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A new approach to the N-particle

problem in QM

Joachim Schröter

In this paper the old problem of determining the discrete spectrum
of a multi-particle Hamiltonian is reconsidered. The aim is to bring
a fermionic Hamiltonian for arbitrary numbers N of particles by
analytical means into a shape such that modern numerical methods
can successfully be applied. For this purpose the Cook-Schroeck
Formalism is taken as starting point. This includes the use of the
occupation number representation. It is shown that the N -particle
Hamiltonian is determined in a canonical way by a fictional 2-
particle Hamiltonian. A special approximation of this 2-particle
operator delivers an approximation of the N -particle Hamiltonian,
which is the orthogonal sum of finite dimensional operators. A
complete classification of the matrices of these operators is given.
Finally the method presented here is formulated as a work program
for practical applications. The connection with other methods for
solving the same problem is discussed.

1. Introduction

One of the central problems of many-particle quantum mechanics, if not its
main problem, is calculating the spectral representation of a many-particle
Hamiltonian, which typically has the form

(1.1) HN =

N∑
j

Kj +
1

2

N∑
j �=k

Wjk .

Here Kj contains the kinetic energy of particle j and the external fields
acting upon j, and Wjk is the interaction of the particles j and k. As is
well-known, this problem has a solution if Wjk = 0. On the other hand, if
Wjk does not vanish, the problem is “almost” unsolvable in a strict sense.
But the situation is not hopeless. For, what is really needed for practical
purposes, is a “good” approximate solution.
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In this last field a tremendous work has been done, both analytically and
numerically. Its mainstreams are well-known under the labels Thomas-Fermi
method ([1],[2]), Hartree-Fock method ([3],[4]), density functional theory
([5],[6]), configuration interaction method, Haken’s method and others. With
respect to these methods and their applications and refinements I refer e.g.
to the following books [7], [8], [9]. There in addition an abundance of papers
and monographs is cited, where the methods are also described in detail.

A common feature of these procedures is that they contain one step
in which a one-particle approximation of the N -particle problem is carried
through. With the methods of Thomas-Fermi and of Hartree-Fock it is all,
what is done. With the other methods the described first step is followed by
other ones thereby improving the accuracy of approximation. Especially, by
combining analytical and numerical mathematics great progress is achieved.
Today problems can be solved which were regarded as unsolvable few decades
ago.

Nevertheless, the question is obvious, whether there are other approaches
to a solution of the N -particle problem in quantum mechanics than those
mentioned above. It is the aim of this paper to present such a new procedure.
For this purpose I need some mathematical tools which, though they are
widely known, I have briefly described in Appendix A.1. In particular the
reader will find all the notation which is used throughout the text. (More
details can be found in [10], [11].) The basic idea of the procedure as well as
the main results are sketched in Section 2.3.

2. The Structure of N -Particle Hamiltonians

2.1: In what follows only systems of particles of the same kind are consid-
ered. When one starts studying a concrete sytem, its Hamiltonian is usually
defined using the position-spin representation, i.e. the Hamiltonian is an
operator in the Hilbert space

⊗N (L2(R3)⊗ S1), where
⊗

and ⊗ denote
tensor products, and where S1 is the complex vector space of spin func-
tions (cf. Section A.2.1). For explicit calculations this representation is very
useful. But the aim of this paper is primarily a structural analysis of the
Hamiltonians of a certain class of systems, and in this case a more abstract
formalism is adequate. It turns out that the Cook-Schroeck formalism (cf.
Appendix A.1) is very useful for this purpose.

Then our starting point is an arbitrary initial Hamiltonian of the
shape (1.1), which is denoted H̄N and defined in a Hilbert space H̄N :=⊗N H̄1, where H̄1 is the Hilbert space of the corresponding one-particle
system.



A new approach to the N -particle problem in QM 1289

Now let K be the operator defined in H̄1 which contains the kinetic
energy of one particle of a certain kind together with the action of the
external fields. Moreover, let W be that operator in H̄2 which represents
the interaction of two particles of the kind considered. Then, using For-
mula (A.1.25), H̄N defined in H̄N is given by

(2.1) H̄N = ΩN (K) + ΩN (W ),

where

(2.2)

ΩN (K) := ((N − 1)!)−1
∑
P∈SN

U(P )(K ⊗ 1⊗ · · · ⊗ 1)U�(P ),

ΩN (W ) := (2(N − 2)!)−1
∑
P∈SN

U(P )(W ⊗ 1⊗ · · · ⊗ 1)U�(P ),

and U(P ) is the unitary permutation operator defined by the particle per-
mutation P. Thus, using Formula (A.1.27), the operator H̄N specified for
Bosons or Fermions reads

(2.3) H̄±
N = Ω±N (K) + Ω±N (W ).

Here the definition A± := S±NAS±N for an arbitrary operator A in H̄N is
applied, where S±N is the symmetrizer (+) resp. the antisymmetrizer (-).
Then A± is defined in the Hilbert space H̄N± = S±N [H̄N ].

It is well-known that the structure of H̄±
N given by (2.3) is not helpful for

studying its spectral problem, because the operators Ω±N (K) and Ω±N (W ) do
not commute. This suggests the question if it is possible to find an operator
T acting in H̄M , 1 ≤M < N such that

(2.4) H̄±
N = Ω±N (T ).

Because the two-particle operatorW cannot be represented by a one-particle
operator it holds that M ≥ 2. If the Hamiltonians as well as the operators
K and W are selfadjoint, it turns out that M = 2 is possible as shown by
the following

Proposition 2.1. Let

(2.5) H̃2(γ) = γ(K ⊗ 1) + γ(1⊗K) +W
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so that H̃2(γ) is defined in H̄2, and let γ0 := (N − 1)−1. Then

(2.6) H̄±
N = Ω±N (H̃2(γ0)) and H̄±

N �= Ω±N (H̃2(γ)), γ �= γ0.

Proof. Using (A.1.28) yields

(2.7)

Ω±N (K) = NS±N (K ⊗ 1⊗ · · · ⊗ 1)S±N

=
1

N − 1

(
N

2

)
S±N ((K ⊗ 1)⊗ · · · ⊗ 1)S±N

+
1

N − 1

(
N

2

)
S±N ((1⊗K)⊗ · · · ⊗ 1)S±N

=
1

N − 1
(Ω±N (K ⊗ 1) + Ω±N (1⊗K)).

Since by supposition H̃2(γ),K andW are selfadjoint, (A.1.30) can be applied
so that with the help of (2.7) the following relation holds:

(2.8)
Ω±N (H̃2(γ)) ⊃ γΩ±N (K ⊗ 1) + γΩ±N (1⊗K) + Ω±N (W )

= γ(N − 1)Ω±N (K) + Ω±N (W ).

The term in the last line of (2.8) is selfadjoint because it is the Hamiltonian
of a (possibly fictional) N -particle system. Since also Ω±N (H̃2(γ)) is selfad-
joint (cf. Proposition A.1.11), relation (2.8) is an equation, from which the
proposition follows immediately. �
2.2: This result is somewhat surprising. The initial Hamiltonian H̄±

N is not
determined by H̃2(1), i.e. by a Hamiltonian of a system of two particles
of the same kind, which is described by H̄±

N . Rather H̄±
N is determined by

H̃2(γ0), γ
−1
0 = N − 1, which is a two-particle Hamiltonian for particles of

mass (N − 1)m0 and external fields weakened by a factor (N − 1)−1, but
with the same interaction W as the particles described by H̄±

N , which are
supposed to have mass m0.

The system described by H̃2(γ0) is fictional. I call it dummy system and
the operator H̃2(γ0) dummy Hamiltonian.

In Appendix A.2, two simple examples are given describing dummy
helium and a solid with two dummy electrons.

In what follows, the operator H̃2(γ), γ �= γ0 is not needed anymore.
Therefore it is convenient to use the notation H̃2(γ0) = H̄20.

Corollary 2.2. Because of (A.1.31) it follows that

(2.9) H̄±
N = Ω±N (H̄20) = Ω±N (H̄±

20) .



A new approach to the N -particle problem in QM 1291

2.3: Formula (2.9) suggests the basic idea of this paper: find an approxima-
tion of H̄±

N via an approximation of H̄±
20 such that the spectral problem of

H̄±
N can be solved approximately.
The details of this program are carried out for fermions in four steps,

which correspond to the Sections 3 to 6.
Section 3 contains a formal analysis of a restriction H−

N of the initial
Hamiltonian H̄−

N . The aim is expressing the matrix elements of H−
N in terms

of the matrix elements of the restricted dummy operator H−
20, which is

bounded. The results are summarized in Proposition 3.10.
In order to use them for the present purposes, a properly chosen orthonor-

mal system O1 in the one-particle Hilbert space H̄1 is needed. In Section 4
arguments are given that such a system is obtained via the Hartree-Fock
procedure applied to H̄−

20. Thus the restrictions used in Section 3 can be
justified. Moreover, a heuristic argumentation suggests that H−

20 can be
“truncated” such that an operator Ĥ−

20 results, which is, depending on a
parameter α ∈ N, an approximation of H−

20.
In Section 5 it is shown that the operators Ĥ−

20 converge strongly to H−
20,

if α→∞. This has the consequence that the operators Ĥ−
N = Ω−N (Ĥ−

20) also
converge strongly to H−

N . Therefore it is possible to apply the results of the
theory of spectral approximation (cf. e.g. [12],[13]).

Finally, in Section 6 an analysis of the operators Ĥ−
N is given. It is shown

that they are block-diagonal, i.e. their matrices with respect to the chosen
orthogonal basis are orthogonal sums of finite dimensional matrices, the
structure of which are analyzed in detail. At this point numerical methods
can come into play.

In Section 7 the results of the previous sections are summarized in the
form of a work program, which can be regarded as the main result of this
paper.

3. The Hamiltonian H−
N and its Matrix

3.1. Preliminary remarks

3.1.1: Since in what follows only such systems are considered, which consist
of fermions of the same kind, the notation introduced in Appendix A.1 can
be used throughout. The Hamiltonians of these systems usually have the
following property.

1.) They are unbounded, but bounded from below.
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2.) Their spectrum below a certain value ε0 is discrete, otherwise contin-
uous with possibly inserted discrete values.

Since in this paper we are only interested in the discrete spectrum out-
side the continuum, i.e. in the bound states of the system, the question is
obvious, whether it is possible to restrict the spectral problem to the discrete
eigenvalues. In other words: is it possible to realize the following

Assumption 3.1. There is a subspace H1 ⊂ H̄1 such that the restriction
H−

20 of H̄−
20 to the subspace H2− ⊂ H̄2− is bounded (so that it can be defined

on H2−), and has the same discrete eigenvalues as H̄−
20 outside its continuous

spectrum.

In this section it is assumed that such a subspace H1 ⊂ H̄1 exists. Then
H−

N = Ω−N (H−
20) is bounded and defined on HN− . This operator is the subject

studied in the following sections. In Section 4 arguments are given that the
assumption can be realized.

3.1.2: The starting point for the further considerations is the following

Notation 3.2. 1.) Let B1 = {φκ : κ ∈ N} be an arbitrary ONB in H1, and
let

(3.1) φκ1···κM
:= φκ1

⊗ · · · ⊗ φκM
∈ HM

with 2 ≤M ≤ N and κj ∈ N, j = 1, . . . ,M. Then an ONB B−M ⊂ HM− is
defined by the vectors

(3.2) Ψ−κ1···κM
:=
√
M !S−Mφκ1···κM

with S−M being the antisymmetrizer (cf. (A.1.6)).

2.) For each sequence κ1 · · ·κM of indices there is an infinite sequence
k̂ := (k1, k2, k3, . . . , ) of so called ocupation numbers kκ defined by

(3.3) kκ =

M∑
j=1

δκκj
.

Hence kκ = 1 or 0. Moreover there is a one-to-one correspondence

(3.4) k̂ ←→ κ1 · · ·κM .
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Thus we can write

(3.5) Ψ±κ1···κM
=: Ψ±M (k̂).

3.) The term “sequence of occupation numbers” is abbreviated by bzf
and the set of all bzf , which have exactly M numbers 1 is denoted BZFM .
The set BZF comprises all bzf .

Now let 〈 ·, · 〉2 be the inner product in H2− and let

(3.6) E(k̂, m̂) := 〈Ψ−2 (k̂), H−
20Ψ

−
2 (m̂)〉2

be the matrix elements of the dummy Hamiltonian. Then the matrix repre-
sentation of H−

20 reads:

(3.7) H−
20 =

∑
k̂

∑
m̂

E(k̂, m̂)Ψ−2 (k̂)〈Ψ−2 (m̂), · 〉2 .

Using the abbreviation

(3.8) Ψ−2 (k̂)〈Ψ−2 (m̂), · 〉2 =: T (k̂, m̂)

together with Formula (A.1.28) yields:

H−
N =

(
N

2

)
S−N (H−

20 ⊗ 1⊗ · · · ⊗ 1)S−N(3.9)

=

(
N

2

)∑
k̂

∑
m̂

E(k̂, m̂)S−N (T (k̂, m̂)⊗ 1⊗ · · · ⊗ 1)S−N .

Remark 3.3. Here and in what follows the sums
∑

k̂ and
∑

m̂ are under-
stood to run over all bzf , which occur in the elements of B−2 . Each of these
sums can be arbitrarily ordered because each ordering of the k̂ or the m̂
yields an ONB. Since H−

20 is assumed to be bounded the sums
∑

k̂ and
∑

m̂

can be interchanged.

Notation 3.4. 1.) As usual the abbreviation

(3.10) 〈n̂′|H−
N |n̂〉 := 〈Ψ−N (n̂′), H−

NΨ−N (n̂)〉

is used.

2.) Let n̂ ∈ BZF j . In the present case j = 2 or j = N , and in the next
section also j = M is used with 2 ≤M < N . But irrespective of these special
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choices, for each two bzf an addition and a subtraction can be defined by
adding, respectively by subtracting their components. Since these operations
on two bzf not necessarily result in a bzf the following notation is used (cf.
section(A.1.3)): “n̂± m̂ is a bzf” or “n̂± m̂ ∈ BZF”. These expressions
indicate that the sequence n̂± m̂ does not contain the numbers 2 or −1.

3.2. The basic lemma

3.2.1: It will be shown that the following proposition holds.

Lemma 3.5. There is a function C such that for each triple (n̂, k̂, m̂) of
bzf with

∑
α nα = N,

∑
β kβ =

∑
β mβ = 2 the relations

(3.11) C(n̂, k̂, m̂) =

{ ±1, if n̂− m̂ ∈ BZF and n̂+ k̂ − m̂ ∈ BZFN

0, if n̂− m̂ /∈ BZF or n̂+ k̂ − m̂ �∈ BZFN

hold, and that moreover

(3.12) 〈n̂′|H−
N |n̂〉 =

∑
k̂

∑
m̂

C(n̂, k̂, m̂)E(k̂, m̂)δ(n̂′, n̂+ k̂ − m̂),

where δ is the Kronecker symbol and where E(k̂, m̂) is defined by (3.6) (cf.
also Remark 3.3).

From Lemma 3.5 one can draw the following

Conclusion 3.6. If n̂ and n̂′ are given, 〈n̂′|H−
N |n̂〉 can be unequal zero only

if n̂− m̂ ∈ BZFN−2 and n̂′ − k̂ ∈ BZFN−2. These relations can be satisfied
only for

(
N
2

)
bzf m̂ and k̂. Hence the sums in (3.12) have finitely many

summands.

3.2.2: Though the lemma is used in this paper solely in the above version,
for later purposes a generalization of it will be proved in the next sections.
(The expenditure is the same in both cases.) In order to do so, some notation
is introduced.

Let 2 ≤M < N and let AM be a bounded operator defined on H−M such
that

(3.13) AN = Ω−N (AM )
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is defined on HN− . The matrix elements of AM with respect of B−M are again

denoted E(k̂, m̂) so that here

(3.14)
∑
α

kα =
∑
α

mα = M .

Moreover let

(3.15) 〈n̂′|AN |n̂〉 := 〈Ψ−N (n̂′), ANΨ−N (n̂)〉.

Finally, the function C is defined as in Lemma 3.2 but with condition (3.14).

Proposition 3.7. The relation

(3.16) 〈n̂′|AN |n̂〉 =
∑
k̂

∑
m̂

C(n̂, k̂, m̂)E(k̂, m̂)δ(n̂′, n̂+ k̂ − m̂)

holds. (Cf. also Remark 3.3 and Conclusion 3.6.)

3.3. Proof of Formula (3.16)

3.3.1: The starting point is Formula (A.1.28) and the analogue to For-
mula (3.9). Thus

(3.17) 〈n̂′|AN |n̂〉 =
(
N

M

)∑
k̂

∑
m̂

E(k̂, m̂)Z(n̂′, n̂+ k̂ − m̂),

where

(3.18) Z(n̂′, n̂, k̂, m̂) = 〈Ψ−N (n̂′), (T (k̂, m̂)⊗ 1⊗ · · · ⊗ 1)Ψ−N (n̂)〉.

Here the operator T (k̂, m̂) is defined by strict analogy with (3.8). Thus

T (k̂, m̂) = Ψ−M (k̂)〈Ψ−M (m̂), · 〉M(3.19)

= (M !)−
1

2

∑
Q∈SM

σ−(Q)Ψ−M (k̂)〈φμQ−1(1)···μQ−1(M)
, · 〉M ,

where μ1, . . . , μM ↔ m̂ with μ1 < · · · < μM is the correspondence defined by
(A.1.13). Now using the correspondence ν1, . . . , νN ↔ n̂ with ν1 < · · · < νN
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one finds that

(3.20) (T (k̂, m̂)⊗ 1⊗ · · · ⊗ 1)Ψ−N (n̂) = Ψ−M (k̂)⊗ χ(n̂, m̂),

where

χ(n̂, m̂) = (N !M !)−
1

2

∑
P∈SN

Q∈SM

σ−(P )σ−(Q)(3.21)

·
⎛
⎝ M∏

j=1

〈φμQ−1(j)
, φνP−1(j)

〉1
⎞
⎠φνP−1(M+1)···νP−1(N)

.

Thus finally we obtain the relation

(3.22) Z(n̂′, n̂, k̂, m̂) = 〈Ψ−N (n̂′),Ψ−M (k̂)⊗ χ(n̂, m̂)〉.

3.3.2: In this subsection the following proposition is proved:

(3.23) χ(n̂, m̂) �= 0,

if and only if n̂− m̂ ∈ BZF .
Firstly it is assumed that n̂− m̂ /∈ BZF . Then there is a number α such

that mα = 1 and nα = 0. Consequently, for each Q ∈ SM there is an r for
which Q−1(r) = α holds. But for each P ∈ SN the relation P−1(r) �= α is
true. Thus for each pair P,Q

(3.24)

M∏
j=1

〈φμQ−1(j)
, φνP−1(j)

〉1 = 0

so that also χ(n̂, m̂) = 0.
Secondly let us assume that n̂− m̂ ∈ BZF . Then for each α withmα = 1

also nα = 1 holds. Consequently one has to look for all pairs Q,P such that

(3.25)

M∏
j=1

〈φμQ−1(j)
, φνP−1(j)

〉1 = 1.

For all other pairs Q,P the product in (3.25) is zero because 〈φμ, φν〉1 = δμν .
Thus (3.25) is equivalent to

(3.26) μQ−1(j) = νP−1(j), j = 1, . . . ,M.
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In order to satisfy (3.26), for a given Q ∈ SM the permutation P ∈ SN must
be such that the μ1, . . . , μM , which by presumption occur in ν1, . . . , νM ,
occupy the places 1, . . . ,M being ordered by Q. All these pairs Q,P can be
explicitly indicated by the following procedure.

Let S ∈ SN be that permutation for which

(3.27) (νS−1(1), . . . , νS−1(N)) = (μ1, . . . , μM , �1, . . . , �N−M ),

where �1, . . . , �N−M are all those ν1, . . . , νN which are unequal μ1, . . . , μM ,
and in addition let �1 < · · · < �N−M . Then with the help of (A.1.7) one finds

Ψ−N (n̂) = σ−(S)
√
N !S−NU(S)φν1···νN

(3.28)

= σ−(S)
√
N !S−Nφμ1···μM�1···�N−M

so that (3.21) now reads

χ(n̂, m̂) = (N !M !)−
1

2σ−(S)
∑
P,Q

σ−(P )σ−(Q)(3.29)

·
⎛
⎝ M∏

j=1

〈φμQ−1(j)
, φμP−1(j)

〉
⎞
⎠φ�P−1(M+1)−M ···�P−1(N−M)

.

It follows from (3.29) that only those pairs Q,P give nonzero summands for
which P has the form:

(3.30) P =

(
Q,

M + 1, . . . , N
M + 1, . . . , N

)(
1, . . . ,M
1, . . . ,M

,R

)
,

where R ∈ SN−M is an arbitrary permutation. Hence, for a given Q there
are (N −M)! permutations P of the form (3.30) such that (3.26) is satisfied.

Since R acts on (νS−1(M+1), . . . , νS−1(N)) = (�1, . . . , �N−M ) one finally
obtains

χ(n̂, m̂) = (N !M !)−
1

2σ−(S)
∑
RQ

σ−(R)σ−(Q)2φ�R−1(1)···�R−1(N−M)
(3.31)

=

(
N

M

)− 1

2

σ−(S)Ψ−N−M (n̂− m̂)

for all pairs n̂, m̂ with n̂− m̂ ∈ BZF . Hence the proof of relation (3.23) is
complete, and in addition the explicit form of χ(n̂, m̂) is obtained.
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3.3.3: Inserting (3.31) into (3.20) and (3.18) yields
(3.32)

Z(n̂′, n̂, k̂, m̂) =

(
N

M

)− 1

2

σ−(S)〈Ψ−N (n̂′), S−N (Ψ−M (k̂)⊗ΨN−M (n̂− m̂))〉.

With the help of (A.1.7) and by the correspondence k̂ ↔ (κ1, . . . , κM ) it
follows that

S−N (Ψ−M (k̂)⊗Ψ−M−N (n̂− m̂))(3.33)

= (M !(N −M)!)−
1

2S−N (φκ1··· ,κM
⊗ φ�1···�N−M

)

=

(
N

M

)− 1

2

σ−(T )Ψ−N (n̂+ k̂ − m̂),

where T ∈ SN is the permutation which lines up the sequence (κ1, . . . , κM ,
�1, . . . , �N−M ) in its natural order. Thus one obtains

Z(n̂′, n̂, k̂, m̂)(3.34)

=

(
N

M

)−1
σ−(S · T )〈Ψ−N (n̂′),Ψ−N (n̂+ k̂ − m̂)〉

=

(
N

M

)−1
σ−(S · T )δ(n̂′, n̂+ k̂ − m̂).

It follows that Z(n̂′, n̂, k̂, m̂) �= 0 exactly if n̂− m̂ ∈ BZF , n̂+ k̂ − m̂ ∈
BZFN and n̂′ = n̂+ k̂ − m̂.

3.3.4: Since the permutations S and T are uniquely defined by the sequences
of indices (ν1, . . . , νN ), (μ1, . . . , μM ) and (κ1, . . . , κM ) or equivalently by n̂, m̂
and k̂ it is obvious to define the function C by

(3.35) C(n̂, k̂, m̂) =

⎧⎨
⎩

σ−(T · S) = ±1, if n̂− m̂ ∈ BZF and

n̂+ k̂ − m̂ ∈ BZFN

0, otherwise.

Now inserting (3.34) together with (3.35) into (3.17) Formula (3.16) is seen
to hold, thus also Lemma (3.5). With respect to the sums

∑
k̂ and

∑
m̂ I

refer to Remark 3.3 and Conclusion 3.6.
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3.4. An algorithm for C(n̂, k̂, m̂)

3.4.1: The question to be answered in this section reads: is there a finite
procedure for calculating C(n̂, k̂, m̂) if n̂, k̂, m̂ are given bzf . As in Sec-
tion 3.3 the more general case 2 ≤M < N is considered.

Since by definition C(n̂, k̂, m̂) = 0 if the condition

(3.36) n̂− m̂ ∈ BZF and n̂+ k̂ − m̂ ∈ BZFN

does not hold, only the case needs to be considered that (3.36) is true. Then

(3.37) C(n̂, k̂, m̂) := σ−(T · S) = (−1)J(T )(−1)J(S),

where S is defined by (3.27) and T by (3.33). Moreover, J(P ) here means
the number of inversions of a permutation P (cf. e.g. (A.1.6)).

3.4.2: To begin with, J(S) is to be calculated. Let n̂ be given. Then exactly
N numbers νi, i = 1, . . . , N exist such that nνi

= 1 and ν1 < · · · < νN . Hence
n̂↔ (ν1, . . . , νN ). Likewise, if m̂ is given, exactlyM numbers μj , j = 1, . . . ,M
exist such that mμj

= 1 and μ1 < · · · < μM .
Because of n̂− m̂ ∈ BZF for each j ∈ {1, . . . ,M} there is an rj such

that

(3.38) μj = νrj and j ≤ rj .

The permutation S is defined by (3.27), i.e.

(3.39) (νS−1(1)), . . . , νS−1(N)) = (μ1, . . . , μM , �1, . . . , �N−M )

and �1 < · · · < �N−M . Then the right-hand side of (3.39) can be generated
from (ν1, . . . , νN ) by the following procedure.

First, μ1 = νr1 is positioned at the r1 − th place in (ν1, . . . , νN ). There-
fore one needs r1 − 1 inversions to bring μ1 at the first place. Thereby the
positions of μ2, . . . , μM in (ν1, . . . , νN ) are not changed.

Second, μ2 = νr2 is positioned at the r2
th place in (ν1, . . . , νN ) so that one

needs r2 − 2 inversions to bring μ2 at the second place. Again the positions
of μ3, . . . , μM are not changed.

Thus, in order to bring μj = νrj to position j one needs rj − j inversions.
Therefore the total number of inversions, which realize the permutation S
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in (3.39), is given by

(3.40) J(S) =

M∑
j=1

rj − 1

2
M(M + 1).

3.4.3: Now, J(T ) is to be determined. This task is the following. Let n̂− m̂
and k̂ be given. Then n̂− m̂ ∈ BZF corresponds to the sequence of indices
(�1, . . . , �N−M ) and k̂ to the sequence (κ1, . . . , κM , ). Thus the sequence
of indices (κ1, . . . , κM , �1, . . . , �N−M ), brought to its natural order by the
permutation T and denoted (ν ′1, . . . , ν ′N ), corresponds to n̂+ k̂ − m̂ ∈ BZF .
Hence

(3.41) (ν ′T (1)), . . . , ν
′
T (N)) = (κ1, . . . , κM , �1, . . . , �N−M ).

Therefore, because n̂+ k̂ − m̂ is given, also (ν ′1, . . . , ν ′N ) is determined so
that for each j ∈ {1, . . . ,M} the position sj of κj in (ν ′1, . . . , ν ′N ) can be
read off with the help of the relations

(3.42) κj = ν ′sj and j ≤ sj .

Using the same arguments as in Section 3.4.2 one obtains for T−1 the result

(3.43) J(T ) = J(T−1) =
M∑
j=1

sj − 1

2
M(M + 1) .

3.4.4: Finally, the algorithm for C(n̂, k̂ , m̂) can be formulated thus:
1st step: Take bzf n̂, k̂ and m̂ which fulfil the equations

∑
nα = N ,∑

kα =
∑

αmα = M , and test Condition (3.36). If it is satisfied go to the

next step. If it is not, define C(n̂, k̂, m̂) = 0, so that the task has been done.
2nd step: Take n̂, m̂ and determine the corresponding sequences of

indices (ν1, . . . , νN ) and (μ1, . . . , μM ). Then from (3.38) read off the numbers
rj , j = 1, . . . ,M , and calculate J(S) with the help of (3.40).

3rd step: Take n̂+ k̂ − m̂ and k̂, and determine the corresponding se-
quences (ν ′1, . . . , ν ′N ) and (κ1, . . . , κM ). Then from (3.42) read off the num-
bers sj , j = 1, . . . ,M and calculate J(T ) with the help of (3.43).

4th step: Calculate C(n̂, k̂, m̂) using (3.37).
The coefficients C(n̂, k̂, m̂) do not depend on the specific physical system,

for which they are used, rather they are completely combinatorial. In other
words, they result solely from the algebraic structure imposed on the set
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BZF . Therefore they can be computationally calculated once for all. A
trivial special result is the following.

If k̂ = m̂, then T−1 = S so that

(3.44) C(n̂, m̂, m̂) = 1.

3.5. The final form of 〈n̂′|H−
N |n̂〉

3.5.1: For the sake of simplicity in this section only the special case M = 2
is considered. This does not entail any loss, because the Hamiltonians we
are interested in this paper are supposed to have two-particle interactions.
The starting point for this section therefore is (3.12). Moreover it is assumed
that the matrix elements E(k̂, m̂) of the dummy Hamiltonian H−

20 and the
coefficients C(n̂, k̂, m̂) are given.

Now the problem to be solved reads as follows. Let the pair n̂′, n̂ be given.
Then determine those pairs k̂, m̂ for which the summands in

∑
k̂ and

∑
m̂

do not vanish on general grounds.

It is known from the previous considerations that for given n̂′, n̂ only
those k̂ and m̂ in (3.12) are relevant which satisfy the condition

(3.45) n̂− m̂ ∈ BZF, n̂+ k̂ − m̂ ∈ BZFN , n̂′ = n̂+ k̂ − m̂,

hence also

(3.46) n̂′ − k̂ ∈ BZF, n̂′ − n̂ = k̂ − m̂.

Consequently, the sums in (3.12) have only finitely many summands as
already remarked in Conclusion 3.3.

3.5.2: In this section a disjoint dissection of all possible pairs k̂, m̂ for given
n̂′, n̂ will be defined. For this purpose it is useful to introduce some new

Notation 3.8. Let k̂, m̂ ∈ BZF2 so that
∑

kα =
∑

mβ = 2 is satisfied.

Then the sequence d̂ := k̂ − m̂ is called differences sequence. The set of all
difference sequences is denoted D.

Consequently there are only three types D�, � = 0, 1, 2 of possible d̂ gen-

erated by d̂ = k̂ − m̂ :
D0 contains only one element ô := (0, . . . , 0, . . .), and ô is generated by

all k̂, m̂ with k̂ = m̂.
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D1 contains d̂ = (1,−1, 0, . . .) and all permutations of it. They are gen-
erated by all k̂, m̂ such that for exactly one α the relation kα = mα = 1
holds.

D2 contains d̂ = (1, 1,−1,−1, 0, . . .) and all permutations of it. They are
generated by all k̂, m̂ for which no α exists such that kα = mα = 1.

It follows immediately that the sets D0,D1,D2, are disjoint and that

(3.47) D = D0,∪D1 ∪ D2.

Many results of the next sections are based on the following

Proposition 3.9. For each pair n̂′, n̂ ∈ BZFN there is a set

(3.48) {d̂1, . . . , d̂L} ⊂ D1

such that

(3.49) n̂′ = n̂+ d̂1 + · · ·+ d̂L.

The number L is uniquely determined by n̂′ and n̂, but the difference sequences
d̂j , j = 1, . . . , L are not.

Proof. From the pair n̂′, n̂ one forms the matrix

(3.50) X :=

(
n̂
n̂′

)
=

(
n1, n2, . . .
n′1, n′2, . . .

)
.

For each column of X the following alternative holds:

(3.51)

(
n�

n′�

)
=

(
0

0

)
or

(
1

1

)
or

(
0

1

)
or

(
1

0

)
.

Because n̂ and n̂′ both containN numbers 1, there are equally many columns(
0
1

)
and

(
1
0

)
. Let L by the number of each of the two kinds. Moreover let

�j and σj , j = 1, . . . , L be numberings of the indices of these columns such
that

(3.52)

(
n�j

n′�j

)
=

(
0

1

)
and

(
nσj

n′σj

)
=

(
1

0

)
.

Then for each pair of indices �j , σj , j = 1, . . . , L define d̂j = (dj1, dj2, . . .) by
dj�j

= 1, djσj
= −1 and djα = 0, α �= �j , σj .
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It follows from (3.52) that

(3.53) n̂+ d̂j = (. . . , nα, . . . , n
′
�j
, . . . , n′σj

, . . . , nβ , . . .) ,

if �j < σj , and analogously, if σj < �j .

Since j �= i implies �j �= �i, σj �= σi the addition of d̂i to n̂+ d̂j can be
carried through without altering n′�j

and n′σj
in (3.53). Thus, finally one

ends up with (3.49) so that the proposition is proved. �
Three immediate consequences are useful later on.

1.) For each pair i, j with i �= j the relation d̂i + d̂j ∈ D2 holds.

2.) n̂′ − n̂ ∈ D�, exactly if L = �, � = 0, 1, 2.

3.) n̂′ − n̂ /∈ D exactly if L ≥ 3.

3.5.3: Using the results of the previous sections the problem formulated
in 3.5.1 now can be solved by giving a disjoint classification of the matrix
elements defined by (3.12). According to (3.47) four cases have to be taken
into account.

1st case: n̂′ − n̂ /∈ D. It follows immediately from (3.12) that

(3.54) 〈n̂′|H−
N |n̂〉 = 0.

2nd case: n̂′ − n̂ ∈ D0, i.e. n̂
′ = n̂. Then 〈n̂|H−

N |n̂〉 is unequal zero only,

if also k̂ = m̂. Hence the double sum
∑

k̂

∑
m̂ reduces to a single sum

∑
m̂.

This sum runs over all m̂ for which n̂− m̂ ∈ BZF holds. Since n̂ contains
N numbers 1 there are exactly

(
N
2

)
different sequences m̂ such that this

condition is satisfied. Because of C(n̂, m̂, m̂) = 1, define

(3.55) E(n̂, ô) =
∑
m̂

E(m̂, m̂)

for all m̂ with n̂− m̂ ∈ BZF . Thus finally

(3.56) 〈n̂|H−
N |n̂〉 = E(n̂, ô) .

3rd case: n̂′ − n̂ = d̂1 ∈ D1. Hence n̂+ d̂1 ∈ BZF . Then 〈n̂′|H−
N |n̂〉 is

unequal zero only, if k̂ = m̂+ d̂1. Therefore the double sum
∑

k̂

∑
m̂ again

reduces to a single sum
∑

m̂ which runs over all m̂ so that n̂− m̂ ∈ BZF

and m̂+ d̂1 ∈ BZF . These m̂ can be characterized as follows.
Let d̂1 be given by d1κ = 1, d1μ = −1 and d1β = 0, β �= κ, μ. Hence nκ = 0

and nμ = 1. Then m̂+ d̂1 ∈ BZF if and only if mκ = 0 and mμ = 1. In
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order to satisfy the condition n̂− m̂ ∈ BZF it is necessary and sufficient
that nμ = 1 and that there is an α �= κ, μ, for which nα = 1 and mα = 1
holds. Since nκ = 0 and nμ = 1 there are N − 1 numbers α �= κ, μ for which
nα = 1 so that

∑
m̂ runs over all m̂ for which mα = mμ = 1. Now define

(3.57) E(n̂, d̂1) =
∑
m̂

C(n̂, m̂+ d̂1, m̂)E(m̂+ d̂1, m̂).

Then

(3.58) 〈n̂′|H−
N |n̂〉 = E(n̂, d̂1),

if n̂′ = n̂+ d̂1, d̂1 ∈ D1

4th case: n̂′ − n̂ = d̂2 ∈ D2. Let d̂2 be defined by d2κ = d2λ = 1, d2μ =

d2ν = −1. Then k̂ and m̂ with k̂ − m̂ = d̂2 are uniquely determined by kκ =
kλ = 1 and mμ = mν = 1. Hence the

∑
ĥ

∑
m̂ reduces to a single term. Now

define

(3.59) E(n̂, d̂2) = C(n̂, m̂+ d̂2, m̂)E(m̂+ d̂2, m̂) ,

where m̂ is determined by mμ = mν = 1. Then, if n̂′ − n̂ = d2 ∈ D2

(3.60) 〈n̂′|H−
N |n̂〉 = E(n̂, d̂2).

3.5.4: Summing up one obtains

Proposition 3.10. 1.) The matrix elements of the fermionic Hamiltonian
H−

N defined in Assumption 3.1 (Section 3.1.1.) are given by

(3.61) 〈n̂′|H−
N |n̂〉 =

{ E(n̂, n̂′ − n̂), if n̂′ − n̂ ∈ D
0, if n̂′ − n̂ /∈ D

and

(3.62) E(n̂′, n̂− n̂′) = Ē(n̂, n̂′ − n̂).

2.) Let be given n̂ ∈ BZF and d̂ ∈ D so that n̂+ d̂ ∈ BZF. Then it fol-
lows from Formula (3.12) that

(3.63) E(n̂, d̂) =
∑
m̂

C(n̂, m̂+ d̂, m̂)E(m̂+ d̂, m̂) ,

where the sum runs over all m̂ for which n̂− m̂ ∈ BZF and m̂+ d̂ =: k̂ ∈
BZF2. Hence, the matrix elements 〈n̂′|H−

N |n̂〉 are determined solely by the
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matrix elements E(k̂, m̂) of H−
20, for which k̂ − m̂ = d̂ = n̂′ − n̂. The sum

in (3.63) is finite.

For bosons a result holds, which is formally equal to (3.12), (3.61)
and 3.63), but the terms C,E, E are defined differently.

4. Heuristic Considerations

4.1: The result of Section 3, summarized in Formula (3.61), is completely
formal up to now. This is due to two unsolved questions connected with it.
They read as follows.

First, can Assumption 3.1 be verified? More concretely, is it possible to
find a one-particle Hilbert space H1 such that the dummy Hamiltonian H−

20

is defined on H2− and is bounded, and such that in addition the spectrum of
H−

20 contains the discrete eigenvalues of the dummy Hamiltonian H̄−
20, which

is primarily defined ? (cf. e.g. (A.2.1), (A.2.4), (A.2.6).)
Second, is Formula (3.61) of any advantage for the spectral problem

of H−
N?

4.2: To begin with, let us look for an answer to the first question. As is
already described in Subsection 2.1, any investigation of the Hamiltonian
H̄N of an N -particle system starts with a more or less informal specification
of the external fields acting upon the particles and of their interactions.
Customarily this is done using the position-spin representation. Then H̄N

is of the form (1.1) or, what is the same, (2.1). It is densely defined in a
Hilbert space H̄N . Likewise the corresponding dummy Hamiltonian H̄−

20 can
be immediately written down as is shown for two examples in Appendix A.2.
It is defined in a dense linear submanifold of H̄2.

In order to verify Assumption 3.1 the space H̄1 has to be properly
restricted to a subspaceH1. Such a restriction in turn can be carried through
by finding a proper orthonormal system O1 in H̄1 so that H1 = span O1.
Having in mind the physical meaning of H1 suggests taking the Hartree-
Fock procedure for H̄−

20 to determine O1. (For the details cf. Appendix A.3.)
This is because this procedure is based on the Ritz variational principle
which guarantees optimal approximation. Disregarding the fact that the
Hartree-Fock procedure generally is an infinite task, let us assume that it is
completely carried through for the dummy Hamiltonian H̄−

20 in H̄2−. Thus
one has obtained O1 and an orthonormal system O2 ⊂ H̄2− of vectors

(4.1) Ψ−κλ =
1√
2
(φκ ⊗ φλ − φλ ⊗ φκ), κ < λ.
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By definition, O1 is an ONB of H1, therefore O2 is an ONB of H−2 . The
corresponding energy levels Eκλ = E(m̂, m̂) for κ, λ↔ m̂ approximate the
discrete eigenvalues of H̄−

20 outside its continuous spectrum. Since the Hamil-
tonians considered in this paper are supposed to have a bounded discrete
spectrum, the set of the energy levels Eκλ is also bounded.

Then the restriction H−
20 of H̄−

20 to the space H2− is bounded because its
spectrum is approximated by the set {Eκλ : κ < λ} and its eigenvectors by
the set O2. As usual H−

20 can be defined on the whole space H2− using its
matrix representation with respect to the ONB O2.

In most cases of practical application the complete Hartree-Fock proce-
dure cannot be achieved, because it is infinite. Therefore one has to content
oneself with a finite section of this procedure. But also such a finite proce-
dure can be complicated.

Thus other methods were invented which are equivalent to the Hartree-
Fock procedure or approximate it.

4.3: Let us now come to the second question. From (3.61) one draws imme-
diately a simple consequence.

Proposition 4.1. The matrix of the Hamiltonian H−
N = Ω−N (H−

20) is diag-
onal if the matrix of the dummy Hamiltonian H−

20 is diagonal.

Unfortunately this result cannot be used to obtain the exact discrete
eigenvalues of a realistic N -particle system, because the exact eigenvectors
of a dummy Hamiltonian H−

20 containing interaction are not elements of any
ONB B−2 . But, if one contents with a Hartree-Fock approximation of the
eigenvalues of H−

20, Proposition 4.1 delivers a Hartree-Fock-like approxima-
tion for the eigenvalues of H−

N .
Thus, if one wants to obtain better approximations, one has to solve

the following problem. Since the results of Section 3 are valid for arbitrary
orthonormal bases B1 ⊂ H1, one firstly has to choose such an ONB and one
has to calculate the matrix elements E(k̂, m̂) of H−20 for the ONB B−2 . The
second part of the problem then is the question, wether the choise of B1 is
helpful for a reasonable approximation of H−20 and also of H−N .

A heuristic idea to cope with this problem is the following. Choose the
ONBs B1, resp. B−2 such that the matrix E of H−

20 with respect to B−2 , i.e.
the matrix defined by the elements E(k̂, m̂) is “as diagonal as possible”.
This means the elements of B−2 should approximate the eigenvectors of H−

20

optimally. Hence we end up again with the Hartree-Fock method, an equiv-
alent of it or an approximation. Therefore B1 = O1 and B−2 = O2 with O1

and O2 being defined in Section 4.2 and in Appendix 3.
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In order to get further insight into the general structure of the matrix
E I will give some purely heuristic arguments, which are based on physical
intuition. For this purpose let the Hartree-Fock energy levels Eμλ be num-
bered such that Eμν ≤ Eμλ if μ < ν < λ. Then, if λ is large enough, i.e. if
it exceeds a certain value ᾱ one expects that the particle having state λ is
“almost” free, so that the interaction between the two particles having the
states μ and λ is “almost” zero. Thus the two particles with states μ and λ
are “almost” free, if one particle of this pair is “almost” free. This implies,
that the vector Ψ−μλ ∈ H2− is “almost” an eigenvector ofH−

20. Now let μ, λ cor-
respond to a sequence of occupation numbers m̂. Then E(m̂, m̂) is “almost”
an eigenvalue of H−

20 for the eigenvector Ψ−κλ = Ψ−2 (m̂), so that E(k̂, m̂) is

“almost” equal to E(m̂, m̂)δ(k̂, m̂). Consequently E(k̂, m̂) is “small”, i.e. it
is “almost” zero, if k̂ �= m̂.

Now let us suppose that the term “small” has been concretized. Then
the above considerations can be summarized in the following assumption.

There is a natural number ᾱ such that E(k̂, m̂) is small for each pair
k̂, m̂ with k̂ �= m̂, for which a kσ = 1, σ > ᾱ exists or an m� = 1, � > ᾱ.

This suggests truncating the matrix E by substituting zeros for its small
elements. Then intuitively one conjectures that the truncated matrix leads
to an approximate solution of the spectral problem of H−

N which is the
goal of this paper. The precise meaning of the conjecture will be given in
Section 5.1.

4.4: The first step is defining the truncated dummy Hamiltonian Ĥ−
20 and

drawing some consequences. The operator Ĥ−
20 is determined by its matrix

Ê, which is given by the elements:

(4.2) Ê(k̂, m̂) =

⎧⎨
⎩

0, if k̂ �= m̂ and if σ, � exist such that
kσ = 1, σ > ᾱ or m� = 1, � > ᾱ,

E(k̂, m̂), otherwise.

According to this definition Ê is a finite nondiagonal matrix of order
(
ᾱ
2

)
with an infinite diagonal tail of elements E(m̂, m̂) where m̂ contains at least
one m� = 1, � > α̂.

Consequently, Ĥ−
20 is bounded so that Ĥ−

N = Ω−N (Ĥ−
20) is also bounded

and has the form (3.61), but with Ê(n̂, d̂) defined by Ê(k̂, m̂) the same way
as E(n̂, d̂) is determined by E(k̂, m̂). Then we obtain the following

Proposition 4.2. Let us consider 〈n̂′|Ĥ−
N |n̂〉.
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1.) If n̂′ − n̂ /∈ D, one concludes from (3.12) that

(4.3) 〈n̂′|Ĥ−
N |n̂〉 = 〈n̂′|H−

N |n̂〉 = 0.

2.) If n̂′ − n̂ = d̂ ∈ D and if there is λ > ᾱ such that dλ �= 0, it follows
from d̂ = k̂ − m̂ that kλ = 1 or mλ = 1. Hence Ê(k̂, m̂) = 0, and conse-
quently

(4.4) 〈n̂′|Ĥ−
N |n̂〉 = 0.

3.) Now let n̂′ − n̂ = d̂ ∈ D and suppose that dλ = 0, if λ > ᾱ. Then
if d̂ ∈ D2, the bzf k̂ and m̂ are uniquely determined and one obtains (cf.
Formula (3.59))

(4.5) 〈n̂′|Ĥ−
N |n̂〉 = Ê(n̂, d̂) = E(n̂, d̂) = 〈n̂′|H−

N |n̂〉.

If d̂ ∈ D1, things are more complicated. One has to apply the general method
described in Section 3.5.3 for several special cases. The matrix element
〈n̂′|Ĥ−

N |n̂〉 can be zero or unequal zero, and it need not be equal to 〈n̂′|H−
N |n̂〉.

4.5: By these considerations the problem of determining the eigenvalues of
H−

N is transformed into the following two ones.

First, do the eigenvalues of Ĥ−
N approximate those of H−

N?

Second, can the eigenvalues of Ĥ−
N be calculated, at least partially?

The first problem is treated in Section 5, the second one in Section 6.

5. Spectral Approximation

5.1: The dummy operators H−
20 and Ĥ−

20 are defined on H2− and are bounded

so that D := H−
20 − Ĥ−

20 is also bounded and defined on H2−. Moreover Ĥ−
20

and D depend on the fixed number ᾱ. In what follows these operators are
understood to be functions of a parameter α ∈ N and α ≥ 2 so that they
are written D(α) and Ĥ−

20(α), and for the matrix elements of Ê we write
Êα(k̂, m̂). Then by definition

(5.1) 〈k̂|D(α)|m̂〉 = E(k̂, m̂)− Êα(k̂, m̂), α ≥ 2.



A new approach to the N -particle problem in QM 1309

Therefore
(5.2)

〈k̂|D(α)|m̂〉 =
⎧⎨
⎩

0, if k̂ = m̂ or k̂ ↔ κ1, κ2 ≤ α
and m̂↔ μ1, μ2 ≤ α,

〈k̂|D(2)|m̂〉, κ1 > α or κ2 > α or μ1 > α or μ2 > α.

These properties have the following consequence.

Proposition 5.1. The sequence (D(α) : α ∈ N, α ≥ 2) converges strongly
to 0.

Proof. Let the projections Fα and F ′α be defined by

(5.3) Fα =

∞∑
κ1,κ2>α

Ψ−κ1κ2
〈Ψ−κ1,κ2

, · 〉

and F ′α = 1− Fα . Then Fα converges strongly to 0, if α→∞, and F ′α to 1.
By a simple calculation using Formula (5.2) one verifies that for each f
∈ H2−:

(5.4)
FαD(α)f = FαD(2)f,

F ′αD(α)f = F ′αD(2)Fαf.

Therefore

(5.5) ‖D(α)f‖ ≤ ||FαD(2)f‖+ ‖F ′αD(2)Fαf‖.

Because of

(5.6) ‖F ′αD(2)Fαf‖ ≤ ‖D(2)‖‖Fαf‖

and because Fα converges to 0, the proposition is seen to hold. �
Now, in order to transfer the last result to Ĥ−

N (α) := Ω−N (Ĥ20(α)) one
needs the following theorem.

Proposition 5.2. Let be given a sequence (AM (r) : r ∈ N) of bounded oper-
ators defined on HM. If AM (r) converges strongly to 0M for r →∞, then
also

(5.7) s− lim
r−∞Ω−N (AM (r)) = 0N

i.e. Ω−N (AM (r)) converges strongly.
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Proof. 1.) Let g ∈ HN , then

g =
∑

κ1···κN

bκ1···κN
φκ1···κN

.

If

χκM+1···κN
:=

∑
κ1···κM

bκ1···κN
φκ1···κM

,

it follows that

g =
∑

κM+1···κN

χκM+1···κN
⊗ φκM+1···κN

and

‖g‖2 =
∑

κM+1···κN

‖χκM+1···κN
‖2.

If B is a bounded operator on HM , then

(5.8) ‖(B ⊗ 1⊗ · · · ⊗ 1)g‖2 =
∑

κM+1···κN

‖BχκM+1···κN
‖2.

2.) Now, let us consider the operators AM (r). By supposition AM (r)
converges strongly to 0M . Hence by the principle of uniform boundedness
(cf. e.g. [13], p. 150) there is a number K such that for all r ∈ N:

‖AM (r)‖ ≤ K.

Thus, one obtains for all r ∈ N:

(5.9)
∑

κM+1···κN

‖AM (r)χκM+1···κN
‖2 ≤ K2

∑
κM+1···κN

‖χκM+1...κN
‖2.

Hence, by the criterion of Weierstraß the left series converges uniformly with
respect to the variable r. Therefore the limit r →∞ can be interchanged
with the sum so that

lim
r→∞ ‖(AM (r)⊗ 1⊗ · · · ⊗ 1)g‖2(5.10)

=
∑

κM+1...κN

lim
r→∞ ‖AM (r)χκM+1···κN

‖2 = 0 .

Thus, because for all g ∈ HN− the relation

‖Ω−N (AM (r))g‖ ≤
(
N

M

)
‖(AM (r)⊗ 1⊗ · · · )g‖

holds, Formula (5.7) is proved. �
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Then, with the help of the Propositions 5.1 and 5.2 one obtains the
following consequences.

Proposition 5.3. 1.) The sequence (Ĥ−
N (α) : α ∈ N, α ≥ 2) converges

strongly to H−
N . In other words, the operators Ĥ−

N (α) approximate H−
N (cf.

[12], p. 228, Formula 5.1). Hence all results concerning the approximation
of one operator by a strongly converging sequence of operators are valid for
H−

N and Ĥ−
N (α). (cf. [12], Chapter 5.). Here only two of these properties are

sketched.
2.) If e is an isolated eigenvalue of H−

N , then there is a sequence (eα :

α ∈ N) such that eα is an eigenvalue of Ĥ−
N (α) and such that eα → e. (cf.

[12], p. 239, Theorem 5.12).
3.) Let P be the spectral projection belonging to an eigenvalue e of H−

N .
Then an α0 exists such that for each α > α0 there is a spectral projection Pα

belonging to Ĥ−
N (α) and such that Pα converges strongly to P for α→∞.

(cf. [12], p. 240, Theorem 5.13.)

5.2: Besides the approximation of H−
N by Ĥ−

N (α) sketched above there are
results, which are based on the norm of D(α), i.e. on δ(α) := ‖D(α)‖. Using
the Formulae (A.1.29) and (A.1.30) one obtains the relation

(5.11) ‖H−
N − Ĥ−

N (α)‖ =‖ Ω−N (D(α)) ‖≤
(
N

2

)
δ(α).

Thus it follows that Ĥ−
N (α) converges in norm to H−

N if

(5.12) lim
α→∞ δ(α) = 0.

Theorems concerning spectral approximation based on convergence in norm
can be found in [12], p. 291, Theorem 4.10, p. 362, Theorem 5.10 and in [13],
p. 249, Proposition 5.28.

6. The operator Ĥ−
N and its matrix

6.1. Preliminary remarks

6.1.1: The aim of this section is proving

Proposition 6.1. 1.) The operator Ĥ−
N defined on HN− is an orthogonal

sum of operators defined on finite dimensional (orthogonal) subspaces of HN− .
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2.) Moreover, using the matrix of Ĥ−
N the matrices of the suboperators

can be determined explicitly.

If this proposition is verified, we have obtained a block-diagonalization of
Ĥ−

N . Thus a way is opened, depending on the numbers ᾱ and N , to calculate

the eigenvalues of Ĥ−
N with the help of numerical methods. Purely analytical

solutions of the eigenvalue problem of Ĥ−
N are also possible, if ᾱ = 2, 3, 4.

But, in these cases one cannot expect that Ĥ−
N is a good approximation of

a realistic Hamiltonian H−
N .

6.1.2: In order to verify Proposition 6.1 some further notation is used, which
is provided by

Definition 6.2. 1.) Let be given an n̂ ∈ BZFN and a natural number α,
which for the moment is completely arbitrary. Then

(6.1) (n̂, α) := (n1, . . . , nα) and (α, n̂) := (nα+1, nα+2, . . .).

For the infinite second part of n̂ also the abbreviation (α, n̂) =: r̂ is used.
2.) Let r̂ be given. Then Nβ(r̂) denotes the set of all n̂ ∈ BZFN , for

which (α, n̂) = r̂,
∑∞

�=α+1 n� = N − β and 0 ≤ β ≤ min{α,N}. Hence the
finite sequence (n̂, α) contains exactly β numbers 1 and α− β numbers 0.
Because β is determined by r̂, the notation is a bit redundant, but it turns
out to be useful.

Now it is supposed that α and N are fixed numbers. Then, Definition 6.2
yields the following

Consequence 6.3. 1.) The set Nβ(r̂), 0 ≤ β ≤ min{α,N} is finite, more
precisely, card Nβ(r̂) =

(
α
β

)
. Therefore the subspace HN− (r̂) of HN− spanned

by the Ψ−N (n̂) for n̂ ∈ Nβ(r̂) has dimension
(
α
β

)
.

2.) The sets Nβ(r̂) and Nβ′(r̂
′) are disjoint if r̂ �= r̂′. Moreover β = β′, if

and only if the sequences r̂, r̂′ contain the same number of elements 1. Then
for each n̂ ∈ Nβ(r̂) there is an n̂′ ∈ Nβ(r̂

′) such that (n̂′, α) = (n̂, α).

3.) Let B−N be the ONB of HN− defined by (A.1.13), and let Ψ−N (n̂) ∈ B−N .
Then there is exactly one β so that n̂ ∈ Nβ(α, n̂). Hence the sets Nβ(r̂) with
r̂ = (nα+1, nα+2, . . .) containing N − β numbers 1 and 0 ≤ β ≤ min{α,N}
form a complete disjoint dissection of the set of all n̂ ∈ BZF for which∑

� n� = N .
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4.) From the above parts 2 and 3 one concludes that the spaces HN− (r̂)
are orthogonal for different r̂, and that they span HN− , i.e.

(6.2) HN
− =

⊕
r̂

HN
− (r̂).

Later on a restriction of the set D of all difference sequences (cf. Nota-
tion 3.8) is needed.

Definition 6.4. Dα is the set of all d̂ ∈ D, for which d� = 0 if � > α. In
addition let Djα := Dj ∩ Dα, j = 0, 1, 2.

Therefore the sets Djα are again disjoint, and D0α = D0 = {ô}.
6.1.3: Finally a lemma is proved which is basic for the further considerations.

Proposition 6.5. If n̂ ∈ Nβ(r̂), 0 ≤ β ≤ min{α,N} and if d̂ ∈ Dα, d̂ �= ô,

then either n̂+ d̂ ∈ Nβ(r̂) or n̂+ d̂ /∈ BZF .

Proof. The proof is complete if one can show that n̂+ d̂ ∈ Nβ(r̂) is equiv-

alent to n̂+ d̂ ∈ BZF . First, if n̂+ d̂ ∈ Nβ(r̂), then n̂+ d̂ ∈ BZF holds.

Second, it follows from n̂+ d̂ ∈ BZF , that the (two or one) numbers 1 in
d̂ must be at positions where there are 0 in n̂. Likewise, the (two or one)
numbers -1 in d̂ must be at positions, where numbers 1 are in n̂. Because
of d̂ ∈ Dα, the sequence (n̂+ d̂, α) has the same quantity β of numbers 1
as (n̂, α) has, and r̂ := (α, n̂) = (α, n̂+ d̂) because d̂ does not affect r̂. Thus
n̂+ d̂ ∈ Nβ(r̂), so that the proof is complete. �

6.2. General properties of the matrix of Ĥ−
N

6.2.1: In what follows the definitions and results of Section 6.1 are applied
for the special choice α = ᾱ with a properly chosen ᾱ. Moreover, the ONBs
B−2 and B−N are those which are defined via the Hartree-Fock procedure in
the Sections 4.2 and 4.3.

6.2.2: In this subsection the first part of Proposition 6.1 is proved. In order
to do so, the matrix representation of Ĥ−

N with respect to B−N is used. The
proof is complete, if one shows that for n̂ ∈ Nβ(r̂) and n̂′ ∈ Nβ′(r̂

′) with
r̂ �= r̂′:

(6.3) 〈n̂′|Ĥ−
N |n̂〉 = 0.

There are three possibilities for the pair n̂′, n.
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If n̂′ − n̂ /∈ D, it follows from Formula (4.3) that (6.3) holds.
If n̂′ − n̂ ∈ D�Dᾱ, by Formula (4.4) it is seen that (6.3) holds, too.
If n̂′ − n̂ ∈ Dᾱ, then n̂′ = n̂+ d̂ ∈ BZF , d̂ ∈ Dᾱ and d̂ �= ô. Thus it fol-

lows from Proposition 6.5 that n̂′ ∈ Nβ(r̂). This result contradicts the sup-
position n̂′ ∈ Nβ′(r̂

′) and r̂′ �= r̂. Therefore n̂′ − n̂ /∈ Dᾱ is true.
Hence (6.3) holds if (ᾱ, n̂′) �= (ᾱ, n̂).
If one denotes the restriction of Ĥ−

N to the space HN− (r̂) by Ĥ−
N (r̂) one

obtains

(6.4) Ĥ−
N =

⊕
r̂

Ĥ−
N (r̂).

Thus, part one of Proposition 6.1 has been proved. The proof of the second
part is postponed to Section 6.3.

6.2.3: In this subsection therefor some preparatory work will be done. Since
the dimension ofHN− (r̂) is

(
ᾱ
β

)
with 0 ≤ β ≤ min{ᾱ, N}, it can become gigan-

tic depending on N, ᾱ and β. Therefore, aiming at the diagonalization of
Ĥ−

N (r̂) it is of vital interest to know how many matrix elements 〈n̂′|Ĥ−
N (r̂)|n̂〉

vanish on principle grounds. This means, how many matrix elements of Ĥ−
N

are zero for arbitrary dummy Hamiltonians Ĥ−
20 respectively their matrices

Ê. Then in addition further matrix elements of Ĥ−
N can be zero for special

Ĥ−
20. But the last aspect will not be considered in this paper.
Now, from Consequence 4.3 one immediately draws

Conclusion 6.6. Let n̂′, n̂ ∈ Nβ(r̂) and let n̂′ − n̂ /∈ Dᾱ, then

(6.5) 〈n̂′|Ĥ−
N |n̂〉 = 0.

Since by Proposition 3.9 the relation

n̂′ = n̂+ d̂1 + · · ·+ d̂L, d̂j ∈ D1

holds, one has a simple criterion to decide whether n̂′ − n̂ /∈ Dᾱ or not. Espe-
cially, if L > 2 Formula (6.5) is true.

6.2.4: Finally the nondiagonal matrix elements with n̂′ − n̂ = d̂ ∈ Dᾱ, d̂ �= ô
are considered. For this purpose let us introduce the following

Notation 6.7. If n̂′, n̂ ∈ BZFN . Then n̂′, n̂ are called Djᾱ−concatenated,
j = 0, 1, 2, if there is a d̂ ∈ Djᾱ so that n̂′ = n̂+ d̂. The bzf n̂′, n̂ are simply
called Dᾱ− concatenated if they are Djᾱ− concatenated for j = 0 or 1 or 2.
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With the help of this notation we arrive at the

Result 6.8. 1.) For each n̂ ∈ Nβ(r̂), there are exactly

τ1(ᾱ, β) := β(ᾱ− β)

D1ᾱ−concatenated n̂′ ∈ Nβ(r). This is because each number 1 out of the β
numbers 1 in (n̂, ᾱ) can be transposed at each position of the ᾱ− β numbers
0 by a d̂ ∈ D1ᾱ.

2.) For each n̂ ∈ Nβ(r̂) there are exactly

τ2(ᾱ, β) :=

(
β

2

)(
ᾱ− β

2

)

D2ᾱ-concatenated n̂′ ∈ Nβ(r̂), where
(
�
2

)
= 0 if � = 0, 1. This holds because

each pair of numbers 1 out of the β numbers 1 in (n̂, ᾱ) can be brought at
the position of each pair out of the ᾱ− β numbers 0 by a d̂ ∈ D2ᾱ.

3.) n̂′, n̂ ∈ Nβ(r̂) are D0ᾱ− concatenated exactly if n̂′ = n̂.

4.) For each n̂ ∈ Nβ(r̂) there are exactly

(6.6) τ(ᾱ, β) := τ2(ᾱ, β) + τ1(ᾱ, β) =

(
β

2

)(
ᾱ− β

2

)
+ β(ᾱ− β)

Dᾱ-concatenated n̂′ �= n̂.

5.) Finally, let us consider the matrix of Ĥ−
N (r̂) with the elements

〈n̂′|Ĥ−
N |n̂〉, n̂′, n̂ ∈ Nβ(r̂). Then, in the n̂′-row there are exactly τ(ᾱ, β) non-

diagonal elements which can be unequal zero, and similarly for n̂-columns.
Consequently, the number Z(ᾱ, β) of zero nondiagonal elements in each n̂′-
row or n̂-column is

(6.7) Z(ᾱ, β) =

(
ᾱ

β

)
− τ(ᾱ, β)− 1.

According to Conclusion 6.6 Z(ᾱ, β) is the number of bzf n̂ for which
n̂′ − n̂ /∈ Dᾱ in any n̂′-row, and likewise for the n̂-columns.

6.3. The matrices of the operators Ĥ−
N(r̂)

In this section the second part of Proposition 6.1 will be proved. This runs
as follows.



1316 Joachim Schröter

6.3.1: β = ᾱ ≤ N . The number z of elements n̂ ∈ Nᾱ(r̂) is
(
ᾱ
ᾱ

)
= 1, and the

element n̂ has the form

(6.8) n̂ = (1, . . . , 1, nᾱ+1, . . .).

Consequently the matrix of Ĥ−
N (r̂) is of order one and its element is

(6.9) 〈n̂|Ĥ−
N |n̂〉 = Ê(n̂, ô) = E(n̂, ô).

6.3.2: β = ᾱ− 1 ≤ N. 1.) The number z of elements n̂ ∈ Nᾱ−1(r̂) is
(

ᾱ
ᾱ−1

)
=

ᾱ, and the (n̂, ᾱ) for n̂ ∈ Nᾱ−1(r̂) contain only one 0 and ᾱ− 1 numbers 1.
2.) The n̂ ∈ Nᾱ−1(r̂) are numbered by n̂ =: n̂κ if 0 is at position ᾱ− κ

in (n̂, ᾱ), and κ = 0, . . . , ᾱ− 1.
3.) Any two elements n̂′, n̂ ∈ Nᾱ−1(r̂) with n̂′ �= n̂ are D1ᾱ-concatenated.

This is because the number of n̂ ∈ Nᾱ−1(r̂), which are Dᾱ-concatenated with
n̂′ �= n̂, according to (6.6) is

(6.10) τ(ᾱ, ᾱ− 1) = τ1(ᾱ, ᾱ− 1) = ᾱ− 1 = z − 1.

4.) The matrix of Ĥ−
N (r̂) in the present case is a z × z = ᾱ× ᾱ matrix,

which has the elements

(6.11) 〈κ′|Ĥ−
N |κ〉 := 〈n̂κ′ |Ĥ−

N |n̂κ〉 = Ê(n̂κ, n̂κ′ − n̂κ).

6.3.3: β = ᾱ− 2 ≤ N . 1.) The number z of elements n̂ ∈ Nᾱ−2(r̂) is
(

ᾱ
ᾱ−2

)
=

1
2 ᾱ(ᾱ− 1), and the (n̂, ᾱ) for n̂ ∈ Nᾱ−2(r̂) contain two numbers 0 and ᾱ− 2
numbers 1.

2.) The n̂ ∈ Nᾱ−2(r̂) are numbered by n̂ =: n̂κλ, κ < λ if the two 0 are
at the positions ᾱ− λ and ᾱ− κ, 0 ≤ κ < λ ≤ ᾱ− 1.

3.) Any two elements n̂′, n̂ ∈ Nᾱ−2(r̂) with n̂′ �= n̂ are Dᾱ-concatenated.
This is because the number of n̂ ∈ Nᾱ−2(r̂), which are Dᾱ-concatenated with
n̂′ �= n̂, according to (6.6) is

(6.12) τ(ᾱ, ᾱ− 2) =

(
ᾱ

ᾱ− 2

)
− 1 = z − 1.

4.) The matrix of Ĥ−
N (r̂) then is a z × z matrix with z = 1

2 ᾱ(ᾱ− 1),
which has the elements

(6.13) 〈κ′, λ′|Ĥ−
N |κ, λ〉 := 〈n̂κ′λ′ |Ĥ−

N |n̂κλ〉 = Ê(n̂κλ, n̂κ′λ′ − n̂κλ).

6.3.4: β = 2 < N . 1.) The number z of elements n̂ ∈ N2(r̂) is
(
ᾱ
2

)
= 1

2 ᾱ(ᾱ−
1), and the (n̂, ᾱ) for n̂ ∈ N2(r̂) contain two numbers 1 and ᾱ− 2 numbers 0.
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2.) The n̂ ∈ N2(r̂) are numbered by n̂ =: n̂κλ, κ < λ, if the two 1 are at
positions κ and λ, 1 ≤ κ < λ ≤ ᾱ

3.) Any two n̂′, n̂ ∈ N2(r̂) are Dᾱ-concatenated. This follow via the same
argument as in 6.3.3.

4.) Like in 6.3.3 one obtains the z × z matrix of Ĥ−
N (r̂). It has the ele-

ments

(6.14) 〈κ′λ′|Ĥ−
N |κλ〉 := 〈n̂κ′λ′ |Ĥ−

N |n̂κλ〉 = Ê(n̂κλ, n̂κ′λ′ − n̂κλ).

6.3.5: β = 1, N > 2. 1.) The number z of elements n̂ ∈ N1(r̂) is
(
ᾱ
1

)
= ᾱ,

and the (n̂, ᾱ) for n̂ ∈ N1(r̂) contain one number 1 and ᾱ− 1 numbers 0.
2.) The n̂ ∈ N1(r̂) are numbered by n̂ =: n̂κ, if 1 is at position κ, 1 ≤

κ ≤ ᾱ.
3.) Any two n̂′, n̂ ∈ N1(r̂) are D1ᾱ-concatenated. The argument is the

same as in 6.3.2.
4.) Also as in 6.3.2 the matrix Ĥ−

N (r̂) is obtained. It is a z × z = ᾱ× ᾱ
matrix having the elements

(6.15) 〈κ′|Ĥ−
N |κ〉 := 〈n̂κ′ |Ĥ−

N |n̂κ〉 = Ê(n̂κ, n̂
′
κ − n̂κ).

6.3.6: β = 0, N > 2. The number z of elements n̂ ∈ N0(r̂) is
(
ᾱ
0

)
= 1, and

the element n̂ has the form

(6.16) n̂ = (0, . . . , 0, nᾱ+1, . . .).

Consequently the matrix of Ĥ−
N (r̂) is of order 1 and its element is

(6.17) 〈n̂|Ĥ−
N |n̂〉 = Ê(n̂, ô) = E(n̂, ô).

6.3.7: 2 < β < ᾱ− 2, β ≤ N . 1.) The number z of elements n̂ ∈ Nβ (r̂) is(
ᾱ
β

)
. It is larger than the numbers z in the previous cases. Each element

n̂ ∈ Nβ(r̂) contains in (n̂, α) at least three numbers 1 and three numbers 0.
2.) For each β not all pairs n̂′, n′ ∈ Nβ(r̂) are Dᾱ-concatenated. To prove

this proposition it suffices to give an example. Thus, let

(6.18) n̂′ = (1, 1, 1, . . . , 0, 0, 0, nᾱ+1, . . .), n̂ = (0, 0, 0, . . . , 1, 1, 1, nᾱ+1, . . .),

and let d̂j ∈ D, j = 1, 2, 3 be defined by dj� = δj� − δᾱ+j−3,�, � ∈ N. Then

(6.19) n̂′ = n̂+ d̂1 + d̂2 + d̂3

so that n̂′ − n̂ /∈ Dᾱ. The factual number of non concatinated elements can
be calculated from Z(ᾱ, β) as defined by Formula (6.7).
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3.) The elements n̂ ∈ Nβ(r̂) are numbered by n̂ = n̂κ, κ = 1, . . . , z arbi-

trarily. Then the matrix elements of Ĥ−
N (r̂) in the present case are

(6.20) 〈κ′|Ĥ−
N |κ〉 := 〈n̂κ′ |Ĥ−

N |n̂κ〉 =
{ Ê(n̂κ, n̂κ′ − n̂κ), n̂κ′ − n̂κ ∈ Dᾱ

0, n̂κ′ − n̂κ /∈ Dᾱ .

6.3.8: Besides the above properties of the matrices of Ĥ−
N (r̂) the following

result is of practical relevance.

Proposition 6.9. Let the sequences r̂ and r̂′ have the same number N − β
of elements 1. If n̂1, n̂2 ∈ Nβ (r̂) and n̂1 �= n̂2, there are n̂

′
1, n̂

′
2 ∈ Nβ (r̂′), n̂′1 �=

n̂′2 such that

(6.21) 〈n̂′1|Ĥ−
N (r̂′)|n̂′2〉 = 〈n̂1|Ĥ−

N (r̂)|n̂2〉,

and vice versa. Thus, the matrices of Ĥ−
N (r̂′) and Ĥ−

N (r̂′) have the same
nondiagonal elements.

Proof. For given n̂1, n̂2 the bzf n̂′1, n̂′2 are chosen according to Conse-
quence 6.3 as follows: (n̂′j , α) = (n̂j , α), j = 1, 2. Thus, n̂′2 − n̂′1 = n̂2 − n̂1.

If n̂2 − n̂1 �∈ Dᾱ, it follows from the proof in Subsection 6.2.2. that For-
mula (6.21) holds, because both sides are zero.

Now let us assume that d̂ := n̂2 − n̂1 ∈ Dᾱ. Then applying Formula (3.63)
yields

〈n̂1|Ĥ−
N (r̂)|n̂2〉 = 〈n̂1|Ĥ−

N |n̂2〉(6.22)

=
∑
m̂

C(n̂2, m̂+ d̂, m̂)E(m̂+ d̂, m̂),

where the sum runs over all m̂ with n̂2 − m̂ ∈ BZF and k̂ := m̂+ d̂ ∈ BZF2.
Because Ê(m̂+ d̂, m̂) = 0, if kλ = 1, λ > ᾱ or mκ = 1, κ > ᾱ, in Formula
(6.22) only such components kρ,mσ are relevant, for which ρ, σ ≤ ᾱ. There-
fore, if the condition n̂2 − m̂ ∈ BZF is satisfied, then also n̂′2 − m̂ ∈ BZF
holds. The other condition is also satisfied, because d̂ = n̂′2 − n̂′1. Finally,
the inversions, which determine C(n̂, m̂+ d̂, m̂), only refer to the elements
of (n̂′2, α) = (n̂2, α). Thus one obtains

(6.23) C(n̂, m̂+ d̂, m̂) = C(n̂′, m̂+ d̂, m̂).

Hence the last term in (6.22) is equal to
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(6.24)
∑
m̂

C(n̂′2, m̂+ d̂, m̂)E(m̂+ d̂, m̂) = 〈n̂′1|Ĥ−
N |n̂′2〉 = 〈n̂′1|Ĥ−

N (r̂′)|n̂′2〉.

The proof of the inverse runs the same way. �

6.4. Conclusion

The decomposition of the matrix of Ĥ−
N into orthogonal finite matrices as

described in the Sections 6.2 and 6.3 now allows, depending on N and ᾱ, to
determine parts of the spectrum of Ĥ−

N . Thus, it is only a question of the
capacity of the computers available, which parts of the spectrum one can
calculate, and it is a question of physical relevance, which parts one wants
to calculate. Intuitively, the case β = ᾱ is a Hartree-Fock approximation.
This suggests that better approximations are achieved if ᾱ is greater than
N , because then the case β = ᾱ cannot occur.

7. Final Remarks

7.1. Summary of the results

7.1.1: The way of approaching the eigenvalue problem of the Hamiltonian
H−

N presented in the Sections 3 to 6 may at the first glance seem complicated.
Therefore it is useful to realize the simple kernel of the procedure. I will
present it in the form of a work program which comprises six steps.

1st step: As a starting point one formulates the Hamiltonian H̄N to be
considered. This is usually done making use of the position-spin representa-
tion, i.e. H̄N is an operator in the Hilbert space H̄N =

⊗N (L2(R3)⊗ S1).
The most general form of H̄N for charged particles is due to Breit. It can
be found in the literature, e.g. in [14] p. 247.

2nd step: According to Formula (2.5) one shapes the dummy Hamilto-
nian H̄−

20 := H̄−
2 (γ0), γ

−1
0 = N − 1, belonging to H̄N . Then one determines

the orhonormal system O1 via the Hartree-Fock procedure for H̄−
20 (Cf.

Appendix A.3.), an equivalent method or an approximation. Eventually,
the operators H̄−

N and H̄−
20 are restricted to the spaces HN− ,H2− with H1 =

span O1 and are denoted H−
N and H−

20.
3rd step: In order to determine the matrix E of H−

20 one has to choose
an ONB B1 of H1. As explained in Section 4.3, the best choise is B1 = O1.
Then, using the ONB B−2 ⊂ H2− the matrix elements E(k̂, m̂) are calculated
(cf. e.g. (A.1.10), (A.1.13)).
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4th step: From the matrix E one obtains the truncated matrix Ê by
replacing the “small” elements E(k̂, m̂), k̂ �= m̂ of E by zeros as described
in Section 4.4. The matrix Ê depends on a number ᾱ and determines the
operator Ĥ−

20.
5th step: The matrix elements Ê(n̂, d̂) of Ĥ−

N = Ω−N (Ĥ−
20) are calculated

from the matrix elements Ê(k̂, m̂) the same way as the E(n̂, d̂) are calculated
from E(k̂, m̂) in Section 3.5. In this connection the general results of the
Sections 6.1 and 6.2 are useful.

6th step: One determines the orthogonal submatrices of the matrix of
Ĥ−

N according to Section 6.3 and diagonalizes them as many as possible
numerically or analytically.

Then one can try to obtain error estimates applying suitable results of
the theory of spectral approximation.

7.1.2: As mentioned at the end of Section 6.4, the lowest energy levels of Ĥ−
N

are not simply Hartree-Fock-like approximations of the true values, if N is
smaller than ᾱ. Thus in this case the method presented here reproduces also
those results, which are obtained by other methods like density functional
theory (DFT) or configuration interaction method (CI). Summing up, it
is intuitively clear that the approximation of H−

N by Ĥ−
N is the better the

smaller the number N and the larger the parameter ᾱ, which in turn is
limited by the capacity of computers. My colleague Arno Schindlmayr is
preparing an application of the proposed method.

7.2. Finite procedures

7.2.1: The program described in Section 7.1.1 is a work program in a strict
sense only if all its steps could be carried through in finite time. Thus, the
critical points are found in those steps which contain infinite tasks. The first
and decisive one is the determination of the infinite ONB O1 in the second
step. For one has to expect that in most cases O1 can neither analytically
nor numerically be calculated completely. Hence, what can be performed
is the determination of a finite part Of1 of O1, i.e. its elements up to a
number R.

However, if only Of1 is available, the method described here does not
brake down. Rather the work program formulated in Section 7.1.1 can also
be carried through for Of1 instead of O1. The only question is, which of the
obtained results are of physical interest.
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In order to get an answer let us use the following obvious notation:

Bf1 = Of1,H1
f ,H2

f−,B−f2,B−fN ,HN
f−, H

−
f20, Ĥ

−
f20, H

−
fN , Ĥ−

fN , Êf , Êf .

Moreover, as already introduced above, R is the number of elements of Bf1.
Now, because the reduced work program depends on the three parame-

ters N,R and ᾱ, the above question can be answered as follows.
1.) If N > R, there are no vectors unequal zero in HN

f−. Therefore this
case has to be excluded.

2.) If N = R, the Hilbert space HN
f− is 1-dimensional, so that the N -

particle Hamiltonian Ĥ−
fN = H−

fN has one eigenvalue of Hartree-Fock type.
This result is of minor interest.

Thus, in order to get better results one needs an R which is “sufficiently”
larger than N .

3.) Let ᾱ ≤ N < R. Then, according to the classification described in
Section 6.3, for each β satisfying max{0, ᾱ+N −R} ≤ β ≤ ᾱ at least one
submatrix of the matrix of Ĥ−

fN exists, which in principle can be diagonalized
numerically.

4.) Let N < ᾱ < R. Then, as in point 3, for each β with max{0, ᾱ+
N −R} ≤ β ≤ N there is again at least one submatrix of the matrix of
Ĥ−

fN , which in principle can be diagonalized numerically.
5.) If N < ᾱ = R, then β = N . Therefore, there is only one submatrix

of the matrix of Ĥ−
fN , which is identical with the matrix of Ĥ−

fN . Moreover

Ĥ−
fN = H−

fN . Hence, this case is optimal, but it possibly can not be treated
numerically because R is too large.

The result of the above considerations now reads: only the cases 3., 4.
and 5. can be of physical interest.

7.2.2: Thus, the question arises, are they. In other words, what can be said
about the spectrum of Ĥ−

N by studying Ĥ−
fN . The answer is given by

Proposition 7.1. The spectrum of Ĥ−
fN is contained in the spectrum of

Ĥ−
N . Thus, the finite work program does not change the eigenvalues of Ĥ−

N ,
rather it delivers only a subset of them.

The proof runs as follows. It suffices to show that the matrices of Ĥ−
fN and

Ĥ−
N with respect to the ONB B−fN are identical.

Let MfL be the set of all l̂ ∈ BZFL such that l� = 0, if � > R. Then

n̂ ∈MfN exactly if Ψ−N (n̂) ∈ B−fN . Now let k̂, m̂ ∈ BZF2 and n̂′, n̂ ∈MfN .
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If n̂− m̂ ∈ BZF and n̂′ − k̂ ∈ BZF , then k̂, m̂ ∈Mf2. This implies

(7.1) Êf (k̂, m̂) = Ê(k̂, m̂).

In addition let Df be the set of all d̂ := k̂ − m̂, k̂, m̂ ∈Mf2. Thus d� = 0, if

� > R, for each d̂ ∈ Df .

By definition, Êf (n̂, d̂), where n̂ ∈MfN and d̂ ∈ Df , is constructed from

Êf (k̂, m̂) via Formula (3.63) like Ê(n̂, d̂) from Ê(k̂, m̂) (or E(n̂, d̂) from

E(k̂, m̂)). Therefore, by Formula (7.1) one obtains

(7.2) Êf (n̂, d̂) = Ê(n̂, d̂)

so that by use of (3.61)

(7.3) 〈n̂′|Ĥ−
fN |n̂〉 = 〈n̂′|Ĥ−

N |n̂〉.

Finally, if n̂ ∈MfN and n̂ ∈ Nβ(r̂), r̂ = (ᾱ, n̂), then Nβ(r̂) ⊂MfN . There-

fore, corresponding submatrices of Ĥ−
fN and Ĥ−

N have the same shape. Hence,
they are identical. �

This result guarantees the practical applicability of the finite work pro-
gram.

Appendix A.

A.1. Glossary

A.1.1: The formalism briefly described in this section was mainly developed
by Cook [10] and by Schroeck [11]. The purpose of this appendix is fixing
notation and formulating some few results, which are used throughout the
paper.

The starting point is an axiom of QM that reads: Let H1 be the Hilbert
space of a system containing only one particle of a certain kind. Then the
Hilbert space of a system containing N particles of the same kind is the
symmetric or the antisymmetric subspace of the N−fold tensor product
HN :=

⊗N H1. Likewise the Hilbert spaces of systems composed of different
kinds of particles are subspaces of appropriate tensor products of one-particle
Hilbert spaces.

In what follows the tensor product ⊗ of Hilbert spaces is understood to
be a complete space. But the noncomplete tensor product of linear manifolds
is a noncomplete linear manifold. This product is denoted ⊗.



A new approach to the N -particle problem in QM 1323

The inner product in HN , denoted 〈 ·, · 〉 or 〈 ·, · 〉N , is defined as usual
by the inner product 〈 ·, · 〉1 in H1 in the following way. If f = f1 ⊗ · · · ⊗ fN
and g = g1 ⊗ · · · ⊗ gN , then

(A.1.1) 〈f, g〉N = 〈f1, g1〉1 · · · 〈fN , gN 〉1 .

By linear and continuous extension 〈·, ·〉N is defined on HN .
The tensor structure of the N -particle Hilbert spaces implies the follow-

ing

Proposition A.1.1. Let B1 := {φλ : λ ∈ N} be an orthonormal basis (ONB)
in H1. Then

(A.1.2) BN := {φλ1
⊗ · · · ⊗ φλN

: λj ∈ N, j = 1, . . . , N}

is an ONB in HN .

Throughout this paper the abbreviation is used:

(A.1.3) φλ1···λN
= φλ1

⊗ · · · ⊗ φλN
.

A.1.2: Let SN be the symmetric group, and let P ∈ SN . Then the operator
U(P ) of the exchange of particles is defined by

(A.1.4) U(P )φκ1···κN
= φκP−1(1)···κP−1(N)

.

and by continuous linear extension.
The operator U(P ) has the following properties.

Proposition A.1.2. 1.) U(P ) is invariant under a change of the ONB.
2.) U(P ) is defined on HN and is unitary, i.e. U(P )U�(P ) = 1. More-

over

(A.1.5) U�(P ) = U(P−1), U(PQ) = U(P )U(Q).

With the help of U(P ), P ∈ SN the symmetrizer and the antisymmetrizer
are defined by

(A.1.6) S±N =
1

N !

∑
P∈SN

σ±(P )U(P )

with σ+(P ) = 1 and σ−(P ) = (−1)J(P ), where J(P ) is either the number of
inversions of P or equivalently the number of transpositions forming P .
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Some useful properties of the operators S±N are summarized in the next

Proposition A.1.3. S±N are projections defined on HN . Moreover

(A.1.7)

U(P )S±N = S±NU(P ) = σ±(P )S±N ,

S±M+K(S±Mφμ1···μM
⊗ S±Kφκ1···κK

) = S±M+K(φμ1···μM
⊗ φκ1···κK

).

Then the physically relevant subspaces of HN are HN± = S±N [HN ] where
+ stands for bosons and − for fermions. Thus

(A.1.8) HN = HN
+ ⊕HN

− ⊕HN
r ,

where ⊕ is the orthogonal sum as usual.
A special role in this paper play some orthonormal bases of HN± , which

are defined by

Proposition A.1.4. 1.) The set B+
N of all vectors

(A.1.9) Ψ+
κ1···κN

:=

√
N !√

Πjnκj
!
S+
Nφκ1···κN

with κ1 ≤ · · · ≤ κN and nκj
=

∑N
α=1 δκjκα

is an ONB in HN
+ . Moreover∑

j nκj
= N .

2.) The set B−N of all vectors

(A.1.10) Ψ−κ1···κN
:=
√
N !S−Nφκ1···κN

with κ1 < · · · < κN is an ONB in HN− .

A.1.3: For the problems to be treated in this paper notation (A.1.9) and
(A.1.10) is not optimal, it can be improved by introducing the sequences of
occupation numbers by the following

Definition A.1.5. 1.) Let be given a sequence of indices κ1, . . . , κN as in
(A.1.9) or in (A.1.10), where κj ∈ N, j = 1, . . . , N. Then define the occupa-
tion number of κ ∈ N by

(A.1.11) nκ =

N∑
j=1

δκκj
,
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and the sequence of all nκ, κ ∈ N, abbreviated bzf , by

(A.1.12) (n1, n2, . . .) =: n̂.

2.) Moreover let us denote the set of all bzf , for + or for −, by BZF .
Then the proposition “n̂ is a sequence of occupation numbers” is abbreviated
by “n̂ is a bzf” or by “n̂ ∈ BZF”. Sometimes it is useful to write BZFL for
the set of all bzf l̂ with

∑
� l� = L.

Consequence A.1.6. 1.) Each sequence of indices κ1, . . . , κN determines
uniquely a bzf , and vice versa.

2.) The elements of the ONB B±N can be written this way:

(A.1.13) Ψ±κ1···κN
=: Ψ±N (n̂).

This notation turns out to be very useful.
A.1.4: In the next step the question is to be answered which are the physi-
cally relevant operators, i.e. the relevant observables in HN . Obviously only
those are relevant which leave the spaces HN± invariant.

Therefore we define: Let DA ⊂ HN be the domain of a selfadjoint oper-
ator A. Then, if for each f ∈ DA ∩HN± the relation Af ∈ HN± holds, the
operator A is called a physically relevant observable.

Consequence A.1.7. 1.) A is physically relevant, exactly if

(A.1.14) A = S+
NAS+

N + S−NAS−N + Sr
NASr

N with Sr = 1− S+
N − S−N .

2.) A is physically relevant, if for each P ∈ SN

(A.1.15) A = U(P )AU�(P )

holds, i.e. if A is invariant under permutations of particles.

A.1.5: Many relevant physical observables are defined using tensor products
of operators in Hilbert spaces. In order to avoid unnecessary complications
here only the tensor product of two operators is introduced, because the
extension to more than two factors is straightforward.

Thus let be given two Hilbert spaces H1 and H2 and two densely defined
closed operators A1 and A2. Then A�

1 and A�
2 exist having domains DA�

1

and DA�
2
.
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Now form the (noncomplete) tensor product D0 := DA�
1
⊗DA�

2
⊂ H1 ⊗

H2. It is dense in H1 ⊗H2 and contains only finite linear combinations of
the form

(A.1.16) f =
∑

ajϕ
j
1 ⊗ ϕj

2, ϕj
κ ∈ DAκ

, κ = 1, 2.

Then the operator T0(A
�
1, A

�
2) is defined by

(A.1.17) T0(A
�
1, A

�
2)f =

∑
aj(A

�
1ϕ

j
1)⊗ (A�

2ϕ
j
2).

Finally the tensor product of A1 and A2 is defined by

(A.1.18) A1 ⊗A2 = T0(A
�
1, A

�
2)

�.

Hence, for selfadjoint operators definition (A.1.18) reads

A1 ⊗A2 = T0(A1, A2)
�.

A very useful tool is given by

Proposition A.1.8. For bounded operators A1, A2 the above definition of
A1 ⊗A2 is equivalent to

(A.1.19) (A1 ⊗A2)g =

∞∑
λκ

aλκ(A1φ
1
λ)⊗ (A2φ

2
κ) ,

where {φ�
λ : λ ∈ N} is an ONB in H�, � = 1, 2 and g =

∑∞
λκ aλκφ

1
λ ⊗ φ2

κ ∈
H1 ⊗H2.

A.1.6: The results of the last section now are applied to transfer observables
of M -particle systems into observables of N -particle systems, M < N . Some
basic results in this connection are contained in the following

Proposition A.1.9. 1.) Let AM be selfadjoint in HM and let 1 be the
identity operator in HN−M .Then

(A.1.20) (AM ⊗ 1)� = AM ⊗ 1 .

2.) If AM is bounded, then

(A.1.21) ‖ AM ⊗ 1 ‖=‖ AM ‖ .



A new approach to the N -particle problem in QM 1327

3.) If (AM +BM )� = A�
M +B�

M , then

(A.1.22) (AM +BM )⊗ 1 ⊃ (AM ⊗ 1) + (BM ⊗ 1) .

The =-sign holds if the domains of both sides are equal, which is the case if
AM , BM are bounded and have domain HM .

4.) If AM or BM is bounded then

(A.1.23) (Am ⊗ 1)(BM ⊗ 1) = (AMBM ⊗ 1) .

5.) From (A.1.7) one concludes that

(A.1.24) S±N (S±M ⊗ 1) = S±N = (S±M ⊗ 1)S±N .

A.1.7: The operator which defines the physically relevant transfer from HM

to HN ,M < N is given by

ΩN (AM ) :=(A.1.25)

(M !(N −M)!)−1
∑
P∈SN

U(P )(AM ⊗ 1⊗ · · · ⊗ 1)U�(P ),

where AM is a densely defined closed linear operator in HM and where 1 is
the identity operator on H1. It has the following properties.

Proposition A.1.10. 1.) The equation

(A.1.26) U(Q)ΩN (AM )U�(Q) = ΩN (AM )

holds for each Q ∈ SN so that ΩN (AM ) is indeed physically relevant if it is
selfadjoint.

2.) If AM is bounded and selfadjoint with domain HM the operator
ΩN (AM ) is bounded and selfadjoint with domain HN .

3.) If AM is unbounded and selfadjoint then ΩN (AM ) is not necessarily
selfadjoint. But it is symmetric if it is densely defined.

A.1.8: Though the operators ΩN (AM ) are physically relevant, they are not
of interest in a strict sense, if one wants to consider only systems with one
kind of particles as is the case in this paper. Then only the spaces HN± ⊂
HN are of interest and the operators defined therein. Thus the following
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definition is natural for the operators of proper physical relevance:

(A.1.27) Ω±N (AM ) = S±NΩN (AM )S±N .

As in the preceding sections here Ω±N (AM ) is studied only for selfadjoint
AM . But the definition itself is much more general. The operators Ω±N (AM )
have some properties, which are of special interest in this paper.

Proposition A.1.11. 1.) For each P ∈ SN the following relations hold:

(A.1.28)

Ω±N (AM ) =

(
N

M

)
S±N (AM ⊗ 1 · · · ⊗ 1)S±N

=

(
N

M

)
S±NU(P )(AM ⊗ 1⊗ · · · ⊗ 1)U�(P )S±N .

2.) Ω±N (AM ) is selfadjoint, because AM is selfadjoint by supposition and
because S±N are projections, i.e. are bounded.

3.) If AM is bounded, then Ω±N (AM ) is bounded and

(A.1.29) ‖ Ω±N (AM ) ‖≤
(
N

M

)
‖ AM ‖ .

4.) If AM +BM , AM and BM are selfadjoint, Formula (A.1.22) implies
the relation

(A.1.30) Ω±M (AM +BM ) ⊃ Ω±N (AM ) + Ω±N (BM ) .

If AM , BM are bounded with domain HM , the = sign holds.
5.) Let AM +BM and Ω±N (AM ) + Ω±(BM ) be selfadjoint. Then (A.1.30)

is an equation, because a selfadjoint operator cannot have a selfadjoint exten-
sion.

6.)Finally, from (A.1.24) and (A.1.28) one concludes that

(A.1.31) Ω±N (Ω±M (AM )) = Ω±N (AM ) .

A.2. Dummy Hamiltonians

A.2.1: In order to formulate explicitly the dummy Hamiltonians for elec-
tronic systems it is advisably to work with representations of Hilbert spaces
instead of the abstract versions used elsewhere in this paper. For our pur-
poses the position-spin representation is most useful. Therefore the Hilbert
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spaces we are working with are

(A.2.1) HN
− ⊂ H̄N =

N⊗
(L2(R3)⊗ S1), H2

− ⊂ H̄2 =

2⊗
(L2(R3)⊗ S1),

where S1 is the complex vector space of spin functions u : {1,−1} → C which
is spanned by the ONB {δ1,s, δ−1,s}.(Cf. also Subsection 3.1.1.) This choice
fits into the abstract formulations by the following definition of the ten-
sor product. Let x ∈ R, s ∈ {1,−1}, and z := (x, s). Then, if f1, f2 ∈ H̄1 =
L2(R3)⊗ S1, one defines f1 ⊗ f2 by

(A.2.2) (f1 ⊗ f2)(z1, z2) = f1(z1)f(z2) .

For the sake of simplicity let us assume that with the following two examples
the external fields and the interactions are electrostatic. This means that all
influences of magnetism and spin are disregarded.

A.2.2: On the above assumptions the Hamiltonian for the N electrons in
an atom reads

(A.2.3) H−
N ⊃

1

2m0

N∑
j=1

P 2
j −Ne20

N∑
j=1

1

rj
+

1

2
e20

N∑
j �=k

1

rjk
,

where rj = |xj | and rjk = |xj − xκ|. The domain of H−
N is HN− as defined

in Section 3.1.1. Consequently, the atomic dummy Hamiltonian describes
“dummy helium” and is defined on H2−. It reads explicitly

(A.2.4) H−
20 ⊃

γ0
2m0

(P 2
1 + P 2

2 )− 2γ0e
2
0

(
1

r1
+

1

r2

)
+ e20

1

r12

with γ0 = (N − 1)−1.

A.2.3: Now let us consider N electrons in a finite lattice, the points of
which are given by yα, α = 1, . . . , N each carrying the charge e0. Then the
Hamiltonian is defined by

(A.2.5) H−
N ⊃

1

2m0

N∑
j=1

P 2
j − e20

N∑
j=1

N∑
α=1

1

r′jα
+

1

2

N∑
j �=κ

1

rjκ
,

where r′jα = |xj − yα|. Thus the dummy solid has a Hamiltonian given by

(A.2.6) H−
20 ⊃

γ0
2m0

(P 2
1 + P 2

2 )− γ0e
2
0

N∑
α=1

(
1

r′1α
+

1

r′2α

)
+ e20

1

r12

and is defined on H2−.
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A.3. Hartree-Fock Procedure

A.3.1: In what follows a system of two Fermions is considered. For this
purpose it is useful to introduce some notation.

1.) Let H̄1 = L2(R3)⊗ S1, where S1 is the space of spin functions spaned
by the ONB{δ1S , δ−1S}. Thus the general two-particle space is H̄2 = H̄1 ⊗
H̄1 and the space for Fermions is H̄2−.

2.) It is assumed that the Hamiltonian of the system has the form

(A.3.1) H2 = K ⊗ 1 + 1⊗K +W,

where W is a multiplication operator densely defined in H̄2− by a real func-
tion V (x, s, x′, s′), x, x′ ∈ R3 and s, s′ ∈ {1,−1}. The operator K contains
the kinetic energy and the external fields. The dummy Hamiltonian is an
example of the operators considered here.

3.) The inner product in H̄1 is defined as usual by

(A.3.2) 〈f, g〉 =
1∑

s=−1

∫
f̄(x, s)g(x, s)dx

for f, g ∈ H̄1.
4.) Some special forms of the inner product appear in the context of

Hartree-Fork procedure. Let Ψ ∈ H̄2 and f, g ∈ H̄1. Then

(A.3.3) 〈g,WΨ〉1(x, s) =
∑
s′

∫
ḡ(x′, s′)V (x′, s′, x, s)Ψ(x′, s′, x, s)dx

and

(A.3.4) 〈g,Wf〉1(x, s) =
∑
s′

∫
ḡ(x′, s′)V (x′, s′, x, s)f(x′, s′)dx′.

Therefore one obtains

(A.3.5) 〈g,W (f ⊗ h)〉1 = 〈g,Wf〉1h.
5.) From (A.3.4) one concludes that

(A.3.6) 〈g,Wf〉1 = 〈Wg, f〉1.
If g = f , the term 〈f,Wf〉1 is the action of the “charge density” |f |2 on
one particle. Moreover, if the function V is bounded, the term 〈g,Wf〉1 is
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defined for all g, f ∈ H̄1. For realistic Hamiltonians H̄2 of the form (A.3.1)
the function V is symmetric, i.e. V (x, s, x′, s′) = V (x′, s′, x, s).

A.3.2: An essential part of the Hartree-Fock procedure is given by the fol-
lowing

Definition A.3.1. The linear operator

(A.3.7) F (χ) = K + 〈χ,Wχ〉1 − 〈χ,W ·〉1χ

is defined for all χ ∈ H̄1, for which the domain of F (χ) is dense in H̄1 �
span{χ} =: H̄1

χ. It is called the Fock operator belonging to χ.

Then for each χ, for which F (χ) is defined, the following result holds.

Proposition A.3.2. F (χ) is symmetric in H̄1
χ.

Proof. Let f, g be elements of the domain of F (χ). Then

〈f, F (χ)g〉 = 〈f,Kg〉+ 〈χ⊗ f,Wχ⊗ g〉 − 〈χ⊗ f,Wg ⊗ χ〉
= 〈Kf, g〉+ 〈Wχ⊗ f, χ⊗ g〉 − 〈Wχ⊗ f, g ⊗ χ〉
= 〈F (χ)f, g〉.

�
A.3.3: Now the Hartree-Fock procedure can be described by the following
two steps.

1st step: Determine two elements φ1, φ2 of H̄1 and two real numbers e12
and e21 such that the equations

(A.3.8)
F (φ2)φ1 = e21φ1

F (φ1)φ2 = e12φ2

are satisfied. In addition let e12 ≤ e21.
2nd step: Determine normed elements φκ ∈ H̄1

φ1
, κ = 3, 4, . . . and real

numbers e1κ such that the equations

(A.3.9) F (φ1)φκ = e1κφκ

hold.
The Hartree-Fock procedure is usually derived via the Ritz variational

principle. But this derivation is not of interest in the present context, rather
the following consequence.
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Proposition A.3.3. The set O1 of vectors φκ ∈ H1, κ = 1, 2, 3, . . . obtained
from (A.3.8) and (A.3.9) is an orthonormal system in H̄1.

Proof. From the definition of the Fock operator and from the Formulae
(A.3.8), (A.3.9) it follows that φκ ∈ H̄1

φ1
, κ ≥ 2. Hence 〈φ1, φκ〉 = 0 for all

κ ≥ 2. Since the Fock operator F (φ1) is a symmetric linear operator in H̄1
φ1
,

all its eigenspaces are orthogonal for different eigenvalues. Therefore the set
of eigenvectors φκ, κ ≥ 2 can be chosen such that it is an orthonormal system
in H̄1

φ1
. Hence, O1 is an orthonormal system in H̄1. �

A.3.4: The Hartree-Fock procedure is not only a method determining the
set O1, rather it is also used for an approximate diagonalization of H̄2. This
runs as follows. Let

(A.3.10) Ψ−κλ =
1√
2
(φκ ⊗ φλ − φλ ⊗ φκ)

for κ < λ and let

(A.3.11) Eκλ = 〈Ψ−κλ, H2Ψ
−
κλ〉.

Then the Hartree-Fock approximation of H̄2 is given by the diagonal
operator

(A.3.12) Ĥ−
2 =

∑
κλ

EκλΨ
−
κλ〈Ψ−κχ, · 〉.

Because normally the discret spectrum of H̄2 is bounded, the operator Ĥ−
2

is bounded too. Ĥ−
2 is the best approximation of H̄2 using only the Ritz

variational principle for vectors of the shape (A.3.10).
By Proposition 4.1 a Hartree-Fock like diagonalization of an N -particle

Hamiltonian is obtained by Hartree-Fock diagonalizing its dummy Hamilto-
nian.
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