the procedure for computing
Ext groups between sheaves in the usual derived category, in particular we
should think of the first step as finding a ‘projective resolution’ of E . Given
this analogy, it is reasonable to use the notation

RHomMF (E ,F) := Hom(Ê ,F)

for the matrix factorization obtained in step 2. Also, because this is a matrix
factorization of 0, it makes sense to take its homology, which we denote by

ExtMF (E ,F)

This object consists of a pair of sheaves, or, in the presence of a C
×
R R-

symmetry, a single sheaf with a C
×
R action. It is analogous to the local Ext

sheaves that one computes in the ordinary derived category.
We will work out specific examples of this recipe in Sections 3.2.2, 4.2.1,

and Appendix B.
Now let’s drop the assumption that X is affine. In fact, most of the

calculations that we do in this paper take place in local (affine) models, so
the technical details of handling non-affine spaces are not so important for
us. Nevertheless we will make a few claims about non-affine examples, so
let’s say a few words about them.

We see immediately that in the non-affine case the above recipe is not
sufficient - even if we set W ≡ 0, and let E and F be single vector bundles,
then the above recipe outputs ΓX(Hom(E ,F)), whereas the correct space
of massless open strings is actually

ExtX(E ,F) = H∗X(Hom(E ,F))

The implication of this is that we have to do something more sophisticated in
step 3 of the recipe, instead of taking just global sections of RHomMF (E ,F)
we have to take its derived global sections

RΓXRHomMF (E ,F)

This means we have to write down a chain-complex that computes the coho-
mology of the sheaf underlying RHomMF (E ,F), which we can do by using
Čech resolutions, or (if F is a vector bundle) Dolbeaut resolutions. Then we
perturb the differential on this chain-complex by adding in the differential
that acts on RHomMF (E ,F). Then Ext∗MF (E ,F) is the homology of this
final complex.
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This is rather complicated, and fortunately in practice we can usually do
something simpler. Instead of writing down RΓX of the sheaf RHomMF (E ,F),
we just write down its cohomology groups

H∗X(RHomMF (E ,F))

and add in the differential. If we are lucky (i.e. if the relevant spectral
sequence collapses) then this chain complex correctly computes Ext∗MF (E ,F).

In many cases we can simplify even further, by using the ‘local-to-global’
spectral sequence. If we take the homology of RHomMF (E ,F) before we take
global sections, then we have a spectral sequence beginning with

H∗X(ExtMF (E ,F))

and converging to Ext∗MF (E ,F).
Let’s apply this technology to a useful class of examples. Suppose we

have a Landau-Ginzburg model over X, and we have a submanifold Y lying
within the locus {W = 0}. Then the skyscraper sheaf OY defines a sheafy
matrix factorization, and we can attempt to compute Ext∗MF (OY ,OY ). The
first step is to find a traditional matrix factorization that is quasi-isomorphic
to OY .

Let’s assume Y is a complete intersection, cut out by sections s1, . . . , sr of
line-bundles L1, . . . , Lr. Then the sheaf OY is resolved by a Koszul complex
of the form

0 −→ ∧r L∗ −→ · · · −→ ∧k L∗ −→ · · · −→ L∗ −→ O −→ 0

where L = ⊕Li, and the differentials are given by contracting with (s1,
. . . , sr), as usual for a Koszul resolution. Since W |Y = 0, W is in the ideal
generated by the si, so we can find sections f1, . . . , fr of the dual line-bundles
L∗1, . . . , L∗r such that

W =
∑
i

fisi

If we add ‘backwards’ arrows to the Koszul complex that wedge with (f1,
. . . , fr), and fold into a two-term complex, then we get a matrix factorization
of W (we will see an explicit example of this in Section 3.2).

Now we claim that the matrix factorization just constructed is quasi-
isomorphic to OY . To show this, we begin with the case r = 1. We have an
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exact sequence of matrix factorizations

L∗ s 		

W
��

O 		

f
��

OY

L∗ 1 		

1

��

L∗
s

��

The leftmost matrix factorization is contractible, so the result follows. When
r > 1, take a copy of the left-hand square for each triple si, fi, Li, and tensor
them together. This produces an exact sequence of matrix factorizations
resolving OY , and all past the first are contractible because they contain
at least one contractible factor. And the first one is the ‘perturbed Koszul’
matrix factorization described above.

Now we can compute RHomMF (OY ,OY ). It has the form

0←− OY ←− LY ←− · · · ←−
∧k LY ←− · · · ←−

∧r LY ←− 0

where the maps are given by contracting with (f1, . . . , fr) (the si have gone
to zero, since it’s supported on Y ). There’s a more invariant way to say
this - the bundle LY on Y is actually the normal bundle NY/X , and the
differential is actually ‘contract with dW ’. This makes sense because there
is a well-defined map

dW : NY/X −→ OY

Consequently, Ext∗MF (OY ,OY ) is computed from a spectral sequence begin-
ning with

H∗Y (
∧
NY/X)

and the differential given by contracting with dW .
Writing the result in this invariant form, it is clear that assuming that Y

is a complete intersection is actually not necessary, this result holds for any
submanifold Y in {W = 0}. Also, notice that if we view OY as an object in
the ordinary derived category, we have

Ext∗X(OY ,OY ) = H∗Y (
∧
NY/X)

so the result we obtain in the category of matrix factorizations is a defor-
mation of the result in the ordinary derived category.

This calculation generalizes the BRST cohomology results discussed in
e.g. [39], in that adding a superpotential deforms the BRST operator in the
B-twisted theory by adding contractions with dW . This was discussed in
[26], and used there to observe that the closed string spectrum is computed



1428 N. M. Addington, E. P. Segal and E. R. Sharpe

by hypercohomology of a complex generated by contractions with dW . The
calculation here is the analogous result for open strings.

Appendix B. Point-like behavior of OU

In this appendix we perform an explict calculation in a very simple Landau-
Ginzburg model. This calculation is a key point in our analyses of the more
complex models considered in Section 4.

Let V be a vector space, and let W be a (possibly degenerate) quadratic
form on V . We’re going to work going to work in the Landau-Ginzburg
model defined on V , with superpotentialW . We’re going to assume that the
rank of W is even (the odd-rank case can be treated by the same method,
but the answer turns out to be slightly different). In this case we can choose
coordinates x1, . . . , xk, y1, . . . , yk, z1, . . . , zm such that

W = x1y1 + · · ·+ xnyn

We let Z denote the kernel of W , it is the subspace spanned by the z-
coordinates.

We let U be the k-dimensional subspace

U = {x1 = · · · = xk = z1 = · · · = zm = 0}

Then U is isotropic, has trivial intersection with Z, and has maximal rank
among subspaces obeying these two conditions. Any other subspace with
this property is equivalent to U under a change-of-coordinates. In many of
our applications W is actually non-degenerate, in which case Z = 0 and U
is just a maximal isotropic subspace.

Since W vanishes along the subspace U , the sheaf OU defines a sheafy
matrix factorization

OU

��
0

��

The important result for us is that this sheafy matrix factorization is in fact
pointlike, i.e. it may be viewed as a D0-brane. We are going to describe the
arguments for this in detail in this appendix.

Let’s compute RHomMF (OU ,OU ). In fact we have already discussed this
calculation in greater generality in Appendix A.4, but we’ll give more details
here for this specific example. The first step is to find a traditional matrix
factorization quasi-isomorphic to OU , which we do using Koszul resolutions.
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Let U⊥ ⊂ V be the subspace spanned by the x and z coordinates. For
notational convience, we’ll relabel the coordinates on U⊥ as

x̃1 = x1, . . . , x̃k = xk, x̃k+1 = z1, . . . , x̃k+m = zm

and let {e1, . . . , ek+m} be the corresponding basis vectors for U⊥. Then one
can write the Koszul resolution of OU on V as

· · · ∂−→ O(
k+m

3 )
V

∂−→ O(
k+m

2 )
V

∂−→ O(
k+m

1 )
V

∂−→ OV −→ OU −→ 0

where each term

O(
k+m

p )
V = OV ⊗C C{ei1 ∧ · · · ∧ eip}

and the maps act as

∂
(
ei1 ∧ · · · ∧ eip

)
=

p∑
r=1

(−)r−1x̃irei1 ∧ · · · ∧ êir ∧ · · · ∧ eip

(for p = 1, this says that ∂ei = x̃i). It is a standard result that ∂
2 = 0. For

example, if k = 2 and m = 0, this becomes the sequence

0 −→ OV
[−x2,x1]T−→ O2

V
[x1,x2]−→ OV −→ OU −→ 0

Next, we define maps δ going in the opposite direction:

· · · δ←− O(
k+m

3 )
V

δ←− O(
k+m

2 )
V

δ←− O(
k+m

1 )
V

δ←− OV

by

δ
(
ei1 ∧ · · · ∧ eip

)
=

k∑
j=1

yjej ∧ ei1 ∧ · · · ∧ eip

To define the matrix factorization that is quasi-isomorphic to OU , we
use both the maps ∂ and δ. Schematically, it’s given by

O(
k+m

even)
V

∂+δ
��

O(
k+m

odd )
V

∂+δ

��
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To make this more clear, let us consider the special case that n = 2,
m = 0. In this case, we have a matrix factorization

O2
V = OV ⊗C C{1, e1 ∧ e2}




O2

V = OV ⊗C C{e1, e2}

��

Since

∂(e1, e2) = (x1, x2)(1)

δ(e1, e2) = (−y2, y1)e1 ∧ e2

we find that

↑=
[

x1 x2
−y2 y1

]
.

Similarly, since

δ(1) = y1e1 + y2e2

∂(e1 ∧ e2) = −x2e1 + x1e2

we find that

↓=
[
y1 −x2
y2 x1

]
It is easy to check that ↑ ◦ ↓=W Id =↓ ◦ ↑.

More concisely, if we define

E = OV ⊗
∧∗(U⊥)

then the matrix factorization above can be described by the single differential
d, given by

d(f ⊗ ω) =
k+m∑
i=1

x̃if ⊗ ei�ω +
k∑

i=1

yif ⊗ ei ∧ ω

where f ∈ Γ(OV ), ω ∈
∧∗(U⊥). It is then straightforward to check that d2 =

W Id.
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Now we are ready to compute Ext groups and verify pointlike behavior.
Taking Hom from the matrix factorization above to OU , we get the complex

O(
k+m

even)
U

δ
��

O(
k+m

odd )
U

δ

��

(since ∂ = 0 along U), or, writing it in an ‘unrolled’ way,

OU
δ←− O(

k+m

1 )
U

δ←− · · · δ←− O(
k+m

2 )
U

δ←− O(
k+m

1 )
U

δ←− OU

In the case that W is non-degenerate, so m = 0, this complex is precisely
the Koszul resolution of the origin in U . So in this case we can conclude that

ExtMF (OU ,OU ) = O0

(the sky-scraper sheaf at the origin), and hence

Ext0MF (OU ,OU ) = C, Ext �=0
MF (OU ,OU ) = 0

Thus in the non-degenerate case OU is homologically point-like, where the
‘point’ sits in a zero-dimensional space.

Now let’s allow m > 0. With a little more work, one can see that the
homology of the above complex gives

ExtMF (OU ,OU ) = O0 ⊕O(
m

1 )
0 ⊕O(

m

2 )
0 ⊕ · · · ⊕ O(

m

1 )
0 ⊕O0

and hence

ExtpMF (OU ,OU ) = C
(mp)

So in general OU is homologically point-like, where the ‘point’ sits in an
m-dimensional space. This m-dimensional space is of course the kernel Z,
indeed if we take a little more care with all our vector spaces we can see
that in fact

ExtpMF (OU ,OU ) =
∧p Z

These are canonically equal to the self-Ext groups of the sky-scraper sheaf
supported at the origin in Z.

Now let’s discuss the criterion of set-theoretic support. Given the calcu-
lation we’ve just performed, it will come as no surprise if we claim that the
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set-theoretic support of OU is the origin in V . In fact our calculation implies
this precisely, since if we delete the origin from V then ExtMF (OU ,OU )
goes to zero (since it was supported at the origin), and consequently so does
Ext0MF (OU ,OU ). But this implies in particular that the identity map on OU

must be exact, i.e. it must be homotopic to the zero map. So away from the
origin, OU is contractible.

As a final remark, let us observe that we are free to put any (compatible)
R-symmetry on this model, or to replace V by the orbifold [V/Z2], and the
calculation given here will go through unchanged. In the non-degenerate
case it will not even affect the answer, since the origin in V will be fixed by
any R-symmetry or orbifold action.
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