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BPS quivers for N = 2 SU(N) gauge theories are derived via geo-
metric engineering from derived categories of toric Calabi-Yau three-
folds. While the outcome is in agreement of previous low energy
constructions, the geometric approach leads to several new results.
An absence of walls conjecture is formulated for all values of N ,
relating the field theory BPS spectrum to large radius D-brane
bound states. Supporting evidence is presented as explicit compu-
tations of BPS degeneracies in some examples. These computations
also prove the existence of BPS states of arbitrarily high spin and
infinitely many marginal stability walls at weak coupling. More-
over, framed quiver models for framed BPS states are naturally
derived from this formalism, as well as a mathematical formula-
tion of framed and unframed BPS degeneracies in terms of motivic
and cohomological Donaldson-Thomas invariants. We verify the
conjectured absence of BPS states with “exotic” SU(2)R quantum
numbers using motivic DT invariants. This application is based in
particular on a complete recursive algorithm which determines the
unframed BPS spectrum at any point on the Coulomb branch in
terms of noncommutative Donaldson-Thomas invariants for framed
quiver representations.
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1. Introduction

The BPS spectrum of four dimensionalN = 2 gauge theories has been a con-
stant subject of research since the discovery of the Seiberg-Witten solution.
An incomplete sampling of references includes [22, 23, 61, 65, 85, 101, 112,
113, 125–127, 131]. Very recent intense activity in this field was motivated
by the connection [67] between wallcrossing on the Coulomb branch and the
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Kontsevich-Soibelman formula [106]. An incomplete sampling of references
includes [2, 3, 34–39, 67–70, 137]. For recent reviews see [33, 115].

On the other hand, it has been known for a while that manyN = 2 gauge
theories are obtained in geometric engineering as a low energy limit of string
theory dynamics in the presence of Calabi-Yau singularities [5, 96, 98, 99,
101]. This leads immediately to a close connection between the gauge theory
BPS spectrum and the BPS spectrum of string theory in the presence of such
singularities. The latter consists of supersymmetric D-brane bound states
wrapping exceptional cycles, and hence can in principle be analyzed using
derived category methods [7, 8, 12, 56, 57, 104, 128]. In principle geometric
engineering is expected to provide a microscopic string theory derivation
for the BPS quivers found in [3, 37, 47, 48] by low energy methods. Indeed
the BPS quivers constructed in loc. cit. for SU(N) gauge theories were first
derived by Fiol in [62] using fractional branes on quotient singularities. It
is quite remarkable that this construction was confirmed ten years later by
completely different low energy methods. A similar approach, employing a
more geometric point of view has been subsequently employed in [10, 54]
for SU(2) gauge theories. Their results are again in agreement with the low
energy constructions.

The goal of the present work is to proceed to a systematic study of the
gauge theory BPS spectrum via categorical and geometric methods. Special
emphasis is placed on higher rank gauge theories, where the BPS spectrum is
not completely known on the entire Coulomb branch, many problems being
at the moment open. In order to keep the paper to be of reasonable length,
only pure SU(N) gauge theories will be considered in this paper. In this case
the local toric threefolds are resolvedAN−1 quotient singularities fibered over
P1, such that the singularity type does not jump at any points on the base.
Their derived categories are equivalent by tilting to derived categories of
modules over the path algebra of a quiver with potential determined by an
exceptional collection of line bundles. Physically, these quivers encode the
quantum mechanical effective action of a collection of fractional branes on
the toric threefold. Taking the field theory limit amounts to a truncation of
the fractional brane quiver, omitting the branes which become very heavy
in this limit together with the adjacent arrows. The resulting quiver for pure
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SU(N) gauge theory is of the form
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This is the same as the quiver found in [62], and is mutation equivalent
to the quivers found in [3, 37] by different methods. This approach can be
extended to gauge theories with flavors allowing the AN−1 singularity to
jump at special points on the base.
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In order to set the stage, geometric engineering and the field theory limit
of Calabi-Yau compactifications is carefully reviewed in Section 2. Special
emphasis is placed on categorical constructions, in particular exceptional
collections of line bundles on toric Calabi-Yau threefolds. In particular an
explicit construction of such collections is provided for toric Calabi-Yau
threefolds XN engineering pure SU(N) gauge theory. Not surprisingly, it
is then shown that the associated fractional brane quiver is the same as the
one obtained in [62] by orbifold methods. As opposed to the construction in
loc. cit., the geometric approach provides a large radius limit presentation of
fractional branes in terms of derived objects on XN . The main outcome of
Section 2 is a conjectural categorical description of gauge theory BPS states
in terms of a triangulated subcategory G ⊂ Db(XN ). As shown by detailed
A-model computations in Section 2.3, G is a truncation of Db(XN ) gener-
ated by fractional branes with finite central charges in the field theory limit.
It is perhaps worth noting that this conclusion involves certain delicate can-
cellations between tree level and world-sheet instanton contributions which
were never spelled out in the literature.

According to [8, 56, 57] supersymmetric D-brane configurations on XN

are identified with Π-stable objects in the derived category Db(XN ), or in
rigorous mathematical formulation, Bridgeland stable objects [28]. There-
fore one is naturally led to conjecture that gauge theory BPS states will be
constructed in terms of Bridgeland stable objects in Db(XN ) which belong
to G. However it is important to note that agreement of the low energy
constructions with [2, 3, 37] requires a stronger statement. Namely, that
gauge theory BPS states must be constructed in terms of an intrinsic stabil-
ity condition on G. Mathematically, these two statements are not equivalent
since in general a stability condition on the ambient derived category does
not automatically induce one on the subcategory G. It is however shown in
Section 2.4 that this does hold for quivery or algebraic stability conditions,
analogous to those constructed in [15, 27]. The above statement fails for geo-
metric large radius limit stability conditions, such as (ω,B)-stability, which
is analyzed in Section 4. Section 2 concludes with a detailed comparison
of gauge theoretic BPS indices and the motivic Donaldson-Thomas invari-
ants constructed in [106]. In particular it is shown that the protected spin
characters defined in [68] correspond mathematically to a χy-genus type
specialization of the motivic invariants. In contrast, the unprotected spin
characters introduced in [52, 54] are related to virtual Poincaré or Hodge
polynomials associated to the motivic invariants. This is explained in Sec-
tion 2.5, together with a summary of positivity conjectures for gauge theory
BPS states states formulated in [68].
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We note here that different mathematical constructions of categories and
stability conditions for BPS states is carried out by Bridgeland and Smith
in [31, 32], and, as part of a more general framework, by Kontsevich and
Soibelman in [107]. The connection between their work and this paper will
be explained in Section 1.2.

Section 3 consists of a detailed analysis of the field theory limit in terms
of the local mirror geometry for SU(2) gauge theory. The results confirm
the conclusions of Section 2.3 and also set the stage for the absence of walls
conjecture formulated in the next section.

Section 4 is focused on large radius supersymmetric D-brane configura-
tions on XN and their relation to gauge theory BPS states. Motivated by
the SU(2) example in Section 4.2, we are led to conjecture a precise rela-
tion between large radius and gauge theory BPS states, called the absence
of walls conjecture. As explained in the beginning of Section 3, for general
N the complex structure moduli space of the local mirror to XN is param-
eterized by N complex coordinates zi, 0 ≤ i ≤ N − 1. The large complex
structure limit point (LCS) lies at the intersection of the N boundary divi-
sors zi = 0, 0 ≤ i ≤ N − 1. On the other hand, the scaling region defining the
field theory limit is centered at the intersection between the divisor z0 = 0
and the discriminant ΔN , as sketched below.

•

•

LCS

Field theory scaling region�������

z0=0

z0

ΔN

Possible marginal stability walls
between LCS and field theory region

�

Figure 1: Schematic representation of the complex structure moduli space
for general N ≥ 2.

In principle there could exist marginal stability walls between the LCS limit
point and the field theory scaling region as sketched in Figure 1. There-
fore a correspondence between large radius BPS states and gauge theory
BPS states is not expected on general grounds. We conjecture that for all
charges γ ∈ Γ which support BPS states of finite mass in the field theory
limit it is possible to choose a path connecting the two regions in the moduli
space which avoids all such walls. This implies a one-to-one correspondence
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between BPS states in these two limits, which was first observed for SU(2)
gauge theory in [54].

Section 4.3 contains a precise mathematical formulation of this conjec-
ture employing the notion of limit weak coupling BPS spectrum. Intuitively,
the limit spectrum should be thought of as an extreme weak coupling limit
of the BPS spectrum where all instanton and subleading polynomial correc-
tions to the N = 2 prepotential are turned off. Then the absence of walls
conjecture implies that the limit weak coupling spectrum is identified with
a certain limit of the large radius BPS spectrum. As a first test of this con-
jecture we next show that all large radius supersymmetric D-branes in this
limit, with charges in the gauge theory lattice Γ � K0(G), actually belong to
the triangulated subcategory G. This is a nontrivial result, and an important
categorical test of the field theory limit of Calabi-Yau compactifications.

In order to carry out further tests, the large radius BPS spectrum of
SU(3) theory is then investigated in Section 4.4. The geometrical setup
determines a Cartan subalgebra of SU(3) together with a set of simple
roots {α1, α2}. We determine the degeneracy of states with magnetic charge
α1 + α2. The results show that one can find BPS states with arbitrarily high
spin at weak coupling.

Section 5 presents some exact weak coupling results for BPS degeneracies
in SU(3) gauge theories with magnetic changes (1,m) with m ≥ 1. Explicit
formulas are derived both form = 1 by a direct analysis of the moduli spaces
of stable quiver representations. It is also shown that for any m ≥ 1 the BPS
degeneracies vanish in a specific chamber in the moduli space of stability
conditions. This yields exact results by wallcrossing, explicit formulas being
written only for m = 2. It should be noted at this point that the above
results are not in agreement with those obtained in [65] by monodromy
arguments. The weak coupling spectrum found in [65] is only a subset of the
BPS states found here by quiver computations. In addition, it is explicitly
shown that there exist BPS states of arbitrarily high spin and infinitely
many marginal stability walls at weak coupling. This is also in agreement
with the semiclassical analysis of [71, 133] based on counting zero modes of
a Dirac operator on the monopole moduli space. Finally, these results are
shown to be in agreement with their large radius counterparts in Section 5.4,
confirming the predictions of the absence of walls conjecture.

Section 6 exhibits a strong coupling chamber for SU(N) gauge theories
where the BPS spectrum is in agreement with previous results [3, 69]. In
contrast with loc. cit., here this chamber is obtained by a direct analysis
of the spectrum of stable quiver representations. As a corollary, a deceptive
adjacent chamber is found in Section 6.2 where the BPS spectrum coincides
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with the one generated in [65] by monodromy transformations. However,
the disposition of the central charges in the complex plane shows that the
deceptive chamber cannot be a weak coupling chamber, hence justifying its
name.

Building on the geometric methods developed so far, framed quiver mod-
els are constructed in Section 7 for framed BPS states corresponding to sim-
ple magnetic line defects. From a geometric point of view, such line defects
are engineered by D4-branes wrapping smooth noncompact divisors in the
toric threefold XN . This framework leads to a rigorous mathematical con-
struction of such states in terms of weak stability conditions1 for framed
quiver representations depending on an extra real parameter δ related to
the phase of the line defect [68, 93, 122, 123]. The wallcrossing theory of
[106] is shown to be applicable to such situations, resulting in a mathe-
matical derivation of the framed wallcrossing formula of [68]. Moreover, in
Section 7.4, a detailed analysis of the chamber structure on the δ-line leads to
a complete recursive algorithm, determining the BPS spectrum at any point
on the Coulomb branch in terms of the noncommutative Donaldson-Thomas
invariants defined in [130]. It should be emphasized that this argument solely
relies on wallcrossing on the δ-line, and is therefore valid at any fixed point
on the Coulomb branch where this particular quiver description is valid. As
an application, we show in Section 7.5 that the recursion formula implies
the absence of exotics conjecture for framed and unframed BPS states first
articulated in [68].

Note that rigorous positivity results are obtained in a similar context in
[46] by proving a purity result for the cohomology of the sheaf of vanishing
cycles. It is interesting to note that the the technical conditions used in
[46] are not in general satisfied in gauge theory examples. Hence we are
led to conjecture that such positivity results will hold under more general
conditions, not yet understood from a mathematical point of view.

Finally, Section 8 addresses the same issues from the perspective of coho-
mological Hall algebras, introduced by Kontsevich and Soibelman in [108]
as well as their framed stability conditions introduced in [105]. A geometric
construction is outlined in this context for the action of the spin SL(2,C)
group on the space of BPS states. Moreover, absence of exotics is conjec-
tured to follow in this formalism from a hypothetical Atiyah-Bott fixed point
theorem for the cohomology with rapid decay at infinity defined in [108].

1The meaning of “weak stability conditions ” is explained in [132].
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1.1. A (short) summary for mathematicians

In this section we summarize the main results of this work for a mathematical
audience. Recent physics results on BPS states [2, 3, 34–39, 67–70, 137]
point towards a general conjectural correspondence assigning to an N = 2
supersymmetric gauge theory

(i) a triangulated CY3 category G, and
(ii) a map � : C → Stab(G) from the universal cover C of the gauge theory

Coulomb branch to the moduli space of Bridgeland stability conditions
on G.

The central claim is then:

(G.1) The BPS spectrum of the gauge theory at any point a ∈ C is deter-
mined by the motivic Donaldson-Thomas invariants [106] of �(a)-semistable
objects of C.

Since supersymmetric quantum field theories do not admit a rigorous
mathematical construction, a natural question is whether the above corre-
spondence can be converted into a rigorous mathematical statement. One
answer to this question is presented in [31, 32, 107] (building on the main
ideas of [70].) The present paper proposes a different approach to this prob-
lem based instead on geometric engineering of gauge theories [5, 96, 98, 99,
101]. As explained in Subsection 1.2 below, geometric engineering and the
construction of [31, 32, 107] are related by mirror symmetry, modulo certain
subtle issues concerning the field theory limit.

Very briefly, geometric engineering is a physics construction assigning
an N = 2 gauge theory to a certain toric Calabi-Yau threefold with singu-
larities. It is not known whether any gauge theory can be obtained this way,
but a large class of such theories admit such a geometric construction. For
example SU(N) gauge theories with Nf ≤ 2N fundamental hypermultiplets
and quiver gauge theories with gauge group

∏
i SU(Ni) belong to this class,

as shown in [98].
Accepting geometric engineering as a black box, the present paper iden-

tifies the category G with a triangulated subcategory of the derived category
Db(X). This identification is based on a presentation of Db(X) in terms of
an exceptional collection of line bundles {Lα} [6, 21, 92]. Any such col-
lection determines a dual collection of objects {Pα} of Db(X) such that
RHomX(Lα, Pβ) = Cδα,β . These are usually called fractional branes in the
physics literature. Then the conjecture proposed in this paper is:
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(G.2) There exists a subset {Lα′} ⊂ {Lα} such that the gauge theory cat-
egory G is the triangulated subcategory of Db(X) generated by the fractional
branes {Pβ′} satisfying RHomX(Lα′ , Pβ′) = 0.

For illustration, this is explicitly shown in Sections 2.1 and 2.3 for pure
SU(N) gauge theory of arbitrary rank. More general models can be treated
analogously, explicit statements being left for future work.

Granting the above statement, the results of [14, 24, 124] further identify
G with a category of twisted complexes of modules over the path algebra of
a quiver with potential (Q,W ). Moreover, a detailed analysis of geometric
engineering as in Section 2.3 further yields an assignment of central charges
zβ′ : C → C to the objects {Pβ′}. Therefore one obtains a well defined stabil-
ity condition in Stab(G) for any point a ∈ C where the images zβ′(a) belong
to a half-plane Hφ. This defines a map �(Q,W ) : C(Q,W ) → Stab(G) over a cer-
tain subspace C(Q,W ) ⊂ C. We further conjecture that, using mutations, one
can extend this map to a map � : C → Stab(G), and moreover the image of
� is contained in the subspace of algebraic (or quivery) stability conditions
in the terminology of [15, 26, 27].

The above construction also leads to a mathematical model for framed
BPS states of simple magnetic line defects [68] in terms of moduli spaces of
weakly stable framed quiver representations. This is explained in Section 7.

In this framework, one is naturally led to a series of conjectures, or at
least questions of mathematical interest. First note that four dimensional
Lorentz invariance predicts the existence of a Lefschetz type SL(2,C)spin-
action on the cohomology of the sheaf of vanishing cycles of the potential
W on moduli spaces of stable quiver representations. In addition there is a
second SL(2,C)R-action, encoding the R-symmetry of the gauge theory. The
action of the maximal torus C×R ⊂ SL(2,C)R is determined by the Hodge
structure on the above cohomology groups, as explained in Section 2.5.

Assuming the existence of the above actions a series of positivity con-
jectures are formulated in [68], and reviewed in Section 2.5. The strongest
of these conjectures claims that the C×R-action is trivial, and the virtual
Poincaré polynomial of the vanishing cycle cohomology decomposes into a
sum of irreducible SL(2,C)spin integral spin characters with positive integral
coefficients. This is called the no exotics conjecture.

Granting the existence of the SL(2,C)spin-action, in order to prove the
no exotics conjecture it suffices to prove that all refined DT invariants belong
to the subring generated by (xy)1/2, (xy)−1/2. This follows from the inte-
grality result proven in [108]. Here we provide an alternative proof for pure
SU(N) gauge theory in Section 7.5 using a framed wallcrossing argument.
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Furthermore, as explained in the last paragraph of Section 7.5, physical
arguments suggest that the no exotics conjecture should hold for refined DT
invariants of toric Calabi-Yau threefolds in general. Again four dimensional
Lorentz invariance predicts a Lefschetz type action on the moduli space of
stable quiver representations. Moreover, there is also a C×R-action [52] corre-
sponding to an U(1)R-symmetry. Combining all these statements, one is led
to claim that a no exotics result will hold for toric Calabi-Yau threefolds,
if one can prove that the motivic DT invariants belong to the subring gen-
erated by L1/2,L−1/2, as conjectured in [106]. For DT invariants defined in
terms of algebraic stability conditions, this follows from the results of [108].
For geometric stability conditions, this follows from the results of [108] and
the motivic wallcrossing formula [106, 108]. Explicit computations in some
examples have been carried out in [41, 117, 118].

It is important to note that some cases of the no exotics conjecture are
proven in [46, 59] via purity results for the vanishing cycle cohomology. How-
ever, the proof relies on certain technical assumptions – such as compactness
of the moduli space in [46] – which are not generically satisfied for gauge
theory quivers. Physics arguments predict that similar results should hold
in a much larger class of examples of quivers with potential, although the
mathematical reason for that is rather mysterious.

Finally, note that the above conjectures are formulated in the language
of cohomological Hall algebras [108] in Section 8. In particular a series of
conjectures of [105] are generalized to moduli spaces of weakly stable framed
quiver representations.

In addition, geometric engineering also suggests an absence of walls con-
jecture stating an equivalence between refined DT invariants of large radius
limit stable objects of Db(X) and refined DT invariants of gauge theory
quiver representations. The precise statement requires some preparation and
is given in Section 4.3. As explained there it claims the existence of special
paths in the complex Kähler moduli space of X avoiding certain marginal
stability walls.

1.2. BPS categories and mirror symmetry

For completeness, we explain here a general framework emerging from string
theory dualities, which ties together geometric engineering, N = 2 theories
of class S, and the constructions of [31, 32, 107]. Our treatment will be rather
sketchy with the details and is highly conjectural. Our purpose here is merely
to give a bird’s eye framework for relating several different approaches to
the BPS spectrum of N = 2 theories.
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We will restrict ourselves to the gauge theories of class S introduced in
[66, 70, 136]. These are in one-to-one correspondence with the following data

• a compact Riemann surface C with a collection of marked points {pi}
• a Hitchin system with gauge groupG on C with prescribed singularities
at the marked points {pi}.

Let H denote the total space of the Hitchin system and π : H → B the
Hitchin map. The target B of the Hitchin map is an affine linear space and
the fibers of π are Prym varieties. We will denote by Δ ⊂ B the discriminant
of the map π.

The connection with M-theory is based on the spectral cover construc-
tion of the Hitchin system. Let D =

∑
i pi denote the divisor of marked

points on C, and SD the total space of the line bundle KC(D) on C. Let
also S = SD \ ∪iKC(D)pi

be the complement of the union of fibers ofKC(D)
at the marked points. Note that S is isomorphic to the complement of the
union of fibers T ∗pi

C in the total space of the cotangent bundle T ∗C. In
particular S is naturally a holomorphic symplectic surface.

If the Hitchin system has simple regular singularities at the marked
points, the total space H is identified with a moduli space of pairs (Σ̄, F̄ )
where Σ̄ ⊂ SD is a compact effective divisor in SD and F̄ a torsion free sheaf
on Σ. At generic points in the moduli space Σ̄ is reduced and irreducible and
F̄ is a rank one torsion free sheaf. For physics reasons, it is more convenient
to think of the data (Σ̄, F̄ ) as a non-compact curve Σ ⊂ S and a torsion
free sheaf F on Σ with prescribed behavior at “infinity” i.e. at the points of
intersection with the fibers KC(D)pi

⊂ SD. In the following we will assume
such a spectral cover construction to hold even if the Hitchin system has
irregular singularities.

The holomorphic symplectic surface S can be used to construct an M-
theory background R3,1 × S × R3. The data (Σ, F ) determines a supersym-
metric M five-brane configuration with world-volume of the form R3,1 × Σ.
Now the connection with [31, 32, 107] can be explained employing M-
theory/IIB duality. Suppose two out of the three transverse directions are
compactified on a rectangular torus such that the M-theory background
becomes R3,1 × S × S1

M × S1
A × R. Then a standard chain of string dualities

shows that such a configuration is dual to a IIB background on a Calabi-Yau
threefold Y .

The construction of Y for Hitchin systems with no singularities, i.e. no
marked points pi has been carried out in [49]. More precisely, according
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to [49], any Hitchin system H → B of ADE type determines naturally a
family Y → B of Calabi-Yau threefolds such that

• For any b ∈ B \Δ, Yb is smooth and isomorphic to the total space of a
conic bundle over the holomorphic symplectic surface S with discrim-
inant Σ.

• For any point b ∈ B \Δ the intermediate Jacobian J(Yb) is isogenous
to the Prym π−1(b).

The family is defined over the entire base B, and Yb is isomorphic to the
total space of a singular conic bundle over S at points b ∈ Δ. Furthermore
note that by construction all fibers Yb, b ∈ B \Δ are equipped with a natural
symplectic structure.

The duality argument sketched above leads to the conjecture that one
can construct a family Y → B with analogous properties for Hitchin systems
H → B with prescribed singularities at marked points. Since string duality
preserves the spectrum of BPS states, one is further led to the following
conjecture, which provides a string theoretic framework for the constructions
of [31, 32, 107].

(F.1) For any b ∈ B \Δ, let F(Yb) be the Fukaya category of Yb gen-
erated by compact lagrangian cycles. Let B̃ denote the universal cover of
B \Δ. Then for any point b̃ ∈ B̃ over b ∈ B \Δ there is a unique point
σb̃ ∈ Stab(F(Yb)) in the moduli space of Bridgeland stability conditions on

F(Yb) such that the gauge theory BPS spectrum at the point b̃ is determined
by the motivic DT invariants of moduli spaces of σb̃-semistable objects in
F(Yb).

Furthermore, there is a natural equivalence of triangulated A∞-categories
of all categories F(Yb), b ∈ B \Δ with a fixed triangulated A∞-category F .
Hence one obtains a map � : B̃ → Stab(F) as predicted in the first paragraph
of Section 1.1, with G � F .

The construction of the family Y → B was carried out in [107], where the
case of arbitrary irregular singularities was considered. Loc. cit. generalizes
the results of [49] to a wide class of non-compact Calabi-Yau threefolds. It
also gives a mathematically precise meaning to Conjecture (F.1) above and
relates the DT-invariants of Fukaya categories from Conjecture (F.1) to the
geometry of the corresponding Hitchin integrable system.

In order to explain the relation with the geometric engineering of the
present paper, recall that any toric Calabi-Yau threefold X is related by
local mirror symmetry [86, 119] to a family Z of non-compact Calabi-Yau
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threefolds. As explained in more detail in Section 3, the mirror family is a
family of hypersurfaces of the form

Pα(v, w) = xy,

where (v, w, x, y) ∈ (C×)2 × C2, and Pα is a polynomial function depending
on some complex parameters α. Each such hypersurface is a conic bundle Zα

over (C×)2 with discriminant Pα(z, w) = 0. Homological mirror symmetry
predicts an equivalence of triangulated A∞-categories

(1.1) Db(X) � Fuk(Zα)

for any smooth Zα in the family, where Fuk(Zα) is the Fukaya category of
Zα.

In local mirror variables, the field theory limit is presented as a degen-
eration of the family Z. Referring the reader to Section 3 for more details,
the parameters α are written in the form α = α(u, ε) for another set of
parameters u to be identified with the Coulomb branch variables of the
field theory, u ∈ B. Then one takes the limit ε→ 0 obtaining a family of
threefolds Z0 over a parameter space B. Note that this degeneration has
been studied explicitly in the physics literature [98, 99], but some geometric
aspects would deserve a more detailed analysis. To conclude, string duality
arguments predict the following conjecture:

(F.2) The limit family Z0 → B is the same as the family of threefolds
Y → B in (F.1). Moreover the equivalence (1.1) restricts to an equivalence

(1.2) G � F ,

where G ⊂ Db(X) is the category defined in (G.2)
Note that this conjecture predicts an interesting class of examples of

homological mirror symmetry. The category G is defined algebraically as
the subcategory of Db(X) spanned by a subset of fractional branes, while
F is obtained from Fuk(Zα) by degeneration. Hence it is natural to ask
whether the category G can be obtained directly by constructing the mirror
of the threefold family Y → B.
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2. Geometric engineering, exceptional collections,
and quivers

This section contains a detailed construction of a discrete family XN , N ≥ 2
of toric Calabi-Yau threefolds employed in geometric engineering [5, 96, 98,
99, 101] of pure SU(N) gauge theories with eight supercharges. Physical
aspects of this correspondence will be discussed in Section 2.3.

Let Ya be the total space of the rank two bundle OP1(a)⊕OP1(−2− a)
over P1, where a ∈ Z. For any N ∈ Z, N ≥ 2, there is a fiberwise ZN -action
on Ya with weights ±1 on the two summands. The quotient Ya/ZN is a
singular toric threefold with a line of quotient AN singularities which admits
a smooth Calabi-Yau toric resolution XN . For concreteness, let a = 0 in the
following 2. Then XN is defined by the toric data

(2.1)

x0 x1 x2 x3 . . . xN−1 xN y1 y2
C×(1) 1 −2 1 0 . . . 0 0 0 0

C×(2) 0 1 −2 1 . . . 0 0 0 0

...
C×(N−1) 0 0 0 0 . . . −2 1 0 0

C×(N) −2 0 0 0 . . . 0 0 1 1

2Different values of a will lead to different Calabi-Yau threefolds, and the category
of branes on these 3-folds will depend nontrivially on a. It is expected, however,
that the field theoretic subcategories of interest in this paper will in fact be a-
independent. Whether this is really so is left to future investigation.
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with disallowed locus

(2.2)
⋃

0≤i,j≤N
|i−j|≥2

{xi = xj = 0} ∪ {y1 = y2 = 0}.

The toric fan of XN is the cone in R3 over the planar polytope in Fig. (2.a)
embedded in the coordinate hyperplane �r · �e3 = 1.
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Figure 2: The toric polytope for X3 and the singular threefold Y0/Z3. The
polytope (2.a) for XN is similar, except it will contain N − 1 inner points
on the vertical axis.

Note that the toric data of the singular threefold Y0/ZN is the same, the
disallowed locus being

{y1 = y2} = 0.

The toric fan of the singular threefold is represented in Fig (1.b).
As expected, there is a natural toric projection π : XN → P1, its fibers

being isomorphic to the canonical resolution of the two dimensional AN

singularity. The divisor class of the fiber isH = (y1) = (y2). The inner points
of the polyhedron correspond to the N − 1 irreducible compact toric divisors
Si ⊂ XN determined by xi = 0, i = 1, . . . , N − 1. Each of them is isomorphic
to a Hirzebruch surface, Si � F2i, i = 1, . . . , N − 1.

For completeness, we recall that a Hirzebruch surface Fm, m ∈ Z is a
holomorphic P1-bundle over P1. It has two canonical sections Σ−,Σ+ and
the homology H2(Fm) is generated by Σ−,Σ+, C, where C is the fiber class.
The intersection form is

Σ2
− = −m, Σ2

+ = m, Σ± · C = 1, C2 = 0

and there is a relation

Σ+ = Σ− +mC.
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The canonical bundle is

KFm
= −c1(Fm) = −Σ− − Σ+ − 2C,

and ∫
Fm

c2(Fm) = 4.

In addition XN contains two noncompact toric divisors S0, SN deter-
mined by x0 = 0 and xN = 0 respectively. The first, S0 is isomorphic to
C× P1 and the second, SN , is isomorphic to the total space of the line
bundle OP1(−2N − 2). Note that Si and Si+1 intersect transversely along a
(2i,−2i− 2) rational curve Σi, i = 0, . . . , N − 1, which is a common section
of both surfaces over P1. All other intersections are empty. Note also that
the equations

y1 = 0, xi = 0, i = 1, . . . , N

determine a fiber Ci in each divisor Si, a compact rational curve for i =
1, . . . , N − 1, and a complex line for i = 0, N . These curve classes satisfy the
relations

(2.3) Σi = Σi−1 + 2iCi, i = 1, . . . , N − 1,

which follow for example from [80, Prop. 2.9. Ch. V].
The rational Picard group of XN is generated by N divisors classes

D1, . . . , DN−1, H, one for each factor of the torus (C×)N . This is so because
for each C× factor we can associate a canonical associated line bundle to the
principal torus bundle over the quotient. From the weights of the action on
homogeneous coordinates in (2.1) we see that a section of Di can be taken to
be xi0x

i−1
1 · · ·xi−1, 1 ≤ i ≤ N − 1. The canonical toric divisors are equivalent

to a linear combination of the generators D1, . . . , DN−1, H with coefficients
determined by the columns of the charge matrix in (2.1). In particular

(2.4) Si = −
N−1∑
j=1

Ci,jDj , i = 1, . . . , N − 1, SN = DN−1,

where Ci,j is the Cartan matrix of SU(N) normalized to have +2 on the diag-

onal. One can obviously invert these relations, obtainingDi = −
∑N−1

i=1 C−1ij Sj ,

i = 1, . . . , N − 1, where the coefficients C−1ij are fractional. Alternatively,
relations (2.4) can be recursively inverted starting with DN−1 = SN . This
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yields the integral linear relations

(2.5) Di =

N−i∑
j=1

jSi+j , i = 1, . . . , N − 1,

which will be used in the construction of an exceptional collection on XN .
Note that this equation involves SN , hence is compatible with Di =
−∑N−1

i=1 C−1ij Sj . Moreover note the following intersection numbers

(2.6) (Ci ·Dj)XN
= δij , (Ci · Sj)XN

= −Cij i, j = 1, . . . , N − 1.

For the construction of line defects in Section 7.1 it is important to note
that each class Di contains a smooth irreducible surface given by

(2.7)
[
a1,iy

2i
1 + a2,iy

2i
2

](
xi0x

i−1
1 · · ·xi−1

)
+ bixi+1x

2
i+2 · · ·xN−iN = 0,

with a1,i, a2,i, bi ∈ C, i = 1, . . . , N − 1, generic coefficients. This follows from
the fact that the global holomorphic sections of the line bundles OX(Si) are
homogeneous polynomials in the toric coordinates (x0, . . . , xN , y1, y2) with
(C×)N charge vector equal to the xi column of the charge matrix (2.1).
Then using Equations (2.5) one computes the charges of the sections of
OX(Di), 1 ≤ i ≤ N − 1. Smoothness follows from the observation that the
homogeneous toric coordinates in Equation (2.7) are naturally divided into
two groups, (xk)1≤k≤i−1 and (xl)i+1≤l≤N . According to Equation (2.2), no
two variables xk, xl with 1 ≤ k ≤ i and i+ 2 ≤ xl ≤ N are allowed to vanish
simultaneously. Since y1, y2 are also not allowed to vanish simultaneously,
a straightforward computation shows that the divisors (2.7) are smooth
and irreducible for generic coefficients a1,i, a2,i, bi ∈ C. Abusing notation, the
same notation will be used for the divisor classes Di and a generic smooth
irreducible representative in each class. The distinction will be clear from
the context.

2.1. Exceptional collections and fractional branes

Adopting the definition of [6], a full strong exceptional collection of line
bundles on a toric threefold X is a finite set {Lα} of line bundles which
generate Db(X) and satisfy

ExtkX(Lα,Lβ) = 0
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for all k > 0, and all α, β. Given such a collection the direct sum T = ⊕αLα

is a tilting object in the derived category Db(X) as defined in [14, 24, 124].
Then the results of loc. cit. imply that the functor RHom(T , • ) determines
an equivalence of the derived category Db(X) with the derived category of
modules over the finitely generated algebra EndX(T )op.

Full strong exceptional collections of line bundles on toric Calabi-Yau
threefolds can be constructed [21, 92] using the dimer models introduced
in [63, 64, 77, 78]. A different construction for the threefolds XN , N ≥ 2,
exploiting the fibration structure XN → P1 is presented in Appendix A. The
resulting exceptional collection consists of the line bundles

(2.8) Li = OXN
(Di), Mi = OXN

(Di +H), i = 1, . . . , N,

where Di, i = 1, . . . , N − 1 are the divisor classes given in (2.5) and DN = 0.
So LN = OXN

. Therefore there is an equivalence of derived categories

(2.9) Db(XN ) � Db(End(T )op −mod), E 
→ RHomXN
(T,E),

where T =
(
⊕N

i=1 Li

)
⊕
(
⊕N

i=1 Mi

)
, and End(T ) is the endomorphism alge-

bra of T . According to Appendix A, this algebra is isomorphic to the path
algebra of the quiver (A.4) with the quadratic relations given in Equa-
tion(A.5). Reversing the arrows yields the periodic quiver Q below

(2.10)
...

rN

��
sN

��

...

qN• cN ��
dN

��

bN

•pN
rN−1

��

sN−1

��

aN

qN−1• cN−1 ��
dN−1

��

bN−1

��

•pN−1

aN−1

��

...
...
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qi+1• ci+1 ��
di+1

�� •pi
ri

��

si

		qi• ci ��
di

��

bi

��

•pi

ai

��

...
...

q2• c2 ��
d2

�� •p2
r1

��

s1

		q1• c1 ��
d1

��

b1

��

•p1

a1

��

sN
rN

...

bN

��

...

aN

��

where the vertices pi, qi correspond to the line bundles Li,Mi, i = 1, . . . , N
respectively. At the same time, the relations (A.5) are derived from the cubic
potential

(2.11)
W =

N−1∑
i=1

[ri(aici − ci+1bi) + si(aidi − di+1bi)]

+ rN (aNcN − c1bN ) + sN (aNdN − d1bN ).

The resulting quiver with potential (Q,W) has a dual interpretation [9, 83,
84], as the Ext1 quiver of a collection of fractional branes (Pi, Qi)1≤i≤N . The
latter are objects of Db(XN ) corresponding to the simple (Q,W)-modules
associated to the vertices (ui, vi)1≤i≤N under the equivalence (2.9). The sim-
ple module associated to a particular node is the representation consisting
of a dimension 1 vector space assigned to the given node and trivial vec-
tor spaces otherwise. They are uniquely determined by the orthogonality
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conditions3

(2.12)
RHomXN

(Li, Pj) = δi,jC, RHomXN
(Li, Qj) = 0

RHomXN
(Mi, Pj) = 0, RHomXN

(Mi, Qj) = δi,jC,

1 ≤ i, j ≤ N , where C denotes the one term complex of vector spaces with C

in degree zero. As shown in Appendix A, the following collection of objects
satisfy conditions (2.12).

(2.13)
Pi = Fi[1], Qi = Fi(−H)[2], i = 1, . . . , N − 1,

PN = FN , QN = FN (−H)[1]

where

(2.14)

Fi = OSi
(−Σi−1), i = 1, . . . , N − 1,

FN = OS , S =

N−1∑
i=1

Si.

For future reference we note here that
(2.15)

ch0(Pi) = 0, ch1(Pi) = −Si, ch2(Pi) = −(i+ 1)Ci, χ(Pi) = 0
ch0(Qi) = 0, ch1(Qi) = Si, ch2(Qi) = iCi, χ(Qi) = 0

for 1 ≤ i ≤ N − 1, respectively

(2.16)

ch0(PN ) = 0, ch1(PN ) = S,

ch2(PN ) = Σ0 +

N∑
i=1

(i+ 1)Ci, χ(PN ) = 1

ch0(QN ) = 0, ch1(QN ) = −S

ch2(QN ) = −Σ0 −
N∑
i=1

iCi, χ(QN ) = −1,

where Si, 1 ≤ i ≤ N − 1, will also stand for a degree 2 cohomology class
via pushforward, and similarly for Ci,Σ0. For completeness recall that the

3Here RHomXN
( , ) denotes the right derived functor of global HomXN

( , ), which
assigns to a pair of sheaves E,F the linear space of global sheaf morphisms E → F .
For any pair (E,F ), RHomXN

(E,F ) is a finite complex of vector spaces whose
cohomology groups are isomorphic to the global extension groups ExtkXN

(E,F ).
See [72] for abstract definition and properties.
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holomorphic Euler character χ(E) of an object E of Db(XN ) with compact
support is defined as

(2.17) χ(E) =
∑
k∈Z

(−1)kdimHomDb(XN )(OXN
, E[k]).

Since E is compactly supported and bounded, this is a finite sum and all
vector spaces HomDb(XN )(OXN

, E[k]), k ∈ Z, are finite dimensional. For E =
F [p], with F a sheaf with compact support and p ∈ Z, this definition agrees
with the standard definition of the holomorphic Euler character of F up to
sign,

(2.18) χ(E) = (−1)pχ(F ) = (−1)p
∑
k∈Z

Hk(XN , F ).

HereHk(XN , F ) are the Čech cohomology groups of F . Since F has compact
support on XN , the Čech cohomology groups are finite dimensional and
vanish for k < 0 and k > dim supp(F ). Furthermore note the Riemann-Roch
formula

(2.19) χ(F ) =

∫
XN

ch(F )Td(XN ).

The quiver Q is then identified with the Ext1-quiver of the collection of
fractional branes (Pi, Qi)1≤i≤N . The nodes pi, qi correspond to the objects
Pi, Qi, i = 1, . . . , N respectively while the arrows between any two nodes are
in one-to-one correspondence with basis elements of the Ext1-space between
the associated objects. Moreover note that the equivalence (2.9) relates the
objects (Pi, Qi) to the simple quiver representations supported respectively
at each of the nodes (pi, qi), 1 ≤ i ≤ N . In contrast, the line bundles Li,Mi

are related to the projective modules canonically associated to the nodes
pi, qi respectively.

The potential (2.11) is related to the A∞-structure on the triangulated
subcategory F ⊂ Db(XN ) generated by the fractional branes (Pi, Qi)1≤i≤N ,
as explained below. Consider an object in this category of the form

N⊕
i=1

(Vi ⊗ Pi)⊕
N⊕
i=1

(Wi ⊗Qi),

where Vi,Wi, i = 1, . . . , N are finite dimensional vector spaces. This object is
identified by the equivalence (2.9) to a representation ρ of (Q,W) assigning
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the vector spaces Vi,Wi to the nodes pi, qi, i = 1, . . . , N respectively, and the
zero map to all arrows. Physically, this is a collection of fractional branes
on XN . The space of open string zero modes between such a collection of
fractional branes is isomorphic to the extension group Ext1F (ρ, ρ). The latter
is in turn isomorphic to the linear space

(2.20)

Vρ =

N⊕
i=1

Hom(Wi, Vi)
⊕2⊕

N−1⊕
i=1

(Hom(Vi, Vi+1)⊕Hom(Wi,Wi+1)⊕Hom(Vi+1,Wi)
⊕2).

Using canonical projective resolutions for simple modules as in Appen-
dix D, one can construct a cyclicA∞ structure on F . The cyclic A∞ structure
determines in particular a holomorphic superpotential Wρ on the above
extension space as explained in detail in [9, 11, 82, 88]. This is the tree
level superpotential in the effective gauge theory on the fractional D-brane
configuration with multiplicities dim(Vi), dim(Wi) at the vertices of Q. By
analogy with [9, 88], it is conjectured here that the superpotential Wρ is
identified with the cubic function on Vρ determined by W. This statement
was proven in [9, 88] for local toric Fano surfaces, and it was explained to us
by Zheng Hua that the proof of [88] based on projective resolutions will go
through in our case as well. In the following it will be assumed that this is
the case for the fractional branes (Pi, Qi)1≤i≤N , omitting a rigorous proof.
An independent physical argument will be given in Section 2.2 below, which
provides an orbifold construction of the exceptional collection (Li,Mi), 1 ≤
i ≤ N .

2.2. Orbifold quivers

By construction XN is the resolution of the quotient Y2/ZN , where Y2 is the
total space of the rank two bundle OP1 ⊕OP1(−2). Note that Y2 � C× Z,
where Z is the canonical resolution of the C2/Z2 quotient singularity. The
C2/Z2 orbifold contains two fractional branes corresponding to the objects

G1 = OC , G2 = OC(−1)[1]

supported on the exceptional cycle C � P1 ⊂ Z of the resolution [50, 58].
According to [58], the effective action of a configuration of fractional branes
G⊕n1

1 ⊕G⊕n2

2 is obtained by dimensional reduction of a N = 2 quiver gauge
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theory in four dimensions. The N = 1 chiral multiplet content of this theory
is encoded in the quiver diagram

(2.21) •B 



C ��

D

��• A
R



S

��

and the superpotential is given by

(2.22) W = TrA(CR+DS)− TrB(RC + SD).

Now consider the orbifold Y2/ZN . Using the rules of [58], for each D-
brane G1, G2 in the covering theory, one obtains a collection of fractional
branes (G1, ρi), respectively (G2, ρi), 0 ≤ i ≤ N − 1, where ρi is the i-th
canonical irreducible representation of ZN . The representations ρi encode
the action of the orbifold group on the Chan-Paton line bundles of the
fractional branes. At the same time, the orbifold group acts on the N = 1
chiral superfields as

A→ e−2iπ/NA, C → C, R→ e2iπ/NR

B → e−2iπ/NB, D → D, S → e2iπ/NS

for j = 1, 2.
The effective action for any collection

N−1⊕
i=0

(G1, ρi)
⊕di ⊕

N−1⊕
i=0

(G1, ρi)
⊕ei

is obtained by projecting the quiver (2.21) and the superpotential (2.22) onto
orbifold invariant fields. This yields precisely a quiver of the form (2.10),
with a cubic superpotential of the form (2.11). The fields ai, bi, ci, di, ri, si
in (2.10) are the invariant components of A,B,C,D,R, S respectively.

The above construction can be set on firmer mathematical grounds using
the results of [30]. According to loc. cit., there is an equivalence of derived
categories

(2.23) Db(XN ) � Db
ZN
(Y2)

where Db
ZN
(Y2) is the ZN -equivariant derived category of Y2. This equiv-

alence is determined by a Fourier-Mukai functor given explicitly in [30].
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Since the objects G1, G2 are scheme theoretically supported on the excep-
tional cycle C, which is fixed by the ZN action, the pairs (G1, ρi), (G2, ρi)
are naturally objects of Db

ZN
(Y2). Therefore mathematically, one is led to

the claim that the equivalence (2.23) maps the fractional branes (Pi, Qi) to
the objects (G1, ρi), (G2, ρi), 1 ≤ i ≤ N . In principle, one can employ the
methods of [97] in a relative setting, but we will leave the details for future
work.

2.3. Field theory limit A

This section is focused on physical aspects of geometric engineering, explain-
ing the relation between the toric Calabi-Yau threefoldsXN and pure SU(N)
gauge theory with eight supercharges. More specifically, it will be explained
in detail how the the rigid special geometry of the Coulomb branch is
obtained as a scaling limit of the special geometry of the complex Kähler
moduli space of XN . This limit is usually referred to as the field theory limit,
and can be formulated either in terms of the local mirrorB-model [98, 99], or
directly in terms of the large radius prepotential of XN [60, 89, 90, 103, 109].
In the first case one obtains the family of Seiberg-Witten curves as a scaling
limit of a family of curves encoding the mirror B-models. In the second,
the semiclassical gauge theory prepotential is obtained by taking a simi-
lar scaling limit of the large radius limit prepotential, including genus zero
world-sheet instanton corrections. The second approach will be employed
below to derive the central charges of the fractional branes (Pi, Qi)1≤i≤N in
the field theory limit.

A convenient parameterization of the Kähler cone is obtained observing
that the Mori cone of XN is generated by the curve classes Σ0, Ci, i =
1, . . . , N − 1. Moreover, the vertical divisor class H has intersection numbers

H · Σ0 = 1, H · Ci = 0, i = 1, . . . , N − 1.

Given the intersection numbers (2.6), it follows that the Kähler class of XN

can be naturally written as

(2.24) ω = t0H +

N−1∑
i=1

tiDi,

with ti > 0, i = 0, . . . , N − 1. Obviously,∫
Σ0

ω = t0,

∫
Ci

ω = ti, 1 ≤ i ≤ N − 1.
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The complexified Kähler class will be written similarly as

B +
√
−1ω = s0H +

N−1∑
i=1

siDi

with si = bi +
√
−1ti, i = 0, . . . , N − 1.

In the large radius limit t0, ti  1, i = 1, . . . , N − 1, the special coordi-
nates s̃i, i = 0, . . . , N − 1. are related to si by the mirror map,

s̃i = si + exponentially small corrections at large radius.

They are also identified via homological mirror symmetry with the central
charges of a collection of K-theory classes

(2.25) Υ0 = [OΣ0
(−1)], Υi = [OCi

(−1)], i = 1, . . . , N − 1

representing D2-branes supported by the Mori cone generators. Note that
we have chosen the Chan-Paton bundles to have degree (−1) in order for
the total D0-charge, including gravitational contributions, to be trivial. The
precise relation is

s̃i =
1

Ms
Z(Υi)

where Ms is the string mass scale.
The next task is to construct the effective action for normalizable IIA

modes on XN and show that it reduces to known gauge theory results in
the field theory limit. A conceptual problem is that the N = 2 prepotential
is not intrinsically defined for local Calabi-Yau models. In principle, one
has to find a suitable realization of the local model as a degeneration of a
compact Calabi-Yau threefold, and obtain the N = 2 prepotential as a limit
of the N = 2 prepotential of the compact model. On general grounds the
prepotential of the compact model has the form

F = Fpert +
ζ(3)χ

(2π
√
−1)3 + F

inst

where Fpert is a perturbative polynomial part deduced from (2.28) and F inst

encodes genus zero world-sheet instanton effects. In contrast, the periods of
the compact cycles associated to the AN−1 degeneration are intrinsically
defined in the local limit, as shown in detail below. So our strategy will
be to analyze their behavior in the field theory limit and show that the
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finite periods in this limit are consistent with the Seiberg-Witten SU(N)
prepotential.

The lattice of compact D-brane charges on XN is isomorphic to the
compactly supported K-theory lattice of XN , K

0
cpt(XN ). It is equipped with

an antisymmetric pairing

〈 , 〉 : K0
cpt(XN )×K0

cpt(XN )→ Z,

the restriction of the natural pairing

K0(XN )×K0
cpt(XN )→ Z

where K0(XN ) is the K-theory lattice of XN with no support condition.
Note that K0(XN ) is generated as a ring by the line bundles [OXN

(Si)],
0 ≤ i ≤ N and OXN

(H). Given a line bundle L on XN and a sheaf F with
compact support,

〈[L], [F ]〉 = χ(L−1 ⊗XN
F ).

where ⊗XN
denotes the tensor product of OXN

-modules. This notation will
be frequently used throughout this paper. Moreover, note the relation

[OXN
(D)] = 1− [OD]

for any effective divisor D on XN , where 1 = [OXN
] ∈ K0(XN ). Therefore

K0(XN ) is also generated as a ring by 1 and the divisor classes OSi
, 0 ≤

i ≤ N , OH . Then the K-theory with compact support will be generated as
a Z-module by K-theory classes of the form[

⊗N
i=0 O⊗ki

Si
⊗O⊗lH

]
, ki, l ∈ Z≥0

which do not involve the generator 1. This expression can be simplified using
the defining equations xi = 0 for the Si, 0 ≤ i ≤ N , respectively y1 = 0 for
H. For example it follows that OSi

⊗OSj
= 0, for |i− j| > 1. Using such

identities it follows that K0
cpt(XN )-theory is generated as a Z-module by

[Op], Υ0 = [OΣ0
(−1)], Υi = [OCi

(−1)], 1 ≤ i ≤ N − 1

Λi = [OSi
(−Σi−1 − (i+ 1)Ci)], 1 ≤ i ≤ N − 1.

Here Op is the class of the skyscraper sheaf associated to a point p ∈ XN .
Again we have chosen to twist the structure sheaves of the divisors OSi

,
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1 ≤ i ≤ N − 1 by appropriate line bundles such that the D2-brane charge is
zero. The nontrivial inner products of the generators are

〈Υi,Λ
j〉 = −Cij , 1 ≤ i ≤ N − 1,

all other products being zero. In particular the pairing 〈 , 〉 has a nontrivial
annihilator generated by [Op],Υ0.

In order to use special geometry relations, note that there is an alter-
native set of rational generators where the classes Λi are replaced by the
rational linear combinations

(2.26) Υi = −
N−1∑
j=1

C−1ij Λ
j , 1 ≤ i ≤ N − 1.

These generators satisfy the orthogonality relations

(2.27) 〈Υi,Υ
j〉 = δji , i, j = 1, . . . , N − 1.

The next goal is to study the behavior of the N = 2 central charges of Υi,
1 ≤ i ≤ N − 1, in the field theory limit.

The central charge Z(Υ) for a K-theory class Υ with compact support
has the large radius expansion [76]

(2.28) Z(Υ) = −Ms

∫
XN

e−(s̃0H+
∑N−1

i=1 s̃kDk)ch(Υ)
√
Td(X) + Zinst(Υ)

where Zinst(Υ) are exponentially small genus zero world-sheet instanton cor-
rections4. Special geometry constraints imply that the instanton corrections
to the central charges Z(Υi), 1 ≤ i ≤ N − 1, are given by

Zinst(Υi) =Ms

∂F inst
XN

∂s̃i

4This formula is often attributed to [76, 114] and it is certainly closely related to
the (correct!) results of those papers. However, when writing the central charge one
should not forget (as some authors do) to include the correction to the prepotential
proportional to ζ(3)χ(XN ). This term affects only the D6-brane central charge not
D4 and D2. Hence it is irrelevant here since the D6-brane is infinitely heavy in the
local limit, and has no effect on the field theory dynamics.
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where F inst
XN

is the sum of the genus zero world-sheet instanton corrections
(2.29)

F inst
XN

= − 1

(2π
√
−1)3

∑
ni∈Z≥0

0≤i≤N−1

∑
k≥1

1

k3
N(ni)

N−1∏
i=0

exp
(
2πk

√
−1

N−1∑
i=0

nis̃i
)
.

The coefficients N(ni) ∈ Z are virtual numbers of genus zero curves in
the homology class n0Σ0 +

∑N−1
i=1 niCi. Although XN is noncompact, these

numbers are intrinsically defined via counting curves preserved by a torus
action on XN which leaves the global holomorphic three-form invariant.
Hence N(ni) are equivariant genus zero Gromov-Witten invariants which
can be exactly computed using local mirror symmetry [86, 98, 99]. For the
purpose of geometric engineering note that there is a decomposition

F inst
XN

= Fvert
XN

+ Fhv
XN

where Fvert
XN

is the contribution of the vertical curve classes i.e. terms with

n0 = 0 while Fhv is the sum over mixed horizontal and vertical classes i.e.
all terms with n0 > 0.

There is an explicit expression for the vertical part of the instanton
prepotential [98, 99], written as a sum over the positive roots α ∈ Δ+

N of
SU(N). Each positive root

α =

N−1∑
i=1

ni(α)αi, ni(α) ∈ Z≥0

determines a vertical curve class

Cα =

N−1∑
i=1

ni(α)Ci

where {αi}, 1 ≤ i ≤ N − 1 is a set of simple roots. The Gromov-Witten
invariant of each curve class Cα is [99]

N(Cα) = −2

and there are no other vertical contributions except for multicovers. There-
fore

(2.30) Fvert
XN

= − 1

4π3
√
−1

∑
α∈Δ+

N

∑
k≥1

1

k3
exp

(
2πk

√
−1〈s̃, α〉

)
.
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where

〈s̃, α〉 =
N−1∑
i=1

ni(α)s̃i.

An exact expression for the second term, Fhv
XN

can be obtained either using
local mirror symmetry or the topological vertex [1].

In order to compute the central charges Z(Υi), 1 ≤ i ≤ N − 1 note that
(2.31)

ch0(Υ
i) = 0, ch1(Υ

i) = −
N−1∑
j=1

C−1ij Sj , ch2(Υ
i) = 0, χ(Υi) = 0

for 1 ≤ i ≤ N − 1. Moreover the toric data (2.1) and relations (2.4) yield
the following relations
(2.32)
(H · Si · Sj)XN

= −Cij , (H ·Di · Sj)XN
= δij , (H ·H · Si) = 0

in the intersection ring of XN . Finally, by adjunction,
(2.33)∫

Si

c2(XN )|Si
=

∫
Si

(c2(Si)− c1(Si)
2) = 12χ(OSi

)− 2

∫
Si

c1(Si)
2 = −4

for all compact divisors Si � F2i, 1 ≤ i ≤ N − 1. Then using Equations (2.31),
(2.32), (2.33) in (2.28), a straightforward computation yields
(2.34)

Z(Υi) =Ms

[N−1∑
j=1

C−1ij s̃0s̃j +
1

2

N−1∑
j,k,l=1

s̃j s̃kC
−1
il (Sl ·Dj ·Dk)XN

+
1

6

N−1∑
j=1

C−1ij

]
+ Zinst(Υi)

for 1 ≤ i ≤ N − 1.
Following [60, 89, 90, 103, 109] the field theory limit is the ε→ 0 limit

of the string theory, where

(2.35) s̃0 = −
N
√
−1

π
(c0 + ln ε) , s̃i =

ai
M0

ε, Ms =
M0

ε
.

HereM0 is an arbitrary scale, c0 ∈ R>0 a fixed constant term, and ε ∈ R, 0 <
ε < e−c0 , the scaling parameter. A priori the large radius instanton expansion
(2.29) might be divergent in this limit since the complex Kähler parameters
s̃i are very small. It was however shown in [60, 89, 90, 103, 109] that Fhv

XN
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has a finite limit as ε→ 0, which agrees with the semiclassical instanton
expansion of the gauge theory with a QCD scale given by

(2.36) Λ2N−2 = 22N
(
M0

2π

)2N−2
e2Nc0 .

According to [98, 99], the vertical instanton contributions Fvert
XN

are expected
to yield the one loop correction to the gauge theory prepotential in the
ε→ 0 limit. This will be confirmed below by a detailed analysis of the ε→ 0
limit of the central charges Z(Υi), 1 ≤ i ≤ N − 1. In particular, it will be
shown that they have a finite limit as ε→ 0 as a result of a fairly delicate
cancellations between the polynomial terms and the vertical part of the
instanton prepotential. In [60, 89, 90, 103, 109] the ε→ 0 limit of Fhv

XN
has

been shown to be well-defined and in fact given by the instanton contribution
to the field theory prepotential

(2.37) lim
ε→0

Fhv
XN

= F inst
SU(N),

but the perturbative and vertical contributions were not discussed in detail.
Here we focus on the truncation Zpv(Υi) of the central charges to polynomial
and vertical instanton terms. Equations (2.30) and (2.35) yield

∂Fvert
XN

∂s̃i
= − 1

2π2

∑
α∈Δ+

N

∑
k≥1

ni(α)

k2
e2πkε

√−1〈a,α〉/M0 ,

where

〈a, α〉 =
N−1∑
i=1

ni(α)ai,

and
∂2Fvert

XN

∂s̃i∂s̃j
=

√
−1
π

∑
α∈Δ+

N

ni(α)nj(α) ln
(
1− e2πε

√−1〈a,α〉/M0
)
.

The second derivative has a small ε expansion of the form

∂2Fvert
XN

∂s̃i∂s̃j
=

√
−1
π

∑
α∈Δ+

N

ni(α)nj(α) ln

(
−2πε

√
−1

M0
〈a, α〉

)
+O(ε).

This implies that the first derivative will have an expansion of the form

∂Fvert
XN

∂s̃i
= c+

ε
√
−1

πM0

∑
α∈Δ+

N

ni(α)〈a, α〉
[
ln

(
−2πε

√
−1

M0
〈a, α〉

)
− 1

]
+O(ε2)
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where c is a constant. Since all terms in the above expression except c vanish
in the ε→ 0 limit, c is the value of the first derivative at ε = 0,

c = − 1

2π2

( ∑
α∈Δ+

N

ni(α)

)(∑
k≥1

1

k2

)
= − 1

12

∑
α∈Δ+

N

ni(α).

Then the leading terms of the central charges Zpv(Υi), 1 ≤ i ≤ N − 1 in the
ε→ 0 limit are
(2.38)

Zpv(Υi) ∼ M0

ε

[
− εN

√
−1

πM0

N−1∑
j=1

C−1ij (c0 + ln ε)aj

+
1

12

(
2

N−1∑
j=1

C−1ij −
∑

α∈Δ+
N

ni(α)

)

+
ε
√
−1

πM0

N−1∑
j=1

∑
α∈Δ+

N

ni(α)nj(α)aj ln ε

+
ε
√
−1

πM0

∑
α∈Δ+

N

ni(α)〈a, α〉
[
ln

(
−2π

√
−1
M0

〈a, α〉
)
− 1

]]
.

Now note that the term proportional to 1/ε in the expression of Zpv(Υi)
cancels because of the following identity

(2.39)
∑

α∈Δ+
N

ni(α) = 2

N−1∑
j=1

C−1ij .

This is equivalent to the known identity

ρ =
1

2

∑
α∈Δ+

N

α =

N−1∑
i=1

λi

where ρ is the Weyl vector and λi, 1 ≤ i ≤ N − 1 the fundamental weights
of SU(N). Moreover, the terms proportional to ln ε,

√
−1
π

(N−1∑
j=1

aj

(
−NC−1ij +

∑
α∈Δ+

N

ni(α)nj(α)

))
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also cancel because of a second identity,

(2.40)
∑

α∈Δ+
N

ni(α)nj(α) = NC−1ij ,

which is proven below.
Define the Cartan-Killing form with its natural normalization Tr(Ad(X)

Ad(Y )) = (X,Y )CK . Then the usual decomposition of the Lie algebra into
root spaces implies that on the dual space we have

(2.41) (α, β)CK =
∑

γ∈ΔN

(α, γ)CK(β, γ)CK

for any roots α, β, where ΔN is the set of roots of SU(N). Let (X,Y )′ be
the Killing form normalized such that the roots have length two. Then

(X,Y )CK =
(X,Y )′

2N
,

and (2.41) yields

(2.42)
∑

γ∈Δ+
N

(α, γ)′(β, γ)′ = N(α, β)′.

Of course, this can be extended linearly so it is also true if we replace α, β
by any linear combination of roots. In particular, we may replace them by
fundamental weights λi, λj . Since

(λi, λj)
′ = C−1ij ,

Equation (2.42) becomes (2.40).
In conclusion, collecting all terms, it follows that the perturbative and

vertical parts of the central charges Z(Υi), 1 ≤ i ≤ N − 1, have a finite ε→ 0
limit:
(2.43)

lim
ε→0

Zpv(Υi) = −N
√
−1

π

N−1∑
j=1

C−1ij c0aj

+

√
−1
π

∑
α∈Δ+

N

ni(α)〈a, α〉
[
ln

(
−2π

√
−1

M0
〈a, α〉

)
− 1

]
.
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Using again identity (2.40) and Equation (2.36), this can be written

(2.44)

lim
ε→0

Zpv(Υi) =
N

π

[
π

2
+
√
−1
(
c0 +N ln(2)

N − 1
− 1

)]N−1∑
j=1

C−1ij aj

+

√
−1
π

∑
α∈Δ+

N

ni(α)〈a, α〉 ln
〈a, α〉
Λ

.

If we identify

lim
ε→0

Zpv(Υi) =
∂Fpert

SU(N)

∂ai
then we find, up to an additive constant

(2.45) Fpert
SU(N) =

N

2
τ0

N−1∑
i,j=1

C−1ij aiaj +

√
−1
2π

∑
α∈Δ+

N

〈a, α〉2 ln 〈a, α〉
Λ

with

τ0 =
1

2
+

√
−1
π

(
c0 +N ln(2)

N − 1
− 3

2

)
.

Thus we find

lim
ε→0

Fpv
XN

= Fpert
SU(N)

and together with Equation (2.37) this implies

lim
ε→0

FXN
= FSU(N).

Finally, note that the above results also determine the behavior of the
central charges of the fractional branes (Pi, Qi), 1 ≤ i ≤ N in the field theory
limit. TheK-theory classes of the sheaves Fi, i = 1, . . . , N in (2.14) are given
by

[Fi] = −CijΥ
j + (i+ 1)Υi, 1 ≤ i ≤ N − 1,

[FN ] = −
N−1∑
i,j=1

CijΥ
j +Υ0 +

N−1∑
i=1

(i+ 1)Υi + [Op].

Therefore Z(FN ) diverges as Z(Υ0) ∼M0ε
−1, while

Z(Fi) = −CijZ(Υ
j) + (i+ 1)ai, 1 ≤ i ≤ N − 1

are finite in the ε→ 0 limit. This shows that the fractional branes (PN , QN )
are very heavy and decouple from the low energy dynamics in this limit while
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(Pi, Qi), 1 ≤ i ≤ N − 1 are dynamical BPS particles with central charges

(2.46) Zgauge(Pi) = Cija
D
j − (i+ 1)ai, Zgauge(Qi) = −Cija

D
j + iai,

with i = 1, . . . , N − 1.
This result allows us to employ geometric engineering methods in the

study of the gauge theory BPS spectrum. Using the detailed discussion of
the field theory limit one can construct a dictionary between D-brane bound
states and gauge theory BPS particles. First note that the abelian gauge
fields A(i), i = 1, . . . , N − 1 in the low energy effective action are obtained
by KK reduction of the three-form field,

C(3) =

N−1∑
i=1

A(i) ∧ ηSi
,

on a set of harmonic two-forms ηSi
related by Poincaré duality to Si.

D-branes wrapping the compact holomorphic cycles in XN yield massive
BPS particles in the low energy theory whose electric and magnetic charges
are determined by the standard couplings to background RR fields using
relations (2.4), (2.6). A D2-brane with K-theory class Υi = [OCi

(−1)] ∈
K0

cpt(XN ), i = 1, . . . , N − 1, yields a massive BPS particle whose world-line

coupling to the abelian gauge fields A(i) is given by

exp

[√
−1
∫
Ci×R

C(3)

]
= exp

[
−
√
−1

N−1∑
j=1

Cij

∫
R

A(j)

]
Therefore it has electric electric charge vector (−Cij)1≤j≤N−1 and trivial
magnetic charges. These particles will be identified with the massive W -
bosons in field theory. A D4-brane with K-theory class Λi = [OSi

(−Σi−1 −
(i+ 1)Ci)], i = 1, . . . , N − 1 yields a magnetic monopole with magnetic charge
(δij)1≤i≤j . This can be checked by a similar argument. Note that the integral
homology cycle

C̃i = −N
N−1∑
j=1

C−1ij Cj

has intersection numbers

(C̃i · Sj)XN
= Nδij

with the compact four-cycles Sj . Then pick a smooth representative C̃i and
let S2

r be a two-sphere of very large radius in R3 in the rest frame of the BPS
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particle, centered at the origin. Note that the four-cycle S2
r × C̃i ⊂ R3 ×XN

is a linking cycle for {0} × Si ⊂ R3 ×XN with linking number N , and has
linking number 0 with the cycles {0} × Sj , j �= i. Since a D4-brane wrapped
on Si carries one unit of magnetic charge with respect to the three-form field
C(3), it follows that

Nδij =

∫
S2

r×C̃j

dC(3) =

∫
S2

r×C̃j

N−1∑
k=1

dA(k) ∧ ηSk

= N

N−1∑
k=1

δjk

∫
S2

r

F (k) = N

∫
S2

r

F (j).

As expected, the K-theory classes Υi, Λ
i, i = 1, . . . , N − 1 belong to

the sublattice generated by the K-theory classes of the fractional branes
[Pi], [Qi] ∈ K0

cpt(XN ), i = 1, . . . , N − 1, which have finite mass in the field
theory limit. In fact one can easily check by a Chern class computation that
the sublattice generated by Υi, Λ

i, i = 1, . . . , N − 1 is identical to the one
generated by [Pi], [Qi], i = 1, . . . , N − 1. Moreover there is an orthogonal
direct sum decomposition

(2.47) K0
cpt(XN ) = Span{Op,OΣ0

(−1)} ⊕ Span{[Pi], [Qi]}

with respect to the pairing 〈 , 〉 such that the induced pairing on the second
term is nondegenerate.

The above arguments lead to the conclusion that the symplectic infrared
charge lattice Γ of the gauge theory is identified with

(2.48) Γ � Span{[Pi], [Qi]}1≤i≤N−1.

On general grounds, the infrared lattice of electric and magnetic charges
Γ does not admit a canonical splitting into electric and magnetic comple-
mentary sublattices, Γ � Γe ⊕ Γm. However there is a canonical splitting in
the semiclassical limit, where Γe is generated by the charges of massive W -
bosons and Γm by the charges of magnetic monopoles. More precisely Γe is
the root lattice of the gauge group G while Γm is the coroot lattice. Note
that these are not dual lattices. The dual of the coroot lattice is the weight
lattice. In field theory the quotient of Γ by the annihilator is symplectic.
Geometrically, Γe is identified with the sublattice of K0

cpt(XN ) generated by
the vertical curve classes Υi, i = 1, . . . , N − 1, while Γm is identified with
the sublattice generated by Λi, i = 1, . . . , N − 1.
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In addition one can also obtain line defects by wrapping D4 and D2-
branes on noncompact cycles inXN . A D4-brane supported on a noncompact
divisor Di of the form (2.7) flows in the infrared to a simple line defect which
has in the present conventions magnetic charge vector (−C−1ij )1≤j≤N−1. The
electric charges of the line defect are determined by the Chan-Paton line
bundle on Di. It will be shown in Section 7 that there is a simple choice
of Chan-Paton line bundles which yields trivial electric charges. With this
choice the charge vectors of the simple line defects are precisely identified

with the projections Υ
i
of the rational K-theory generators (2.26) to the

lattice Γ.
Note that the magnetic charge vector of a line defect engineered by a D4-

brane wrapping a divisor Di does not belong to Γ
m, since it has fractional

entries. This is in fact in agreement with the gauge theory classification of
line defects [68]. According to loc. cit. the magnetic charges of a line defect
sits in the magnetic weight lattice Γmwt as a Γm-torsor.

In conclusion, geometric engineering predicts that gauge theory BPS
states are identified with bound states of the fractional branes (Pi,
Qi)1≤i≤N−1. On physical grounds the low energy dynamics of such bound
states will be determined by a truncation of the quiver (Q,W) where the
vertices uN , vN and all adjacent arrows are removed. This yields a smaller
quiver with potential (Q,W ), where W is obtained by truncating (2.11)
accordingly. A precise mathematical study of such bound states requires the
notion of Π-stability introduced in [8, 56, 57], which was mathematically
formulated by Bridgeland in [28].

2.4. Stability conditions

According to [8, 56, 57] supersymmetric D-brane bound states must be
Bridgeland stable objects [28] in the derived category Db(XN ). At the same
time the finite mass bound states in the field theory limit must belong to the
subcategory G spanned by the subset of fractional branes (Pi, Qi)1≤i≤N−1.
A natural question is whether such objects can be intrinsically described as
stable objects with respect to a stability condition on G, as suggested by RG
flow decoupling arguments. In general this is not the case on mathematical
grounds, as explained in more detail below. However it will also be shown
that this condition is satisfied for a natural class of stability conditions from
the quiver point of view. In contrast, this property fails for large radius limit
stability conditions, as discussed in detail in Section 4.

Recall that a Bridgeland stability condition at a point in the complex
Kähler moduli spaces is specified by a t-structure on Db(XN ) satisfying a
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compatibility condition with the central charge function. The precise defini-
tion of a t-structure will not be needed in the following. It suffices to note
that any t-structure determines an abelian subcategory A ⊂ Db(XN ), the
heart of the t-structure, such that exact sequences in A are exact triangles
in the ambient derived category. The compatibility condition requires the
central charges of all objects of A to lie in a complex half-plane of the form

Hφ = {Im(eiφz) > 0} ∪ {Im(eiφz) = 0, Re(eiφz) ≤ 0},

for some φ ∈ R. Therefore for any nontrivial object F of A one can define a
phase ϕ(F ) ∈ [φ, π + φ) of Z(F ). All stable objects must belong to A up to
shift, and an object F of A is (semi)stable if ϕ(F ) (≥) ϕ(F ′) for any proper
nontrivial subobject 0 ⊂ F ′ ⊂ F in A.

Now let G be the smallest triangulated subcategory of the derived cat-
egory Db(XN ) generated by the fractional branes (Pi, Qi)1≤i≤N−1. For a
given point in the Kähler moduli space, supersymmetric D-brane bound
states in G are stable objects of A which belong to G. Note that G satis-
fies the conditions of [20, Lemma 1.3.19], therefore the given t-structure on
Db(XN ) induces a t-structure on G. Therefore the intersection A ∩ G is an
abelian subcategory AG ⊂ A, the heart of the induced t-structure. However,
the test subobjects 0 ⊂ F ′ ⊂ F in the definition of stability do not neces-
sarily belong to AG . Therefore in general the D-brane bound states will not
be defined intrinsically by a stability condition on G. In the present case,
there is however a natural class of stability conditions where this potential
complication does not arise.

Since Db(XN ) � Db(Q,W), there is a canonical bounded t-structure
whose heart A is the abelian category of (Q,W)-modules. The heart AG
of the induced t-structure on G is the abelian category of modules over the
path algebra of the truncated quiver (Q,W ) defined at the end of Section 2.3.

It is clear that all subobjects and all quotients of an object ρ of AG also
belong to AG. Therefore in this case the stable objects of A belonging to
G are defined by an intrinsic stability condition on AG . By analogy with
the local P2 model treated in [15, 27], such stability conditions on G are
obtained by assigning complex numbers (z, w) = (zi, wi) to the nodes (pi, qi),
i = 1, . . . , N − 1, of Q, all lying in the half-plane Hφ. In order to fix notation,
the dimension vector of a representation ρ with underlying vector spaces
(Vi,Wi)1≤i≤N−1 will be denoted by (di, ei)1≤i≤N−1. Then the (z, w)-slope
of a representation ρ of dimension vector (di, ei) at the nodes (pi, qi), i =
1, . . . , N − 1, respectively is defined by
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μ(z,w)(ρ) = −
Re(

∑N−1
i=1 eiφ(dizi + eiwi))

Im(
∑N−1

i=1 eiφ(dizi + eiwi))
.

A representation ρ of dimension vector (di, ei)1≤i≤N−1 is (z, w)-(semi)stable
if

μ(z,w)(ρ
′) (≤) μ(z,w)(ρ)

for all subrepresentations 0 ⊂ ρ′ ⊂ ρ. For simplicity, it is often convenient to
consider stability parameters of the form

(2.49) zi = r(−θi +
√
−1), wi = r(−ηi +

√
−1), i = 1, . . . , N − 1

where r, θi, ηi ∈ R, r ∈ R>0 such that φ may be taken trivial. In this case
the slope reduces to

μ(θ,η)(ρ) =

∑N−1
i=1 (diθi + eiηi)∑N−1

i=1 (di + ei)
,

where θ = (θi)1≤i≤N−1, η = (ηi)1≤i≤N−1. One can further reduce to the GIT
stability conditions constructed by King in [100] observing that a represen-
tation ρ is (θ, η)-(semi)stable if and only if it is (θ̄, η̄)-(semi)stable where

θ̄i = θi −
∑N−1

i=1 (diθi + eiηi)∑N−1
i=1 (di + ei)

,

η̄i = ηi −
∑N−1

i=1 (diθi + eiηi)∑N−1
i=1 (di + ei)

, i = 1, . . . , N − 1.

Note that (θ̄, η̄) satisfy

(2.50)

N−1∑
i=1

(diθ̄i + eiη̄i) = 0.

Stability parameters satisfying Equation (2.50) will be referred to as King
stability parameters. In some situations working with such parameters leads
to significant simplifications.

For physical stability conditions the stability parameters (zi, wi), 1 ≤
i ≤ N − 1, are determined by the central charges (2.46) assigned to the
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corresponding fractional branes:
(2.51)

zi =
1

Λ

(
Cija

D
j − (i+ 1)ai

)
, wi =

1

Λ

(
− Cija

D
j + iai

)
, 1 ≤ i ≤ N − 1.

More precisely there exists a subset C(Q,W ) of the universal cover of (the
smooth locus of) the Coulomb branch where the central charges (2.46)
belong to a half-plane Hφ, for some φ ∈ R. Then the above construction
yields a map C(Q,W ) → Stab(G) to the moduli space of Bridgeland stability
conditions on G.

This map can be extended to a larger subset using quiver mutations to
change the t-structure on G as in [27]. For all stability conditions obtained
this way, the heart of the underlying t-structure is an abelian category of
modules over the path algebra of a quiver with potential (Q′,W ′) related
by a mutation to (Q,W ). Such stability conditions will be called algebraic,
following the terminology of [15]. The subset of Stab(G) parameterizing such
stability conditions will be denoted by Stabalg(G) ⊂ Stab(G). In conclusion
one obtains a map

(2.52) � : CalgG → Stabalg(G)

defined on some subset CalgG of the universal cover of the Coulomb branch.
The field theory limit leads to the conjecture that the gauge theory BPS
spectrum at a point u ∈ CalgG is determined by the spectrum of Bridgeland
stable representations at the point �(u). Numerically, the BPS degeneracies
are identified with counting invariants of stable objects in G as explained in
the next subsection. This is in agreement with the quivers found in [3, 37, 62].
Furthermore, it is also natural to conjecture that in fact the domain of
definition of � covers the whole universal cover of the Coulomb branch of
the field theory. That is, for any point in the Coulomb branch one can find
an algebraic stability condition on G encoding the complete BPS spectrum
at that point.

For completeness, note that the derived category Db(XN ) is expected
to admit a different class of stability conditions, analogous to the geomet-
ric stability conditions constructed in [15]. In fact such stability conditions
must be used if one is interested in the spectrum of supersymmetric D-brane
bound states in a neighborhood of the large radius limit. A rigorous con-
struction of geometric Bridgeland stability conditions is beyond the scope of
the present paper. More physical insight can be gained assuming their exis-
tence and examining its consequences for the gauge theory BPS spectrum.
This is the goal of Section 4.
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It might be useful to some readers to have an informal summary of the
main point of this section, expressed in more physical terms. In this paper
we are viewing gauge theory BPS states as string theory BPS states which
remain “light” (i.e. of finite energy) in a certain “field theoretic limit.” In the
type IIA string picture, the field theoretic limit is a limit in which there is also
a hierarchy of scales within the Calabi-Yau manifold (see Equation (2.35).)
Some D-brane BPS states have infinite energy in this limit (simply because
they have nonzero tension and wrap cycles which have infinite volume), but
some D-brane BPS states have a finite energy in this limit. Thus we use
interchangeably the terms “light BPS states,” “finite energy BPS states,”
and “field-theoretic BPS states.”

Now, both in field theory and in string theory the BPS states are expected
to be objects in a category. When the field theory is viewed as a limit of
string theory, evidently the gauge theory BPS states should be objects in a
subcategory of the string theory category.

In general two (or more) BPS states can interact and form a BPS bound-
state, but that bound state only exists for certain vacuum parameters –
because the vacuum parameters determine the strength of the force between
constituents. The interaction energy is strictly negative away from walls of
marginal stability. The stability conditions on a category tell us when BPS
states can be considered to be boundstates of collections of other BPS states.
If the field-theoretic BPS states are objects in a subcategory of a string-
theoretic category containing all BPS states then there are two possible
notions of boundstates: We could consider only boundstates made of field-
theoretic BPS constituents or we could consider boundstates of all possible
string-theoretic BPS constituents. These notions are, in principle, different
because it is quite possible that a light, field-theoretic BPS state is (in the
string theory) a boundstate of heavy string-theoretic D-brane states. These
heavy states might interact with a large negative binding energy, producing
light states. Such a phenomenon produces an obstruction to formulating a
good stability condition on the field-theoretic subcategory: We might have
“spurious” decays of BPS states in the field theory in the sense that they
are not made of honest field-theoretic BPS states. Therefore, we would like a
criterion whereby we can determine if a BPS state is a boundstate purely of
field-theoretic BPS states. This is the physical interpretation of an “intrinsic
stability condition on AG .”

In fact, spurious decays do not happen in our examples, but it is not easy
to see that this is so in the large radius picture based on (ω,B)-stability. On
the other hand, at string scale distances there is an alternative picture of the
BPS states in terms of quiver quantum mechanics. In the quiver quantum
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mechanics picture it turns out that there actually is a natural criterion (i.e.
a t-structure on the derived category of (Q,W) modules) in which case it is
easy to see that states which are light in the field-theoretic limit can only
be boundstates of BPS particles which are also themselves light in the field
theoretic limit.

2.5. BPS degeneracies and Donaldson-Thomas
invariants

In this section we discuss the relation between various flavors of BPS degen-
eracies used by physicists and various flavors of Donaldson-Thomas invari-
ants used by mathematicians. The proper identification of these quantities
will be a crucial working hypothesis in this paper.

Let us begin with the physical BPS degeneracies. We recall the defi-
nition of protected spin characters from [68]. The Hilbert space of gauge
theory BPS states carries an action of SU(2)spin × SU(2)R where the first
factor SU(2)spin ⊂ Spin(1, 3) is the little group of a massive particle in four
dimensions and the second is the R-symmetry group of the gauge theory. 5

The irreducible representations of this group will be denoted by (jspin, jR) ∈
1
2Z≥0 × 1

2Z≥0. Moreover, as a representation of SU(2)spin × SU(2)R the
Hilbert space has the form

HBPS � HHH ⊗Hint

where HHH is the center-of-mass half-hypermultiplet and Hint is the Hilbert
space of internal quantum states of the BPS particles. As a representation of
SU(2)spin × SU(2)R HHH is (1/2, 0)⊕ (0, 1/2). The low energy gauge group
is abelian and global gauge transformations act on HBPS . The decomposi-
tions into isotypical components defines the grading by the electromagnetic
charge lattice Γ. The space HHH is neutral under global gauge transforma-
tions so there is an induced grading

(2.53) Hint � ⊕γ∈ΓHint(γ).

5The R-symmetry group of a theory is the group of global symmetries which
commutes with the Poincaré group but does not commute with the supersymme-
tries. In our case we normalize the R symmetry generators so that 2JR has weights
±1 on the supercharges.
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The spaces Hint(γ) depend in a piecewise constant manner6 on the order
parameters u of the Coulomb branch. The notation HBPS(γ;u), Hint(γ;u)
will be used whenever this dependence needs to be emphasized.

Let Jspin, JR be Cartan generators of SU(2)spin, SU(2)R normalized to
have half-integral weights. The protected spin character for unframed BPS
states is defined in [68] as

(2.54) TrHBPS(γ;u)(2Jspin)(−1)2Jspin(−y)2(Jspin+JR).

The key property of the protected spin character is that it is an index, a
result easily obtained from the representation theory of the N = 2 d = 4
supersymmetry algebra: Massive, i.e. non-BPS representations, do not con-
tribute to this character. Now, the protected spin character can be written
as (y − y−1)Ω(γ;u; y), where

(2.55) Ω(γ;u; y) = TrHint(γ;u)y
2Jspin(−y)2JR .

Note that in situations where the SU(2)R symmetry is broken down to a
U(1)R R-symmetry we can still define the RHS of (2.55), although there is
no longer a good reason for it to be an index, in general.

Reference [68] stated a pair of conjectures concerning the protected spin
character, known as the positivity conjecture and the no-exotics conjecture.
These are meant to apply only to field-theoretic (and not string-theoretic)
BPS states. The positivity conjecture asserts that Ω(γ;u, y), regarded as a
function of y, can be written as a positive integral linear combination of
SU(2) characters. That is:

(2.56) Ω(γ;u, y) =
∑
n≥1

d(γ;u;n)χn(y)

where

(2.57) χn(y) := Trny
2J =

yn − y−n

y − y−1

is the character in the n-dimensional representation of SU(2) and the d(γ;u;
n) are piecewise constant functions of u. The positivity conjecture states
that d(γ;u;n) ≥ 0 for all γ and all points u on the Coulomb branch. It
would follow if the center of SU(2)R acts trivially on Hint, i.e., that Hint

6More formally, there is a piecewise defined flat connection on the piecewise-
defined bundle of BPS states over the moduli space.
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contains only integral spins. We will call this the integral spin property. It is
stronger than the positivity conjecture. The even stronger no-exotics con-
jecture posits that in fact only states with trivial SU(2)R quantum numbers
contribute to the protected spin character. When there are no exotics the
naive spin character coincides with the protected spin character. In Section 8
and also below we will discuss criteria for the absence of exotics, and also
string-theory examples where exotics are present.

Turning now to the mathematical perspective, one can define [106, 108]
motivic Donaldson-Thomas invariants for moduli spaces of stable objects in
the triangulated category G. Employing an algebraic stability condition �(u)
at a point u ∈ CalgG , the invariant DTmot(γ, z(u), w(u)) is the virtual motive
of the moduli space of (z, w)-stable (Q,W )-modules with dimension vector
γ, taking values in an appropriate ring of motives. See Appendix B for the
minimal material on motives needed to follow the following discussion.

As explained in Appendix B, the Hodge type Donaldson-Thomas invari-
ant

DT (γ; z, w;x, y) ∈ Q(x1/2, y1/2)

is the image of DTmot(γ; z, w) under a homomorphism from the ring of
motives to the ring of Laurent polynomials Q(x1/2, y1/2). It can therefore be
written in the form

(2.58) DT (γ, z, w;x, y) =
∑

r,s∈ 1

2
Z

hr,s(γ; z, w)xrys

The coefficients hr,s(γ, z, w) are by construction non-negative integers. More-
over, as explained below, physics arguments [52, 54] lead to the conjec-
ture that they satisfy a duality relation, hr,s(γ; z, w) = h−r,−s(γ; z, w). As
observed in Appendix B, if the moduli space of (z, w)-stable quiver repre-
sentations is a smooth projective variety M(γ, z, w) of complex dimension
m,

(2.59) hr,s(γ; z, w) = hr+m/2,s+m/2(M(γ; z, w))

where the latter are the standard Hodge numbers. (In particular, hr,s is only
nonzero for integral r, s whenm is even and half-integral r, s whenm is odd.)
In what follows we will be particularly concerned with the specialization:

(2.60) DT (γ; z, w; y, y) =
∑

r,s∈ 1

2
Z

hr,s(γ; z, w)yr+s



1108 W.-y. Chuang et al.

and it will also be useful to define

(2.61) DT ref (γ; z, w; y) :=
∑

r,s∈ 1

2
Z

(−1)r−shr,s(γ; z, w)y2r

We will refer to (2.61) as the refined Donaldson-Thomas invariants. Note
that hr,s is nonzero only when r − s is integral, as observed at the end of
Appendix B.

Now let us turn to the relation between the physical and mathematical
counting functions. Our working hypothesis is, that when the moduli space
of BPS states is smooth we can identify

(2.62) Hint(γ;u) ∼= ⊕p,qH
p,q(M(γ; z(u), w(u)))

Moreover, under this isomorphism the action of the spin group SU(2)spin
should be identified with the standard Lefschetz action on cohomology. Thus,
2Jspin acts on the (p, q)-graded piece as p+ q −m. Furthermore, 2JR acts
with weight p− q on the (p, q)-graded piece. Granting these identifications
the protected spin character (2.55) becomes

(2.63) Ω(γ;u; y) =
∑
p,q∈Z

(−1)p−qy2p−mhp,q(M(γ; z(u), w(u)))

for compact and smooth moduli spaces.
A historical remark might be clarifying to some readers at this point.

The identification of spin SU(2) with Lefshetz SU(2) acting on cohomology
of BPS spaces goes back to Witten [135]. The specialized Hodge-polynomials
(2.60) were alleged in [52–54] to coincide with the un-protected spin character
TrHint(γ;z,w)y

2Jspin , even though the un-protected spin character is not an
index. Moreover, it was also proposed in [52] that 2JR acts as p− q, at
least when the moduli space of BPS states is smooth. In general we do
not expect to be able to compute unprotected quantities exactly. At special
loci there could be, for example, massive BPS multiplets saturating the
BPS bound, thus invalidating the identification in (2.60). As we discuss in
Sections 7.5, 8 below the surprising successes of many computations based
on the spin character can be explained in some examples where the absence
of exotic BPS representations can be proven. However a notable exception
has been found in [44], where convincing evidence has been found for the
isomorphism (2.62) in the presence of exotic BPS states.
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What is the mathematical import of (2.63)? Recall that the χỹ-genus of
a smooth projective variety V is defined by

(2.64) χỹ(V ) :=
∑
p,q∈Z

(−1)p+qỹphp,q(V ).

Therefore

(2.65) Ω(γ;u; y) = y−mχỹ(M(γ, z(u), w(u)))
∣∣
ỹ=y2

A natural extension of this claim is that

(2.66) Ω(γ;u; y) =
∑

r,s∈ 1

2
Z

(−1)r−sy2rhr,s(γ; z(u), w(u))

for any charge γ and point u on the Coulomb branch, even when the moduli
spaces of BPS states are singular.

Comparing with (2.61) our extended conjecture (2.66) identifies the pro-
tected spin character Ω(γ;u; y) with a refined DT invariant. Granting this
identification, the absence of exotics conjecture translates into the condition
hr,s(γ; z, w) = 0 for all r �= s. If this holds,

(2.67) Ω(γ;u; y) =
∑
r∈ 1

2
Z

y2rhr,r(γ; z(u), w(u))

If the moduli space is smooth we can further write:

(2.68) Ω(γ;u; y) = y−mP (M(γ; z(u), w(u)); y2)

where P is the Poincaré polynomial.
Finally, note that the specialization of DT ref (γ, z, w; y) at y = (−1)

coincides with the specialization of DT (γ, z, w; y) at y = (−1), and equals
the numerical Donaldson-Thomas invariants DT (γ, z, w). Relation (2.66)
then implies that the numerical invariants DT (γ, z, w) are identified with
the BPS indices Ω(γ;u).

3. Field theory limit B

This section reviews the B-model formulation of the field theory limit for
SU(2) gauge theory, following the earlier geometric engineering literature
[96, 98, 99, 101, 102]. Our main point here is to establish some results on
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periods and their analytic continuation from the large complex structure
point to the field theory point so that we can check our no-walls conjec-
ture (in section 4.2 below) in the B-model. Similar results for SU(2) were
obtained in [10, 54] employing slightly different local Calabi-Yau models.
Here we will employ the local F2 model and focus on analytic continuation
of BPS central charges between LCS limit point and the field theory scaling
region.

According to [86, 98, 99], the local mirror of the toric Calabi-Yau three-
folds XN , N ≥ 2, is a family of conic bundles over (v, w) ∈ (C×)2 given by

(3.1) P (v, w) = xy,

where (x, y) ∈ C2. In terms of homogeneous coordinates (αi, β1, β2) ∈
(C×)N+3 on the moduli space, the polynomial P (v, w) is given by

(3.2) P (v, w) = β1v +
β2
v
+

N∑
i=0

αiw
i.

The homogeneous parameters αi, β1, β2, 0 ≤ i ≤ N , are subject to a scaling
gauge symmetry

αi → λki
s

s αi, β1 → λkN+1
s

s β1, β2 → λkN+2
s

s β2, 0 ≤ i ≤ N + 2,

where {ks = (kjs)}, 1 ≤ s ≤ 3, 0 ≤ j ≤ N + 2, is an integral basis of the ker-
nel of the charge matrix (Qa

j ), a ≤ 1 ≤ N , 0 ≤ j ≤ N + 2, in (2.1). The gauge
invariant algebraic coordinates zi, i = 0, . . . , N − 1 on the moduli space are
given by

(3.3) zi = αi−1α−2i αi+1, 1 ≤ i ≤ N − 1, z0 = β1β2α
−2
0

since (αi, β1, β2) all have weight one under the scaling gauge symmetry.
There is a unique (up to scaling) holomorphic three-form

Ω =
1

y
dxdwdv

on the conic bundles (3.1) whose periods Π satisfy the GKZ system
(3.4)

∂

∂αi−1
∂

∂αi+1
Π =

∂2

∂α2
i

Π, 1 ≤ i ≤ N − 1,
∂

∂β1

∂

∂β2
Π =

∂2

∂α2
0

Π.
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Note that the mirror map is of the form

zi = e2π
√−1(bi+

√−1ti)

near the LCS limit point, zi → 0, i = 0, . . . , N − 1. The field theory limit is
a scaling limit of the form [98, 99]

z0 ∼ ε2N , zi ∼ ε0, i = 1, . . . , N − 1

which identifies the curve P (v, w) = 0 with the Seiberg-Witten curve of pure
SU(N) gauge theory. As shown below forN = 2, this is theBmodel counter-
part of the scaling limit studied in Section 2.3 in terms ofA-model variables.

In the case N = 2, corresponding to SU(2) gauge theory, the toric three-
fold X2 constructed in Section 2 is isomorphic to the total space of the anti-
canonical bundle of the Hirzebruch surface S1 = F2. The Mori cone of X2 is
generated by the fiber class C1 and the section class Σ0. The Mori vectors
are given by (2.1):

�(0) = (−2, 0, 0, 1, 1), �(1) = (1,−2, 1, 0, 0).

Equation (3.3) gives us the two coordinates on the moduli space: z0 =
β1β2/α

2
0 and z1 = α0α

−2
1 α2. The mirror map relates ln(zi) ∼ 2πis̃i where

s̃0, s̃1 are the special flat coordinates on the complex Kähler moduli space
associated to the generators Σ0, C1 respectively.

The Picard-Fuchs operators follow from (3.4) and are equal to:

L0 = θ20 − z0(θ1 − 2θ0)(θ1 − 2θ0 − 1),

L1 = θ1(θ1 − 2θ0)− z12θ1(2θ1 + 1).

with θi = zi
∂
∂zi
. In the vicinity of the large complex structure limit |z0|, |z1| �

1, the periods can be obtained by introducing

(3.5) Π(z0, z1; r0, r1) =

∞∑
n0,n1=0

zn0+r0
0 zn1+r1

1∏5
i=1 Γ(

∑
α=0,1 �

(α)
i (nα + rα) + 1)

.

and evaluating its derivatives with respect to ri at ri = 0, i = 0, 1, of (see e.g.
[40, 87]). The action of the Picard-Fuchs generator on Π(z1, z2; r0, r1) gives
a simpler function which vanishes upon taking derivatives with respect to
r0, r1 and setting them to 0. Using Euler’s reflection formula Γ(1− x) Γ(x) =
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π
sinπx , the resulting expressions for the periods are:

(3.6)

Πc = Π(z0, z1; r0, r1)|r0=r1=0 = 1,

2π
√
−1Π0 =

∂

∂r0
Π(z0, z1; r0, r1)|r0=r1=0

= ln(z0) + 2

∞∑
m=1

Γ(2m)

Γ(m+ 1)2
zm0 ,

2π
√
−1Π1 =

∂

∂r1
Π(z0, z1; r0, r1)|r0=r1=0

= ln(z1)−
∞∑

m=1

Γ(2m)

Γ(m+ 1)2
zm0

+ 2

∞∑
m=0,n=1

Γ(2n)

Γ(−2m+ n+ 1)Γ(n+ 1)Γ2(m+ 1)
zm0 zn1 ,

(2π
√
−1)2ΠD

=

(
∂2

∂r21
+

∂2

∂r0∂r1

)
w0(z0, z1; r0, r1)|r1=r2=0

= ln(z1)
2 + ln(z0) ln(z1)− ln(z0)

∞∑
m=1

Γ(2m)

Γ(m+ 1)2
zm0

+ 2 ln(z0z
2
1)

∞∑
m=0,n=1

Γ(2n)

Γ(−2m+ n+ 1)Γ(n+ 1)Γ(m+ 1)2
zm0 zn1

− 2π2

3
− 2

∞∑
m=1

Γ(2m)

Γ(m+ 1)2
(ψ(2m)− ψ(m+ 1)) zm0

+ 4

∞∑
m=0,n=1

Γ(2n) (2ψ(2n)− ψ(m+ 1)− ψ(n+ 1))

Γ(−2m+ n+ 1)Γ(n+ 1)Γ(m+ 1)2
zm0 zn1 ,

where Γ(x) and ψ(x) = d
dx ln Γ(x) are the usual gamma and digamma func-

tion. Physically, Πc is identified by mirror symmetry with the central charge
of a D0-brane on X2, while Π0 and Π1 are identified with the central charges
of the D2-branes OC1

(−1), OΣ0
(−1) wrapping the fiber C1, and the sec-

tion Σ0 respectively. In Section 2.3 their K-theory charges were denoted by
Υ0,Υ1. Since Πc = 1, the flat coordinates s̃i are given by

s̃i = Πi, i = 0, 1.
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The fourth period s̃D = ΠD will be associated similarly to a D4-brane on
X2, which will be identified once ΠD is expanded in terms of flat coordinates
near the LCS limit point.

To determine theA-model instanton corrections one inverts the relations
for s̃0 and s̃1. The series in z0 appearing in s̃0 can be summed up to an
elementary function:

F1(z) =

∞∑
m=1

Γ(2m)

Γ(m+ 1)2
zm(3.7)

=

∞∑
m=1

Γ(m+ 1
2)

2
√
π Γ(m+ 1)

(4z)m

m

= 2

∫ z

dt

(
− 1

4t
+

1

4t

1√
1− 4t

)
= − ln(12 + 1

2

√
1− 4z),

where for the second equal sign we used the duplication formula Γ(x) Γ(x+
1
2) = 21−2x

√
π Γ(2x), and for the third

∑∞
n=0

Γ(α+n)
Γ(α)Γ(n+1) t

n = (1− t)−α. Now
one can easily verify the inverse relation q0 = exp(2π

√
−1 s̃0):

z0 =
q0

(1 + q0)2
.

Inverting the third Equation in (3.6) iteratively, one finds for the first terms
of z1:

z1 = q1

(
1

(1 + q1)2
+ q0 − 4q0q1 + 3q0q

2
1 − 2q20q1 + · · ·

)
,

where q1 = exp(2π
√
−1 s̃1). The · · · in the above formula denote higher

degree terms in q0, q1.
Substitution of these series in s̃D = ΠD gives the following form of the

A-model instanton series:

(3.8) s̃D = s̃21 + s̃0s̃1 +
1

6
+

−2
(2πi)3

∂

∂s̃1

∑
ni∈N

N(ni) Li3(q
n0

0 qn1

1 ),

where Lin(z) =
∑∞

k=1
zk

kn . The constant term arises from the trigamma

function ψ1(x) =
d2

dx2 ln Γ(x) evaluated at x = 1: ψ1(1) =
π2

6 . Using Equa-
tion (2.28), the polynomial part of the above equation identifies
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s̃D = −Z(OS1
(KS1

/2)) = −Z(OS1
(−Σ0 − 2C1))

Up to sign this is the central charge of a D4-brane supported on the com-
pact divisor S1 � F2, with Chan-Paton line bundle OS1

(−Σ0 − 2C1). In the
notation of Section 2.3 its K-theory class is given by

(3.9) Λ1 = −[OS1
(−Σ0 − 2C1)] = 2Υ1.

Recall that ch2(Υ
1) = 0, hence this D4-brane has no induced D2-brane

charges. There is however an induced fractional D0-brane charge, equal to∫
S1

(
ch3(OS1

(−Σ0 − 2C1)) +
1

24
c2(X2)

)
= χ(OS1

(−Σ0 − 2C1))−
1

24

∫
S2

c2(X2) =
1

6
,

using Equations (2.33).
The central charge Z(Γ, t) of a BPS D-brane with compact support will

be given by:

(3.10) Z(Γ, t) = −rs̃D +
∑
i=0,1

Q2,is̃i −Q0.

in terms of the D4-, D2-, and D0-brane charges (r,Q2,i, Q0).
Following [99], the B model field theory limit is a scaling limit in a

neighborhood of a special point in the compactified complex structure mod-
uli space of the family of curves (3.2). For the local F2 model, the special
point is the intersection point

z0 = 0, z1 =
1

4

between the discriminant

(1− 4z1)
2 − 64z0z

2
1 = 0

of the family (3.2) and the boundary divisor z0 = 0. The scaling limit is
defined by

(3.11) z1 =
1

4

(
1 +

2π2ε2u

M0
2

)
, z0 = ε4e4c0 ,

where M0 is a fiducial fixed scale and c0 an arbitrary constant as in Sec-
tion 2.3, Equation (2.35). The scale M0 is related to the QCD scale Λ by
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Equation (2.36), which in this case reads

(3.12) Λ =
2M0

π
e2c0 .

Then one can show as in [99] that the ε→ 0 limit of the family of curves (3.2)
is the family of Seiberg-Witten curves of SU(2) gauge theory.

Our main goal is to show that the periods s̃1, s̃D reproduce the weak
coupling gauge theory central charges of the W-boson and monopole, respec-
tively a(u/Λ2) and aD(u/Λ

2) in the ε→ 0 limit. The weak coupling region

of the field theory Coulomb branch is given by |u|Λ2  1. In this regime, Equa-
tions (3.11), (3.12) imply that the positive powers of z0 in the period expan-
sions (3.6) yield subleading nonperturbative corrections in the ε→ 0 limit.
Therefore in order to reproduce the leading weak coupling terms it suffices
to truncate the period expansions to the terms containing only powers of
z1. Fortunately, the remaining series in z1 can be summed up to elementary
functions. For s̃1 the resulting series is F1(z) in (3.7). For ΠD one finds the
series

(3.13) F2(z) =

∞∑
m=1

Γ(2m)

Γ2(m+ 1)
(2ψ(2m)− ψ(m+ 1)− ψ(1)) zm,

which is a bit harder to evaluate. We rewrite it as

F2(z) =
∂

∂r

∞∑
m=1

Γ(2(m+ r))

Γ(m+ r + 1)Γ(m+ 1)Γ(r + 1)
zm

∣∣∣∣∣
r=0

.

=
∂

∂r

Γ(r + 1
2)

2
√
π Γ(r + 1) zr

∫ z

4dt

(
−(4t)r−1 + (4t)r−1

1

(1− 4t)r+1/2

)∣∣∣∣∣
r=0

.

After taking the derivatives to r, and performing the integral, F2(z) can be
expressed as:

F2(z) =
1

2
ln

(
1

2
+
1

2

√
1− 4z

)2

− 1

2
Li2(4z)(3.14)

− Li2(
1

2
− 1

2

√
1− 4z) + 2Li2(1−

√
1− 4z).

In principle, one can also derive similar functions for the series multiplying
higher powers of z0, but these expressions will not be needed in the following.

Having found these functions, we now study the behavior of the peri-
ods (3.6) in the field theory limit ε→ 0. Since the functions F1(z1), F2(z1)
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depend on
√
1− 4z1, in addition to the change of variables (3.11), one has

to introduce a branch cut starting at z1 = 1/4 and choose a specific branch
of the square root. We will choose the branch

√
1− 4z1 = −π

√
−1 ε

M0

√
2u.

Then one finds the following small ε expansions:

F1(z1) = ln(2) +
√
−1 πε

M0

√
2u+O(ε2),

F2(z1) =
1

6
π2 + ln(2)2 −

√
−1 πε

M0

(
− 2 + ln

(
− 2π2ε2u

M2
0

))√
2u+O(ε2)

where the second line follows from Li2(0) = 0, Li2(
1
2) =

1
12π

2 − 1
2 ln(2)

2, and
Li2(1) =

1
6π

2. With these expansions one obtains:

s̃c = 1,

s̃0 =
2

π
√
−1 ln(ε) +O(ε

0),

s̃1 =
ε

M0

√
2u+O(ε2),

s̃D =
ε

M0

√
−1
π

√
2u

[
ln

(
− 8π2u

M2
0

)
− 2c0 − 2

]
+O(ε2).

Now recall that the ratio M0/ε is the string theory scale Ms, which is
sent to∞ as ε→ 0. Then the period expansions (3.15) imply that the central
charges Mss̃c,Mss̃0 are divergent in the ε→ 0 limit, while Mss̃1 has a finite
limit

lim
ε→0

Mss̃1 =
√
2u+ · · · = 2a1(u)

where · · · are higher order terms in the weak coupling expansion parameter
u/Λ2. This expression is in agreement with the Coulomb branch flat coordi-
nate a(u) defined in [125] and differs by a factor of 2 from the normalization
chosen in [126]. The same flat coordinate was denoted by a1 in Section 2.3,
Equation (2.35).

Moreover, choosing the branch ln(−u) = −π
√
−1 + ln(u) for the loga-

rithm, the last expression in (3.15) shows that Mss̃D also has a finite ε→ 0
limit,

lim
ε→0

Mss̃D =

√
−1
π

√
2u

[
−π
√
−1 + ln

(
8π2 u

M2
0

)
− 2c0 − 2

]
+ · · ·
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Rewriting this expression in terms of the flat Coulomb branch coordinate a1
yields

lim
ε→0

Mss̃D = 2

[
1

2
+

√
−1
π

(
ln

(
2π

a1
M0

)
− c0 − 1

)]
a1 + · · ·

By comparison with Equation (2.44) in Section 2.3, it follows that

lim
ε→0

Mss̃D = 2 lim
ε→0

Zpv(Υ1) = 2aD1 ,

as expected from the K-theory relation Λ1 = 2Υ1. As observed in Equa-
tion (2.45) the dual period aD1 is derived from a gauge theory prepotential
with classical coupling constant

τ0 =
1

2
+

√
−1
π

(c0 + 2 ln 2− 3/2),

These expressions are in agreement with [126] up to the classical τ0 depen-
dent terms.

The BPS particles of SU(2) field theory correspond to those BPS D-
branes whose central charges are finite in the ε→ 0 limit, taking into account
the scaling α′ = ε2/Λ2, in Section 2.3. Thus we deduce from Equations (3.10)
and (3.15) that only bound states of D4-branes and D2-branes withK-theory
charges

−rΛ1 +Q2,1Υ1

survive in the field theory limit, the other charges being infinitely massive.
Indeed the central charge in the field theory is

(3.15) Z((nm, ne), u) = nmaD1 (u) + nea1(u),

and comparing with (3.10) gives nm = r, and ne = 2Q2,1.

4. Large radius stability and the weak coupling
BPS spectrum

The main goal of the present section is to formulate a precise conjectural
relation between large radius supersymmetric D-brane configurations and
the gauge theory BPS spectrum. Since the field theory scaling region is far
from the large radius limit, such a correspondence will necessarily involve
parallel transport of the BPS spectrum. As explained below Fig. 1 in the
introduction, in this process one has to take into account possible marginal
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stability walls separating these two regions. Therefore, our no walls con-
jecture will claim the existence of a suitable path connecting the the large
radius limit point to the field theory region which avoids all possible walls
of marginal stability. A consequence of the no walls conjecture is a complete
geometric construction for the weak coupling BPS spectrum of the gauge
theory.

A strong argument for the no walls conjecture is provided in Section 4.2
for SU(2) gauge theory. Further evidence is presented in Sections 4.4 and 5
by explicit computations of BPS degeneracies in SU(3) gauge theory.

4.1. Large radius stability

In this section it will be assumed that geometric Bridgeland stability con-
ditions on Db(XN ) exist and have a large radius behavior similar to the
ones constructed in [15, 29]. More precisely, let B +

√
−1ω be a fixed com-

plex Kähler class, and γ ∈ K0
c (XN ) a K-theory class with compact support.

Suppose γ belongs to the effective cone i.e. it is the K-theory class of a
sheaf. Then it will be assumed that for each γ there exists λ ∈ R>0 suffi-
ciently large such that any object F of Db(XN ) with [F ] = γ is geometri-
cally Bridgeland (semi)stable with respect to B +

√
−1λω if and only if it is

an (ω,B) Gieseker (semi)stable sheaf7. Consequently we can define a large
radius BPS spectrum.

Granting the above assumptions, this subsection will be focused on basic
properties of such sheaves on the toric threefolds XN . Recall that the large
radius central charge for any sheaf F with compact support on XN is

(4.1) Z(ω,B)(F ) = −
∫
XN

e−(B+
√−1ω)ch(F )

√
Td(XN ).

Note that any sheaf F with compact support must be a torsion sheaf with
set theoretic support contained in the divisor S =

∑N−1
i=1 Si. Therefore

Z(λω,B)(F ) = Z
(2)
(ω,B)(F )λ

2 + Z
(0)
(ω,B)(F ) +

√
−1λZ(1)

(ω,B)(F )

7If there were a uniform bound for all γ then Bridgeland stability would coincide
with (ω,B) stability. But we do not expect this to be the case.
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where

Z
(2)
(ω,B)(F ) =

1

2

∫
XN

ω2ch1(F )

Z
(1)
(ω,B)(F ) =

∫
XN

(ωch2(F )− ωBch1(F ))

Z
(0)
(ω,B)(F ) = −

∫
XN

(
ch3(F ) +

1

2
ch1(F )Td2(X)

)
If F has support of dimension two, ch1(F ) is a nontrivial effective divisor

class, hence Z
(2)
(ω,B)(F ) �= 0. In this case one can define

(4.2) μ(ω,B)(F ) =
Z

(1)
(ω,B)(F )

Z
(2)
(ω,B)(F )

, ν(ω,B)(F ) =
Z

(0)
(ω,B)(F )

Z
(2)
(ω,B)(F )

.

Gieseker (semi)stability with respect to the pair (ω,B) is defined by the
conditions

(4.3) μ(ω,B)(F
′) (≤) μ(ω,B)(F )

for any proper nontrivial subsheaf 0 ⊂ F ′ ⊂ F , and

(4.4) ν(ω,B)(F
′) (≤) ν(ω,B)(F )

if the slope inequality (4.3) is saturated. For simplicity (ω,B) Gieseker sta-
bility will be called (ω,B)-stability in the following. One can also define
twisted (ω,B)-slope stability imposing only condition (4.3). It is easy to
check that the following implications hold

(ω,B)−slope stable⇒ (ω,B)−stable
⇒ (ω,B)−semistable
⇒ (ω,B)−slope semistable.

Moreover, if the numerical invariants and (ω,B) are sufficiently generic there
are no strictly semistable objects and the two notions of stability coincide.
Finally, note that the main properties of (ω,B) stability conditions are anal-
ogous to those of standard Gieseker or slope stability conditions. That is, all
the standard filtrations exist and there exist projective or quasi-projective
moduli spaces of such objects. For completeness note that the numerical
invariants of F can be written as
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(4.5)

ch0(F ) = 0, ch1(F ) =

N−1∑
i=1

miSi, ch2(F ) = pΣ0 +

N−1∑
i=1

niCi, χ(F ) = n,

where mi, ni, p, n ∈ Z with mi ≥ 0, i = 1, . . . , N − 1. It is easy to check that
ch1(F )

2 is always even, hence ch2(F ) is integral. Using Equations (2.18)
and (2.19), the holomorphic Euler character of a sheaf F on XN with com-
pact two dimensional support is given by

χ(F ) =

2∑
k=0

(−1)kdimHk(XN , F ).

We conclude the remaining part of this subsection with some technical
results on (ω,B)-slope semistable sheaves on XN . It will be shown that
any (ω,B)-slope semistable sheaf F with compact support of dimension
two must be the extension by zero of a sheaf on the reduced divisor S =∑N−1

i=1 Si. Such sheaves will be called scheme theoretic supported on S. From
a physical point of view, these are D-brane bound states supported on S
where the vacuum expectation value of the Higgs field parameterizing normal
fluctuations within XN is trivial. Note that in general this might not be the
case since multiple D-branes supported on S may have nontrivial nilpotent
Higgs field expectation values [55]. Moreover, the moduli stack of (ω,B)-
slope semistable sheaves will be shown to be smooth.

In order to prove the first claim, note that S is the zero locus of the
section

s =

N−1∏
i=1

xi ∈ H0(XN ,OXN
(S)).

A sheaf F is scheme theoretically supported on S if and only if the morphism

F
φs �� F (S)

determined by multiplication by s is identically zero. Below we show that
this must be the case for an (ω,B)-slope semistable pure dimension two
sheaf with set theoretic support on S.

Suppose φs is not identically zero, and let I = Im(φs) ⊂ F (S), G =
Ker(φs) ⊂ F . Obviously there is an exact sequence

0→ G→ F → I → 0
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which remains exact under multiplication by any line bundle. In particular
there is also an exact sequence

0→ G(−S)→ F (−S)→ I(−S)→ 0

where I(−S) ⊂ F . Note that φs cannot be an isomorphism since F and
F (S) have different Chern classes. Hence the inclusion I(−S) ⊂ F is strict.
Moreover, since F is set theoretically supported on S, G cannot be trivial.
Since φs �= 0 by assumption, G ⊂ F is strict as well. Then the (ω,B)-slope
semistability condition yields the inequalities

μ(ω,B)(G) ≤ μ(ω,B)(F ), μ(ω,B)(I(−S)) ≤ μ(ω,B)(F ).

Using the above exact sequences and expressions (4.2), a straightforward
computation shows that these inequalities yield∫

XN

ωch1(I)S ≥ 0.

However, ch1(I) =
∑N−1

i=1 m′iSi for some m
′
i ∈ Z≥0, i = 1, . . . , N − 1, since I

must be pure dimension two supported on S. Using the intersection products

(Si · Sj)XN
= Σiδj,i+1 +Σi−1δj,i−1 − (Σi−1 +Σi + 2Ci)δj,i

for 1 ≤ i, j ≤ N − 1, one finds

∫
XN

ωch1(I)S = −m′1
∫
Σ0

ω −m′N−1

∫
ΣN−1

ω − 2

N−1∑
i=1

m′i

∫
Ci

ω.

Since ω is a Kähler class, it follows that∫
XN

ωch1(I)S ≤ 0

and equality holds if and only if all m′i = 0. This leads to a contradiction
unless I is the zero sheaf, which proves the claim.

This result implies that the moduli stacks of (ω,B)-slope semistable
sheaves are smooth. Since any such sheaf F is scheme theoretically supported
on S, it suffices to prove that Ext2S(F, F ) = 0. This follows using the fact
that Serre duality holds on S since S is a divisor in XN , and the dualizing
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sheaf is given by the adjunction formula

(4.6) ωS � OS(S).

Then one has an isomorphism

Ext2S(F, F ) � Ext0S(F, F (S))
∨

for any coherent OS-module F . Moreover it is straightforward to check by
a slope calculation as above that

(4.7) μ(ω,B)(F (S)) < μ(ω,B)(F ).

Since F is assumed (ω,B)-slope semistable, this implies that Ext0S(F, F (S))
= 0, hence Ext2S(F, F ) = 0 as well. In order to prove the last claim, note that
if F is (ω,B)-slope semistable then F (S) has the same property. Suppose
φ : F → F (S) is a nontrivial morphism. Then

μ(ω,B)(F ) ≤ μ(ω,B)(Im(φ)) ≤ μ(ω,B)(F (S)),

contradicting inequality (4.7).

4.2. An example: SU(2) gauge theory

As an example, in this section we will analyze the large radius BPS spectrum
for the N = 2 geometry and explain its relation to the SU(2) gauge theory
spectrum. An important point is that a priori one does not expect a one-
to-one correspondence between large radius and field theory BPS states,
because the field theory limit involves analytic continuation in the complex
Kähler moduli space as explained in detail in Section 3. Hence these two
regions of the moduli space could be in principle separated by marginal
stability walls, leading to a complicated relation between the two spectra.
As also claimed in [54], it will be shown here for N = 2 that such walls are
absent for all finite mass BPS states in the field theory limit.

It was shown in Sections 2.3, 3 that only K-theory charges of the form

(4.8) Υr,Q = −rΛ1 +QΥ1

can support finite mass BPS states in the field theory limit, where

Υ1 = [OC1
(−1)], Λ1 = −[OS1

(−Σ0 − 2C1)],
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and r,Q ∈ Z. They correspond to the W -boson and anti-monopole charge
respectively.

As explained in Section 4.1, in the large radius limit, such a charge Υr,Q

supports BPS states only if there exists at least one Gieseker semistable
stable sheaf F on X2 with [F ] = Υr,Q. In particular, r ≥ 0. According to
Section 4.1, any such sheaf must be the extension by zero of a Gieseker
semistable stable sheaf E on S1 = F2 with numerical invariants

(4.9) ch0(E) = r, ch1(E) = −rΣ0 + (Q− 2r)C1, χ(E) = 0.

For r = 0 such a sheaf is semistable if and only if E = OC1
(−1)⊕Q, Q ≥ 0,

where C1 is a fiber of S1 = F2. For Q = 1 the moduli space of stable sheaves
is isomorphic to P1, and the protected spin character,

Ω(Υ0,1; y) = y + y−1.

These BPS states have the quantum numbers of a massive W -boson. If
Q > 1, all semistable objects are isomorphic to direct sums E = OC1

(−1)⊕Q,
which implies that there are no Q > 1 bound states.

For r > 0, E must be a torsion free Gieseker semistable sheaf on S1. For
simplicity suppose the charge vector is primitive such that E must be auto-
matically stable. Then a standard argument shows that its endomorphism
ring is

Ext0S1
(E,E) � C.

Moreover, as shown in the last paragraph of Section 4.1,

Ext2S1
(E,E) = 0.

Then the moduli space of stable sheaves is smooth, and its dimension follows
from the Riemann-Roch theorem

dimExt1S1
(E,E) = 1−

∫
S1

ch(E∨ ⊗S1
E)Td(S1)

= 1−
∫
S1

(r2 − ch1(E)
2 + 2rch2(E))Td(S1).

Equations (4.9) imply∫
S1

ch1(E)
2 = 2r(r −Q),∫

S1

ch2(E) = χ(E)− 1

2

∫
S1

ch1(E)c1(S)− rχ(OS1
) = r −Q.
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Therefore

dimExt1S1
(E,E) = 1− r2

for any value of Q ∈ Z. A nonempty moduli space is obtained only for r = 1,
in which case E is a line bundle, E � OS1

(−Σ0 + (Q− 2)C1). The moduli
space is just a point and the protected spin character

Ω(Υ1,Q; y) = 1.

These states have the quantum numbers and degeneracies of weak coupling
dyons with magnetic charge 1. In conclusion the large radius BPS spectrum
coincides with the weak coupling spectrum of SU(2) gauge theory, at least
for primitive charge vectors. More involved computations [110] show that at
large radius there are no BPS states with non-primitive charge vector r > 1,
in agreement with the gauge theory BPS spectrum.

An important conceptual point is that the one-to-one correspondence
between large radius and gauge theory BPS states is not expected on general
grounds. In principle the BPS spectrum could jump at marginal stability
walls between large radius and the field theory scaling region. Making a
finiteness assumption, we will show below that for any charge Υr,Q with
finite mass in the field theory limit, there exists a path starting arbitrarily
close to the LCS point (z0, z1) = (0, 0) and ending arbitrarily close to the
center (z0, z1) = (0, 1/4) of the field theory scaling region, such that the BPS
degeneracy of Υr,Q is constant along γu.

We first construct an open path γu in the complex structure moduli
space for any point u = −|u|eiθ in the weak coupling region of the Coulomb
branch such that |u/M2

0 |  1 and 0 < θ � 1. Such a path is determined by
Equations (3.11),

z1 =
1

4

(
1 +

2π2ε2u

M0
2

)
, z0 = ε4e4c0 ,

where u,M0, c0 are constant and

(4.10) 0 < ε <
M0

π
√
2|u|

is a parameter along the trajectory. Note that the upper end of the interval
(4.10) may be made arbitrarily small by taking |u|/M2

0 sufficiently large,
which means u sufficiently close to the semiclassical singular point on the
Coulomb branch. Therefore by making a suitable choice of u both z0 and z1
will be arbitrarily close to the LCS values (z1, z0) = (0, 0) when ε approaches
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the upper end of the interval. At the lower end the values of (z0, z1) approach
the center of the field theory scaling region, (z0, z1) = (0, 1/4). The absolute
values and phases of the periods (3.6) are plotted below for a concrete choice
of such a trajectory. In practice we will consider a closed path parameterized
by ξ ≤ ε ≤ (1− ξ)M0/π

√
2|u| with ξ > 0 a very small positive number. For

example ξ = 10−4.

Figure 3: The magnitudes of the periods Πc, Πi and ΠD along the trajectory
from the large volume limit to the field theory limit, for 2π2 u/M2

0 = −104,
c0 = 1 and ξ = 10−4.

In particular, the phases of the periods Πc,Π0,Π1,ΠD are almost constant
on the trajectory γu, and approximatively equal to

(4.11) 0,
π

2
,
π

2
, π

respectively. Moreover, numerical computations show that the maximum
values of

|arg(ΠD) + arg(Πc)− π|, |arg(Π0)− arg(Π1)|, |Π1|/|Π0|

over the trajectory can be made arbitrarily small by increasing |u|/M2
0 .

Now, starting at the upper end of the interval, suppose the first wall
of marginal stability for a BPS state of charge Υr,Q encountered along the
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Figure 4: The arguments of the periods Πc, Πi and ΠD along the trajectory
from the large volume limit to the field theory limit, for 2π2 u/M2

0 = −104,
c0 = 1 and ξ = 10−4.

trajectory γu corresponds to some decomposition

(4.12) Υr,Q =

n∑
i=1

Υi, Υi = riΛ
1 + siΥ0 +QiΥ1 + qi[Op], 1 ≤ i ≤ n,

ri, Qi, si, qi ∈ Z such that the central charge Z(Υr,Q) is aligned with all cen-
tral charges Z(Υi). Recall that under the current assumptions Υr,Q must
have finite central charge in the field theory limit, hence either r = 0 and
|Q| = 1 or r = 1 and Q ∈ Z arbitrary.

Then there exist positive real numbers λi ∈ R>0 such that

riΠD + siΠ0 +QiΠ1 + qi = λi(rΠD +QΠ1)

for all 1 ≤ i ≤ n at any point on the marginal stability wall. Given the above
behavior of the phases of Πc,Π0,Π1,ΠD along a path γu, by taking |u|/M2

0

sufficiently large, it follows that

(4.13) siΠ0 + (Qi − λiQ)Π1 = 0, (ri − λir)ΠD + qi = 0

for all 1 ≤ i ≤ n at the intersection point with the wall. Since the ratio
|Π1|/|Π0| can be made arbitrarily small by a suitable choice of |u|/M2

0  1,
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it follows that

(4.14) si = 0, Qi = λiQ

for all 1 ≤ i ≤ n. Since λi > 0, n ≥ 2 and
∑n

i=1Qi = Q, this rules out the
case r = 0, Q = ±1. Therefore in order for such an intersection point to exist
one must have r = 1 and Q ∈ Z.

Next we show that if Q = 0 the BPS degeneracy of the charge Υr,Q does
not jump across a wall of the form (4.12). If Q = 0, Equation (4.14) implies
that Qi = 0 for all 1 ≤ i ≤ n. The symplectic pairing of any two K-theory
classes Υi,Υj with si = sj = 0 is

〈Υi,Υj〉 = 2(rjQi − riQj).

Hence if Qi = Qj = 0 the charges are orthogonal. Since this holds in this
case for any pair of charges Υi,Υj , the Kontsevich-Soibelman wallcrossing
formula implies that the BPS degeneracy does not jump across such a wall.
This holds for refined BPS degeneracies as well.

Finally, suppose r = 1 and Q �= 0. Then Equations (4.13), (4.14) imply

(riQ−Qi)ΠD + qi = 0

at the intersection point for all 1 ≤ i ≤ n. However ΠD is locally a holo-
morphic function, after choosing appropriate branch cuts. Hence for given
(r,Qi, qi), the equations (riQ−Qi)ΠD + qi = 0 can hold at most on a com-
plex codimension one locus in the moduli space. Therefore there will exist a
smooth local deformation γ̃u of the path γu in an arbitrarily small tubular
neighborhood of the marginal stability wall avoiding the subspace (riQ−
Qi)ΠD + qi = 0, 1 ≤ i ≤ n. The above argument implies that such a pertur-
bation cannot intersect the wall.

The above argument applies to any marginal stability wall of the form
(4.12), with the caveat that the required lower bound on |u|2/M2

0 will depend
on the wall. Therefore, if the number of possible marginal stability walls of
the form (4.12) is finite, one can find a uniform lower bound on |u|2/M2

0 such
that the argument applies simultaneously to all the walls. In this case, for
sufficiently large |u|/M2

0  1, there will exist a smooth small deformation
γ̃u of the path γu such that the BPS degeneracy of charge Υr,Q is constant
along γ̃u.

Motivated by this example we will formulate next an absence of walls
conjecture for all values of N ≥ 2.
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4.3. Limit weak coupling spectrum and absence of walls

Summarizing the facts, there are two distinct scaling limits of Kähler param-
eters, the field theory limit in Section 2.3, and the large radius limit in Sec-
tion 4.1. The basic idea of the absence of walls conjecture is that these two
limits commute in an appropriate sense, as far as the BPS spectrum is con-
cerned. The goal of this section is to cast this idea in a precise mathematical
form.

First we define the limit weak coupling BPS spectrum in gauge theory
by analogy with the large radius limit spectrum in string theory. Suppose
a = (ai) as defined in Section 2.3 is a fixed point on the Coulomb branch
within the radius of convergence of the semiclassical expansion such that

Im(ai) > 0, 1 ≤ i ≤ N − 1.

In this section the units will be chosen such that Λ = 1, hence the ai are
dimensionless. Let τ0, Im(τ0) > 0, be a fixed complex number in the upper
half plane. The limit weak coupling spectrum will be defined as the large λ
limit of the BPS spectrum at points of the form

ai(λ) = Re(ai) + λ
√
−1Im(ai), λ ∈ R>0,

on the Coulomb branch in a gauge theory with tree level coupling

τ0(λ) = Re(τ0) + λ
√
−1Im(τ0).

In order to justify the existence of such a limit, note that the leading terms
in the large λ expansion of the dual periods aDi derived from the prepotential
(2.45) are

(aDi )λ =−N Im(τ0)λ
2
N−1∑
j=1

C−1ij Im(aj)

+Nλ
√
−1
[
Re(τ0)

N−1∑
j=1

C−1ij Im(aj) + Im(τ0)

N−1∑
j=1

C−1ij Re(aj)
]
+ · · ·

The subleading terms are of order λ lnλ for the real part and lnλ for the
imaginary part. The leading terms in the expansion of the stability param-
eters (2.51) are
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(4.15)

zi,λ =

⎛⎝N−1∑
j=1

Cij(a
D
j )λ − λ(i+ 1)

√
−1Im(ai)

⎞⎠
wi,λ =

⎛⎝−N−1∑
j=1

Cij(a
D
j )λ + λi

√
−1Im(ai)

⎞⎠
Equations (4.15) determine a linear function on the charge lattice Γ � K0(G)
whose λ-dependence is of the form:

Z(τ0,a,λ) = λ2Z
(2)
(τ0,a)

+ λ
√
−1Z(1)

(τ0,a)
: Γ→ C.

Recall that G ⊂ Db(XN ) is the triangulated subcategory spanned by the
fractional branes (Pi, Qi), 1 ≤ i ≤ N − 1. The abelian category of (Q,W )-
modules is the heart of a t-structure on G and its K-theory is isomorphic
to Γ. The same will hold for any quiver with potential (Q′,W ′) related
to (Q,W ) by a finite sequence of mutations. Namely the K-theory of the
abelian category of (Q′,W ′)-modules will be isomorphic to Γ. Let Γ(Q′,W ′) ⊂
Γ be the cone spanned by the simple representations of (Q′,W ′) in the charge
lattice. In order to define the limit weak coupling spectrum we will make
the following assumption:

For sufficiently generic (τ0, a) there exists λ0 > 0, depending on (τ0, a),
a quiver with potential (Q,W )(τ0,a), mutation equivalent to (Q,W ), and σ ∈
{−1, 1} such that σZ

(1)
(τ0,a,λ)

takes positive values on Γ(Q,W )(τ0,a)
\ {0}.

Granting this assumption, for any sufficiently generic (τ0, a) there is a
slope function

(4.16) μ(τ0,a) : Γ→ C, μ(τ0,a)(γ) = −
Z

(2)
(τ0,a)

(γ)

Z
(1)
(τ0,a)

(γ)
= −σ

Z
(2)
(τ0,a)

(γ)∣∣Z(1)
(τ0,a)

(γ)
∣∣

Since the denominator takes positive values on the effective cone, this yields
a well-defined stability condition for (Q′,W ′)-modules. A representation ρ
of the quiver with potential (Q′,W ′) with dimension vector γ will be called
μ(τ0,a)-(semi)stable if

μ(τ0,a)(γ
′) (≤) μ(τ0,a)(γ)

for any nontrivial proper subrepresentation 0 ⊂ ρ′ ⊂ ρ with dimension vector
γ′. The moduli space of μ(τ0,a)-semistable representations of (Q

′,W ′) with
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fixed charge γ will be denoted by Mgauge
(τ0,a)

(γ). This moduli space defines
the limit weak coupling spectrum. More precisely, the limit protected spin
characters Ωgauge

(τ0,a)
(γ; y) are identified as explained in Section 2.5 with refined

counting invariants of these moduli spaces.
As a concrete example, note that

zi,λ = λ2z
(2)
i + λ

√
−1z(1)i

wi,λ = λ2w
(2)
i + λ

√
−1w(1)

i

where

(4.17)

z
(2)
i = −N Im(τ0)Im(ai)

z
(1)
i = NRe(τ0)Im(ai) +N Im(τ0)Re(ai)− (i+ 1)Im(ai)

w
(2)
i = N Im(τ0)Im(ai)

w
(1)
i = −NRe(τ0)Im(ai)−N Im(τ0)Re(ai) + iIm(ai)

for 1 ≤ i ≤ N − 1. Next note that

z
(1)
i < 0, w

(1)
i < 0, 1 ≤ i ≤ N − 1

if the inequalities

(4.18) 0 < NRe(τ0)Im(ai) + Im(τ0)Re(ai)− iIm(ai) < Im(ai)

hold for all 1 ≤ i ≤ N − 1. Therefore the main assumption formulated above
holds in this case with σ = −1 if a belongs to the wedge (4.18).

The absence of walls conjecture will be formulated as an identification
between the limit weak coupling spectrum defined above and the limit large
radius defined in Section 4.1 spectrum in a specific (ω,B)-stability chamber
to be defined below.

Recall that the complex Kähler class was written as

B +
√
−1ω = (b0 +

√
−1t0)H +

N−1∑
i=1

(bi +
√
−1ti)Di

where si = bi +
√
−1ti, i = 0, . . . , N − 1, are the periods of B +

√
−1ω on

the Mori cone generators Σ0, Ci, i = 1, . . . , N − 1. The field theory limit was
defined in Section 2.3 by setting
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(4.19)
b0 + t0

√
−1 = −N

π
(c0 + ln ε)

√
−1,

bi +
√
−1ti = ε

ai
M0

for 1 ≤ i ≤ N − 1, with 0 < ε < e−c0 , and keeping the leading terms of the
central charge (4.1) in the small ε expansion. Since Λ has been set to 1,
Equation (2.36) yields

M0 = 2π (2ec0)−N/(N−1)

The parameter c0 > 0 is related to the field theory coupling constant τ0 by
the equation

(4.20) τ0 =
1

2
+

√
−1
π

(
c0 +N ln 2

N − 1
− 3

2

)
obtained from (2.45). This has led to the conclusion that finite mass BPS
states in this limit must be objects of the subcategory G ⊂ Db(XN ) gener-
ated by the fractional branes (Pi, Qi)1≤i≤N−1.

Now note that G is identified with the subcategory of Db
cpt(XN ) defined

by the orthogonality conditions

(4.21) RHomXN
(OXN

(aH), F ) = 0, a = 0, 1.

This follows from the expression (2.9) of the tilting functor:

F 
→ RHomXN
(T, F ), T =

N⊕
i=1

(Li ⊕Mi).

For each 1 ≤ i ≤ N , the complexes of vector spaces RHomXN
(Li, F ),

RHomXN
(Mi, F ) are quasi-isomorphic to⊕

k∈Z
Hk(XN ,L−1i ⊗XN

F )[−k],
⊕
k∈Z

Hk(XN ,M−1
i ⊗XN

F )[−k].

Then RHomXN
(T, F ) is a complex ρF of (Q,W)-modules such that the k-th

term of the complex ρkF has underlying vector spaces

Hk(XN ,L−1i ⊗XN
F ), Hk(XN ,M−1

i ⊗XN
F )
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respectively at the nodes pi, qi, 1 ≤ i ≤ N . Therefore, for a sheaf F satisfying
conditions (4.21), all ρkF have trivial vector spaces at the nodes (pN , qN ). This
implies that ρF belongs to the subcategory spanned by the fractional branes
(Pi, Qi), 1 ≤ i ≤ N − 1.

Next note that any compactly supported sheaf F satisfying conditions
(4.21) must have numerical invariants

(4.22) ch0(F ) = 0, ch1(F ) =

N−1∑
i=1

miSi, ch2(F ) =

N−1∑
i=1

niCi, χ(F ) = 0,

where mi, ni,∈ Z with mi ≥ 0, i = 1, . . . , N − 1. If F has two dimensional
support, ch1(F ) �= 0, hence the mi, i = 1, . . . , N − 1 cannot all be zero. In
comparison with (4.5), note that the invariants p, n in (4.5) must vanish.

Finally, note that the following result holds by a standard boundedness
argument which will be omitted.

For fixed (c0, ai) and a fixed effective K-theory class γ ∈ K0(G) there
exists 0 < ε0 < e−c0 depending on (c0, ai; γ) such that the moduli space of
(ω,B)-semistable sheaves F with K-theory class [F ] = γ is constant (as a
scheme) and independent of ε, for 0 < ε < ε0.

Let Mstring
(τ0,a)

(γ) denote the small ε limit of the moduli space of (ω,B)-

semistable sheaves with K-theory class γ = [F ]. For classes of the form γ =
−[F ], with a compactly supported sheaf, letMstring

(τ0,a)
(γ) =Mstring

(τ0,a)
(−γ). If γ

is not of the form ±[F ] with F a sheaf with compact support, by convention,
Mstring

(τ0,a)
(γ) will be empty. Similarly, let Ωstring

(τ0,a)
(γ; y), denote the small ε limit

of the corresponding protected spin characters. We extend the assignment

γ 
→ Ωstring
(τ0,a)

(γ; y)

to a function on the whole K-theory lattice K0(G), setting

Ωstring
(τ0,a)

(γ; y)

=

⎧⎪⎪⎨⎪⎪⎩
Ωstring
(τ0,a)

(γ; y), if γ = [F ] for some compactly supported sheaf F,

Ωstring
(τ0,a)

(−γ; y), if γ = −[F ] for some compactly supported sheaf F,
0, otherwise.

Finally, the absence of walls conjecture states that:
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For a given charge vector γ ∈ Γ, there is a one-to-one correspondence

(4.23) Pγ :
{
Cgauge(γ)} −→

{
Cstring(γ)

}
between quiver stability chambers Cgauge(γ) with respect to μ(τ0,a)-stability
and geometric stability chambers Cstring(γ) with respect to small ε (ω,B)-
stability such that there is an isomorphism of moduli spaces

(4.24) Mgauge
Cgauge(γ)(γ) �M

string
Pγ(Cgauge(γ))(γ)

and relation of the form

(4.25) Ωgauge
Cgauge(γ)(γ; y) = Ωstring

Pγ(Cgauge(γ))(γ; y)

for any chamber Cgauge(γ).

Recall that the stability chambers Cgauge(γ) are subsets of the universal
cover of the Coulomb branch. Similarly, the chambers Cstring(γ) are sub-
sets of the universal cover of the complex Kähler moduli space, which is
parameterized by (ω,B) in a neighborhood of the large radius limit.

As a first consistency check of this conjecture, note that a priori the limit
moduli spacesMstring

(τ0,a)
(γ) might include (ω,B)-semistable sheaves F which

do not belong to the subcategory G. The orthogonality conditions (4.21) are
equivalent to the vanishing results

(4.26) Hk(XN , F (−aH)) = 0, k = 0, 1, 2, a = 0, 1.

Any semistable sheaf F with K-theory class [F ] ∈ K0(G) satisfies

(4.27) 0 = χ(F (−aH)) =

2∑
k=0

(−1)kdimHk(XN , F (−aH)),

where the first equality follows because K0(G) is generated by the K-theory
classes [Pi], [Qi], 1 ≤ i ≤ N − 1, and χ(Pi) = χ(Qi) = 0, 1 ≤ i ≤ N − 1. (See
Equation (2.15) above.) However, the dimensions of the cohomology groups
can be nontrivial. In fact, the dimensions of these groups are expected to
jump as F moves in the moduli space. Hence a priori the orthogonality
conditions (4.21) are not guaranteed to hold throughout the moduli space
even for classes γ ∈ K0(G). The following result proves that they do in fact
hold at all points of the limit moduli spacesMstring

(τ0,a)
(γ).
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For fixed parameters ai, i = 0, . . . , N − 1 satisfying

(4.28) Re(ai) �= 0, Im(ai) > 0, i = 1, . . . , N − 1

and fixed mi, ni ∈ Z, there exists 0 < ε1 < 1 such that for all 0 < ε < ε1,
any (ω,B)-semistable sheaf F with numerical invariants (4.22) satisfies
conditions (4.21). In particular all such objects belong to the subcategory
G ⊂ Db(XN ).

In order to prove this statement, recall that any pure dimension two
(ω,B)-semistable sheaf F with compact support must be scheme theoreti-
cally supported on S. This implies

Hk(XN , F (−aH)) � Hk(S, F (−aH))

for all k, a. Therefore the required vanishing results for k = 0 follow if one
can prove that

HomS(OS(aH), F ) � HomXN
(OS(aH), F ),

with a = 0, 1, vanishes. Moreover note that Serre duality holds on S since
S ⊂ XN is a divisor, and the dualizing sheaf is given by the adjunction
formula

ωS � OS(S).

Hence

H2(S, F (−aH)) � Ext2S(OS(aH), F ) � Ext0S(F,OS(aH + S))∨

� Ext0XN
(F,OS(aH + S))∨,

where the last isomorphism holds because both F and OS(aH + S) are
extensions by zero of sheaves on S. Then the vanishing results for k = 2 also
follow if one can prove that

HomXN
(F,OS(aH + S)) = 0, a = 0, 1.

If the vanishing results (4.26) hold for k = 0, 2, then Equation (4.27) implies
that they must also hold for k = 1.

In conclusion it suffices to prove that
(4.29)
HomXN

(OS(aH), F ) = 0, HomXN
(F,OS(S + aH)) = 0, a = 0, 1,

for any (ω,B)-semistable sheaf F , provided that ε > 0 is sufficiently small.
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To explain the main idea of the proof, note that given any nontrivial
morphism φ : OS(aH)→ F , the image subsheaf Im(φ) ⊂ F must satisfy the
stability condition

μ(ω,B)(Im(φ)) ≤ μ(ω,B)(F ).

At the same time Im(φ) is a nontrivial quotient of OS(aH). Below we will
show that for sufficiently small ε > 0 any nontrivial quotient of OS(aH)
violates the above slope inequality. This implies that there cannot exist
nontrivial morphisms φ : OS(aH)→ F . The argument for the second van-
ishing result in (4.29) is similar. Given any nontrivial morphism ψ : F →
OS(aH + S), its image Im(ψ) is simultaneously a quotient of F and a sub-
sheaf of OS(aH + S). In particular it must satisfy

μ(ω,B)(Im(ψ)) ≥ μ(ω,B)(F ).

We will show below that this yields a contradiction for sufficiently small
ε > 0.

To this end, using Equations (2.32),(4.2), (4.19) and (4.22), the leading
term of the slope μ(ω,B)(F ) in the small ε expansion is

(4.30) μ(ω,B)(F ) ∼ −
∑N−1

i=1 miRe(ai)∑N−1
i=1 miIm(ai)

.

Next note that

ch1(OS(aH)) =

N−1∑
i=1

Si, ch2(OS(aH)) = Σ0 +

N−1∑
i=1

(i+ 1 + a)Ci

ch1(OS(S + aH)) =

N−1∑
i=1

Si, ch2(OS(S + aH)) = −Σ0 −
N−1∑
i=1

(i+ 1− a)Ci.

Moreover any pure dimension two quotient OS � G must be the structure
sheaf, G � OZ , of a closed subscheme Z ⊆ S. Since S is a reduced divisor
defined by the equation

N−1∏
i=1

xi = 0

any such subscheme will be a reduced divisor Sj1,...,jk defined by an equation
of the form

k∏
j=1

xij = 0
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for some subset {j1, . . . , jk} ⊂ 1, . . . , N − 1. A straightforward computation
shows that

ch1(OSj1,...,jk
) =

k∑
j=1

Sij ,

and

ch2(OSj1,...,jk
) = p(j1, . . . , jk)Σ0 +

N−1∑
i=1

ni(j1, . . . , jk)Ci

where p(j1, . . . , jk) is the number of connected components of Sj1,...,jk .
In order to prove the last statement, note that

ch(OSj1,...,jk
) = 1− e−Sj1,...,jk

since Sj1,...,jk is a divisor. Hence

ch2(OSj1,...,jk
) = −1

2

(
Sj1,...,jk

)2
= −1

2

∑(
Sc
j1,...,jk

)2
where the sum is over the connected components of Sj1,...,jk . Therefore it

suffices to compute
(
Sj1,...,jk

)2
assuming Sj1,...,jk is connected. This implies

that j1, . . . , jk must be consecutive integers in the set {1, . . . , N − 1} up to
a permutation. Without loss of generality one can assume ji+1 = ji + 1 for
all 1 ≤ i ≤ k − 1. Then, using the linear relation

Sj1,...,jk =

jk∑
j=j1

Sj ,

and the intersection products

(Si · Sj)XN
=

⎧⎪⎪⎨⎪⎪⎩
Σi, for j = i+ 1
Σj , for i = j + 1
−Σi−1 − Σi − 2Ci, for i = j,
0, otherwise

one obtains

(
Sj1,...,jk

)2
=

jk∑
j=j1

(Sj)
2 + 2

jk−1∑
j=j1+1

(Sj · Sj+1)

= −
jk∑

j=j1

(Σj−1 +Σj + 2Cj) + 2

jk−1∑
j=j1+1

Σj
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By convention, the sum from j1 + 1 to jk − 1 in the above equations is 0 if
j1 + 1 > jk − 1. Using the relations Σj = Σj−1 + 2jCj recursively, it follows
that (

Sj1,...,jk

)2
= −2Σ0 + · · ·

where · · · is a linear combination of fiber classes Cj . This proves the claim.
The coefficients ni(j1, . . . , jk) can be computed but explicit expressions

are not needed in the following. The essential fact is that p(j1, . . . , jk) ≥ 1
for any nonempty subset {j1, . . . , jk}. Twisting by OXN

(S), it follows that

ch1(OSj1,...,jk
(S)) =

k∑
j=1

Sij ,

and

ch2(OSj1,...,jk
(S)) = ch2(OSj1,...,jk

) + (S · Sj1,...,jk)XN

= (p̃(j1, . . . , jk)− p(j1, . . . , jk))Σ0 +

N−1∑
i=1

ñi(j1, . . . , jk)Ci

where p̃j1...,jk is the number of connected components of the intersection
Sj1,...,jk ∩ (S \ Sj1,...,jk). Since S is a linear chain of divisors, it is straightfor-
ward to check that

p̃(j1, . . . , jk)− p(j1, . . . , jk) ≥ 0

This implies that the kernel K(j1, . . . jk) = Ker(OS(S)� OSj1,...,jk
(S)) has

second Chern character

ch2(K(j1, . . . , jk)) = q(j1, . . . , jk)Σ0 −
N−1∑
i=1

(i+ 1− ñi(j1, . . . , jk))Ci

with q(j1, . . . , jk) < 0. In conclusion any quotient of OS(aH) must be of the
form OSj1,...,jk

(aH) and the leading term of its (ω,B)-slope is

(4.31) μ(ω,B)(OSj1,...,jk
(aH)) ∼ M0

ε

p(j1, . . . , jk)∑k
j=1 Im(ajk)

p(j1, . . . , jk) ≥ 1.

Any nontrivial subsheaf of OS(S + aH) must be of the form K(j1, . . . ,
jk)(aH) and the leading term of its (ω,B)-slope is
(4.32)

μ(ω,B)(K(j1, . . . , jk)(aH)) ∼ M0

ε

q(j1, . . . , jk)∑k
j=1 Im(ajk)

, q(j1, . . . , jk) ≤ −1.
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Therefore

μ(ω,B)(K(j1, . . . , jk)(aH)) < μ(ω,B)(F ) < μ(ω,B)(OSj1,...,jk
(aH))

for sufficiently small 0 < ε� 1. Moreover, given the numerical invariants
(4.22), F cannot be isomorphic to a quotient of OS(aH) or to a subobject
of OS(S + aH). As explained below Equation (4.29), the above inequal-
ities lead to a contradiction for sufficiently small 0 < ε < ε0. Since there
are finitely many subsets {j1, . . . , jk} ⊂ {1, . . . , N − 1}, the upper bound ε0
depends only on ai, mi, i = 1, . . . , N − 1.

Since the presentation has been so far fairly general, it may be helpful to
study some examples in detail. The simplest example is N = 2, which was
discussed in detail in Section 4.2. For N = 3, the moduli spaces of stable
sheaves in the field theory region are very complicated for arbitrary numeri-
cal invariants (m1,m2). However, the case (m1,m2) = (1, 1) is tractable and
will be treated next.

4.4. SU(3) spectrum with magnetic charges (1, 1)

Using the results of Sections 4.1 and 4.3, any (ω,B)-semistable sheaf F must
be scheme theoretically supported on the reduced divisor S = S1 + S2 and
have numerical invariants

ch1(F ) = m1S1 +m2S2, ch2(F ) = n1C1 + n2C2, χ(F ) = 0.

The K-theory class of such a sheaf will be denoted by γ(m1,m2, n1, n2) ∈
Γ � K0(G). The symplectic pairing of twoK-theory classes γ(m1,m2, n1, n2),
γ(m′1,m′2, n′1, n′2) is given by

(4.33)
〈γ(m1,m2, n1, n2), γ(m

′
1,m

′
2, n

′
1, n

′
2)〉

= m′1(n2 − 2n1) +m′2(n1 − 2n2)−m1(n
′
2 − 2n′1)−m2(n

′
1 − 2n′2).

Suppose F is such a sheaf with (m1,m2) �= (0, 0). Then there is an exact
sequence

(4.34) 0→ F1 → F → F2 → 0

uniquely determined by F , with F1, F2 pure dimension two sheaves with
scheme theoretic support on S1, S2 respectively. Recall that S1 � F2, S2 �
F4. Note that F2 is the quotient of F ⊗X3

OS2
by its maximal dimension
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subsheaf of dimension at most one, and F1 the kernel of the resulting pro-
jection F � F2. Recall that ⊗X3

denotes the tensor product ofOX3
-modules.

Obviously,

ch1(F1) = m1S1, ch1(F2) = m2S2,

and

ch2(F1) = −pΣ1 + n1C1, ch2(F2) = pΣ1 + n2C2

with p ∈ Z.
By analogy with [51, Lemma 2.6], the adjunction formula yields an iso-

morphism

(4.35) Ext1X3
(F2, F1) � HomS2

(F2, F1 ⊗X3
OS2

(S2)).

Therefore there is a one to one correspondence between extension classes
e ∈ Ext1X3

(F2, F1) and morphisms φe : F2 → F1 ⊗X3
OS2

(S2). Moreover, this
correspondence is functorial. This implies that given any subsheaf F ′2 ⊆ F2,
the class e is in the kernel of the natural map

Ext1X3
(F2, F1)→ Ext1X3

(F ′2, F1)

if and only if F ′2 ⊆ Ker(φe). In particular there is a commutative diagram
with exact rows and columns

(4.36) 0

��

0

��

F̃2
1 ��

��

F̃2

��
0 �� F1

��

1

��

F ��

��

F2
��

��

0

0 �� F1
�� F̃1

��

��

I ��

��

0

0 0

where F̃2 = Ker(φe) and I = Im(φe). A slightly more involved argument
analogous to [51, Lemma 2.8] shows that F̃1 must be pure of dimension two.
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Since I is a subsheaf of F1 ⊗X3
OS2

(S2), which is dimension one, supported
on Σ1,

ch2(I) = qΣ1

for some q ∈ Z, 0 ≤ q ≤ m1. This implies that

ch2(F̃1) = (q − p)Σ1 + n1C1, ch2(F̃2) = (p− q)Σ1 + n2C2.

For future reference note that completely analogous considerations apply to
the middle vertical column in diagram (4.36). Namely there is an isomor-
phism

(4.37) Ext1X3
(F̃1, F̃2) � HomS1

(F̃1, F̃2 ⊗X3
OS1

(S1)).

Hence the associated extension class ẽ corresponds to a morphism φẽ : F̃2 →
F̃1 ⊗X3

OS1
(S1) whose image will be denoted by Ĩ. Then a standard diagram

chasing argument using the snake lemma proves that Ĩ � I.
Next recall that in the field theory limit

(4.38)

b0 + t0
√
−1 = −3

π
(c0 + ln(ε/2))

√
−1, bi +

√
−1ti = ε

ai
M0

, i = 1, 2,

with 0 < ε < e−c0 , and

M0 = 2π (2ec0)−3/2

since Λ has been set to 1. Moreover, c0 is related to the field theory coupling
constant τ0 by

τ0 =
1

2
+

√
−1
π

(
c0 + 3 ln 2

2
− 3

2

)
.

Note that ti > 0, hence Im(ai) > 0, for i = 1, 2. The coupling constant τ0
must belong to the upper half-plane, hence

c0 > 3(1− ln 2).

In addition, we will also work in the wedge (4.18) on the Coulomb branch,
which specializes to

(4.39)

(
i− 3

2

)
Im(ai)

Im(τ0)
< Re(ai) <

(
i− 1

2

)
Im(ai)

Im(τ0)
, i = 1, 2.
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The (ω,B)-slopes have a small ε expansion of the form

μ(ω,B)(F1) ∼ −
p

ε

M0

m1Im(a1)
− Re(a1)

Im(a1)
,

μ(ω,B)(F̃2) ∼
(p− q)

ε

M0

m2Im(a2)
− Re(a2)

Im(a2)
,

μ(ω,B)(F ) ∼ −
m1Re(a1) +m2Re(a2)

m1Im(a1) +m2Im(a2)
.

Then, taking the small ε limit with (τ0, ai) fixed the necessary semistability
conditions

(4.40) μ(ω,B)(F1) ≤ μ(ω,B)(F ), μ(ω,B)(F̃2) ≤ μ(ω,B)(F )

yield

0 ≤ p ≤ q.

By construction we also have q ≤ m1 as explained above. Therefore p, q must
satisfy the constraints

(4.41) 0 ≤ p ≤ q ≤ m1

This is as far as we can go for arbitrary magnetic charges (m1,m2).
Now suppose m1 = m2 = 1 and a1, a2 generic, such that

Re(ai) �= 0, i = 1, 2.

In order to determine the moduli space, note that the sheaves Fi in (4.34)
must be extensions by zero of rank one torsion free sheaves Ei on the smooth
divisors Si, i = 1, 2. Any such sheaf must be a twisted ideal sheaf i.e. Ei =
Ji ⊗ Li, where Li are line bundles and Ji ideal sheaves of zero dimensional
subschemes Zi ⊂ Si for i = 1, 2. Then there are exact sequences of OSi

-
modules

0→ Ei → Li → OZi
→ 0

for i = 1, 2. As χ(F ) = 0 by assumption, it follows that

(4.42) χ(L1) + χ(L2)− χ(OZ1
)− χ(OZ2

) = 0.

The Grothendieck-Riemann-Roch theorem for the closed immersions Si ↪→
X3 yields

ch1(L1) = −(p+ 1)Σ1 + n1C1, ch1(L2) = (p− 1)Σ1 + (n2 − 3)C2.
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Since S1, S2 are rational, these relations uniquely determine

L1 � OS1
(−(p+ 1)Σ1 + n1C1), L2 � OS2

((p− 1)Σ1 + (n2 − 3)C2).

Then the Riemann-Roch theorem yields

χ(L1) = p2 − pn1, χ(L2) = −2p2 + pn2.

Hence relation (4.42) is equivalent to

−p2 + p(n2 − n1)− χ(OZ1
)− χ(OZ2

) = 0.

Since Z1, Z2 are zero dimensional, this yields in particular

(4.43) p(n2 − n1 − p) = χ(OZ1
) + χ(OZ2

) ≥ 0.

Analogous considerations apply to the middle exact column in diagram
(4.36). The sheaves F̃i, i = 1, 2 must be extensions by zero of rank one torsion
free sheaves Ẽi on Si, i = 1, 2, with

ch1(Ẽ1) = (q − p− 1)Σ1 + n1C1, ch1(Ẽ2) = (p− q − 1)Σ1 + (n2 − 3)C2.

Again, Ẽi � L̃i ⊗Si
J̃i, where L̃i are line bundles on Si and J̃i ideal sheaves

of zero dimensional subschemes Z̃i ⊂ Si, i = 1, 2. In complete analogy with
(4.43), the following must hold

(4.44) (q − p)(n1 − n2 − (q − p)) = χ(OZ̃1
) + χ(OZ̃2

) ≥ 0.

Now note that inequalities (4.41) yield the following cases

(i) p = 0, q = 1,

(ii) p = 1, q = 1,

(iii) p = 0, q = 0.

The moduli space is determined as follows in each case.
(i) Since p = 0 inequality (4.43) implies that Z1, Z2 are empty. Therefore

Ei = Li, i = 1, 2. The necessary conditions (4.40) yield

Re(a2)Im(a1)− Re(a1)Im(a2) < 0.

Since m1 = m2 = 1 these conditions are also sufficient provided that the
extension class e is nonzero. This means that the extension group Ext1X3

(F2, F1)
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must have dimension at least 1. The isomorphism (4.35) implies that

Ext1X3
(F2, F1) � HomS2

(L2, L1 ⊗S1
OΣ1

(S2)) � H0(OP1(n1 − n2 − 1)).

Therefore n1 ≥ n2 + 1. The moduli space in this case is isomorphic to the
projective space Pn1−n2−1 and the BPS degeneracies in this chamber are

Ωstring
(τ0,a)

(γ(1, 1, n1, n2); y) = y−(n1−n2−1)Py(P
n1−n2−1).

Here Py(P
n1−n2−1) denotes the Poincaré polynomial of the projective space.

The cohomology is an irreducible SL(2,C) representation of highest weight
n1 − n2 − 1. Moreover, the Hodge numbers are hr,s(Pn1−n2−1) = δr,s with
0 ≤ r, s ≤ n1 − n2 − 1. Therefore, according to Section 2.5, each of these
states has spin jspin =

n1−n2−1
2 and trivial R-charge.

(ii) Since p = q = 1, inequalities (4.44) imply that Z̃1, Z̃2 are trivial,
hence Ẽi = L̃i, i = 1, 2. Again, necessary and sufficient stability conditions
are

Re(a2)Im(a1)− Re(a1)Im(a2) > 0,

the extension class ẽ being required to be nonzero. Then the extension group
Ext1X3

(F̃1, F̃2) must have dimension at least 1. Using the isomorphism (4.37),

HomS1
(L̃1, L̃2 ⊗S2

OΣ1
) � H0(OP1(n2 − n1 + 2(q − p)− 1)).

Therefore n2 ≥ n1 + 1. The moduli space in this case is isomorphic to
Pn2−n1−1 and the BPS degeneracies in this chamber are

Ωstring
(τ0,a)

(γ(1, 1, n1, n2); y) = y−(n2−n1−1)Py(P
n2−n1−1).

Again, each of these states has spin jspin =
n2−n1−1

2 and trivial R-charge.
(iii) Since p = q = 0, inequalities (4.43), (4.44) imply that Z1, Z2, as well

as Z̃1, Z̃2 are trivial. Hence Ei = Li and Ẽi = L̃i, i = 1, 2. This implies that
the sheaf I in diagram (4.36) must be either pure dimension one or zero.
Since q = 0, I has to be zero, which implies that the extension class e is
trivial. Then E is isomorphic to the direct sum F1 ⊕ F2, which cannot be
stable for generic Kähler parameters. Therefore in this case the moduli space
is empty for generic a1, a2.
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In conclusion the field theory region is divided in this case in two stability
chambers separated by the wall

(4.45) Re(a2)Im(a1)− Re(a1)Im(a2) = 0.

The BPS spectrum with magnetic charges (m1,m2) = (1, 1) and arbitrary
electric charges (n1, n2) is of type (i) for Re(a2)Im(a1)− Re(a1)Im(a2) < 0
and type (ii) for Re(a2)Im(a1)− Re(a1)Im(a2) > 0.

The above results will be compared with similar computations based on
algebraic stability conditions in the Section 4. They can also be compared
with semiclassical analysis of BPS states based on zeromodes of suitable
Dirac-like operators on the moduli spaces of monopoles in R3. There is nice
agreement with the results of [71, 133].

5. The SU(3) quiver at weak coupling

The main goal of this section is to confirm the large radius results for large
radius SU(3) BPS states with (m1,m2) = (1, 1) by a direct analysis of mod-
uli spaces of quiver representations. As a byproduct of this approach similar
results will be derived for magnetic charges (1,m), m ∈ Z>0.

5.1. General considerations

A representation ρ of the N = 3 truncated quiver (Q,W ) is a diagram of
the form

(5.1) W2
c2 ��
d2

�� V2

r1

��

s1

��W1
c1 ��
d1

��

b1

��

V1

a1

��

where Vi,Wi, i = 1, 2 are finite dimensional vector spaces. Using the notation
introduced in Section 2.4, the dimensions of Vi,Wi, i = 1, 2 will be denoted
by8

dim(Vi) = di, dim(Wi) = ei, i = 1, 2.

8Note that the same notation is used for the dimension of V1 and the arrow d1
in the quiver path algebra. The distinction will be clear from the context.
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Using Equation (7.9), the symplectic pairing on the K-theory lattice is

(5.2)
〈[ρ], [ρ′]〉 =2(d1e′1 − d′1e1) + 2(d2e

′
2 − d′2e2) + 2(e1d

′
2 − e′1d2)

+ (d2d
′
1 − d1d

′
2) + (e2e

′
1 − e1e

′
2).

Abusing notation, the linear maps ρ have been denoted by the same
symbols as the corresponding arrows of the quiver diagram. The meaning
will be clear from the context. The potential (2.11) yields the relations

(5.3)

r1a1 = 0, s1a1 = 0, b1r1 = 0, b1s1 = 0

c1r1 + d1s1 = 0, r1c2 + s1d2 = 0

a1c1 − c2b1 = 0, a1d1 − d2b1 = 0.

A very useful observation is that the horizontal rows of the above quiver
representation are Kronecker modules

ρi : Wi
ci ��
di

�� Vi, i = 1, 2.

Some basic facts on such modules, their homological algebra and Harder-
Narasimhan filtrations are summarized for completeness in Appendix C. In
particular Equations (C.1), (C.2) imply that the linear space of solutions
(a1, b1) to the relations

a1c1 − c2b1 = 0, a1d1 − d2b1 = 0

is isomorphic to the space of morphisms Ext0K(ρ1, ρ2), while the linear space
of solutions (r1, s1) to the relations

c1r1 + d1s1 = 0, r1c2 + s1d2 = 0

is isomorphic to the dual vector space Ext1K(ρ1, ρ2)∨, where K denotes the
abelian category of Kronecker modules. In conclusion there is a one-to-one
correspondence between representations ρ of the quiver with potential (5.1)
and data

(5.4) (ρ1, ρ2), (a1, b1) ∈ Ext0K(ρ1, ρ2), (r1, s1) ∈ Ext1K(ρ1, ρ2)∨

satisfying the remaining relations

(5.5) r1a1 = 0, s1a1 = 0, b1r1 = 0, b1s1 = 0.



1146 W.-y. Chuang et al.

For future reference note also the isomorphisms of extension groups
(5.6)
Ext1(Q,W )(ρ1, ρ2) � Ext0K(ρ1, ρ2), Ext1(Q,W )(ρ2, ρ1) � Ext1K(ρ1, ρ2)

∨,

(5.7)
Extk(Q,W )(ρ1, ρ1) � ExtkK(ρ1, ρ1), Extk(Q,W )(ρ2, ρ2) � ExtkK(ρ2, ρ2)

∨,

where k = 0, 1. On the left hand side of the above equations, ρ1, ρ2 are
representations of the SU(3) quiver (Q,W ) with V2 =W2 = 0, respectively
V1 =W1 = 0. In the right hand side, they are just Kronecker modules. The
first is proven in Appendix D, Equations (D.6) and (D.8). The proof of the
second is similar, the details being left to reader.

Finally, note that in this section we will use the algebraic stability con-
ditions constructed in Section 2.4, taking the stability parameters (zi, wi) as
in Equation (2.49).

5.2. W -bosons

According to the field theory limit discussed in Section 2.3, at weak cou-
pling the massive W -bosons are bound states of D2-branes wrapping the
fibers of the compact divisors S1, S2. The goal of this section is to identify
the corresponding quiver representations and the region in the parameter
space of stability conditions (θ, η) = (θi, ηi) where such bound states are
stable. Recall that the parameters (θ, η) were introduced in Section 2.4,
Equation (2.49).

First note that the tilting functor (2.9) maps any compactly supported
complex F with numerical invariants

ch1(F ) =

N−1∑
i=1

miSi, ch2(F ) =

N−1∑
i=1

niCi, χ(F ) = 0

to a complex of representations with dimension vector

(5.8) di = ni − imi, ei = ni − (i+ 1)mi, 1 ≤ i ≤ N − 1.

In particular, an object with mi = 0 will be mapped to a complex of repre-
sentations with di = ei = ni for 1 ≤ i ≤ N − 1.

The massive W -bosons corresponding to the simple roots α1, α2 are D2-
branes of the form OC1

(−1), OC2
(−1) in the derived category which fit in
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exact triangles

Pi[−2]→ OCi
(−1)→ Qi[−2], i = 1, 2,

where Pi, Qi are supported on the divisor Si, i = 1, 2. Therefore the tilting
functor (2.9) maps OCi

(−1) to ρi[−2], where ρi, i = 1, 2, are (Q,W )-modules
of dimension vectors (di, ei) = (1, 0, 1, 0), respectively (di, ei) = (0, 1, 0, 1).
Note that the fractional branes Qi are not to be confused with the Kronecker
modules Qn introduced in Appendix C.

In addition the W boson corresponding to the positive root α1 + α2

is a D2-brane wrapping a reducible vertical curve with components C1, C2

meeting at a point. The corresponding object in the derived category is
OC(−1), where C is a complete intersection curve of the form S ∩H. The
tilting functor maps OC(−1) to representation ρ[−1], where ρ is a (Q,W )-
module of dimension vector (1, 1, 1, 1). Using standard results on Kronecker
modules, as reviewed in Appendix C, the representations ρ1, ρ2 are (θ, η)-
stable if and only if conditions

(5.9) θi < ηi, i = 1, 2.

If conditions (5.9) are satisfied ρi are isomorphic to Kronecker modules of
the form Rpi

, pi ∈ P1, i = 1, 2 given in Appendix C. In each case, the moduli
space of stable representations is isomorphic to P1, and the BPS degeneracy
(−2), as expected.

For representations ρ with dimension vector (1, 1, 1, 1) note that the
relations (5.3) imply that r1, s1 must be zero if a1 or b1 is nonzero, and
a1, b1 are zero if r1 or s1 are nonzero. Therefore, using the isomorphisms
(5.6), such a representation must be either an extension

(5.10) 0→ ρ′1 → ρ→ ρ′2 → 0

or

(5.11) 0→ ρ′2 → ρ→ ρ′1 → 0

in the abelian category of SU(3) quiver representations, where ρ′1, ρ′2 are rep-
resentations with dimension vectors (1, 0, 1, 0), (0, 1, 0, 1) respectively. Note
that ρ′1, ρ′2 are identified at the same time with Kronecker modules of dimen-
sion vector (1, 1). As explained in Appendix C, any such Kronecker module
is either of the form Rp, p ∈ P1, or a direct sum of simple modules. Using
relations (5.3) and isomorphisms (5.6), it follows that ρ is stable only if
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ρ′1 � ρ′2 � Rp for some p ∈ P1. Then the space of stability conditions (θ, η)
satisfying (5.9) is divided into two regions as follows.

The first region consists of stability parameters satisfying

(5.12) θi < ηi, i = 1, 2, η1 + θ1 < η2 + θ2

In this case all nontrivial extensions of the form (5.10) are stable and all
extensions of the form (5.11) are unstable. Since Ext1K(Rp, Rp′) � δp,p′C,
one obtains a nontrivial extension in (5.10) only if ρ′1 � ρ′2 � Rp for some
p ∈ P1. Moreover, for each p ∈ P1 there is a a unique nontrivial extension
of the form (5.10) up to isomorphism. Therefore the moduli space of stable
extensions is again isomorphic to P1. Using the correspondence explained in
Section 2.5, we obtain a spin 1

2 multiplet with trivial R-charge, as expected.
The second region is defined by

(5.13) θi < ηi, i = 1, 2, η1 + θ1 > η2 + θ2

In this case all nontrivial extensions of the form (5.11) are stable and all
extensions of the form (5.10) are unstable. The moduli space of stable exten-
sions is again isomorphic to P1, hence we obtain again a spin 1

2 multiplet
with trivial R-charge.

In conclusion, if inequalities (5.9) are satisfied, the BPS spectrum con-
tains three massiveW bosons with electric charges α1, α2, α1 + α2 and degen-
eracy (−2). However, the W boson with electric charges (2, 2) is realized as
a bound state of the first two in two different ways corresponding to two
regions separated by a marginal stability wall. The moduli space is isomor-
phic to P1 on both sides of the wall but it parameterizes different extensions
of the form (5.10), (5.11) in the two regions.

5.3. Moduli spaces and stability chambers for
magnetic charges (1,m)

5.3.1. Magnetic charges (1, 1). This is the case studied in detail in Sec-
tion 4.4 at large radius, where BPS configurations are (ω,B)-stable sheaves
F with Chern character

ch(F ) = S1 + S2 + n1C1 + n2C2.

It is straightforward to check that if

(5.14) ni ≥ (i+ 1)mi, i = 1, 2,
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the tilting functor will map a sheaf F to a one-term complex ρ[−1], where
ρ is a representation of the quiver (5.1) with dimension vector

(5.15) di = ni − imi, ei = ni − (i+ 1)mi, i = 1, 2.

This will be assumed in the following, as well as m1 = m2 = 1, ei ≥ 1 for i =
1, 2. Special cases where e1 = 0 or e2 = 0 can be easily treated analogously.

Note that if inequalities (5.14) are not satisfied, the tilting functor will
map the sheaf F with (m1,m2) = (1, 1) to an object of the form ρ[−2] where
ρ is a representation with dimension vector

di = i− ni, ei = i+ 1− ni.

The stability analysis is similar and will be left to the reader.
Let (θ, η) = (θi, ηi)1≤i≤2, be King stability parameters for (Q,W )-

modules of numerical type (5.15). Therefore (θi, ηi)1≤i≤2 satisfy the linear
relations

(5.16)

2∑
i=1

(diθi + eiηi) = 0

in R4. At the end of Section 2.4 such stability parameters were denoted
by (θ̄i, η̄i)1≤i≤2 in order to emphasize the difference with respect to more
general stability parameters not satisfying Equations (5.16). In this section
all stability parameters will be assumed to satisfy Equations (5.16), hence
this notational distinction will not be necessary.

As shown in Appendix C.2, if

(5.17) ηi > 0, θi < 0, |θi| < |ηi|, i = 1, 2,

the Kronecker modules ρi, i = 1, 2, of any (θ, η)-semistable module ρ must
be of the form

(5.18) ρi � ⊕hi

j=1Q
⊕ri,j
ki,j

, i = 1, 2

for some integers hi ≥ 1, ki,j ≥ 0, ri,j ≥ 1 such that

ki,1 > ki,2 > · · · > ki,hi
≥ 0.

Since di − ei = 1, i = 1, 2, for magnetic charges (m1,m2) = (1, 1), the decom-
position (5.18) must reduce to

ρi � Qei , i = 1, 2.
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Hence (a1, b1) ∈ Ext0K(Qe1 , Qe2) and (r1, s1) ∈ Ext1K(Qe1 , Qe2)
∨. However, as

explained in Appendix C.1, below Equation (C.7), in this case the maps
(a1, b1), respectively (r1, s1) must be simultaneously injective or trivial. Then
relations (5.5) imply that either (a1, b1) or (r1, s1) must be trivial. Therefore,
using the isomorphisms (5.6), one obtains two cases

(i) (r1, s1) = 0 and ρ is an extension of the form

(5.19) 0→ ρ2 → ρ→ ρ1 → 0

in the abelian category of (Q,W )-modules with extension class deter-
mined by (a1, b1). Note that such an extension is trivial unless e2 ≥ e1
i.e n2 ≥ n1 + 1.

(ii) (a1, b1) = 0 and ρ is an extension of the form

(5.20) 0→ ρ1 → ρ→ ρ2 → 0

in the abelian category of (Q,W )-modules with extension class deter-
mined by (r1, s1). Note that such an extension is trivial unless e1 ≥
e2 + 1 i.e n1 ≥ n2 + 1.

Suppose the stability parameters (θ, η), satisfy

(5.21) diθi + eiηi = 0, i = 1, 2,

in addition to (5.17), and are otherwise generic. Given the linear relation
(5.16), these equations determine a real codimension one wall in the hyper-
plane (5.16). Since θi < 0 < ηi, i = 1, 2 by assumption, each module ρi is
(θi, ηi)-stable of slope zero for i = 1, 2. Therefore all extensions of the form
(5.19) or (5.20) (including the trivial ones) are (θ, η)-semistable on the wall
(5.21).

Moreover, it is also straightforward to determine the moduli spaces of
stable representations in the adjacent chambers. For example, let (θ+, η+)
be stability parameters such that

d1θ
+
1 + e1η

+
1 = −d2θ+2 − e2η

+
2 = ε,

with ε ∈ R>0 is a positive real number which may be taken arbitrarily small.
Then it is easy to prove that ρ is (θ+, η+)-semistable if and only if it is
(θ+, η+)-stable and if and only if it fits in a nontrivial extension of the form
(5.19). Therefore in this case the moduli space is isomorphic to Pn2−n1−1,
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and the protected spin character

Ω(γ(1, 1, n1, n2); y) = y−(n2−n1−1)/2Py(P
n2−n1−1).

The opposite chamber is defined analogously by

d1θ
−
1 + e1η

−
1 = −d2θ−2 − e2η

−
2 = −ε,

with ε ∈ R>0. Then ρ is (θ−, η−)-semistable if and only if it is (θ−, η−)-stable
and if and only if it fits in a nontrivial extension of the form (5.20). In this
case the moduli space is isomorphic to Pn1−n2−1, and the protected spin
character

Ω(γ(1, 1, n1, n2); y) = y−(n1−n2−1)/2Py(P
n1−n2−1).

5.3.2. Magnetic charges (1,m). One can extend the above analysis to
m1 = 1, m2 > 1 noting that in this case the decomposition (5.18) reduces to

ρ1 � Qn1−2, ρ2 � ⊕h2

j=1Q
⊕r2,j
k2,j

where
h2∑
j=1

r2,jk2,j = n2 − 3m2.

Obviously, the electric charges are taken such that n1 > 2, n2 > 3m2. If
n1 ≥ n2 − 3m2 + 3, Equations (C.4) show that

HomK(ρ1, ρ2) = 0.

Therefore the maps a1, b1 must be trivial, and isomorphism (5.6) implies
that ρ fits in an extension

0→ ρ1 → ρ→ ρ2 → 0

in the category of (Q,W )-modules.
Now consider the wall

(n1 − 1)θ1 + (n1 − 2)η1 = 0

in the moduli space of King stability parameters (θ, η) satisfying (5.17). Let
(θ+, η+) be stability parameters satisfying
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(n1 − 1)θ+1 + (n1 − 2)η+1 = −(n2 − 2m2)θ
+
2 − (n2 − 3m2)η

+
2 = ε

with ε > 0 sufficiently small. Obviously ρ1 ⊂ ρ destabilizes ρ on this side
of the wall. Therefore the moduli space of (θ+, η+) representations with
dimension vector

(n1 − 1, n1 − 2, n2 − 2m2, n2 − 3m2), n1 ≥ n2 − 3m2 + 3, n2 ≥ 3m2 + 1

is empty. Moreover, note also that semistable representations ρ can exist for
generic values of the stability parameters on the wall only if

ρ2 � Q⊕r2k2

for some k2, r2 ≥ 1. This implies

m2 = r2, n2 = (k2 + 2)r2.

If this is not the case, the moduli space of semistable representations at
generic points on the wall is empty, which implies that the moduli spaces in
the adjacent chambers are empty as well. Assuming

(m2, n2) = (r2, (k2 + 2)r2), k2, r2 ≥ 1, n1 ≥ (k2 − 1)r2 + 3

the refined Donaldson-Thomas invariants in the opposite chamber

(n1 − 1)θ1 + (n1 − 2)η1 = −(n2 − 2m2)θ2 − (n2 − 3m2)η2 = −ε

can be computed by wallcrossing.
To this end, we first list the non-vanishing DT-invariants. The moduli

space of Qk2
is just a point, and therefore the refined DT-invariant is given

by:

(5.22) Ω(Qk2
, y) = 1.

Moreover the isomorphisms (5.6), (C.4), imply that the (Q,W )-module
ρ2 � Qk2

is rigid. This implies that the only semi-stable objects with charge
r2(0, 1, 0, 1), r2 ≥ 1 are isomorphic to the direct sums of the form Q⊕2k2

. Then
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Ω(Q⊕r2k2
) = 0 for r2 ≥ 2, and the rational invariant J(γ, y) defined in Equa-

tion (7.12) is given by:

(5.23) J(Q⊕r2k2
, y) = (−1)r2−1 y − y−1

r2 (yr2 − y−r2)

Using the refined wall-crossing formula of [106] in the form derived by [111]
in terms of rational invariants, one finds for the generating function of
Ω((1, r2, n1, r2n2); y):∑

r2≥0
Ω((1, r2, n1, r2n2); y) q

r2

= 1 +
∑

∑
i �ir2,i=r2>0

∏
i

(
1

�i!

(
yr2,i(n1−n2) − yr2,i(n2−n1)

y − y−1

)�i

· J((0, r2,i, 0, r2,in2); y)
�i q�ir2,i

)

= exp

(
−
∑
r>0

yr(n1−n2) − y−r(n1−n2)

r(yr − y−r)
(−q)r

)

=
∏
s≥0

(1 + yn2−n1+2s+1q)

(1 + yn1−n2+2s+1q)

=

n1−n2−1∏
s=0

(1 + yn2−n1+2s+1q),

where we assumed |y| < 1. The last line in the above formula is in agreement
with the semiprimitive wallcrossing formula of [48]. This corresponds to the
numerical invariants:

(5.24)
∑

Ω((1, r2, n1, r2n2)) q
r2 = (1− (−1)n1−n2q)n1−n2 ,

which shows that for charges (1, r2, n1, r2n2), r2 is bounded above by n1 −
n2. In the “+” chamber, the charges (1, r2, n1, r2n2) satisfy n2 − n1 > 0; the
invariants follow from the formulas above by interchanging n1 and n2.

These examples show that, in strong contrast to the SU(2) theory,
there are arbitrarily high spin BPS states and we can have higher magnetic
charges.
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5.4. Comparison with large radius spectrum

Let us recall the large radius BPS spectrum with charges γ(1, 1, n1, n2) found
in Section 4.4. Using the parameterization (4.38), for sufficiently small ε, the
complex Kähler moduli spaces is divided into two chambers separated by
the wall

(5.25) Re(a2)Im(a1)− Re(a1)Im(a2) = 0.

which does not depend on the electric charges (n1, n2).
In the chamber Cstring− (γ(1, 1, n1, n2)) given by

(5.26) Re(a2)Im(a1)− Re(a1)Im(a2) < 0

the BPS spectrum consists of states with charges γ(1, 1, n1, n2) with n2 +
1 ≤ n1. The corresponding supersymmetric D-brane configurations are non-
trivial extensions

0→ L1 → F → L2 → 0

where L1 = OS1
(−Σ1 + n1C1), L2 = OS2

(−Σ1 + (n2 − 3)C2) are line bun-
dles supported on the surfaces S1, S2 respectively. Therefore the moduli
space is isomorphic to the projective space Pn1−n2−1. These states have
spins j(n1,n2) =

n1−n2−1
2 and protected spin characters

(5.27) Ωstring
(τ0,a)

(γ(1, 1, n1, n2); y) = y−(n1−n2−1)χy(P
n1−n2−1).

In the opposite chamber, Cgauge+ (γ(1, 1, n1, n2)), the spectrum consists
states with n1 + 1 ≤ n2. The supersymmetric D-brane configurations are
now nontrivial extensions of the form

0→ L2 → F → L1 → 0,

which are parameterized by Pn2−n1−1. These states have spins j(n1,n2) =
n2−n1−1

2 and protected spin characters

Ωstring
(τ0,a)

(γ(1, 1, n1, n2); y) = y−(n2−n1−1)χy(P
n2−n1−1).

On the other hand, the above analysis of quiver moduli spaces yields a
wall of the form

(n1 − 1)θ1 + (n1 − 2)η1 = (n2 − 2)θ2 + (n2 − 3)η2 = 0
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in the moduli space of King stability parameters for each pair (n1, n2). Each
of these walls is the intersection of a wall of the form
(5.28)

(n1 − 1)z1 + (n1 − 2)w1 = λ
(
(n2 − 2)z2 + (n2 − 3)w2

)
, λ ∈ R>0,

in the moduli space of Bridgeland stability parameters with the subspace
of King stability parameters. For a physical Bridgeland stability condition
corresponding to a point (ai, a

D
i ) on the universal cover of the Coulomb

branch, the parameters (zi, wi) are given by (2.51). These are the walls where
the central charges of the Kronecker modules ρ1, ρ2 of dimension vectors
(n1 − 2, n1 − 1), (n2 − 3, n2 − 2) respectively, are aligned.

Now suppose the parameters (τ0, ai) satisfy conditions

Im(τ0) > 0, Im(ai) > 0, i = 1, 2,

and (4.39) as in Section 4.4 and take the large λ→∞ limit as defined in
Section 4.3. In this limit, the walls (5.28) become marginal stability walls
for the limit stability condition defined by the slope function (4.16). That
is, loci where

μ(τ0,a)(ρ1) = μ(τ0,a)(ρ2).

Since inequalities (4.39) are assumed to be satisfied, the main assumption
in Section 4.3 will hold for the SU(3) quiver (Q,W ). No mutations are
necessary. Then, using Equations (4.17),

μ(τ0,a)(ρi)
−1 =

(
1

2
− ni

3

)
1

Im(τ0)
+
Re(ai)

Im(ai)

for i = 1, 2. Therefore the large λ limit of the walls (5.28) is given by

(5.29)
Re(a2)

Im(a2)
− Re(a1)

Im(a1)
=

n2 − n1

3 Im(τ0)
.

Then the quiver stability analysis in the previous section implies that the
μ(τ0,a)-limit semistable quiver representations in the chamber

(5.30) Cgauge− (γ(1, 1, n1, n2)) :
Re(a2)

Im(a2)
− Re(a1)

Im(a1)
<

n2 − n1

3 Im(τ0)
.

must be nontrivial extensions of the form

0→ ρ1 → ρ→ ρ2 → 0.
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Such nontrivial extensions exist only if n2 + 1 ≤ n1, and the moduli space
is isomorphic to Pn1−n2−1. The protected spin character is

(5.31) Ωgauge
(τ0,a)

(γ(1, 1, n1, n2); y) = y−(n1−n2−1)χy(P
n1−n2−1)

In the opposite chamber, Cgauge+ (γ(1, 1, n1, n2)), the semistable represen-
tations have to be nontrivial extensions of the form

0→ ρ2 → ρ→ ρ1 → 0.

which exist only if n1 + 1 ≤ n2. The moduli space is again isomorphic to
Pn2−n1−1 and

Ωgauge
(τ0,a)

(γ(1, 1, n1, n2); y) = y−(n2−n1−1)χy(P
n2−n1−1).

These results are in agreement with the absence of walls conjecture formu-
lated in Section 4.3. The bijection (4.23) is given in this case by

Pγ(1,1,n1,n2)(C
gauge
± (γ(1, 1, n1, n2))) = Cstring± (γ(1, 1, n1, n2)).

Equations (4.25) are clearly satisfied.
However the gauge theory limit weak coupling spectrum exhibits a more

refined wall structure, the walls (5.29) being obviously dependent on the
charges (n1, n2), as opposed to (5.25). For very large Im(τ0) 1, keeping
n1, n2 fixed, the walls (5.29) approach asymptotically the large radius wall
(5.25). To complete the picture, note that the Kronecker modules ρ1, ρ2
forming gauge theory bound states are related by tilting to the line bundles
L1, L2 (up to a shift) forming D-brane bound states.

This is not a contradiction since (ω,B)-stability employed in Section 4.4
is not a Bridgeland stability condition on Db(X3). Therefore the unique wall
found there is a limit wall which does not actually exist in the moduli space
of Bridgeland stability conditions. Instead for each pair (n1, n2), there is a
wall where the string theory central charges of the line bundles L1, L2 are
aligned. At large radius, the central charges of L1, L2 are given by (2.28).
Omitting world-sheet-instanton corrections, one finds

Z(ω,B)(L1) = t0t1 + t21 − b21 + n1b1 +
√
−1 (−t0b1 − 2t1b1 + n1t1)

Z(ω,B)(L2) = t0t2 + 2t1t2 + 2t22 − 2(b1b2 + b22) + n2b2

+
√
−1 (−t0b2 − 2t1b2 − 2t2b1 − 4t2b2 + n2t2)
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In the small ε limit defined in Section 4.3, Equation (4.19), the leading terms
of the central charges are

Z(ω,B)(Li) ∼ t0ti − t0bi
√
−1, i = 1, 2.

Therefore all these walls approach asymptotically the limit wall

t1b2 = t2b1

which is the same as (5.25) using the parameterization (4.38). A similar
situation has been encountered in a similar context in [52, Sect. 3] (see in
particular Fig. 1. in loc. cit.)

6. Strong coupling chamber for the SU(N) quiver

According to [3], [69], there exist strong coupling chambers of the SU(N)
theory where the BPS spectrum consists of a finite set of stable BPS states
equipped with a natural two-to-one map to the set Δ+

N of positive roots
of SU(N). The purpose of this section is to identify an analogous chamber
in the space of stability parameters (θ, η) of the SU(N) quiver obtained
by geometric engineering. More precisely, for certain values of (θ, η) the
set S(θ,η)(Q,W ) of all stable quiver modules should be finite, and equipped
with a natural two-to-one map S(θ,η)(Q,W )→ Δ+

N . As a corollary, an adja-
cent chamber – called deceptive – will also be identified where all massive
W -bosons are stable and the BPS spectrum is completely determined by
wallcrossing.

Using the same conventions as in the previous section a representation
ρ of the the SU(N) quiver will be a diagram of the form

(6.1) WN−1 cN−1 ��
dN−1

�� VN−1

rN−2

��

sN−2

��
WN−2 cN−2 ��

dN−2
��

bN−2

��

VN−2

aN−2

��

...
...
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Wi+1
ci+1 ��
di+1

�� Vi+1

ri

��

si

��Wi
ci ��
di

��

bi

��

Vi

ai

��

...
...

W2
c2 ��
d2

�� V2

r1

��

s1

��W1
c1 ��
d1

��

b1

��

V1

a1

��

with potential

(6.2) W =

N−2∑
i=1

Tr [ri(aici − ci+1bi) + si(aidi − di+1bi)] .

As in Section 2.4, the dimension vector of ρ will be denoted by (d, e),
where d = (d1, . . . , dN−1) are the dimensions of (V1, . . . , VN−1) and e = (e1,
. . . , eN−1) the dimensions of (W1, . . . ,WN−1). The stability parameters
(zi, wi)1≤i≤N−1 will be assumed of the form (2.49), where θ = (θ1, . . . , θN−1)
are assigned to the nodes (V1, . . . , VN−1) and η = (η1, . . . , ηN−1) to (W1, . . . ,
WN−1). It will be assumed that N ≥ 3 in this section.

As a starting point, note that if the stability parameters satisfy

(6.3) ηi < ηi−1, θi < θi−1, i = 2, . . . , N − 1,

one can construct two simple, rigid, stable representations ρ±(α) of the
SU(N) quiver for each positive root α ∈ Δ+

N as follows.
A representation with ei = 0 for all i = 1, . . . , N − 1, reduces to a rep-

resentation of the linear quiver with N − 1 nodes

V1
a1 �� V2

a2 �� · · · aN−1 �� VN−1
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with stability parameters (θ1, . . . , θN−1). Using gauge transformations, all
linear maps can be set in canonical form, āi−1 : Cdi−1 → Cdi where āi−1 is a
diagonal matrix of the form

(āi−1)kl =

⎧⎨⎩
1, for 1 ≤ k = l ≤ d̄i−1,

0, otherwise,

for some 0 ≤ d̄i−1 ≤ min(di−1, di). If d̄i−1 = 0, by convention āi−1 = 0. If the
stability parameters θi are ordered as in (6.3), it is straightforward to prove
that that such a representation is stable if and only if it has dimension vector
of the form

di =

⎧⎨⎩
1, for j ≤ i ≤ k,

0, otherwise,

for some j, k ∈ {1, . . . , N − 1}, j ≤ k. Then there is an obvious 1-1 corre-
spondence between stable representations and positive roots α ∈ Δ+

N , send-

ing ρ to α =
∑N−1

i=1 diαi. Similar considerations apply similarly to represen-
tations with di = 0 for all i = 1, . . . , N − 1.

In order to complete the picture, it will be shown below that these are the
only stable representations of the SU(N) quiver if in addition the stability
parameters (η, θ) satisfy

(6.4) ηi < θi < ηi−1 < θi−1

for all 2 ≤ i ≤ N − 1. Thus Equation (6.4) defines a single chamber.
The proof will be inductive. Consider first N = 3. Then (6.4) specializes

to

(6.5) η2 < θ2 < η1 < θ1.

Let ρ be a stable representation of dimension vector (d1, d2, e1, e2) such that
(d1, d2) and (e1, e2) are simultaneously nontrivial. In this case note that
inequalities (6.5) imply

η2 < μ(θ,η)(ρ) < θ1.

For any (θ, η)-stable representation ρ, this implies that a1 must be injective
if V1 �= 0 and b1 must be surjective if W2 �= 0. In particular if V1 and W2 are
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both nontrivial, V2,W1 must be nontrivial as well. Moreover the relations

r1a1 = s1a1 = 0

imply that

Im(a1) ⊆ Ker(r1) ∩Ker(s1),

and

b2r2 = b2s2 = 0

imply that

Im(r2) + Im(s2) ⊆ Ker(b2).

This further implies that the data ρ′ = (V1, Im(a1), a1) determines a proper
nontrivial subobject of ρ of slope

μ(θ,η)(ρ
′) =

θ1 + θ2
2

.

Furthermore b1 :W1 →W2 induces an isomorphism b̄1 :W1/Ker(b1)
∼−→W2,

and the data ρ′′ = (W1/Ker(b2),W2, b̄1) determines a nontrivial quotient of
ρ of slope

μ(θ,η)(ρ
′′) =

η1 + η2
2

.

Then inequalities (6.5) imply that

μ(θ,η)(ρ
′′) < μ(θ,η)(ρ

′)

which contradicts the stability of ρ.
In conclusion at least one of V1 or W2 must be trivial. If both are trivial,

ρ reduces to the Kronecker module (V2,W1, r1, r2). Since θ2 < η1 the only
stable modules of this form are the simple ones. This is not allowed by the
assumption that (d1, d2) and (e1, e2) are simultaneously nontrivial.

Suppose V1 is trivial andW3 nontrivial. Then V2 must be nontrivial since
(d1, d2) �= (0, 0) by assumption. Moreover, if b1 :W1 →W2 is not injective,
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Ker(b1) �= 0, is a subobject of ρ of slope

η1 > μ(θ,η)(ρ).

This leads again to a contradiction, hence Ker(b1) = 0. Then relations

b1r1 = b1s1 = 0

imply that r1, s1 are trivial. Hence ρ splits as a direct sum of subrepre-
sentations, contradicting stability. The remaining case, W3 trivial and V1

nontrivial, is similar and will be left to the reader.
Next suppose the claim holds for the SU(N − 1) quiver for some N > 3.

Let ρ be a (θ, η)-stable representation of the SU(N) quiver. If (V1,W1)
are simultaneously trivial or (VN−1,WN−1) are simultaneously trivial, ρ is
a representation of an SU(N − 1) quiver and the inductive step is trivial.
Therefore in the following suppose (d1, e1) �= (0, 0), (dN , eN ) �= (0, 0) and
(d1, . . . , dN−1) �= (0, . . . , 0), (e1, . . . , eN−1) �= (0, . . . , 0). Let

Ij = Im(rj) + Im(sj) ⊆Wj , j = 1, . . . , N − 2

and

Kj = Ker(rj) ∩Ker(sj) ⊆ Vj+1, j = 1, . . . , N − 1.

Set K1 = V1 and IN−1 = 0. For each j = 1, . . . , N − 2 let āj = aj |Kj
and b̄j :

Wj/Ij →Wj+1/Ij+1 be the linear maps induced by bj :Wj →Wj+1. Then
the relations derived from the potential (6.2) imply that

bj(Ij) ⊆ Ij+1, aj(Kj) ⊆ Kj+1

for j = 1, . . . , N − 1. Therefore the data

ρ′ = (K1, . . . ,KN , ā1, ā2, . . . , āN−1|KN−1
)

determines a subobject of ρ with (e1, . . . , eN−1) = (0, . . . , 0) while the data

ρ′′ = (W1/I1, . . . ,WN−1/IN−1, b̄1, . . . , b̄N−1)

determines a quotient of ρ with (d1, . . . , dN−1) = (0, . . . , 0). At this point
there are several cases.
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1) V1,WN−1 are both nontrivial. Let L1 ⊆ K1 = V1 be a one dimensional
subspace, and set

Lj = (aj ◦ aj−1 ◦ · · · ◦ a1)(L1) ⊆ Kj+1

for j = 1, . . . , N − 2. Let k ∈ {1, . . . N − 1} be the smallest label such that
Lk �= 0 and Lk+1 = 0. Then the data

λk = (L1, . . . , Lk, ā1|L1
, . . . , āk−1|Lk−1)

is a subrepresentation of ρ contained in ρ′, and

μ(θ,η)(λk) =
1

k

k∑
i=1

θi.

Similarly, let pN−1 :WN−1 � QN−1 be a one dimensional quotient ofWN−1.
By successive compositions, there is a sequence of one dimensional quotients
and induced linear maps

· · · Wj/Ij
b̄j ��

pj

����

Wj+1/Ij+1

pj+1

����

· · · WN−1
pN−1

����
· · · Qj

qj �� Qj+1 · · · QN−1

Let l ∈ {1, . . . , N − 2} be the largest label such that ql �= 0, but ql−1 = 0.
Then the data

σl = (Ql, · · · , QN−1, ql, · · · , qN−2)

is a quotient of ρ of slope

μ(θ,η)(σl) =
1

N − 1− l

N−1∑
j=l

ηj .

Now note that inequalities (6.4) imply

μ(θ,η)(λk) ≥
1

N − 1

N−1∑
i=1

θi >
1

N − 1

N−1∑
i=1

ηi ≥ μ(θ,η)(σl)

for any k, l, contradicting stability of ρ.
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2) Suppose V1 is trivial, but WN−1 is nontrivial. Then the bottom part
of ρ is of the form

W2
c2 ��
d2

�� V2

r1

��

s1

��W1

b1

��

For each j = 1, . . . , N − 1, let Uj = Ker(cj) ∩Ker(dj) ⊆Wj . Note that U1 =
W1 since c1, d1 are trivial. Moreover the relations determined by (6.2) show
that

bj(Uj) ⊂ Uj+1, j = 1, . . . , N − 1.

Therefore the data

(U1, . . . , UN−1, b1|U1
, . . . , bN2

|UN−2
)

is a subobject of ρ. Proceeding by analogy with the construction of the
subobject λk above one finds a further subobject γk for some k ∈ {1, . . . , N −
1} with dimension vector

di = 0, i = 1, . . . , N1, ei =

{
1, for 1 ≤ i ≤ k
0, otherwise.

Then

μ(θ,η)(γk) =
1

k

k∑
i=1

ηi ≥
1

N − 1

N−1∑
i=1

ηi ≥ μ(θ,η)(σl)

and equality holds only if k = l = N − 1. Again this contradicts stability.
3) The remaining case, WN−1 trivial and V1 nontrivial, is treated anal-

ogously, details being omitted.
In conclusion, in the chamber (6.4) there is indeed a finite set of S(θ,η)(Q,

W ) of stable representations which maps two-to-one to Δ+
N . For each positive

root

α =

N−1∑
i=1

ni(α)αi, ni(α) ∈ {0, 1}, i = 1, . . . , N − 1,

there are exactly two representations ρ±α with dimension vectors

di(ρ
+
α ) = ni(α), ei(ρ

+
α ) = 0, i = 1, . . . , N − 1
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respectively

di(ρ
−
α ) = 0, ei(ρ

−
α ) = ni(α) i = 1, . . . , N − 1.

These states are in one-to-one correspondence to the strong coupling spec-
trum obtained in [3], [69] using different techniques. In fact, one can check
that the quiver used here is related to that of [3] by a mutation. For brevity,
this will be explained below only for N = 3.

6.1. A mutation of the SU(3) quiver

The SU(3) quiver of [3] is of the form

4•

b̃1

��

•3
c̃2��
d̃2

��

1• d̃1
��

c̃1 �� •2

ã1

��

with a superpotential of the form

W̃ = ã1c̃1b̃1c̃2 − ã1d̃1b̃1d̃2.

Let γ̃i, i = 1, . . . , 4 denote the generators of the charge lattice associated to
the nodes. The strong coupling spectrum found in [3] consists of six states
with charges

(6.6) γ̃i, 1 ≤ i ≤ 4, γ̃1 + γ̃4, γ̃2 + γ̃3.

Using the rules listed for example on page 2 of [134], it is straightforward
to check that the above quiver with potential is related to the SU(3) quiver
used in this paper by a mutation at node 4. In more detail, a mutation at
node 4, reverses all arrows beginning and ending at 4, and also adds two
more arrows corresponding to the paths b̃1c̃2, b̃1d̃2. This yields the diagram

4• c2 ��
d2

�� •3

r1

��

s1

��1• c1 ��
d1

��

b1

��

•2

a1

��
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where b1, c2, d2 are obtained by reversing b̃1, c̃2, d̃2 and the new arrows r1, s1
correspond to the paths b̃1c̃2, b̃1d̃2. All other arrows are unchanged. The
superpotential of the new quiver is

r1(a1c1 + c2b1)− s1(a1d1 − d2b1).

This expression is related to the superpotential (6.2) by an automorphism
of the path algebra changing b1 to −b1.

Let γi, 1 ≤ i ≤ 4 denote the generators of the K-theory lattice corre-
sponding to the nodes of the new quiver. Then the stable BPS states found
in this section have charges

(6.7) γi, 1 ≤ i ≤ 4, γ1 + γ4, γ2 + γ3.

These are related to the generators γ̃i, 1 ≤ i ≤ 4 by the linear transforma-
tions

γ1 = γ̃1 + γ̃4, γ2 = γ̃2, γ3 = γ̃3, γ4 = −γ̃4.
This transformation maps the charge vectors (6.7) to

γ̃1 + γ̃4, γ̃2, γ̃3, −γ̃4, γ̃1, γ̃2 + γ̃3.

By comparison with (6.6), it follows that (6.7) is the strong coupling spec-
trum in a different region of the Coulomb branch, where the BPS particle
of charge γ̃4 has been replaced with its antiparticle. Mathematically, this
is expected since the two quivers related by mutations determine different
t-structures on the derived category, corresponding to different regions in
the moduli space of Bridgeland stability conditions.

6.2. A deceptive chamber

Using the above results, the wallcrossing formula of [106] determines the
BPS spectrum in an adjacent chamber where all W -bosons are stable. Let

ηi = θi + εi, εi ∈ R, i = 1, . . . , N − 1.

Let θi, i = 1, . . . , N − 1 be some fixed parameters such that

θN−1 < · · · < θ1.

Then (θi, ηi) is in the strong coupling chamber (6.4) for εi < 0 and suffi-
ciently small |εi| � 1, i = 1, . . . , N − 1. The adjacent chamber is defined by
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εi > 0 and |εi| � 1, i = 1, . . . , N1. Using Equation (2.49) for the stability
parameters, central charges are of the form

(6.8)

Z(ρ+α ) = −r
N−1∑
i=1

ni(α)θi +
√
−1r

N−1∑
i=1

ni(α),

Z(ρ−α ) = −r
N−1∑
i=1

ni(α)(θi + εi) +
√
−1r

N−1∑
i=1

ni(α)

for some r ∈ R>0. As εi changes from negative to positive values the ordering
of Z(ρ+α ), Z(ρ

−
α ) is reversed for each α. Moreover if |εi| are sufficiently small

the ordering of any pair Z(ρ±α ), Z(ρ
±
β ) with α �= β is preserved. In order to

apply the wallcrossing formula of [106] note that the symplectic pairing on
the K-theory lattice of charges is given by

(6.9) χ([ρ1], [ρ2]) =
∑
a

dt(a)(ρ2)dh(a)(ρ1)− dt(a)(ρ1)dh(a)(ρ2)

where the sum is over all arrows a of Q and h(a), t(a) denote the head and
the tail of a. For the strong coupling representations this yields

χ(ρ+α , ρ
−
α ) = 2

Let γ±α denote the charge vectors of the representations ρ±α . Then, applying
the standard SU(2) wallcrossing formula [67, 106]

Kγ+
α
Kγ−α =

(
Kγ−α Kγ+

α+2γ−α K2γ+
α+3γ−α · · ·

)
K−2

γ+
α+γ−α

(
· · ·K3γ+

α+2γ−α K2γ+
α+γ−α Kγ+

α

)
for each root, the BPS spectrum in the deceptive chamber will consist of a
tower of states with dimension vectors

(di, ei) = (ni(α), ni(α) + k), k ∈ Z

for each α ∈ Δ+
N . The k �= 0 have degeneracy 1 and spin 0. The k = 0 states

are massive vector multiplets with degeneracy 2 and spin 1/2. Formally,
there is a one-to-one correspondence between the above states and the weak
coupling states found in [39, 65] by monodromy arguments. However, a
more careful analysis reveals important physical differences, showing that
the chamber studied in this section is not a weak coupling chamber. This
follows from the observation that for a fixed α the central charges of the
tower of states obtained by wallcrossing are contained in the cone cut by
the central charges (6.8) in the upper half-plane as shown in Fig. 5.
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Figure 5: Schematic representation of the BPS charge vectors in Equa-
tion (6.8) for SU(3) with positive roots α1, α2, α1 + α2.

For small 0 < εi � 1, i = 1, . . . , N − 1, the opening angle of the cone is also
very small,

Δφα ∼
∑N−1

i=1 ni(α)εi∑N−1
i=1 ni(α)

and there is no overlap between cones associated to different positive roots.
The massive W bosons are stable but have a very small binding energy
unlike the semiclassical regime where they are dyon/anti-monopole bound
states, and the monopoles are very massive. In fact were this spectrum to
occur in the semiclassical regime, the opening angle of these cones would
have to be very close to π. Hence any two cones would have to have a very
big overlap since they must all be contained in a complex half-plane.

7. Line defects and framed BPS states

This section is focused on a geometric construction of magnetic line defects
and the resulting mathematical model for framed BPS states. In particular
it will be shown that framed BPS states for simple magnetic line defects are
modeled by framed quiver representations. This will lead to a mathematical
derivation of the framed wallcrossing formula of [68] for these special line
defects, as well as a recursive algorithm for unframed BPS states. The latter
completely determines the unframed BPS spectrum at any point on the
Coulomb branch in terms of noncommutative Donaldson-Thomas invariants
of framed quivers. This section is concluded with an application of framed
wallcrossing to the absence of exotics conjecture.

7.1. Geometric construction of magnetic line defects

It has been already observed in Section 2 that noncompact D4-branes wrap-
ping divisors Di of the form (2.7) are natural candidates for infrared line
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operators carrying magnetic charge. In order to generalize the previous
quiver construction to such configurations one has to specify the Chan-
Paton line bundle on the noncompact D4-brane. More precisely, the non-
compact D4-brane supported on Di must be presented as an object Ni in
the derived category Db(XN ). Then open string zero modes between the
D4-brane Ni and the fractional branes (Pi, Qi)1≤i≤N are determined by the
extension groups Ext1(Ni, Pi) etc. The low energy dynamics of a bound state
of fractional branes in the presence of such a noncompact D4-brane will be
a quantum mechanical model determined by an enhancement (Q̃, W̃ ) of the
quiver with potential (Q,W ). The enhanced quiver will contain an extra
node corresponding to Ni and extra arrows corresponding to the additional
open string zero modes. The effective superpotential W̃ will also include
new terms, W̃ =W + · · · , which are determined in principle by the A∞-
structure of the derived category. While conceptually clear, an explicit form
of W̃ is quite difficult to derive in practice.

A simple set of D4-branes Ni, i = 1, . . . , N − 1, where this problem is
easily solved can be constructed starting with the exceptional collection of
line bundles

Li = OXN
(Di), Mi = OXN

(Di +H), 1 ≤ i ≤ N

given in Equation (2.8), Section 2.1. Note that the orthogonality conditions
(2.12) and the canonical exact sequences

0→ OXN
→ OXN

(Di)→ ODi
(Di)→ 0

yield isomorphisms
(7.1)
RHom(ODi

(Di), Pj) � δi,jC, RHom(ODi
(Di), Qj) = 0, 1 ≤ j ≤ N − 1

RHom(ODi
(Di), PN [1]) � C, RHom(ODi

(Di), QN ) � 0,

where C stands for the one term complex of vector spaces consisting of C
in degree zero. Since (Pi, Qi)1≤i≤N have compact support, for each isomor-
phism listed in (7.1), there is a second one obtained by Serre duality. For
example the first isomorphism in (7.1) yields

RHom(Pj ,ODi
(Di)) � δi,jC[−3].

Now let Nj = ODj
(Dj)[1] for some fixed 1 ≤ j ≤ N − 1. Note that

RHom(Pj , Nj) � C[−2],
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therefore

Ext2XN
(Pj , Nj) � C

So by Serre duality,

(7.2) Ext1XN
(Nj , Pj) � C.

Then, using Equations (7.1) and (7.2), the Ext1-quiver Q̃ of the collection
of D-branes (Pi, Qi)1≤i≤N in the presence of the extra noncompact object
Nj is

(7.3)
...

rN

��
sN

��

...

QN
cN ��

bN

dN
�� PN

rN−1

��

sN−1

��

aN

gj

��

QN−1 cN−1 ��
dN−1

��

bN−1

��

PN−1

aN−1

��

...
...

Qj+1
cj+1 ��
dj+1

�� Pj+1

rj

��

sj

��Qj
cj ��
dj

��

bj

��

Pj

aj

��

Njfj��

...
...
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Q2
c2 ��
d2

�� P2

r1

��

s1

��Q1

b1

��

c1 ��
d1

��

b1

��

P1

a1

��

sN
rN

...

bN

��

...

aN

��

As explained above, a priori the superpotential W̃ may contain additional
terms

W̃ =W + · · ·

corresponding to closed loops in the path algebra of Q̃ containing the arrows
fj , gj . However, according to Sections 2.3 and 2.4, the fractional branes
PN , QN are very heavy and decouple in the field theory limit. One arrives
therefore at the natural conjecture that the framed BPS states will be config-
urations of the fractional branes (Pi, Qi)1≤i≤N−1 bound to the noncompact
D4-brane Nj . Such bound states are quantum wavefunctions in the quan-
tum mechanics determined by the framed truncated quiver with potential
(Q̃, W̃ ), obtained by omitting (PN , QN ) and all adjacent arrows in the above
diagram. Now an important point is that there are no closed loops contain-
ing the framing arrow fj in the path algebra of Q̃. Therefore the truncated

potential W̃ must be equal to the potential

W =

N−2∑
i=1

[ri(aici − ci+1bi) + si(aidi − di+1bi)]

of the unframed (truncated) quiver Q defined in Section 2.4.
In conclusion, supersymmetric D-brane bound states in the presence

of a noncompact D4-brane Nj must be mathematically defined in terms

of Bridgeland stable representations of the quiver with potential (Q̃,W ).
Generalizing the correspondence conjectured in Sections 2.4,2.5 for unframed
BPS states, the framed BPS degeneracies defined in [68] will be identified
with Donaldson-Thomas invariants of framed quiver representations. A more
precise statement will be formulated in Section 7.3 after a detailed discussion
of stability conditions for framed quiver representations.



Geometric engineering of (framed) BPS states 1171

7.2. Framed stability conditions

By analogy with the unframed case, stability conditions for framed quiver
representations are determined by the central charges assigned to each node,
provided they belong to some half-plane Hφ of the complex plane. Sup-
pose zi, wi, are the central charges associated to the vertices Pi, Qi, i =
1, . . . , N − 1 and ξ the central charge assigned to the extra framing vertex.
The new aspect in the present case is that one has to take a limit where the
absolute value |ξ| is much larger than |zi|, |wi| since the extra D4-brane is
noncompact. For fixed numerical invariants, this will yield a limit stability
condition presented in detail below. Note that a similar effect of the phase
of a noncompact D-brane was previously studied in [93].

Suppose ρ̃ is a representation of (Q̃,W ) with dimension vector (d, e, 1)
where d = (di)1≤i≤N−1, e = (ei)1≤i≤N−1, where the last entry corresponds
to the extra node. The central charge of ρ̃ is given by

Z(ρ̃) = ξ +

N−1∑
i

(dizi + eiwi)

Let

μ(z,w,ξ)(ρ̃) = −
Re(e−iφZ(ρ̃))
Im(e−iφZ(ρ̃))

.

Then ρ̃ is (z, w, ξ)-(semi)stable if

μ(z,w,ξ)(ρ̃
′) (≤) μ(z,w,ξ)(ρ̃)

for any proper nontrivial subrepresentation 0 ⊂ ρ̃′ ⊂ ρ̃. Note that the sub-
representation ρ̃′ is allowed to have both multiplicity 0 and 1 at the extra
node.

In the present case the extra framing vertex corresponds to a noncom-
pact D4-brane, hence the relevant stability conditions will be limit stability
conditions obtained by sending |ξ| → ∞, keeping at the same time |zi|, |wi|,
i = 1, . . . , N − 1 finite. It is straightforward to show that with fixed numer-
ical invariants (d, e, 1), for sufficiently large |ξ|  0, (z, w, ξ)-stability spe-
cializes to the conditions below, where ϕ ∈ [φ, φ+ π) is the phase of ξ.

(a) Any nontrivial subrepresentation 0 ⊂ ρ′ ⊂ ρ̃ with numerical invariants
(d′, e′, 0) satisfies

(7.4) μ(z,w)(ρ
′) (≤) − cot(ϕ− φ).
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(b) Any nontrivial quotient ρ̃ � ρ′′ with numerical invariants (d′′, e′′, 0)
satisfies

(7.5) μ(z,w)(ρ
′′) (≥) − cot(ϕ− φ).

For simplicity let δ = −cot(ϕ− φ). The above conditions will be referred to
as framed (z, w, δ)-stability.

7.3. Framed BPS states, Donaldson-Thomas
invariants, and wallcrossing

Donaldson-Thomas invariants and wallcrossing formulas for framed quiver
representations are obtained by applying the formalism [95, 106] to the
abelian category of (Q̃,W )-modules. Note that similar results for framed
quiver representations were obtained in [120]. We will present below a self-
contained treatment because the details will be needed for applications in
later sections.

To fix notation, extension groups in the category of (Q̃,W )-modules will
be denoted by Extk

(Q̃,W )
(ρ̃1, ρ̃2) while extension groups of (Q,W )-modules

will be similarly denoted by Extk(Q,W )(ρ1, ρ2). A few basic facts on extensions
of quiver representations are summarized, for completeness, in Appendix D.

A necessary condition for the results of [95, 106] to apply to the present
case is that the pairing defined by

(7.6) χ(ρ̃1, ρ̃2) =

1∑
k=0

(−1)k
(
dimExtk

(Q̃,W )
(ρ̃1, ρ̃2)− dimExtk

(Q̃,W )
(ρ̃2, ρ̃1)

)
depend only on the dimension vectors of ρ̃1, ρ̃2, for any pair of objects. More
specifically, this is required for the construction of a well defined integration
map from the motivic Hall algebra of the category of (Q̃,W )-modules to a
Poisson algebra spanned by numerical K-theory classes of objects over Q.
The integration map constructed in [106] uses motivic weight functions while
the one constructed in [95] uses the constructible function of [17]. However
the above condition is a necessary prerequisite in both constructions.

Note that the pairing (7.6) is not an index because the k-th extension
groups with k = 2, 3 might be nonzero. If the category were a CY3-category,
the above pairing would reduce to an index by Serre duality, in which case
the required condition is obvious. This is not the case for framed quiver
modules, therefore some work is needed to check the above condition using
the results in Appendix D.
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First note that any (Q̃,W )-module fits in a canonical exact sequence

(7.7) 0→ ρ→ ρ̃→ λ⊕r0 → 0

where λ0 is the simple module supported at the framing node and r ≥ 0
the dimension of ρ̃ at the framing node. Then ρ has dimension zero at the
framing node, i.e. it is a (Q,W )-module. Then using the standard long exact
sequences (D.9), (D.10), and Equations (D.11)-(D.13), it follows easily that9

(7.8) χ(ρ̃1, ρ̃2) = χ(ρ1, ρ2)− r1dj(ρ2) + r2dj(ρ1).

where χ(ρ1, ρ2) is the same pairing restricted to (Q,W )-modules. As ex-
plained at end of Appendix D, χ(ρ1, ρ2) coincides with the natural symplec-
tic pairing of the K-theory classes [ρ1], [ρ2] and is given by

(7.9) χ(ρ1, ρ2) = 〈[ρ1], [ρ2]〉 =
∑
a

(dt(a)(ρ2)dh(a)(ρ1)− dt(a)(ρ1)dh(a)(ρ2)),

where the sum is over all arrows of Q. In particular this implies that the
pairing (7.8) is indeed determined by numerical invariants.

Since only (Q̃,W )-modules of multiplicity r ≤ 1 will be considered in this
paper, it will be more convenient to work with the subcategory A≤1(Q̃,W )
consisting of objects with r ∈ {0, 1}. Note that this is not an abelian cate-
gory but it is closed under extensions of any two objects with 0 ≤ r1 + r2 ≤
1. Therefore there is no obstruction in applying the formalism of [106]
to A≤1(Q̃,W ). Then for any dimension vector γ = (d, e) and any stabil-
ity parameters (z, w, δ) one obtains motivic Donaldson-Thomas invariants
DTmot

(Q̃,W )
(γ, r; z, w, δ), r = 0, 1. Following the same steps as in Section 2.5

one further defines Hodge type as well as refined framed Donaldson-Thomas
invariants.

The relation between framed invariants and physical framed BPS degen-
eracies is analogous to the unframed case discussed in Section 2.5. For any
line defect Lζ of charge γ and phase ζ = −eiϕ, one defines [68] a protected

9Note that r1, r2 below denote the dimensions of the vector spaces associated to
the framing node. They should not be confused with the same notation used for
arrows of the quiver Q.
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spin character

(7.10) Ω(Lζ , u, γ; y) = TrHBPS
u,L,ζ,γ

y2Jspin(−y)2JR

at any point u on the Coulomb branch. The map � : CalgG → Stabalg(G) con-
structed in Section 2.4 assigns to each u ∈ CG a set of stability parameters
(zi(u), wi(u))1≤i≤N−1. Then, if Lζ is one of the line defects determined by
the noncompact D4-brane Nj , the geometric engineering conjecture states
that

(7.11) Ω(Lζ , u, γ; y) = DT ref

(Q̃,W )
(γ, 1; z(u), w(u), δ; y)

where δ = −cot(ϕ− φ). The framed refined Donaldson-Thomas invariants
are defined in terms of the motivic ones in complete analogy with Section 2.5.

Note also that one has a positivity as well as absence of exotics conjecture
for framed BPS states [68]. These conjectures are obvious generalizations of
those stated in the unframed case in Section 2.5.

Once a framed quiver (Q̃,W ) is fixed by making a choice of Nj for some
j = 1, . . . , N − 1 the refined Donaldson-Thomas invariants will be denoted
by DT ref (γ, 1; z, w, δ; y) for simplicity.

For clarification, note that one can choose to work either with integral
refined Donaldson-Thomas invariants as defined in [106] or rational ones
obtained by a conjectural refinement of [95]. The two sets of invariants are
rational refined invariants related to each other by refined multicover formu-
las [44, 111]. In the present case, the integral and rational invariants coincide
for framed r = 1 objects since any charge vector (γ, 1) is primitive. However,
the rational unframed invariants are related to the integral ones by

(7.12) J(γ; z, w; y) :=
∑

k≥1,γ=kγ′

1

k[k](−y)
DT ref (γ′; z, w;−(−y)k)

where for any n ∈ Z,

[n]y =
yn − y−n

y − y−1
.

As a test of the identification (7.11), we will now show that the wallcross-
ing formulas derived from the mathematical formalism [106], [95] coincide
with the physical wallcrossing formula for framed BPS degeneracies derived
in [68].

For fixed charge vector γ and fixed stability parameters (z, w), strictly
(z, w, δ)-semistable representations can exist only for finitely many values of
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δ, called critical values of type (γ; z, w). Physically, these are the framed BPS
walls found in [68], where there exists a charge vector γ′ = (d′i, e

′
i)1≤i≤N−1,

such that γ′′ = γ − γ′ has non-negative entries and

ζ−1
N−1∑
i=1

(zid
′
i + wie

′
i) ∈ R<0.

Note that δ0(γ) = μ(z,w)(γ) is always a critical value of type (γ; z, w) with
γ′′ = 0. Moreover, this is the only critical value with this property; for all
other critical values γ′′ �= 0.

Suppose δc ∈ R is a critical value for given γ, (z, w). For each γ = (d, e)
let dj(γ) be the component of γ at the node j which receives the framing
map f . Then set

〈〈γ, γ′〉〉 = (−1)χ(γ,γ′)+dj(γ)(χ(γ, γ′) + dj(γ)).

Moreover, for any ordered sequence (γs)1≤s≤l of dimension vectors, with
l ≥ 2, set

Cy((γs)) =

l−1∏
s=1

[〈〈γs,
l∑

v=s+1

γv〉〉]y.

Since (z, w) are fixed, let also μ(γ) = μ(z,w)(d, e).
Consider two stability parameters δ− < δc < δ+ sufficiently close to δc.

Then the wallcrossing formula for framed BPS degeneracies reads
(7.13)
DT ref (γ, 1; z, w, δ−; y)(γ)−DT ref (γ, 1; z, w, δ+; y) =∑
l≥2

1

(l − 1)!

∑
γ1+···+γl=γ

γs �=(0,0), 1≤s≤l−1
μ(γs)=δc, 1≤s≤l−1

C(−y)((γs))DT ref (γl, 1; z, w, δ+; y)

l−1∏
s=1

J(γs; z, w; y).

In this form, the wallcrossing formula follows from explicit Hall algebra com-
putations by analogy with [42, 43]. We will explain below that it agrees with
the refined wallcrossing formula of [106], as well as the physical wallcrossing
formula of [68].

Note that for generic (z, w) all dimension vectors γj , j = 1, . . . , l − 1 in
the right hand side of (7.13) are parallel. Therefore they are all multiples,
γj = qjα, qj ∈ Z>0, of a dimension vector α. Moreover there exists a second
dimension vector β such that γl = β + qlα for some ql ∈ Z≥0. Then γ =
β + qα with q =

∑l
j=1 qj .
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The refined wallcrossing formula of [106] is formulated in terms of an
associative algebra over Q generated by êq, f̂q, q ∈ Z, satisfying

(7.14)

êq êq′ = êq′ êq = êq+q′

êqf̂p = yqdj(α)f̂q+p

f̂pêq = y−qdj(α)f̂q+p

f̂pf̂q = f̂qf̂p = 0

The last of the above equations may look puzzling, but it reflects the choice
of working in the truncated subcategory A≤1(Q̃,W ) made in the previous
section. In particular, no extensions of rank r ≥ 2 occur in the Hall algebra
identities underlying the wallcrossing formula (7.13) (see in particular [42,
Lemma 2.4 ].) Consider the Laurent expansion of the DT invariants

DT ref (β + qα; z, w, δ±; y) =
∑
n∈Z

Ω±n (q)y
n

and

DT ref (β + qα, 1; z, w, δ±; y) =
∑
n∈Z

Ω
±
n (q)y

n.

The geometric engineering conjecture (7.11) identifies the coefficients Ω±n (q),
Ω
±
n (q) with gauge theory BPS degeneracies of given spin. Let

E(x) =

+∞∏
i=0

(1 + y2i+1x)−1

be the quantum dilogarithm. For each q ∈ Z let

Sq =
∏
n∈Z

E((−y)nêq)(−1)
nΩn(q), U±q =

∏
n∈Z

E((−y)nf̂q)(−1)
nΩ

±
n (q)

Then the refined wallcrossing formula of [54, 106] for the wall δ = δc on the
δ-axis is

(7.15)
∏
p

U+
p

∏
q

Sq =
∏
q

Sq

∏
p

U−p .
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Using the last equation in (7.14),

U±q = 1−
∑
n∈Z

∞∑
i=0

Ω
±
n (q)y

2i+1+nf̂q = 1 +
1

y − y−1
∑
n∈Z

ynΩ
±
n (q)f̂q

= 1 +
1

y − y−1
DT (β + qα, 1; z, w, δ±; y)f̂q

By substitution in (7.15) and using again (7.14) it follows that the wallcross-
ing formula becomes

(7.16) F+
∏
q

Sq =

(∏
q

Sq

)
F−

where

F+ =
∑
q

DT (β + qα, 1; z, w, δ±; y)f̂q.

In the view of Equation (7.11), this is the same as the wallcrossing formula
[68, Eq. (3.43)].

For comparison with (7.13) note that the latter may be rewritten as

(7.17)

DT ref (β + qα, 1; z, w, δ−; y)−DT ref (β + qα, 1; z, w, δ+; y)

=
∑
l≥2

1

(l − 1)!

∑
q1+···+ql=q
qs �=0, 1≤s≤l

DT ref (β + qlα, 1; z, w, δ+; y)

l−1∏
s=1

[
l∑

v=s+1

−1(qs − qv)〈〈α, β〉〉
]
(−y)

J(qsα; z, w; y).

Then note that

lnSq =
∑
n∈Z

(−1)nΩn(q)

∞∑
i=0

∞∑
k=1

(−1)(n+1)k

k

(
y2i+1+nêq

)k
= −

+∞∑
k=1

1

k((−y)k − (−y)−k)
∑
n∈Z

[−(−yk)]nΩn(q)êkq

=
1

y − y−1

+∞∑
k=1

1

k[k](−y)
DT ref (qα; z, w;−(−y)k)êkq

which explains the refined multicover formula (7.12). Equation (7.17) follows
by collecting the terms in (7.15) as in [42, Sect. 4], [43, Sect 4.].
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7.4. A recursion formula for unframed BPS states

As an application of the mathematical formalism developed so far, a recur-
sion formula will be derived next for unframed BPS invariants at any values
of the stability parameters (z, w). This will follow from the chamber struc-
ture of the framed BPS spectrum on the δ-line, keeping the parameters (z, w)
fixed. Note that any framed representation ρ̃ of numerical type (d, e, 1) has
a canonical subrepresentation ρ of type (d, e, 0) obtained by simply remov-
ing the framing data. According to condition (a) above, if (d, e) �= (0, 0), ρ
destabilizes ρ̃ if

(7.18) δ < μ(z,w)(ρ) ≡ μ(z,w)(d, e).

Therefore in the chamber (7.18), the only semistable framed representation
is the simple module associated to the framing node. Therefore

DT ref (d, e, 1; z, w, δ) = 0

for all (d, e) �= (0, 0), for any δ satisfying inequality (7.18). In this chamber
the only nontrivial invariant is

DT ref (0, 0, 1; z, w, δ) = 1,

which is in fact independent of the stability parameters.
At the same time condition (b) at the end of Section 7.2 rules out any

quotient ρ̃ � ρ′′ for
δ  0.

This is equivalent to the statement that the quiver module ρ̃ is generated by
the framing vector as a module over the path algebra i.e. it is a cyclic mod-
ule. Therefore for any charge vector γ and any parameters (z, w) there is an
asymptotic chamber δ  0 where (z, w, δ)-stability is equivalent to cyclic-
ity. This usually called the noncommutative Donaldson-Thomas (NCDT)
chamber in the quiver literature [130].

An important feature of the NCDT chamber is that it usually leads
to explicit combinatorial formulas for unrefined framed DT invariants by
virtual localization [19, 74]. Typically one uses an algebraic torus action on
the moduli space of stable objects induced by a scaling action on the linear
maps of the quiver representations which preserves the potential W . The
virtual localization formula then expresses the unrefined DT invariants as
a sum of local contributions associated to the fixed loci of the torus action
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on the moduli space. For generic values of δ, the classification of stable
representations fixed by the torus action up to isomorphism is very difficult,
and the fixed loci are often higher dimensional. In contrast, for a sufficiently
generic torus action

C× ×Mcyclic(γ, 1)→Mcyclic(γ, 1)

on the moduli space of framed cyclic modules, the fixed loci are isolated
and have a relatively simple classification in terms of collections of colored
partitions [121, 130, 138, 139]. Then the fixed point theorems of [19, 74]
yield an expression of the form

(7.19) DT (γ, 1; z, w,+∞) =
∑

ρ̃∈Mcyclic(γ,1)C
×

(−1)w(ρ̃)

for the unrefined NCDT invariants, where w(ρ̃) is the dimension of the
Zariski tangent space Tρ̃Mcyclic(γ, 1). An explicit torus action with isolated
fixed loci is given for framed SU(N) quivers in Appendix E. Since the clas-
sification of the fixed points is still fairly involved for general N , explicit
computations using formula (7.19) are carried out only for N = 3. In this
case we also prove that there are only finitely many cyclic modules up to
isomorphism, i.e the asymptotic framed BPS spectrum is finite.

Motivic NCDT invariants can also be explicitly computed in certain
examples using different techniques [116–118, 121, 130]. A computation
based on [116] is outlined for SU(N) quivers in Section 7.5.

In conclusion, the framed BPS invariants are explicitly computable both
for δ � 0 and δ  0. Then the unframed ones can be recursively deter-
mined summing the contributions of all intermediate walls, according to
Equation (7.13). In close analogy with [44], this yields the following formula
(7.20)

(−1)dj(γ)dj(γ)J(γ; z, w; y) +
∑
l≥2

1

l!

∑
γ1+···+γl=γ

γs �=(0,0), 1≤s≤l
μ(γs)=μ(γ), 1≤s≤l

C(−y)((γs))
l∏

s=1

J(γs; z, w; y)

+DT ref (γ, 1; z, w,+∞; y) +
∑
l≥2

∑
γ1+···+γl=γ

γs �=(0,0), 1≤s≤l
μ(γ)<μ(γ1)≤μ(γ2)≤···≤μ(γl−1)[

C(−y)((γs))
s(γ1, . . . , γl−1)

DT ref (γl, 1; z, w,+∞; y)

l−1∏
s=1

J(γs; z, w; y)

]
= 0,
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where s(γ1, . . . , γl−1) is the order of the subgroup S(γ1, . . . , γl−1) ⊂ Sl−1
of the permutation group of (l − 1) letters consisting of permutations σ
preserving the slope ordering, i.e.

μ(γσ(1)) ≤ μ(γσ(2)) ≤ · · ·μ(γσ(l−1)).

More explicitly, for any sequence (γ1, . . . , γl−1) satisfying the slope inequal-
ities

μ(γ1) ≤ μ(γ2) ≤ · · · ≤ μ(γl−1)

there exists a unique partition l − 1 =
∑k

i=1 li with li ≥ 1, such that

μ(γ1) = · · · = μ(γl1) < μ(γl1+1)

= · · · = μ(γl1+l2) < · · · < μ(γl−lk) = · · · = μ(γl−1)

Then S(γ1, . . . , γl−1) � ×k
i=1Sli and

s(γ1, . . . , γl−1) =
k∏

i=1

li!.

For any charge vector γ = (di, ei)1≤i≤N−1 define the height |γ| =
∑N−1

i=1

(di + ei). Then, the above formula determines all J(γ; z, w; y) recursively
in the height |γ| provided that the asymptotic invariants DT ref (γ, 1; z, w,
+∞; y) are known.

Note that numerical Donaldson-Thomas invariants and wallcrossing for-
mulas are obtained taking the limit y → (−1) in the above formulas. Abus-
ing notation, the numerical invariants will be denoted by the same symbols,
the distinction residing in the absence of the argument y. Note that the
y → (−1) limit of C(−y)((γs)) is

C((γs)) =

l−1∏
s=1

〈〈γs,
l∑

v=s+1

γv〉〉.

For illustration, the numerical version of the recursion formula (7.20)
will be tested below in the strong coupling chamber found in Section 6. The
stability parameters (z, w) are of the form

zi = −θi +
√
−1, wi = −ηi +

√
−1, i = 1, 2,

where θi, ηi ∈ R, i = 1, 2, satisfy

η2 < θ2 < η1 < θ1.
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Consider for example the dimension vector γ = (1, 1, 0, 0) and let j = 2.
There is only one decomposition of γ up to permutations

γ = (1, 0, 0, 0) + (0, 1, 0, 0).

The (θ, η)-slopes,

μ(1, 0, 0, 0) = θ1, μ(0, 1, 0, 0) = θ2, μ(1, 1, 0, 0) =
θ1 + θ2

2

are ordered as follows

μ(1, 0, 0, 0) > μ(1, 1, 0, 0) > μ(0, 1, 0, 0).

Given the summation conditions in (7.20), it follows that the sum over l ≥ 2
in the first row is trivial, while the sum over l ≥ 2 in the second row reduces
to a single term,

C((γ1, γ2))DT (γ2, 1; z, w,+∞)J(γ1; z, w)

where

γ1 = (1, 0, 0, 0), γ2 = (0, 1, 0, 0).

By direct substitution,

d2(γ) = 1, χ(γ1, γ2) = −1, d2(γ1) = 0,

hence

(−1)d2(γ)d2(γ) = −1, C((γ1, γ2)) = 1.

Therefore (7.20) reduces to

−J(γ; z, w) +DT (γ, 1; z, w,+∞) +DT (γ2, 1; z, w,+∞)J(γ1; z, w) = 0.

According to Appendix E, DT (γ, 1; z, w,+∞) = 0 and DT (γ2, 1; z, w,+∞)
= 1. Moreover J(γ; z, w) = J(γ1; z, w) = 1 at strong coupling, hence the y →
(−1) limit of formula (7.20) holds in this case.

As an alternative to the recursion formula, note that the spectrum of
framed BPS states at δ  0 can be also related to the spectrum at δ � 0
applying directly the wall crossing formula of [106]. Again, using the SU(3)
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strong coupling chamber found in Section 6 as an example, recall that there
are 6 unframed BPS states with dimension vectors

γ1 = (1, 0, 0, 0), γ2 = (0, 1, 0, 0), γ3 = (0, 0, 1, 0),

γ4 = (0, 0, 0, 1), γ5 = (1, 1, 0, 0), γ6 = (0, 0, 1, 1).

In addition in the chamber δ � 0 there is only one framed BPS states with
dimension vector γ = 0 corresponding to the simple module supported at
the framing node. Consider the Lie algebra over Q generated by {eγ , fγ}
satisfying

[eγ , eγ′ ] = (−1)χ(γ,γ′)χ(γ, γ′)eγ+γ′ ,

[eγ , fγ′ ] = (−1)dj(γ)+χ(γ,γ′)(dj(γ) + χ(γ, γ′))fγ+γ′ .

Define Ui, i = 1, . . . , 6 by

Ui = exp(
∑ emγi

m2
),

Then the framed spectrum in the chamber δ  0 is determined by

(U4U2U6U5U3U1)
−1exp(f0)U4U2U6U5U3U1 .

Note that U2 and U6 commute and U3 and U5 commute. After the alge-
braic manipulation we obtain the 7 invariants listed in Appendix E, Equa-
tion (E.7).

7.5. Absence of exotics I

This section will be concluded with an application of the above results to
the absence of exotics conjecture formulated in Section 2.5. As explained
there, assuming a Lefschetz type construction for the SL(2,C)spin action
on the space of BPS states, absence of exotics translates into the van-
ishing of off-diagonal virtual Hodge numbers hr,s(γ; z, w) of the moduli
space of (z, w)-stable representations with charge γ. Equivalently, the Hodge
type Donaldson-Thomas invariants DT (γ; z, w;x, y) in Equation (2.58) are
required to be Laurent polynomials in (xy)1/2. Laurent polynomials in x1/2,
y1/2 satisfying this condition will be called rational in the following. There is
of course an entirely analogous statement for framed BPS states, where the
virtual Hodge numbers depend on the extra stability parameter δ. Below
it will be shown that the required vanishing results follow by wallcrossing
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from the chamber structure of framed BPS states studied in the previous
subsection.

Using the formalism of [106], the wallcrossing formula (7.13) admits a
natural motivic version written in terms of motivic DT invariants DTmot(γl,
1; z, w, δ±), Jmot(γs; z, w). The coefficients C(−y)((γs)) must be accordingly
replaced by their motivic versions C(−L1/2)((γs)). Taking virtual Hodge poly-
nomials, the motivic wallcrossing formula yields a polynomial wallcrossing
formula for Hodge type Donaldson-Thomas invariants:
(7.21)

DT (γ, 1; z, w, δ−;x, y)(γ)−DT (γ, 1; z, w, δ+;x, y) =
∑
l≥2

1

(l − 1)!

∑
γ1+···+γl=γ

γs �=(0,0), 1≤s≤l−1
μ(γs)=δc, 1≤s≤l−1

C(−(xy)1/2)((γs))DT (γl, 1; z, w, δ+;x, y)

l−1∏
s=1

J(γs; z, w;x, y),

where the J(γs; z, w;x, y) are the images of the motivic invariants J
mot(γs;

z, w) via the virtual Hodge polynomial map. Analogous considerations hold
of course for the recursion formula (7.20) which is an iteration of the wall-
crossing formula. Using these formulas, absence of exotics for framed and
unframed invariants reduces to absence of exotics for the framed asymp-
totic ones. The latter will then be proven shortly using the results of [116].
Therefore, in short, rationality of both framed and unframed invariants is
established, granting the motivic wallcrossing formula of [106] for SU(N)
quivers.

The proof of absence of exotics for asymptotic framed invariants will be
based on the main result of [116], where they are expressed in terms of Chow
motives of certain affine varieties. In order to apply the results of [116] one
first has to check that the potential

W =

N−2∑
i=1

[ri(aici − ci+1bi) + si(aidi − di+1bi)]

of the SU(N) quiver has a linear factor according to [116, Def. 2.1]. First
note that any potential W ′ which differs from W by cyclic permutations in
each term is equivalent toW since they define the same relations in the path
algebra. Therefore W is equivalent to

W ′ =
N−2∑
i=1

(aiciri − birici+1 + aidisi − bisidi+1)
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Then note that W ′ has a factorization of the form W ′ = LR in the path
algebra of the quiver without relations, where

L =

N−2∑
i=1

(ai + bi), R =

N−2∑
i=1

(ciri − ci+1bi + aidi − di+1bi).

Since the product is defined by concatenation of paths it is straightforward
to check that all terms in the expansion of LR not belonging to W ′ are
trivial. For example

aici+1bi = 0

since the tail of ai does not coincide with the head of ci+1. Moreover, any
two distinct nodes of the quiver are connected by at most one of the arrows
ai, bi, 1 ≤ i ≤ N2 in L. These are precisely the conditions required by [116,
Def 2.1].

Then [116, Thm. 7.1] provides an explicit expression for the motivic
Donaldson-Thomas invariantsDTmot(γ, 1; z, w,+∞) in terms of Chow motives
of general linear groups GL(n,C), n ≥ 1 and Chow motives of “reduced
quiver varieties”, which are constructed as follows. For a fixed dimension
vector γ = (di, ei)1≤i≤N−1 let

V(γ) =
⊕

a∈{aj ,bj ,cj ,dj ,rj ,sj}
Hom(Cdt(a) ,Cdh(a))

be the linear space of all quiver representations. The potentialW determines
a gauge invariant polynomial function Wγ on V(γ). The “reduced quiver
variety” R(γ) is defined as the zero locus of the F-term equations

ai = bi = 0, ∂ai
Wγ = 0, ∂biWγ = 0

in V(γ). In the present case, one obtains the quadratic equations

(7.22) ciri + disi = 0, rici+1 + sidi+1 = 0.

According to Equation (B.1) in Appendix B,

[GL(n,C)] =

n∏
k=1

(Lk − 1),

hence its virtual Hodge polynomial is
∏n

k=1((xy)
k − 1). Therefore, thanks

to the above result of [116], in order to prove absence of exotics in the
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asymptotic chamber it suffices to prove that the virtual Hodge polynomials
with compact support of the reduced varietiesR(γ) are polynomial functions
on (xy). This will be done below using the compatibility of the virtual Hodge
polynomial with motivic decompositions.

Note that R(γ) admits a natural projection π : R(γ)→ B(γ) to the lin-
ear space B(γ) =⊕a∈{cj ,dj}Hom(C

dt(a) ,Cdh(a)) given by

π(ci, di, ri, si) 
→ (ci, di).

For each i = 1, . . . , N − 1 the pair of linear maps (ci, di) determine a Kro-
necker module κi of dimension vector (ei, di). Therefore B(γ) is a direct
product

B(γ) = ×N−1
i=1 V(ei, di)

where V(ei, di) denotes the linear space of all Kronecker modules of dimen-
sion vector (di, ei). Using Equation (C.2), the space of solution (ri, si) to
Equations (7.22) is isomorphic to the dual extension group of Kronecker
modules Ext1(κi, κi+1)

∨. Therefore the fiber of π over a point (κi) ∈ B(γ) is
isomorphic to the linear space

N−2⊕
i=1

Ext1K(κi, κi+1)
∨,

where K denotes the abelian category of Kronecker modules.
If the dimension of the fiber π−1(κ1, . . . , κN−1) were constant, R(γ)

would be isomorphic to a product of linear spaces, which is obviously ratio-
nal. This is in fact not the case; the dimensions of the fiber jumps as the
point (κ1, . . . , κN1

) moves in B(γ). However, suppose there is a finite stratifi-
cation of B with locally closed strata Sα such that the fiber of π has constant
dimension pα over the stratum Sα. Then the following relation holds in the
ring of motives

[R(γ)] =
∑
α

Lpα [Sα].

This yields a similar relation,

P(x,y)(R(γ)) =
∑
α

(xy)pαP(x,y)(Sα)

for virtual Hodge polynomials with compact support. Therefore in order to
prove the claim it suffices to construct a stratification Sα such that each
polynomial P(x,y)(Sα) is only a function of (xy). It will be shown next
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that the natural stratification of B(γ) by gauge group orbits satisfies this
condition.

Let V(e, d) � Hom(Ce,Cd)⊕2 be the linear space of all Kronecker mod-
ules of dimension vector (e, d). Suppose S is an orbit of the naturalGL(e,C)×
GL(d,C) action on V(e, d) and let GS ⊂ GL(e,C)×GL(d,C) be its stabi-
lizer. Given any Kronecker module κ ∈ S corresponding to a point in S, the
stabilizer GS is isomorphic to the group of invertible elements in the endo-
morphism algebra EndK(κ). Recall that K denotes the abelian category of
Kronecker modules. According to [94] (see below Def. 2.1), this implies that
GS is special, which means that any principal GS-bundle over a complex
variety is locally trivial in the Zariski topology. In particular this holds for
the natural principal GS-bundle

GS �� GL(e,C)×GL(d,C)

��
S,

which yields a relation of the form

[GL(e,C)][GL(d,C)] = [GS ][S]

in the ring of motives. Taking virtual Hodge polynomials with compact
support one further obtains

P(x,y)(S)P(x,y)(GS) =
d∏

k=1

((xy)k − 1)

e∏
l=1

((xy)l − 1).

Note that the right hand side of this identity is a product of irreducible
factors (xy − ζ), with ζ a root of unity. Since the polynomial ring is a unique
factorization domain, it follows that the same must hold for both factors in
the left hand side. Therefore P(x,y)(S) is a polynomial function of (xy) as
claimed above.

In order to conclude this section, one can ask the question whether
absence of exotics may hold for the BPS spectrum of any toric Calabi-
Yau threefold. We expect this to be the case for general BPS states on toric
Calabi-Yau threefolds, based on similar arguments. Using dimer technology
[21, 92] any toric Calabi-Yau threefold X has an exceptional collection of
line bundles which identifies the derived category Db(X) with the derived
category of a quiver with potential (Q, ,W ). There is moreover a region
in the Kähler moduli space where one can construct Bridgeland stability
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conditions where the heart of the underlying t-structure is the abelian cat-
egory of (Q,W )-modules. In this region, BPS states will be mathemati-
cally modeled by supersymmetric quantum states of moduli spaces of stable
quiver representations. Moreover, explicit formulas for motivic Donaldson-
Thomas invariants of moduli spaces of framed cyclic representations have
been obtained in [121], and they depend only on L1/2. Therefore one can
employ a similar strategy, defining δ-stability conditions for framed repre-
sentations, and studying motivic wallcrossing. This provides a framework for
a mathematical study of absence of exotics for dimer models. The details
will be left for future work.

A much harder problem is absence of exotics in geometric regions of the
Kähler moduli space [15] where there are no stability conditions with alge-
braic t-structures. In those cases, one has to employ perverse t-structures in
the construction of stability conditions, and the role of framed quiver repre-
sentations is played by large radius stable pair invariants. Explicit motivic
formulas for such invariants are known only in cases where X has no com-
pact divisors [117, 118]. If X has compact divisors, no explicit large radius
motivic computations have been carried up to date. However absence of
exotics is expected based on the refined vertex formalism [91]. Moreover,
the cohomology of smooth moduli spaces of semi-stable sheaves on rational
surfaces is known to be of Hodge type (p, p) [16, 73], which suggests that
also for toric Calabi-Yau’s with compact divisors no exotic BPS states arise.
For completeness note that absence of exotics is known to fail [4, 44] on
non-toric Calabi-Yau threefolds.

8. BPS states and cohomological Hall algebras

This section explains the relation between BPS states and the mathematical
formalism of cohomological Hall algebras [108]. Although cohomological and
motivic Donaldson-Thomas invariants are known to be equivalent [108], the
cohomological construction provides more insight into the geometric con-
struction of the SL(2,C)spin-action on the space of BPS states [105]. More-
over, it also offers a new perspective on the absence of exotics, which is now
related to a conjectural Atiyah-Bott fixed point theorem for the cohomology
groups defined in [108].

8.1. Cohomological Hall algebras

The algebra of BPS states was first constructed in [81] in terms of scattering
amplitudes for D-brane bound states. In the semiclassical approximation,
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the algebraic structure is encoded in the overlap of three quantum BPS
wave functions on an appropriate correspondence variety. This formulation
can be made very explicit for quiver quantum mechanics. More recently,
a rigorous mathematical formalism for BPS states has been proposed in
[108] for quivers with potential. A detailed comparison between the physical
definition of [81] and the formalism of [108] has not been carried out so far
in the literature. Leaving this for future work, the construction of [108] will
be briefly summarized below.

The most general definition of the corresponding algebraic structure is
given in the framework of Cohomological Hall algebra (COHA for short) in
[108]. In the loc. cit. the authors defined the category of Exponential Mixed
Hodge Structures (EMHS for short) as a tensor category which encodes
“exponential periods”, i.e. integrals of the type

∫
C exp(W )α, where C is a

cycle in an algebraic variety X, W : X → C is a regular function (or even a
formal series) and α is a top degree form on C. There are different “coho-
mology theories” which give “realizations” of EMHS. Every such theory is a
tensor functor H from the category EMHS to the category of graded vec-
tor spaces. Similarly to the conventional theory of motives there are several
standard realizations:

a) Betti realization which is given by the cohomology of pairs H•(X,
W−1(t)), where t is a negative number with a very large absolute value (it
is also called “rapid decay cohomology”);

b) De Rham realization which is given by the cohomology H•(X, d+
dW ∧ •) of the twisted de Rham complex (or, better, the hypercohomology
of the corresponding complex in the Zariski topology on X);

c) critical realization which is given by the cohomology of X with the
coefficients in the sheaf of vanishing cycles of W .

It is convenient to combine all those versions of COHA into the following
definition proposed in [108].

Definition 8.1. Cohomological Hall algebra of (Q,W ) (in realization
H) is an associative twisted graded algebra in the target tensor category C
of the cohomology functor H defined by the formula

H := ⊕γHγ , Hγ := H•(Mγ/Gγ ,Wγ) := H•(Muniv
γ ,W univ

γ ),

where I is the set of vertices of the quiver, and γ = (γi)i∈I ∈ ZI
≥0 is the

dimension vector.
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In the above definition Mγ is the space of representations of Q of dimen-
sion γ = (γi)i∈I ∈ ZI

≥0, and Muniv
γ = EGγ ×BGγ

Mγ is be the standard uni-
versal space used in the definition of equivariant cohomology. The group
Gγ =

∏
i∈I GL(γi,C) acts by changing basis at each vertex of the quiver

and Mγ/Gγ denotes the corresponding stack. It was proved in the loc. cit.
that COHA is an associative algebra.

It is important to explain the relationship of COHA to the space of BPS
states. By definition COHA does not depend on the central charge Z, hence
it does not depend on stability parameters. It was conjectured in loc.cit.
that after a choice of the central charge, the algebra H “looks like” the
universal enveloping algebra of a Lie algebra g which is a direct sum (as
a vector space) of the “fixed slope“ Lie algebras. More precisely g = ⊕lgl
where the summation is taken over the set of rays l in the upper-half plane,
and each algebra gl depends on the moduli spaces of semistable objects with
central charges in l. Therefore a choice of stability conditions should deter-
mine a space of “good“ generators of COHA. This space of generators is not
known aside from a of few simple examples. Furthermore, it is not known
whether there is a space V of generators of H which carries a Lie algebra
structure (hence we cannot identify the Lie algebra g with such a set). It is
expected (and proved in the case of symmetric quivers) that there is a space
of (graded) generators of the form V = V prim ⊗C[x], where deg x = 2 and
V is vector space graded by ZI

≥0 × Z. One should think of this grading as a
charge-cohomological degree grading. From the point of view of the above
discussion one can think that V prim = ⊕(γ,k)Vγ,k corresponds to HBPS(γ).
This space of generators plays the role of the space of single-particle BPS
states. Full COHA “looks like“ the algebra of multiparticle states. In practice
the space of stability parameters u has the size of one-half of the full space
of stability conditions. After a choice of such subspace of “physical” sta-
bility conditions one defines the DT-invariants (which correspond of course
to BPS invariants) as Ω(γ, u) =

∑
k y

kdimVγ,k. The summands in this sum
can be interpreted as refined BPS invariants. Furthermore, the above con-
siderations can be performed directly in the category EMHS. In this case
V prim is an object of EMHS. As in the usual Hodge theory which is math-
ematically described by the category of Mixed Hodge Structures (MHS for
short), objects of EMHS carry (exponential version of) Hodge and weight
filtrations defined in [108]. Then the motivic and numerical DT-invariants
are defined by taking Serre polynomial (a.k.a. virtual Poincaré polynomial)
and Euler characteristic of the corresponding objects. This definition agrees
with the above conjectural description via the set V of generators of COHA.
Notice that the motivic version of COHA carries the action of the motivic
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Galois group (the group of automorphisms of the corresponding cohomology
functor H). Therefore, instead of considering the trace of the element −1
which gives the Euler characteristic, one can consider the trace of another
element of the motivic Galois group (or the character function as a function
on the Galois group). It might lead to some new interesting invariants.

8.2. Framing and SL(2,C)spin action

According to Section 2.5, physics arguments predict an SU(2)spin action on
the space of BPS states. If one is mainly interested in algebraic aspects, for-
getting the Hilbert space structure, the natural induced SL(2,C)spin action
may be considered instead. As explained in Section 2.5, the SL(2,C)spin
action is identified with the Lefschetz action on the cohomology of the D-
brane moduli space [135], which is well defined when the latter is smooth.
Therefore, as a physical test of the formalism proposed in [108], the cohomol-
ogy groups constructed there should carry a natural Lefschetz type action.
This construction was developed by Kontsevich and Soibelman in [105], and
is briefly recalled below.

Let C be a triangulated A∞-category over C. We also fix a stability
condition τ , (and hence a slope function μ), and a functor F from C to
the category of complexes. For a fixed slope μ = θ we denote by Cssθ the
abelian category of τ -semistable objects having the slope θ. We will impose
the following assumption: F maps Cssθ to the complexes concentrated in non-
negative degrees.

Definition 8.2. Framed object is a pair (E, f) where E ∈ Ob(Cssθ ) and
f ∈ H0(F (E)).

The above definition can be given in the case of abelian categories as
well. In the case of the quiver with potential (Q,W ) we can define the above
structure by adding an extra vertex i0 and di arrows from i0 to the vertex
i ∈ I. Then the functor F maps a representation E = (Ei)i∈I to F (E) =
⊕iHom(Cdi , Ei).

There is an obvious notion of morphism of framed objects and hence of
isomorphic framed objects.

Definition 8.3. We call framed object stable if there is no exact triangle
E′ → E → E′′ such that both E′, E′′ ∈ Ob(Cssθ ) and such that there is f ′ ∈
H0(F (E′)) which is mapped to f ∈ H0(F (E)).

Proposition 8.4. If (E, f) is a stable framed object then Aut(E, f) = {1}.
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Therefore one can speak about a scheme (not a stack) of stable framed
objects. There are versions of this notion which involve polystable objects
(i.e. sums of stables with the same slope). Conjecturally for a wide class of
triangulated categories the moduli space of stable framed objects Msfr is
a projective variety. In particular this should be true in the case of quivers
with potential. The following conjecture was formulated in the loc. cit.

Conjecture 8.5. Suppose that C is a 3CY category. Then there is a formal
manifold M̂sfr and a formal function W ∈ Ô(Msfr) such that:

a) Msfr is the set of critical points of W .
b) For every i ≥ 0 the cohomology group H i(Msfr, φW ) with the coef-

ficients in the sheaf of vanishing cycles φW (ZMsfr) carries a pure Hodge
structure of weight 0 as well as the Lefshetz decomposition.

Assuming the Conjecture we arrive to the following:

Corollary 8.6. The series Asfr :=
∑

γ∈ZI
≥0
[H•(Msfr, φW )]êγ enjoys the

wall-crossing formulas. Here the symbol [H•(Msfr, φW )] denotes an element
of the K0 ring of an appropriate subcategory of EMHS, while êγ are gener-
ators of the quantum torus over this K0 ring, êγ1

êγ2
= Lχ(γ1,γ2)/2êγ1+γ2

and
χ(γ1, γ2) is the Euler-Ringel form.

In particular a mutation of the quiver with potential gives rise to a
conjugation of Asfr by the quantum dilogarithm. Applying Serre polyno-
mial we obtain the series with coefficients which are characters of finite-
dimensional SL(2,C)-representations. Specialization of the Serre polynomial
to L1/2 = −1 is therefore a non-negative integer number.

The geometric construction of framed BPS states in Section 7 suggests
in fact a generalization of the above conjectures to weak stability conditions,
as explained below.

Suppose Aτ is the heart of the underlying t-structure of τ and suppose
F maps Aτ to the complexes concentrated in non-negative degrees. Then
a framed object will be defined as a pair (E, f) where E ∈ Ob(Aτ ) and
f ∈ H0(F (E)). Again, there is an obvious notion of morphism of framed
objects and hence of isomorphic framed objects.

The stability condition for framed objects is also generalized as fol-
lows to a condition depending on an extra parameter ξ ∈ C. In addition
to a t-structure the stability condition τ also contains a compatible stabil-
ity function Zτ : K(C)→ C, where K(C) is an appropriate quotient of the
Grothendieck group of C. The compatibility condition requires Zτ (E) to take
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values in a fixed half-plane Hφ ⊂ C for any object E of Aτ . Let ξ ∈ Hφ be
an arbitrary complex parameter. For any object E of Aτ , define

Z(τ,ξ)(E) = Zτ (E) + h0(F (E))ξ

and

μ(τ,ξ)(E) = −
Re(e−iφZ(τ,ξ)(E))

Im(e−iφZ(τ,ξ)(E))
,

where hk(F (E)) = dimHk(F (E)), k ≥ 0. Moreover for any morphism d :
E1 → E2 in Aτ let F

k(d) : Hk(E1)→ Hk(E2), k ≥ 0 be the induced linear
maps on cohomology.

Definition 8.7. A framed object (E, f), E ∈ Ob(Aτ ) is called (τ, ξ)-(semi)
stable if the following conditions hold.

(a) Any framed object (E′, f ′) where 0 ⊂ E′ ⊂ E is a nontrivial proper
subobject in Aτ such that F

0(f ′) = f satisfies

μ(τ,ξ)(E
′) (≤) μ(τ,ξ)(E).

(b) Any framed object (E′′, f ′′) where E � E′′ �= 0 is a quotient of E in
Aτ , not isomorphic to E, such that F 0(f) = f ′′ satisfies

μ(τ,ξ)(E) (≤) μ(τ,ξ)(E
′′).

If appropriate boundedness results hold for fixed numerical invariants,
making |ξ| very large yields the following notion of (weak) limit stability
condition.

Definition 8.8. A framed object (E, f), E ∈ Ob(Aτ ) is called limit (τ, δ)-
(semi)stable if the following conditions hold.

(a) Any framed object (E′, f ′) where 0 ⊂ E′ ⊂ E is a nontrivial proper
subobject in Aτ such that F

0(f ′) = 0 satisfies

μτ (E
′) (≤) δ

(b) Any framed object (E′′, f ′′) where E � E′′ �= 0 is a quotient of E in
Aτ , not isomorphic to E, such that F 0(f) = 0 satisfies

μτ (E
′′) (≥) δ.
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Here δ = −cot(ϕ− φ), where ϕ ∈ [φ, φ+ π) is the phase of ξ.
Then note that Proposition 8.4 holds for both (τ, ξ)-stable objects and

(τ, δ)-limit stable objects. The case of framed BPS states studied in Section 7
suggests that Conjecture 8.5 and Corollary 8.6 should also hold in this more
general framework, perhaps with appropriate amendments.

8.3. Absence of exotics II

In addition to the SL(2,C) action, the space of BPS states is also expected
to carry an action of the R-symmetry group, which is SU(2)R in the field
theory limit. Again, if one is mainly interested in algebraic aspects, this
extends naturally to an action of the complex R-symmetry group SL(2,C)R.
More generally the space of BPS states in the low energy IIA effective the-
ory of a toric threefold X is expected to carry only an action of a Cartan
subgroup, C×R ⊂ SL(2,C)R. As explained in Section 2.5, for a smooth pro-
jective D-brane moduli spaceM, the space of BPS states is identified with
the cohomology ofM and C×R acts with weight p− q on the Dolbeault coho-
mology group Hp,q(M). Then it is natural to conjecture that C×R acts anal-
ogously on the cohomology groups constructed in [105, 108]. Hence absence
of exotics is equivalent to the statement that the Hodge numbers of the
cohomology groups in Definition (8.1) are trivial unless p = q. Given the
equivalence between motivic and cohomological Donaldson-Thomas invari-
ants [108, Prop. 14, Sect. 7], it suffices to to prove that the former depend
on L1/2 only, as discussed in detail in Section 7.5. However, it is worth
noting absence of exotics would follow in the presence of a suitable torus
action provided one can prove an Atiyah-Bott fixed point theorem in the
cohomological formalism of [105, 108].

Recall that on a smooth projective varietyM equipped with an algebraic
torus action C× ×M→M, the Atiyah-Bott theorem yields a direct sum
decomposition

(8.1) Hp,q(M) �
⊕
Ξ

Hp−nΞ,q−nΞ(Ξ)

of Dolbeault cohomology groups. Here Ξ ⊂M are the connected components
of the C×-fixed locus, which are smooth compact subvarieties ofM, and the
index nΞ is defined as follows. The normal bundle NΞ/M has a natural C×-
equivariant structure. Since C× leaves Ξ pointwise fixed the normal bundle
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decomposes as a direct sum over irreducible representations of C×

NΞ/M �
⊕
k �=0

Nk
Ξ/M

where t ∈ C× acts on each direct summand Nk
Ξ/M by scaling by tk. By

definition, the index nΞ is the rank of

N−
Ξ/M =

⊕
k<0

Nk
Ξ/M.

In particular if the fixed loci are isolated points, all Hodge numbers hp,q(M)
vanish unless p = q.

A similar result for the cohomology groups defined in (8.1) would reduce
absence of exotics to the existence of a torus action with isolated fixed
points. More precisely, one would need a torus action C× ×Mγ →Mγ on the
affine space of representations of type γ, which leaves the superpotentialWγ

invariant and commutes with the gauge group action. If a result analogous
to (8.1) holds, absence of exotics follows immediately if the C×-fixed locus in
the moduli space is a finite set of isolated points. According to Appendix E,
this is the case for moduli spaces of cyclic framed representations of the
SU(N) quiver.

Appendix A. Exceptional collections and quivers for XN

The main goal of this section is to show that (2.8) is a full strong excep-
tional collection of line bundles on XN , and the objects (2.13) are the dual
fractional branes.

As a first step, it will be helpful to review the analogous constructions
for canonical resolutions of two dimensional quotient AN singularities. These
are noncompact toric surfaces YN determined by the fan in Fig. 6.
The toric data for YN is encoded in the following charge matrix

(A.1)

x0 x1 x2 x3 . . . xN−1 xN
C×(1) 1 −2 1 0 . . . 0 0

C×(2) 0 1 −2 1 . . . 0 0

...
C×(N−1) 0 0 0 0 . . . −2 1
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Figure A1: The toric fan for the resolution of the C2/Z3 singularity. For
arbitrary N ≥ 1 there are N − 1 inner rays determined by the N − 1 equidis-
tant inner points on the horizontal line.

The rays of the fan correspond to N curves curves C0, . . . , CN on YN defined
by the equations xi = 0, 0 ≤ i ≤ N respectively. The curves C1, . . . , CN−1
corresponding to the inner rays are the exceptional compact cycles of the
resolution, and have intersection matrix

Ci · Cj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if |i− j| ≥ 2

1, if |i− j| = 1

−2, if i = j.

The curves C0, CN corresponding to the outer rays are isomorphic to the
complex line.

The results of [97] imply that the following line bundles

Li = OYN
(Ei), 1 ≤ i ≤ N

form a full strong exceptional collection on YN , where

Ei =

N−i∑
j=0

jCi+j , 1 ≤ i ≤ N.

Note that the Ei are effective divisors determined by

xi+1x
2
i+2 · · ·xN−iN = 0.

The dual fractional branes are the objects

FN = OC1+···+CN
, Fi = OCi

(−1)[1], i = 1, . . . , N − 1.
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Straightforward computations confirm that

RHomYN
(Li, Fj) = δi,jC.

Moreover, according to [14, 24, 124], the endomorphism algebra EndYN
(L,L),

with L = ⊕N
i=1Li, is isomorphic to the path algebra of the affine AN−1-

quiver,

L1

f2,1
��

gN,1

��
L2

f3,2
��

g1,2

�� L3

g2,3

�� · · · LN−1

fN,N−1

��
LN

gN−1,N

��

f1,N

��

where

fi,i−1 =
i−1∏
j=0

xj , gi−1,i =
N∏
j=i

x, 2 ≤ i ≤ N, f1,N = x0, gN,1 =

N∏
j=1

xj .

For simplicity, set f1,0 = f1,N and g0,1 = gN,1. Then note that the quadratic
relations

fi,i−1gi−1,i − gi,i+1fi+1,i = 0

are obviously satisfied for all i = 1, . . . , N .
The toric threefolds XN are smooth toric fibrations over P1 with fibers

isomorphic to YN . Exceptional collections for compact toric fibrations over
projective spaces have been constructed in [45]. Proceeding by analogy with
[45], one obtains the collection (2.8). However since the fibers YN are non-
compact one has to check directly that (2.8) is a full strong exceptional
collection. The first property, namely that the line bundles (2.8) generate
Db(XN ) is entirely analogous to [45]. The vanishing results

ExtmXN
(Li, Lk(aH)) = Hm(XN , L−1i ⊗XN

Lk(aH)) = 0,

for any i, k = 0, . . . , N − 1 and any a = 0,±1, require more work.



Geometric engineering of (framed) BPS states 1197

Recall first that for any line bundle L on XN there is a Leray spectral
sequence

Hp(P1, Rqπ∗L)⇒ Hp+q(XN , L)

where the direct images Rqπ∗L are quasi-coherent sheaves on P1. More-
over, since OXN

(H) = π∗OP1(1), we have Rqπ∗L(aH) � Rqπ∗L⊗P1 OP1(a)
for any a ∈ Z.

By construction, the line bundles {Li}0≤i≤N−1 restrict to an exceptional
collection on each fiber. Furthermore, recall that for any morphism f : X→
Y of complex algebraic varieties where Y = Spec(R) is affine, and for any
quasi-coherent OX-module F , the direct image R

qf∗(F ) is isomorphic to the
quasi-coherent sheaf determined by the R-module Hq(F ). Then, using the
standard affine open cover of P1, and the fact that the restriction of the
collection {Li}0≤i≤N−1 is an exceptional collection on each fiber, it follows
that

Rqπ∗(L−1i ⊗ Lk) = 0

for all 0 ≤ i, k ≤ N − 1 and all q > 0. This yields an isomorphism

Hm(XN , L−1i ⊗ Lk(aH)) � Hm(P1, R0π∗(L−1i ⊗ Lk)⊗P1 OP1(a)).

In order to prove vanishing for all m ≥ 1, let U1, U2 be the affine open
subsets y1 �= 0, respectively y2 �= 0 in P1. Then note that π−1(Us), s = 1, 2,
is a toric variety determined by the data

(A.2)

us x1 x2 x3 . . . xN−1 xN zs
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0

...
0 0 0 0 . . . −2 1 0

where

us = x0y
2
s , s = 1, 2, z1 = y−11 y2, z2 = y1y

−1
2 .

The transition functions on the overlap π−1(U1 ∩ U2) are

(A.3) z2 = z−11 , u2 = z21u1,

(x1, . . . , xN ) being obviously unchanged. The varieties π
−1(Us), s = 1, 2 are

isomorphic to YN × C.
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Next let L = OXN
(
∑N−1

i=1 miDi + aH) onXN for some arbitrarymi ∈ Z,
1 ≤ i ≤ N − 1, and a ∈ {−1, 0, 1}. The spaces of local sections Γ(Us, Rπ∗L),
s = 1, 2, are spanned by monomials of the form

uks
s zlss

N∏
i=1

x
ns,i

i , ks, ls, ns,i ∈ Z≥0, s = 1, 2, 1 ≤ i ≤ N

which have the same scaling behavior as the monomial
∏N−1

i=1

∏N−i
j=1 xjmi

i+j

under the torus action (A.2). Using the transition functions (A.3),

uk2

2 zl22

N∏
i=1

x
n2,i

i

∣∣∣∣
U1∩U2

= uk2

1 z2k2−l2−a
1

N∏
i=1

x
n2,i

i

∣∣∣∣
U1∩U2

.

Since l2 ≥ 0, the exponent 2k2 − l2 − a takes all values in Z ∩ (−∞, 2k2 − a]
for fixed k2. Since k2 ≥ 0 as well, and a ∈ {−1, 0, 1}, this implies that the
Čech differential has trivial cokernel, henceHm(P1, R0π∗L) = 0,m ≥ 1. This
proves the required vanishing results.

Note also that that the endomorphism algebra End(T ), where T is the
direct sum of all line bundles Li,Mi, 1 ≤ i ≤ N , is generated by the toric
monomials

(A.4)
...

γN,1

��
γN,2

��

...

L1
φ1,1

��
φ1,2

��

ψN

M1

γ1,1

��

γ2,1

��

λN

L2
φ2,1

��
φ2,2

��

ψ1

��

M2

λ1

��

...
...
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Li
φi,1

��
φi,2

�� Mi

γi,1

��

γi,2

��
Li+1

φi+1,1
��

φi+1,2
��

ψi

��

Mi+1

λi

��

...
...

LN−1 φN−1,1
��

φN−1,2
�� MN−1

γN−1,1

��

γN−1,2

��LN
φN,1

��
φN,2

��

ψN−1

��

MN

λN−1

��

γN,2
γN,1

...

ψN

��

...

λN

��

where

φi,1 = y1, φi,2 = y2, 1 ≤ i ≤ N

ψi =

N∏
j=i+1

xj , λi =

N∏
j=i+1

xj , 1 ≤ i ≤ N − 1

ψN =

N∏
j=1

xj , λN =

N∏
j=1

xj

γi,1 = y1

i∏
j=0

xj , γi,2 = −y2
i∏

j=0

xj , 1 ≤ i ≤ N − 1.

γN,1 = x0y1, γN,2 = −x0y2.

The above generators satisfy the quadratic relations
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(A.5)

φi,1ψi = λiφi+1,1, φi,2ψi = λiφi+1,2, 1 ≤ i ≤ N − 1

φi+1,1γi,2 + φi+1,2γi,1 = 0, 1 ≤ i ≤ N − 1

φ1,1γN,2 + φ1,2γN,1 = 0,

ψiγi,1 = γi−1,1λi−1, ψiγi,2 = γi−1,2λi−1, 1 ≤ i ≤ N,

where by convention γ0,1 = γN,1, γ0,2 = γN,2 and λ0 = ΛN .
The next task is to check that the objects (2.13) indeed satisfy the

orthogonality conditions (2.12). This claim follows by straightforward al-
though somewhat tedious computations. A simple computation using Equa-
tions (2.5) and the intersection products

(Si · Sj)XN
=

⎧⎪⎪⎨⎪⎪⎩
Σi, for j = i+ 1
Σj , for i = j + 1
−Σi−1 − Σi − 2Ci, for i = j
0, otherwise

of divisors on XN yields

(A.6) L−1i

∣∣
Sj
�

⎧⎨⎩
OSj

, for i ≥ j + 1,
OSj

(−Σj), for i = j,
OSj

(−2Cj), for i ≤ j − 1,

where i = 1, . . . , N − 1.
Now let Fm = P(OP1 ⊕OP1(m)) be a Hirzebruch surface of any degree

m ∈ Z, Σ a section such that Σ2 = m, and C the fiber class. Then note the
following isomorphisms

(A.7) Hk(Fm,OFm
(aC)) � Hk(P1,OP1(a)),

(A.8) Hk(Fm,OFm
(−Σ+ aC)) = 0,

and

(A.9) Hk(Fm,OFm
(−2Σ + aC)) � Hk−1(P1,OP1(a−m))

for all k, a ∈ Z. Equations (A.7),(A.8) follow easily from the Leray spectral
sequence for the canonical projection π : Fm → P1. Equation (A.9) follows
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from the long exact sequence associated to the exact sequence

0→ OFm
(−2Σ + aC)→ OFm

(−Σ+ aC)→ OΣ(−Σ+ aC)→ 0

using Equation (A.8).
Equations (A.6) - (A.9) imply the orthogonality conditions (2.12) for

i = 1, . . . , N , j = 1, . . . , N − 1. For example

RHomk(Li, Pi) � Hk+1(XN , L−1i ⊗ Fi)

� Hk+1(Si,OSi
(−Σi−1 − Σi))

� Hk+1(Si,OSi
(−2Σi−1 − 2iCi)) since Σi = Σi−1 + 2iCi

� Hk(P1,O1
P) � Cδk,0

where the next to last isomorphism follows from Equation (A.9) with a =
−2i and m = (Σi−1)2Si

= −2i = a.
The remaining cases, i = 1, . . . , N and j = N , require an inductive argu-

ment. For concreteness let i = 1, the other cases being completely analogous.
The inductive step is based on the observation that for any two effective
divisors D,D′ in XN there is an exact sequence of OXN

-modules

0→ OD′(−D)→ OD+D′ → OD → 0.

Applying this to the decomposition S = S1 +
∑N−1

j=2 Sj , and using relations
(A.6), one obtains an exact sequence

0→ O∑N−1
j=2 Sj

(−S1 − 2H)→ OS(−D1)→ OS1
(−Σ1)→ 0

The vanishing results (A.7) imply that all cohomology groups of OS1
(−Σ1)

are trivial. Therefore the associated long exact sequence breaks into isomor-
phisms

Hk(XN ,O∑N−1
j=2 Sj

(−S1 − 2H)) � Hk(XN ,OS(−D1))

for all k ≥ 0. Repeating the above argument, there is an exact sequence

0→ O∑N−1
j=3 Sj

(−S2 − 2H)→ O∑N−1
j=2 Sj

(−S1 − 2H)→ OS2
(−Σ1 − 2H)→ 0

since OXN
(S1)|Sj

� OSj
for all j ≥ 3. Again the vanishing results (A.7) and

the associated long exact sequence yield isomorphisms

Hk(XN ,O∑N−1
j=3 Sj

(−S2 − 2H)) � Hk(XN ,O∑N−1
j=2 Sj

(−S1 − 2H))
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for all k ≥ 0. Proceeding inductively, the required vanishing results for coho-
mology groups will be reduced to (A.7) in finitely many steps.

Appendix B. Motives for pedestrians

The basic construction of motives of complex algebraic varieties will be
briefly reviewed here for completeness, following, for example [25, 94]. The
ring of motives K0(Var/C) is a quotient of the Q-vector space generated by
all isomorphism classes of algebraic varieties X over C by the equivalence
relation

[X] ∼ [Y] + [X \ Y]

for any closed subvariety Y ⊂ X. The ring structure is determined by the
direct product X× Y which is compatible with equivalence relation ∼, hence
descends to Q-linear associative product [X][Y] = [X× Y]. The equivalence
class of a variety X in this ring will be called the Chow motive of X. The
Chow motive of the complex line is denoted by L and called the Tate motive
for historical reasons.

Note that one can construct in complete analogy a ring of motives of
complex schemes of finite type. An important result for Donaldson-Thomas
invariants is that the ring of motives of schemes of finite type is in fact
isomorphic to the ring of motives of varieties,

K0(Sch/C) � K0(Var/C).

The Chow motive of a scheme X encodes more refined information than
the topology of the topological space X, but is obviously coarser than the
algebraic scheme structure. In order to understand this in more detail, note
that for X ⊂ Pk a projective or quasi-projective scheme, the Chow motive [X]
is equal to the Chow motive of the reduced scheme Xred, obtained by taking
a quotient of the structure sheaf OX by its nilpotent ideal. For example the
Chow motive of any multiple line xn = 0 in C2 is L for any n ≥ 1.

For concrete computations it is worth noting that if X→ Y is a smooth
morphism of schemes such that all fibers are isomorphic to a scheme Z,
then [X] = [Z][Y]. This result yields for example the following identity [25,
Lemma 2.6]

(B.1) [GL(n,C)] =

n∏
k=1

(Lk − 1),



Geometric engineering of (framed) BPS states 1203

where GL(n,C) is the underlying algebraic variety of the general linear
group. This follows from the fact that there is a smooth map fv : GL(n,C)→
Cn \ {0}, sending g ∈ GL(n,C) to g(v), where v ∈ Cn \ {0} is a fixed nonzero
vector. This map is surjective, and the fiber over any point v′ ∈ Cn \ {0}
is the stabilizer of v′ in GL(n,C), which is isomorphic to GL(n− 1,C).
Therefore the general result stated above yields

[GL(n,C)] = [GL(n− 1,C)][Cn \ {0}] = (Ln − 1)[GL(n− 1,C)].

This implies (B.1) by recursion.
Any geometric invariant of schemes or stacks which depends only on

their Chow motive is called a motivic invariant. A good example example is
the Hodge polynomial with compact support. For a smooth compact variety
X, this is just the usual Hodge polynomial with compact support,

P(x,y)(X) =
∑
p,q

xpyqhp,qc (X)

where hp,qc (X) are the Hodge numbers of X for compactly supported coho-
mology. For singular varieties a suitable generalization must be defined using
Deligne’s theory of mixed Hodge structures. See for example [94, Ex. 4.3] for
a brief summary in a similar context and for further references. According
to loc. cit. the Hodge polynomial with compact support determines a ring
morphism

(B.2) P : K0(Var/C) −→ Q(x, y).

The construction of [106] yields motivic Donaldson-Thomas invariants
for moduli spaces of Bridgeland stable objects in triangulated CY3-categories
equipped with a cyclic A∞-structure and a choice of “orientation data”.
For the purpose of the present paper the discussion can be confined to
derived categories of quivers with potential (Q,W ). Suppose τ is a Bridge-
land stability condition on Db(Q,W ) and γ is a fixed dimension vector such
that the (coarse) moduli space of stable objects Ms

τ (γ) is a projective or
quasi-projective scheme. Then the construction of [106] assigns to Ms

τ (γ)
an element DTmot

τ (γ) in an extension K0(Var/C)[L
1/2,L−1/2] of the ring of

motives. It is crucial to note that, DTmot
τ (γ) is not identical to the Chow

motive [Ms
τ (γ)] of the moduli space. By construction, DTmot

τ (γ) depends in
an essential manner on the homotopy class of the cyclic A∞ structure on the
derived category, while [Ms

τ (γ)] does not. The motivic Donaldson-Thomas
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invariant DTmot
τ (γ) is also called the virtual motive of the moduli space in

order to avoid any confusion with the Chow motive.
The motivic Donaldson-Thomas invariants for moduli spaces of stable

(Q,W )-representations admit a very explicit presentation in terms of Chow
motives due to [18]. The basic observation is that the moduli spaceMs

τ (γ)
of τ -stable representations is in this case isomorphic to the critical locus of a
polynomial function Wγ on a smooth quasi-projective variety. The ambient
variety is the moduli space N s

τ (γ) of τ -stable representations of the quiver
Q with no relations and the polynomial function Wγ : N s

τ (γ)→ C is natu-
rally determined by W . Suppose W is chosen such that the critical locus
of Wγ is contained in the fiber at zero, W−1

γ (0). In addition, one requires
a torus action on N s

τ (γ) preserving Wγ and satisfying some mild technical
conditions. Then, the results of [18], imply the following formula

(B.3) DTmot
τ (γ) = −Lw(γ)([W−1

γ (λ)]− [W−1
γ (0)])

for any λ �= 0, where the terms on the right hand side are Chow motives.
The exponent w(γ) is a half-integral weight depending on γ whose exact
expression will not be needed here.

Once the virtual motivic invariants are constructed, one can easily obtain
various polynomial Donaldson-Thomas invariants applying the Hodge poly-
nomial map (B.2). More precisely, (B.2) can be extended to a ring morphism

P : K0(Var/C)[L
1/2,L−1]→ Q(x1/2, y1/2)

sending L1/2 to (xy)1/2. Then the virtual Hodge numbers hr,s(γ, τ) ∈ Z,
r, s ∈ 1

2Z are defined by

(B.4) P(DTmot
τ (γ)) =

∑
r,s∈ 1

2
Z

hr,s(γ, τ)xrys.

Equation (B.3) implies that r − s ∈ Z for all nonzero hr,s(γ, τ). If the moduli
space Ms

τ (γ) is smooth and projective, of dimension m, the virtual Hodge
numbers are related to the usual ones by

hr,s(γ, τ) = hr+m/2,s+m/2(Ms
τ (γ)).

However, in general the numbers hr,s(γ, τ) will be different from the ones
obtained by applying the map (B.2) to the Chow motive [Ms

τ (γ)].
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Appendix C. Kronecker modules

Kronecker modules are finite dimensional representations of a quiver with
two nodes, two arrows and no relations as below

• ���� •

They form an abelian category K of homological dimension one. The exten-
sion groups ExtjK(κ1, κ2), j = 0, 1, of any two Kronecker modules κi = (Wi,
Vi, fi, gi :Wi → Vi), i = 1, 2, are the cohomology groups of the two term
complex

(C.1) Hom(V1, V2)⊕Hom(W1,W2)
δ−→Hom(W1, V2)

⊕2

where the first term is in degree 0, and

δ(α, β) =
(
f2β − αf1, g2β − αg1

)
.

In particular note that the dual vector space Ext1K(κ1, κ2)∨ is the kernel of
the map

(C.2) Hom(V2,W1)
⊕2 δ∨−→Hom(V2, V1)⊕Hom(W2,W1),

δ∨(γ, η) = (−f1γ − g1η, γf2 + ηg2).

C.1. Harder-Narasimhan filtrations

Now suppose (ψ, φ) are stability parameters for Kronecker modules assigned
to the nodes as follows

ψ • ���� • φ

For any nontrivial Kronecker module κ = (W,V, f, g :W → V ) let

μ(ψ,φ)(κ) =
φ dim(V ) + ψ dim(W )

dim(V ) + dim(W )
.

As usual, κ is called (ψ, φ)-(semi)stable if

μ(ψ,φ)(κ
′) (≤) μ(ψ,φ)(κ)

for any nontrivial proper submodule κ′ ⊂ κ. If ψ < φ the only (ψ, φ)-stable
Kronecker modules are the two simple ones determined by the two nodes.
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If ψ > φ, the (ψ, φ)-stable Kronecker modules form three groups up to iso-
morphism, as follows

(a) Qn, n ≥ 0 are indecomposable Kronecker modules of dimension vector
(n, n+ 1) of the form

H0(OP1(n− 1)) z1 ��
z2 �� H0(OP1(n)) ,

the linear maps being multiplication by the homogeneous coordinates
[z1, z2].

(b) Rp are indecomposable Kronecker modules of the form

C z1 ��
z2 �� C ,

where p = [z1, z2] is a point on P1.

(c) Jn, n ≥ 0 are the indecomposable Kronecker modules of dimension
vector (n+ 1, n) obtained by dualizing Qn.

Moreover, a straightforward computation shows that

(C.3) μ(ψ,φ)(Qn) < μ(ψ,φ)(Qn′) < μ(ψ,φ)(Rp) < μ(ψ,φ)(Jm) < μ(ψ,φ)(Jm′)

for all n < n′, m > m′, as long as ψ > φ.
The above list of stable Kronecker modules is closely related to the clas-

sification of indecomposable modules in [13, Ch. VIII, Thm. 7.5]. According
to loc. cit. there are three groups of indecomposable modules, {Qn}n≥0,
{Jn}n≥0 and a third group {Rp;j} labelled by a point p ∈ P1 and a posi-
tive integer j ∈ Z≥1, such that Rp,1 = Rp. The explicit form of the modules
Rp,j with j > 1 will not be needed in the following. Moreover, [13, Ch. VIII,
Thm. 7.5] also computes all nontrivial extension groups of indecomposable
Kronecker modules, obtaining

(C.4)
Ext0K(Qn, Qn′) � Cn′−n+1, n′ ≥ n,

Ext1K(Qn, Qn′) � Cn−n′−1, n ≥ n′ + 1,

(C.5)
Ext0K(Jn, Jn′) � Cn−n′+1, n ≥ n′,
Ext1K(Jn, Jn′) � Cn′−n−1, n′ ≥ n+ 1,

(C.6)
Ext0K(Rp, Rq) � δp,qC,

Ext1K(Rp, Rq) � δp,qC
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(C.7)
Ext0K(Qn, Rp) � C, Ext0K(Rp, Jn) � C,

Ext1K(Rp, Qn) � C, Ext1K(Jn, Rp) � C.

All extension groups not listed above are trivial. Moreover, note that the
space of morphisms Ext0K(Qn, Qn′), n

′ ≥ n, consists of maps of the form

H0(OP1(n− 1)) z1 ��
z2 ��

f

��

H0(OP1(n))

f

��
H0(OP1(n′ − 1)) z1 ��

z2 �� H0(OP1(n′))

where f denotes multiplication by a degree n′ − n homogeneous polynomial
in z1, z2. In particular any such map is either injective or zero. Similarly the
dual vector space Ext1K(Qn, Q

′
n)
∨ consists of maps of the form

H0(OP1(n′ − 1)) z1 ��
z2 �� H0(OP1(n′))

η

��

γ

��
H0(OP1(n− 1)) z1 ��

z2 �� H0(OP1(n))

where (γ, η) are degree n− n′ − 1 homogeneous polynomials of z1, z2 satis-
fying

z1γ + z2η = 0.

Again, (γ, η) are either both injective or zero.
Given an arbitrary Kronecker module κ, let

(C.8) 0 = HN0(κ) ⊂ HN1(κ) ⊂ · · · ⊂ HNk(κ) = κ, k ≥ 1,

be its Harder-Narasimhan filtration with respect to (ψ, φ)-stability, where
ψ > φ. Then the slope inequalities (C.3) and Equations (C.4)-(C.7) imply
that there exists 1 ≤ k1 ≤ k and integers

0 ≤ n1 < n2 < · · · < nk1−1, nk1+1 > · · · > nk ≥ 0,

s1, . . . , sk1−1, sk1+1, . . . , sk > 0
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such that

(C.9) HNl(κ)/HNl−1(κ) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
J⊕slnl

for 1 ≤ l ≤ k1 − 1

R for l = k1

Q⊕slnl
for k1 + 1 ≤ l ≤ k.

Here R is a (ψ, φ)-semistable module with slope (ψ + φ)/2 which admits a
Jordan-Hölder filtration such that all successive quotients are isomorphic to
some Rp. In particular (C.8) admits a subfiltration

(C.10) 0 = κ0 ⊂ κ1 ⊂ κ2 ⊂ κ3 = κ

such that κ1/κ0 = J(κ) is a successive extension of stable modules of type
(c), κ2/κ1 = R(κ) a successive extension of stable modules of type (b), and
κ3/κ2 = Q(κ) a successive extension of stable modules of type (a). Moreover,
the slope inequalities (C.3) and Equations (C.4)-(C.7) imply that

(C.11) J(κ) � ⊕k1−1
l=1 J⊕slnl

, Q(κ) � ⊕k
l=k1+1Q

⊕sl
nl

.

C.2. Application to representations of the SU(3) quiver

This section consists of some results on Kronecker modules used in Sec-
tions 5.1, 5.2, 5.3. Let ρ be a representation of the quiver with potential
(5.1). As observed in Section 7, the horizontal rows of ρ determine two Kro-
necker modules ρ1, ρ2. Each of them has a filtration

(C.12) 0 = ρi,0 ⊂ ρi,1 ⊂ ρi,2 ⊂ ρi,3 = ρi, i = 1, 2,

of the form (C.10). Let {Vi,j}, {Wi,j}, i = 1, 2, j = 0, . . . , 3 be the induced fil-
trations on the underlying vector spaces. Then Equations (C.4)-(C.7) imply
via straightforward exact sequences

a1(V1,j) ⊆ V2,j , b1(W1,j) ⊆W2,j , r1(V2,j) ⊆W1,j , s1(V2,j) ⊆W1,j

for j = 1, . . . , 3. This shows implies that ρ has a filtration of the form

0 = K0(ρ) ⊂ K1(ρ) ⊂ K2(ρ) ⊂ K3(ρ) = ρ

in the abelian category of (Q,W )-modules such that the two Kronecker mod-
ules determined by the horizontal maps of each quotient Kj+1(ρ)/Kj(ρ),
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0 ≤ j ≤ 2 are isomorphic to ρ1,j+1/ρ1,j , ρ2,j+1/ρ2,j respectively. In particu-
lar, there is a quotient ρ � ρ′′ with ρ′′ = K3(ρ)/K2(ρ), such that the under-
lying Kronecker modules of ρ′′ are modules (Q(ρ1), Q(ρ2)) and the linear
maps (a′′1, b′′1, r′′1 , s′′1) are induced by (a1, b1, r1, s1).

Now suppose ρ is a (Q,W )-module of dimension vector (di, ei)1≤i≤2 such
that

di − ei = mi,

withmi ≥ 0, i = 1, 2. The next goal is to show that there exist King stability
parameters (θi, ηi)1≤i≤2,

2∑
i=1

(diθi + eiηi) = 0,

such that the quotient ρ � ρ′′ destabilizes ρ unless ρ = ρ′′. Let (d′′i , e
′′
i ),

i = 1, 2 denote the dimension vector of ρ′′ and suppose the projection ρ � ρ′′

is not an isomorphism. This implies

2∑
i=1

((di − d′′i ) + (ei − e′′i )) > 0.

Note that by construction

(C.13) d′′i − e′′i = m′′i ≥ di − ei = mi, i = 1, 2,

and at least one of these inequalities is strict under the current assumptions.
Suppose

(C.14) ηi > 0, θi < 0, |θi| < |ηi|, i = 1, 2.

Then, using inequality (C.13), it follows that

e′′i |ηi| − d′′i |θi| ≤ (ei − di)|ηi|+ d′′i (|ηi| − |θi|).

The right hand side of this inequality is

(ei − di)|ηi|+ d′′i (|ηi| − |θi|) = ei|ηi| − di|θi|+ (di − d′′i )(|θi| − |ηi|).

Therefore inequalities (C.14) imply

e′′i ηi + d′′i θi ≤ eiηi + diθi
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for i = 1, 2. Since at least one of inequalities (C.13) is strict, this implies

2∑
i=1

(e′′i ηi + d′′i θi) <
2∑

i=1

(eiηi + diθi) = 0.

Therefore indeed the quotient ρ � ρ′′ destabilizes ρ under the current assump-
tions. In conclusion, if inequalities (C.14) are satisfied, for any (θ, η)-semistable
representation ρ, the filtrations (C.12) collapse to

0 ⊂ ρi,3 = ρi.

Therefore the Harder-Narasimhan filtration of each Kronecker module ρi,
i = 1, 2 with respect to (ψ, φ) stability reduces to

(C.15) 0 = ρ0i ⊂ ρ1i ⊂ · · · ρhi

i = ρi, hi ≥ 1, i = 1, 2

such that the successive quotients are

ρji/ρ
j−1
i � Q

⊕ri,j
ki,j

for some ki,j ∈ Z≥0, ri,j ∈ Z≥1, i = 1, 2, j = 1, . . . , hi, satisfying

ki,1 > ki,2 > · · · > ki,hi
.

Moreover Equations (C.4) imply that the filtrations (C.15) must be split,
that is

(C.16) ρi � ⊕hi

i=1Q
⊕ri,j
ki,j

, i = 1, 2

This yields strong constraints on the structure of representations ρ with
underlying Kronecker modules ρ1, ρ2 as above.

Appendix D. Background material on extensions

The purpose of this section is to summarize some background material on
extension groups in abelian categories of quiver modules following for exam-
ple [72, Ch. 2.3, Ch. 2.4]. Here Q will denote a quiver with finitely many
nodes and arrows and R an ideal of relations in the path algebra. The ver-
tices of Q will be denoted by ν, the arrows by a and the relations by r. The
latter are linear combinations of paths with integral coefficients such that
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all these paths have the same starting and ending points. Therefore one can
naturally define the tail t(r) and head h(r).

A (Q,R)-module is a module for the path algebra of the quiver Q with
relations R. These modules form an abelian category. Extension groups in
the abelian category of (Q,R)-modules will be denoted by Extk(Q,R)(ρ1, ρ2),
k ∈ Z. They are defined in terms of projective resolutions as follows. A(Q, R)-
module Π is projective if for any surjective morphism ρ � ρ′′ and any mor-
phism φ′′ : Π→ ρ′′ there exists a morphism φ : Π→ ρ such that the following
diagram commutes

Π
φ′′

��
φ

��
ρ �� �� ρ′′.

It is a basic fact that to any node ν of the quiver diagram Q one can assign
a projective module Πν , which is the module consisting of all paths starting
at ν. Moreover, any finite dimensional representation ρ has a projective
resolution

(D.1) · · ·Π−1 d−1

−→Π0 → ρ→ 0,

where each term Πk is a direct sum of modules of the form Πν and the
differentials are defined in terms of natural concatenation of paths.

For illustration, suppose ρν is the simple module assigned to the node
ν. In this case

(D.2) Π0 � Πν , Π−1 �
⊕

a, t(a)=ν

Πh(a), Π−2 �
⊕

r, t(r)=ν

Πh(r)

and the differentials d−2, d−1 are defined by natural concatenation of paths.
Given a collection of paths (ph(a))t(a)=ν ∈ Π−1,

d−1((ph(a))t(a)=ν) =
∑

a, t(a)=ν

ph(a)a.

There is a similar expression for d−2 derived by linearizing the relations
in the path algebra. The higher terms Πk, k ≤ −2, are determined by the
higher syzygies of the ideal of relations, i.e. relations on relations etc. For a
systematic approach see [75, 79, 129] and references therein.
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Returning to the general case, the extension groups Extk(Q,R)(ρ, ρ
′) are

the cohomology groups of the complex of vector spaces

(D.3) 0→ Hom(Q,R)(Π
0, ρ′)◦d

−1

−→Hom(Q,R)(Π
−1, ρ′)◦d

−2

−→ · · ·

Using projective resolutions, one can prove that the extension groups
Extk(Q,R)(ρ, ρ

′), k = 0, 1 are isomorphic to the first two cohomology groups
of the complex

(D.4)

0→
⊕
ν

Hom(Vν(ρ), Vν(ρ
′)) δ0−→

⊕
a

Hom(Vt(a)(ρ), Vh(a)(ρ
′))

δ1−→
⊕
r

Hom(Vt(r)(ρ), Vh(r)(ρ
′))

where Vν(ρ) is the vector space assigned to the node ν in the representation
ρ. The differential δ0 is given by

δ0(αν) = (ρ′(a) ◦ αt(a) − αh(a) ◦ ρ(a))

where ρ(a) : Vt(a) → Vh(a) is the linear map assigned to the arrow a in the
representation ρ. There is a a similar expression for δ1 obtained by lin-
earizing the relations. As an application, will give here a proof of the first
isomorphism in (5.6), as well as Equations (7.8), (7.9).

Recall that representations of the SU(3) quiver are of the form

W2
c2 ��
d2

�� V2

r1

��

s1

��W1
c1 ��
d1

��

b1

��

V1

a1

��

with relations

(D.5)

r1a1 = 0, s1a1 = 0, b1r1 = 0, b1s1 = 0

c1r1 + d1s1 = 0, r1c2 + s1d2 = 0

a1c1 − c2b1 = 0, a1d1 − d2b1 = 0.

Consider two representations of (Q,W ) of the form

ρi : Wi
ci ��
di

�� Vi, i = 1, 2
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where only the horizontal maps (c1, d1), respectively (c2, d2) are nontrivial.
Specializing the complex (D.4) to the pair (ρ1, ρ2) yields

(D.6) 0→ Hom(V1, V2)⊕Hom(W1,W2)
δ1−→Hom(W1, V2)

⊕2.

Note that the degree 0 term in (D.4) is trivial in this case since ρ1, ρ2 are sup-
ported at disjoint sets of nodes. The differential δ1 is obtained by linearizing
the relations (D.5),

(D.7) δ1(β, α) = (c2 ◦ β − α ◦ c1, d2 ◦ β − α ◦ d1),

where α = ȧ1, β = ḃ1. The extension group Ext1(Q,W )(ρ1, ρ2) is isomorphic
to Ker(δ1).

On the other hand, regarding (ρ1, ρ2) as Kronecker modules, the com-
plex (C.1) takes the form

(D.8) 0→ Hom(V1, V2)⊕Hom(W1,W2)
δ0−→Hom(W1, V2)

⊕2 → 0

with

δ0(β, α) = (c2 ◦ β − α ◦ c1, d2 ◦ β − α ◦ d1).
Comparing (D.7) and (D.8), we deduce Ext0K(ρ1, ρ2) � Ker(δ0). It follows
that there is an isomorphism Ext1(Q,W )(ρ1, ρ2) � Ext0K(ρ1, ρ2). Similarly,
using Ext1K(ρ1, ρ2) � Coker(δ0) one can establish the second isomorphism
in (5.6).

We now prove Equation (7.9). Given an exact sequence

0→ ρ1 → ρ2 → ρ3 → 0

there are two long exact sequences,

(D.9)
· · · → Extk(Q,R)(ρ3, ρ)→ Extk(Q,R)(ρ2, ρ)

→ Extk(Q,R)(ρ1, ρ)→ Extk+1
(Q,R)(ρ3, ρ) · · · →

respectively

(D.10)
· · · → Extk(Q,R)(ρ, ρ1)→ Extk(Q,R)(ρ, ρ2)

→ Extk(Q,R)(ρ, ρ3)→ Extk+1
(Q,R)(ρ, ρ1)→ · · ·

for any (Q,R)-module ρ.
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Now consider in more detail the case where (Q,R) is the framed (trun-
cated) quiver with potential (Q̃,W ) obtained in Section 7.1. Let λ0 the
simple module supported at the framing node. Then the following hold.

(P.1) Suppose ρ is a representation of (Q̃,W ) with dimension vector 0 at
the framing node. Then a projective resolution of ρ as a (Q̃,W )-module is
identical with the projective resolution of ρ as an unframed (Q,W )-module.
This follows from the fact that Q̃ has only one extra arrow fj compared to
Q, which joins the framing node to the fixed node j. So any path starting
at any node of Q will never contain fj . In particular this implies that

(D.11) Extk
(Q̃,W )

(ρ1, ρ2) � Extk(Q,W )(ρ1, ρ2)

for any (Q,W )-modules ρ1, ρ2 and all k ∈ Z, and also

(D.12) Extk
(Q̃,W )

(ρ, λ0) = 0

for any (Q,W )-module ρ and all k ∈ Z.
(P.2) The simple module λ0 has a two term projective resolution

0→ Πj → Π0 → λ0 → 0

since there are no relations containing fj . Here Π0 is the projective module
starting at the framing node. Therefore, for any (Q,W )-module ρ,

(D.13) Extk
(Q̃,W )

(λ0, ρ) � Vjδk,1

where Vj is the vector space of ρ at the node j which receives the framing
arrow fj . As stated in the main text, the long exact sequences (D.9), (D.10)
and Equations (D.11), (D.12), (D.13), imply Equation (7.8).

Next we prove Equation (7.9). Given two finite dimensional (Q,W )-
modules ρ1, ρ2 one can check using projective resolutions that the pairing

χ(ρ1, ρ2) =

1∑
k=0

(−1)k
(
dimExtk(Q,W )(ρ1, ρ2)− dimExtk(Q,W )(ρ2, ρ1)

)
is given by Equation (7.9). Since this is a fairly long computation, details
will be omitted. For the skeptical reader, note that there is a different
derivation of Equation (7.9) based on the equivalence of derived categories
Db(Q,W) � Db(XN ) explained in detail in Section 2.1. This equivalence
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assigns compactly supported objects E1, E2 in Db(XN ) to ρ1, ρ2, with K-
theory classes

[El] =

N−1∑
i=1

(di(ρl)[Pi] + ei(ρl)[Qi]), l = 1, 2,

where Pi, Qi are the fractional branes defined in Section 2.1. Then, using
Serre duality, the above pairing becomes

χ(ρ1, ρ2) =

3∑
k=0

(−1)kdimExtkXN
(E1, E2)

=

∫
XN

(ch1(E2)ch2(E1)− ch1(E1)ch2(E2)).

The second identity follows from the Riemann-Roch theorem since E1, E2

must have at most two dimensional support. Then a straightforward inter-
section theory computation confirms (7.9).

Appendix E. Classifications of fixed points

In this section we classify torus fixed points in moduli spaces of cyclic mod-
ules of the N = 3 gauge theory framed quiver. The unframed quiver diagram
is in (5.1), with the potential W given by

W = r1(a1c1 − c2b1) + s1(a1d1 − d2b1) .

This gives the following 8 relations:

r1 : a1c1 − c2b1 = 0, s1 : a1d1 − d2b1 = 0,
a1 : c1r1 + d1s1 = 0, b1 : r1c2 + s1d2 = 0,

c1 : r1a1 = 0, c2 : b1r1 = 0, d1 : s1a1 = 0, d2 : b1s1 = 0.

Path algebra. First we consider the case in which the framing map takes
values in V2 and construct the path algebra. Denote by e the framing vector
and by Hn the set of vectors obtained by acting with n arrows on e. We
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have the decomposition of the path algebra CQ/dW = ⊕Hn, where

(E.1)

H0 = {e},
H1 = {r1e, s1e},
H2 = {d1r1e, c1r1e = d1s1e, c1s1e},
H3 = {a1d1r1e = d2b1r1e = 0, a1c1r1e = c2b1r1e = 0,

a1c1s1e = c2b1s1e = 0},

The path algebra is finite dimensional and therefore there are only
finitely many fixed modules of the path algebra.

Now suppose the framing vector e is in V1. The decomposition of the
path algebra is given by

(E.2)

H0 = {e} ,

H1 = {a1e} ,

H2 = {0} (∵ r1a1 = s1a1 = 0).

C× torus action. Let TF = (C×)8 be the flavor torus acting on the i-th
arrow by a scaling factor λi, where i is in the set of all arrows Sa. Therefore
the TF action acts on the whole path algebra and has a subtorus TF,dW ⊂ TF

which leaves invariant the relations dW = 0. TF,dW is isomorphic to (C×)4

and is given by

(E.3)
TF,dW = {λi ∈ C×, i ∈ Sa | λa1

λc1 = λc2λb1 , λa1
λd1

= λd2
λb1 ,

λc1λr1 = λd1
λs1 , λr1λc2 = λs1λd2

} � (C×)4.

However the subtorus TF,dW might contain part induced by gauge group
action, which we have to mod out.

Let (μ1, μ2, μ̃1, μ̃2) ∈ (C×)4 be the diagonal torus in the gauge group
GL(V1)×GL(V2)×GL(W1)×GL(W2). This (C×)4 action will have an
induced torus action Tsub on the arrows, which can be seen to be isomorphic
to (C×)3. We can always use this action to make λa1

= 1, λb1 = 1, λr1 = 1.
Note that this is not a unique choice. So we define our torus action TQ to
be

(E.4)
TQ ≡ TF,dW /Tsub = {(λc1 , λd1

, λc2 , λd2
, λs1) ∈ (C×)5 |

λc1 = λc2 , λd1
= λd2

, λc1 = λd1
λs1} � (C×)2.
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Classifications of TQ-fixed points. Recall the fact that there exists a
one-to-one correspondence between the framed TQ-fixed CQ/dW -module
and the TQ-fixed annihilator I of the framed vector e. The annihilator I is
a left ideal in the path algebra CQ/dW .

In the current example the path algebra is finite dimensional, so we could
perform the analysis explicitly. First we list the weights of the path algebra
elements in terms of (λd1

, λs1) = (λ1, λ2). In the framed V2 case we have

(E.5)

{w(e) = 1} ,

{w(r1e) = 1, w(s1e) = λ2} ,

{w(d1r1e) = λ1, w(c1r1e) = λ1λ2, w(c1s1e) = λ1λ
2
2} .

The TQ-fixed left ideal must be generated by linear combinations of the
elements of the same weight. For example an element r ∈ I of weight λ1λ2

should be of the form r = ξ (c1r1e). Therefore from the list we conclude the
TQ-fixed annihilator I of framing vector e is generated by monomials of the
path algebra and the class [I] is an isolated point in the moduli space of
cyclic representations.

Weights of the fixed points. The deformation complex of the quiver is
4-term complex,

0→ T1 δ1→ T2 δ2→ T3 δ3→ T4 → 0,

where T1 = End(V1)⊕ End(V2)⊕ End(W1)⊕ End(W2), T2 is the space of all
arrows including the framing, δ1 the linearized gauge transformation and δ2
the linearized relations of ∂W = 0.

The complex is self-dual and therefore the weight of a fixed point p with
dimension vector (d1, d2, e1, e2, 1) is (−1)dimTp , where Tp is the tangent space
at the fixed point p. If the framing map takes values in Vi, i = 1, 2, we have

dimTp = d1d2 + e1e2 + 2d1e1 + 2d2e2 + 2d2e1 + di − d21 − d22 − e21 − e22

= d21 + d22 + di + d1d2 + e21 + e22 + e1e2.(mod2) ,

The framed numerical DT invariants for cyclic modules are given by [19]

DT (γ, 1; z, w,+∞) =
∑
p

(−1)dimTp .

Invariants F∞(γ). Here we list all the nonvanishing invariants DT (d1, d2,
e1, e2, 1; z, w,+∞). Since they are independent of (z, w), it is convenient to
simplify the notation omitting these arguments.
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• Framed V1 case:

(E.6) DT ((1, 0, 0, 0), 1;+∞) = 1, DT ((1, 1, 0, 0), 1;+∞) = 1.

• Framed V2 case:

(E.7)

DT ((0, 1, 0, 0), 1;+∞) = 1, DT ((0, 1, 1, 0), 1;+∞) = −2,
DT ((1, 1, 1, 0), 1;+∞) = −2, DT ((0, 1, 2, 0), 1;+∞) = 1,

DT ((1, 1, 2, 0), 1;+∞) = 3, DT ((2, 1, 2, 0), 1;+∞) = 3,

DT ((3, 1, 2, 0), 1;+∞) = 1.

TQ-fixed loci for N ≥ 4. We now show that the TQ-fixed loci are isolated
points for N ≥ 4. The superpotential for the truncated framed quiver is

W =

N−2∑
i=1

[ri(aici − ci+1bi) + si(aidi − di+1bi)] .

This gives the following (6N − 10) relations.

(E.8)

aici − ci+1bi = 0 , aidi − di+1bi = 0 , ∀ i = 1, . . . , N − 2,

ciri + disi = 0 , rici+1 + sidi+1 = 0 , ∀ i = 1, . . . , N − 2,

r1a1 = 0 , s1a1 = 0 , bN−2rN−2 = 0 , bN−2sN−2 = 0,

biri + ri+1ai+1 = 0 , bisi + si+1ai+1 = 0 , ∀ i = 1, . . . , N − 3.

Suppose the framing node is in Vk+1. Consider the subset Pk+1 ⊂
CQ/dW , generated by 3 elements akckrk = akdksk , akdkrk and akcksk.
They are three triangle paths starting from Vk. Using (E.8) repeatedly we
can show

(akckrk)(akdkrk) = (akdkrk)(akckrk) ,

(akckrk)(akcksk) = (akcksk)(akckrk) ,

(akcksk)(akdkrk) = (akckrk)
2 .

For examples, up to minus signs, we have the following:

(akckrk)(akdkrk) = akck(bk−1rk−1)dkrk = ak(ak−1ck−1)rk−1dkrk
= akak−1(dk−1sk−1)dkrk = ak(dkbk−1)sk−1dkrki
= akdkbk−1(rk−1ck)rk = akdk(rkak)ckrk

= (akdkrk)(akckrk).

(akcksk)(akdkrk) = akck(bk−1sk−1)dkrk = akckbk−1(rk−1ck)rk
= akck(rkak)ckrk = (akckrk)

2.
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Therefore we conclude Pk+1 can be represented as

Pk+1 = {(akdkrk)n1(akckrk)
n2 , (akcksk)

n1(akckrk)
n2 | n1, n2 ∈ Z≥0}

Now we want to express a general element in the path algebra CQ/dW .
Define Pk+1 ⊂ CQ/dW to be the set of paths starting from Vk+1. Obviously
we have Pk+1 ⊂ Pk+1.

We have the following properties for the paths.

• P1. By using the relation ckrkak = ckbk−1rk−1 = ak−1ck−1rk−1 and
the relations of the same type, we can transform the triangles starting
from Vi into the forms of acr, adr and acs. A similar statement holds
for the triangles starting from Wi.

• P2. Triangles of type {acr, adr, acs} and the hooks of type {cr, dr, cs}
commute. For example, (ckrk)(akckrk) = (ak−1ck−1rk−1)(ckrk).

• P3. Triangles starting from Vi commute with ai. Triangles starting
from Wi commute with bi. For example,

(ck+1rk+1ak+1)ak = ak(ak−1ck−1rk−1).

• P4. Composition rules for hooks.

(ck−1rk−1)(cksk) = (ck−1sk−1)(ckrk),
(ck−1rk−1)(dkrk) = (dk−1rk−1)(ckrk),
(ck−1sk−1)(dkrk) = (ck−1rk−1)(ckrk).

Using P1, P2, P3, P4 and (E.8) to group together all the triangles
for a given path, one can show that any monomial elements in Pk+1 can be
arranged into an element in Pk+1, followed by rk, sk, ckrk, cksk, dkrk, . . . (ie.
certain power of hooks), bkrk, bksk, bk+1bkrk, bk+1bksk, . . . (ie. a sequence
of bi times r or s), or a sequence of ai. Namely we have

(E.9)

Pk+1 = {p, rkp, skp, ckrkp, ckskp, dkrkp,

ck−1rk−1ckrkp, ck−1rk−1ckskp, ck−1rk−1dkrkp, . . .

bk+1bkrkp, bk+1bkskp, . . . , akp, ak+1akp, . . . | p ∈ Pk+1}

We associate to each arrow a C× action and obtain the flavor torus
TF = (C×)6N−10. And the subtorus TF,dW ⊂ TF fixing the relations is again
isomorphic to C4.

We now analyze the torus action in TF,dW which can be induced by the
gauge group actionGL(V1)× · · · ×GL(VN−1)×GL(W1)× · · · ×GL(WN−1).
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The induced action is isomorphic to (C×)2N−3, which we use to fix the fol-
lowing torus weight,

(E.10) λai
= λbi = λr1 = 1, ∀ i = 1, . . . , N − 2 .

Using (E.10) to scale (E.8) we find all the torus weight of ci, di, ri, and
si should be the same.

λc1 = λc2 = · · · = λcN−1
≡ λc ,

λd1
= λd2

= · · · = λdN−1
≡ λd ,

λr1 = λr2 = · · · = λrN−2
= 1 ,

λs1 = λs2 = · · · = λsN−2
≡ λs .

So we have our final torus action TQ as,

(E.11) TQ = {(λc, λd, λs) ∈ (C×)3 | λc = λdλs} � (C×)2.

Similarly define (λd, λs) ≡ (λ1, λ2). Torus weights of the elements in
Pk+1 are given by

(E.12)

{w(p), w(rkp) = w(p), w(skp) = λ2w(p), w(ckrkp) = λ1λ2w(p),

w(ckskp) = λ1λ
2
2w(p), w(dkrkp) = λ1w(p),

w(ck−1rk−1ckrkp) = λ2
1λ

2
2w(p), w(ck−1rk−1ckskp) = λ2

1λ
3
2w(p),

w(ck−1rk−1dkrkp) = λ2
1λ2w(p), . . .

w(bk+1bkrkp) = w(p), w(bk+1bkskp) = λ2w(p), . . .

w(akp) = w(p), w(ak+1akp) = w(p), . . . | p ∈ Pk+1},

and the weight of p ∈ Pk+1 is

w(p) =

{
λn1+n2

1 λn2

2 if p = (akdkrk)
n1(akckrk)

n2

λn1+n2

1 λ2n1+n2

2 if p = (akcksk)
n1(akckrk)

n2

.

The TQ-fixed annihilator I is generated by linear combinations of the
path monomials of the same weights. Given a torus weight λα1

1 λα2

2 we can
solve for finitely many monomial paths pi ∈ Pk+1 from (E.12) . The elements
in the I with weight λα1

1 λα2

2 are most generally written as a finite sum∑
i ξipi. If ξj is not vanishing, pj should be included as one of the monomial

generators of the TQ-fixed annihilator, since each pj is a linear map from
framing vector e to a different vector space. We can exhaust all the monomial
generators of I this way. This illustrates that torus fixed I is generated by
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monomials and corresponds to an isolated point in the moduli space of
representations.

References

[1] M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological
vertex. Comm. Math. Phys., 254(2):425–478, 2005.

[2] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi et al.,
BPS Quivers and Spectra of Complete N = 2 Quantum Field Theories.
2011. arXiv:1109.4941.

[3] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi et al.,
N = 2 Quantum Field Theories and Their BPS Quivers. 2011. arXiv:
1112.3984.

[4] E. Andriyash, F. Denef, D. L. Jafferis and G. W. Moore, Bound state
transformation walls. JHEP, 1203:007, 2012. arXiv:1008.3555.

[5] P. S. Aspinwall, Enhanced gauge symmetries and Calabi-Yau three-
folds. Phys. Lett., B371:231–237, 1996. arXiv:hep-th/9511171.

[6] P. S. Aspinwall, D-Branes on Toric Calabi-Yau Varieties. 2008.
arXiv:0806.2612.

[7] P. S. Aspinwall, T. Bridgeland, A. Craw, M. R. Douglas, M. Gross,
A. Kapustin, G. W. Moore, G. Segal, B. Szendrői and P. M. H. Wilson,
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