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Abstract

We consider a class of line operators in d = 4,N = 2 supersymmetric
field theories, which leave four supersymmetries unbroken. Such line
operators support a new class of BPS states which we call “framed BPS
states.” These include halo bound states similar to those of d = 4,N = 2
supergravity, where (ordinary) BPS particles are loosely bound to the line
operator. Using this construction, we give a new proof of the Kontsevich–
Soibelman wall-crossing formula (WCF) for the ordinary BPS particles,
by reducing it to the semiprimitive WCF. After reducing on S1, the
expansion of the vevs of the line operators in the IR provides a new
physical interpretation of the “Darboux coordinates” on the moduli space
M of the theory. Moreover, we introduce a “protected spin character”
(PSC) that keeps track of the spin degrees of freedom of the framed
BPS states. We show that the generating functions of PSCs admit a
multiplication, which defines a deformation of the algebra of holomorphic
functions on M. As an illustration of these ideas, we consider the six-
dimensional (2, 0) field theory of A1 type compactified on a Riemann
surface C. Here, we show (extending previous results) that line operators
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are classified by certain laminations on a suitably decorated version of C,
and we compute the spectrum of framed BPS states in several explicit
examples. Finally, we indicate some interesting connections to the theory
of cluster algebras.
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1 Introduction and summary

This paper continues an investigation [1, 2] into the properties of moduli
spaces M naturally associated to N = 2 supersymmetric quantum field
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theories in four dimensions [3,4]. These moduli spaces are the moduli spaces
of vacua of such theories on R3 × S1. They can be given the structure of
completely integrable systems and have been the subject of much intense
research. The focus of [1, 2] was on a collection of functions onM, the so-
called “Darboux coordinates” which are both useful and interesting. They
are useful because they provide a neat way to compute hyperkähler met-
rics on M, because they provide a framework within which one can prove
the Kontsevich–Soibelman wall-crossing formula (WCF) [5], and because
they can be used to construct scattering amplitudes in N = 4 theories at
strong coupling [6,7]. They are interesting because they have many beautiful
asymptotic and analytic properties, linking them to several other subjects
including the Thermodynamic Bethe ansatz of integrable systems theory
and the Fock–Goncharov coordinates of (higher) Teichmüller theory.

In the rest of this introduction, we give a brief expository description of
the four main results of this paper.

In view of the central importance of the Darboux coordinates on M it
is desirable to give them a more direct physical interpretation. One of the
primary goals of this paper is to provide just such an interpretation: they
are vevs of line operators in the N = 2 theory. This is our first main result.
This interpretation is encapsulated in equation (6.3) of Section 6:

〈Lζ〉 =
∑

γ

Ω(Lζ , γ)Yγ . (1.1)

The left-hand side (LHS) of this equation is the vacuum expectation value
of a supersymmetric line operator Lζ . This operator sits at a single point in
space, stretches along the time direction, and preserves four Poincaré super-
charges specified by an angle ζ — the same four supersymmetries preserved
by a BPS particle of phase ζ. (Section 2 goes over this definition in detail
and summarizes some basic aspects of the theory of supersymmetric line
operators.) Supersymmetric ’t Hooft–Wilson operators provide examples
of possible Lζ , but there are others, as we will see. The right-hand side
(RHS) of (1.1) is an expansion in the Darboux coordinates Yγ . Heuristi-
cally speaking, Yγ can be thought of as the vev of a line operator in the
low-energy IR theory, obtained by inserting an infinitely heavy dyon, which
carries electromagnetic charge γ and central charge of phase ζ. In this sense,
(1.1) expresses how ultraviolet (UV) line operators Lζ decompose into IR
line operators.

The coefficients Ω(Lζ , γ) of the expansion (1.1) are integers, and in fact
define a new kind of BPS index, counting a new kind of BPS state which we
call a framed BPS state. These states are introduced in Section 3. Briefly,
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the Hilbert space HL of the theory in the presence of the line operator L
is a representation of the unbroken part of the N = 2 supersymmetry. It is
still graded by electromagnetic charge γ, and in the sector labeled by γ, the
energy satisfies a modified BPS bound

E ≥ −Re(Zγ/ζ). (1.2)

Framed BPS states are states in HL which saturate this bound. To reduce
confusion, we will call the BPS states of the original N = 2 theory, in the
absence of line operators, the “vanilla BPS states.”

We can refine the BPS index to account for the spin information of the
framed BPS states. This very interesting index, defined in (3.12) and (3.14)
of Section 3.2, is called a protected spin character (PSC). A PSC can be
defined for both framed and vanilla BPS states. The PSC is a function of a
variable y and is denoted Ω(Lζ , γ; y). Its specialization to y = −1 gives the
BPS index. The second and third main results of this paper revolve around
the properties of the generating functions of framed PSCs (such as (3.38)):

F (Lζ) :=
∑

γ

Ω(Lζ , γ; y)Xγ . (1.3)

Here the formal variables Xγ in the generating function are meant to be
thought of as elements of a noncommutative Heisenberg algebra, and hence
satisfy

XγXγ′ = y〈γ,γ′〉Xγ+γ′ , (1.4)

where 〈γ, γ′〉 is the usual Dirac–Schwinger–Zwanziger antisymmetric prod-
uct of charges. The second main result of this paper is that the alge-
bra of the generating functions (1.3) gives a noncommutative deformation
of the algebra of functions on M, where y is the deformation parame-
ter. This multiplication law is justified on physical grounds in Section 3.6.
The resulting noncommutative algebras are illustrated in many concrete
examples in Section 4. In Section 8, we describe the commutative ring of
Darboux coordinates in a way suitable to make clear that the algebras of
Section 4 are indeed noncommutative deformations. In one important class
of examples (the A1 theories), this algebra is related to the algebra of quan-
tum geodesic length operators in quantum Teichmüller theory, as described
in Section 11.

The main difference between the PSC and the “refined BPS index,” which
has been the subject of many recent investigations [8–11], is that the PSC is,
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on a priori grounds, an index. Nevertheless, in the examples we have exam-
ined, the two quantities agree. This agreement is nontrivial and implies
the absence of certain representations of supersymmetry among both the
framed and vanilla BPS states. This surprising agreement is formalized
as a “strong positivity conjecture” in Section 3.2. The truth of this con-
jecture would have far-reaching consequences. We show in Section 4 that
strong positivity implies that the ring of line operators and their vevs can
be computed essentially by formal algebraic means. Given the geometrical
interpretations of PSC’s this is a highly nontrivial result. Moreover, the
strong positivity properties of line operators are reminiscent of some deep
mathematics, including the canonical bases of quantum groups of Lusztig
and Kashiwara, the Laurent phenomenon of cluster algebras of Fomin and
Zelevinsky, and the universal Laurent polynomials of Fock and Goncharov.
We have not attempted to make these connections very precise, and we leave
that to future work.

The framed BPS states undergo wall-crossing analogous to that of the
vanilla BPS states. The analog of walls of marginal stability are the BPS
walls defined in (3.9). Near these walls some of the framed BPS states have
a very simple physical description, which is closely analogous to the “halo”
configurations of multi-centered supergravity solutions which were discov-
ered by Frederik Denef. The wall-crossing mechanism is essentially identical
to that described in [12] in which entire Fock spaces of halo configurations
are created or annihilated as parameters cross a BPS wall. The third main
result of this paper is a formula describing the wall-crossing of the gener-
ating functions (1.3). It is essentially given by conjugation with quantum
dilogarithms (the precise formula is stated in (3.47) and (3.48)).

A corollary of this framed WCF is a simple physical derivation of the
so-called “motivic wall-crossing formula” of Kontsevich and Soibelman for
the vanilla PSC’s, described in Section 3.5. Roughly, the idea is to study
the spectrum of the vanilla BPS states indirectly through their effects on
the framed ones. (This is related to our earlier derivation of the WCF [1],
which also involved studying vanilla BPS states indirectly through their
effects on something else — in that case, on the effective Lagrangian of
a dimensionally reduced theory.) In this way, we show that the motivic
KSWCF follows directly from the simple physics of halo Fock spaces.

Finally, in the remainder of the paper we demonstrate our fourth main
result: a description of how to compute framed BPS indices and framed
PSC’s in an interesting class of examples of N = 2 theories, namely the
class S of theories obtained by a partially twisted compactification of the
d = 6 nonabelian (2, 0) theories on a Riemann surface C of genus g with n
punctures [2,13,14]. After a brief review of d = 6 (2, 0) theories in Section 7
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we use the surface operators of the d = 6 theory to arrive at the key result
(7.13), which makes computations possible. This result states that one can
identify M with a moduli space of flat connections on C and express the
quantum expectation value of a line operator as a classical holonomy of the
flat connection. In Section 10, we spell out many examples drawn from
the class of “A1 theories,” theories in S based on the d = 6 theories with
g = su(2). Along the way, in Section 9, we extend the classification of line
operators for the conformal A1 theories (proposed in [15]) to asymptotically
free theories. The upshot is that isotopy classes of closed curves on C are
replaced by objects known as “laminations” (see Section 9.4 for the defini-
tion). We thereby make contact with some very interesting work of Fock and
Goncharov [16, 17]. Once this connection is made, computations of framed
BPS indices are in principle straightforward and can be reduced to an essen-
tially well-known algorithm — which we call the traffic rule algorithm —
described in detail in Appendix F.2.

The results of the fairly straightforward traffic-rule computations lead to
some physically surprising and mathematically nontrivial results. For exam-
ple, the Wilson line amplitude in the fundamental representation for the
SU(2) Nf = 0 theory is given by a three-term expression (10.33) of the form

Yγe + Y−γe + Yγm , (1.5)

where γe is half the charge of the W -boson and γm is a mutually nonlocal
charge. The first two terms are expected from semiclassical reasoning but
the third one is a surprise. It is exponentially small in the weak-coupling
domain. One can go on in this vein with several examples, as we do in
Section 10. We mention here only one more example: In the SU(2) Nf = 4
theory at strong coupling the Wilson line supports seven framed BPS hyper-
multiplets, as revealed by the simple computation (10.44). It would probably
be somewhat nontrivial to reproduce this result by studying the geometry
of monopole moduli spaces.

In Sections 5 and 12, we briefly explore some relations to interesting math-
ematics, and show that these relations have useful physical applications. In
Section 5, we show that the algebra of formal line operators is an example
of a quantum cluster algebra. This viewpoint proves useful in constructing
the formal line operators for the N = 2∗ theory and suggests refinements of
some of the positivity conjectures in the cluster algebra literature. We intro-
duce the concept of a “cluster N = 2 theory.” In Section 12, we similarly
introduce a notion of a “tropical N = 2 theory,” and we introduce “tropical
labels” for line operators. These should be thought of as defining a kind of
UV to IR mapping of the enumeration of (simple) line operators. In these
two sections, we have just scratched the surface of what is perhaps a very
deep connection.
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Some technical arguments and some conventions are relegated to the
appendices.

Despite its (regrettable) length, the present paper leaves many pretty
stones unturned. We point out a few open problems and future directions
for research in Section 13.

2 BPS line operators

2.1 Definition of line operators of type ζ

In this paper, we will follow the definition of line operators advocated in [18,
19]. We consider a quantum field theory defined by relevant perturbations
from a UV fixed point theory, and a line operator is a conformally invariant
boundary condition for that uv theory on AdS2 × S2.

In this paper, we focus on theories with d = 4,N = 2 supersymmetry.
Thus the uv fixed point has su(2, 2|2) superconformal symmetry. (Our con-
ventions are spelled out in Appendix A.) We will usually focus on line
operators in R1,3, which are located at a spatial origin x1 = x2 = x3 = 0
and extend in the time direction. In this case, the unbroken subalgebra
of the conformal algebra so(2, 4) is generated by D, P0, K0 (these gener-
ate a copy of sl(2, R)), and spatial rotations Mij (these generate a copy of
so(3)). Thus, the uv boundary condition defining our line operator pre-
serves sl(2, R)⊕ so(3) ∼= so(4∗), the Lie algebra of isometries of AdS2 × S2.
In addition, we choose to study operators preserving the su(2)R R-symmetry
of the superconformal algebra. We also choose to preserve half the supersym-
metry, and hence we want to study line operators preserving the superalge-
bra osp(4∗|2). There are, in fact many ways of choosing the odd generators
of this subalgebra, and the existence of this family will be of some impor-
tance in what follows. There is an involution Iζ of the superalgebra induced
by conjugating the spatial reflection xi → −xi by a U(1)R transformation of
the superconformal group. On the Poincaré supersymmetries this involution
acts by

QA
α → ζ−1εABσ0

αβ̇
Q̄β̇

B,

Q̄α̇
A → ζεABσ̄0α̇βQ B

β

(2.1)

with a similar action on the special conformal supersymmetries S A
α , S̄α̇A.

Here ζ is a phase resulting from the U(1)R rotation. The fixed subalge-
bra of this automorphism will be denoted osp(4∗|2)ζ and is isomorphic to
osp(4∗|2) for all |ζ| = 1. Indeed, all such subalgebras are rotated into each
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other by a U(1)R transformation. We will denote line operators preserv-
ing the above superalgebra by L(ζ; · · · ), or Lζ(· · · ), where · · · will refer to
other parameters defining a specific line operator such as those discussed
in Section 2.3 below. As we will see from examples in Sections 4 and 10,
the line operators are in general only single-valued on the universal cover of
the ζ circle.

We will be studying field theories that are perturbed from their supercon-
formal fixed points either by moving on the Coulomb branch or by turning on
masses. In the IR description of the theory, there is d = 4,N = 2 Poincaré
supersymmetry. The involution Iζ also acts on this superalgebra with the
additional rule that Iζ : Z → ζ2Z̄, where Z is the central charge operator. It
will be convenient for us to choose a squareroot of ζ−1, call it ξ, and define
the fixed supercharges under the involution by

R A
α = ξ−1Q A

α + ξσ0
αβ̇

Q̄β̇A. (2.2)

The theory in the presence of a line operator L extended along the time
direction has a Hilbert space denoted HL. The R A

α are operators on this
Hilbert space.

2.2 Semiring of line operators

An interesting observation [20], developed in further detail in [21], is that
supersymmetric line operators inN = 2 gauge theories form a semiring, with
a rather intricate structure, which depends in detail on the matter content
of the theory.

To define the sum we say that the correlation function of the sum L+ L′
of two line operators is simply the sum of the correlation functions of L
and L′. The Hilbert space of the theory in the presence of the sum of two
operators is simply the sum of two superselection sectors, the Hilbert spaces
associated with the two operators:

HL+L′ := HL ⊕HL′ . (2.3)

We define a simple line operator to be a line operator, which is not a sum
of two other line operators.

Moreover, one can define a product of operators LL′ by considering the
path integral with the insertion of two line operators. The line operators we
are considering have the special property that their correlation functions are
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independent of the distance of separation. To see this, note that the super-
symmetries TA

α = ξ−1QA
α − ξσ0

αβ̇
Q̄β̇A which are odd under the involution Iζ

satisfy the commutation relation

[RA
α , TB

β ] = 2εαβεAB(Z̄ − ζ−2Z) + 8ζ−1εABσ0mαβ Pm. (2.4)

Taking the symmetric part in αβ we can write the spatial translation oper-
ators Pi as a RA

α commutator, and therefore correlation functions of line
operators of type Iζ all aligned with the x0 axis will be independent of space
coordinates. We can let these operators approach one another and then, by
locality, the product should be equivalent to some other line defect. Thus,
the operator product expansion should define a ring multiplication. We
will determine it for several interesting examples below. It is interesting to
relate the Hilbert space associated to the product of two line operators to
the Hilbert spaces associated to the two line operators. This is possible, but
surprisingly subtle. It will lead us to define an interesting non-commutative
deformation of the product of line operators in Section 3.6.

2.3 Labels for line operators in Lagrangian gauge theories

Many d = 4,N = 2 theories admit a Lagrangian description, in terms of vec-
tormultiplets and hypermultiplets. For such theories we can be more specific
about the definition of the line operators we are interested in following [18]
and [20] (notice that our ζ is t−1 in the latter reference).

We begin by reviewing some Lie algebra theory. Let us first begin with
a simple Lie algebra g and define some standard lattices. Choose a Cartan
subalgebra t ⊂ g. Then there is a canonical set of roots Φ(g) ⊂ t∗ which
arise from diagonalizing the adjoint action of t on g. For each root α ∈ Φ(g)
there is a copy of sl(2)α ⊂ g and we can canonically define the corresponding
coroot Hα ⊂ t which generates a Cartan subalgebra of sl(2)α and is normal-
ized so that 〈β, Hα〉 = 2(β, α)/(α, α). (On the left, we write the canonical
pairing of t∗ with t, while on the right we have used a Cartan–Killing form,
but the normalization drops out since we assume that g is simple.) The
roots and coroots generate lattices Λr ⊂ t∗ and Λcr ⊂ t, respectively. There
are two useful ways to think about the coroot lattice. By Lie’s theorem
there is a unique simply connected and connected compact Lie group G̃
whose lie algebra is g. Elements of the coroot lattice can be identified with
homomorphisms of U(1) into T̃ , the maximal torus of G̃ with Lie algebra t.
Alternatively, Λcr is the kernel of exp[2π·] : t → T̃ .
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Using the perfect pairing of t with t∗ (and not the Killing form) we then
have canonically defined weight and magnetic weight lattices:

Λwt := Λ∗cr ⊂ t∗,
Λmw := Λ∗r ⊂ t.

(2.5)

A standard result states that the center Z(G̃) is isomorphic to the quotients

Z(G̃) ∼= Λmw/Λcr
∼= Λwt/Λr. (2.6)

Finally, let W be the Weyl group of the Lie algebra g. This is isomorphic
to N(T̃ )/T̃ where N(T̃ ) is the normalizer of T̃ in G̃.

Now, our theories will have matter fields in general and therefore we
should consider a general compact connected simple Lie group with Lie
algebra g. Again by Lie’s theorem, such a group must be of the form G ∼=
G̃/Z, where Z ⊂ Z(G̃) is a subgroup of the center. Thus, Z(G) ∼= Z(G̃)/Z.
Since the center is fixed by the action of the Weyl group we can find a
W-invariant lattice ΛG, where

Λcr ⊂ ΛG ⊂ Λmw (2.7)

so that Z ∼= ΛG/Λcr. Indeed can identify ΛG with the kernel of the expo-
nential map for the group G:

ΛG = {P ∈ t| exp(2πP ) = 1G}. (2.8)

That is ΛG
∼= Hom(U(1), T ), where T = T̃ /Z is a maximal torus of G.

Dually, the character group of G is Hom(T, U(1)), and is canonically dual
to Hom(U(1), T ) because there is a perfect pairing

Hom(U(1), T )×Hom(T, U(1))→ Hom(U(1), U(1)) ∼= Z. (2.9)

Thus, the character group is isomorphic to Λ∗G, and for this reason ΛG is
sometimes called the cocharacter lattice of G. Λ∗G can be identified with
the weight lattice Λwt(G). This lattice may also be viewed as the weights
in representations of G̃, which transform trivially under Z. This completes
our review of Lie algebra theory.

As we have said, with explicit field multiplets we can construct some
explicit line operators. The most obvious line operators we can consider
are the supersymmetric Wilson lines [22–24] along a path p along the time
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direction, at some fixed 
x, in a representation ρR : G→ End(V ) of the gauge
group:

Lζ(
x;R) = ρRP exp
∮

p

(
ϕ

2ζ
− iA− ζϕ̄

2

)
. (2.10)

In addition, we can construct ’t Hooft operators. Recall that these are
defined by imposing boundary conditions on the fields in the infinitesimal
neighborhood of the line operator. In our case, we require the limiting values
of the fields on small linking spheres S2 to correspond to a supersymmetric
magnetic monopole preserving the Poincaré subalgebra of osp(4∗|2)ζ . Recall
that spherically symmetric magnetic monopole in a theory with gauge group
G is specified by a transition function for a G-bundle on S2 (which deter-
mines the principal bundle on the physical space R4 − {p}). Such G-bundles
are identified with ΛG

∼= Hom(U(1), T ). Indeed, for any such homomor-
phism we can construct a solution preserving the Poincaré subalgebra of
osp(4∗|2)ζ , by slightly modifying the construction of Kapustin. (See Appen-
dix C equation (C.3).) Thus, each homomorphism defines an ’t Hooft line
operator Lζ(p; v) where v ∈ ΛG.1

As is well-known, one can combine the above two constructions and define
Wilson–’t Hooft operators Lζ(p; v,R) where R is a representation of the
commutant of v. As shown in [18] the set of such Wilson-’t Hooft oper-
ators is a priori labeled by elements of Λmw × Λwt. However, there are
locality conditions on collections of compatible line operators. For exam-
ple, in the presence of an ’t Hooft operator labeled by (P, 0) a Wilson line
operator labeled by (0, Q) will only make sense for true (not projective) rep-
resentations of the structure group of the gauge bundle on R3 − {0}. More
generally, we expect that consistent sets of simple line operators can be con-
structed from maximal sublattices L ⊂ Λmw × Λwt which satisfy a Dirac-like
quantization condition:

∀(P, Q), (P ′, Q′) ∈ L : 〈P, Q′〉 − 〈P ′, Q〉 ∈ Z. (2.11)

Since operators related by Weyl transformations are gauge-equivalent we
should require that L isW-invariant, and in this case the gauge isomorphism
classes of the line operators are in one–one correspondence with L̄ = L/W.

1Here it is important to understand ζ to be valued in the covering space of U(1)R. This
is not obvious from the definition we have reviewed. However, quantum anomalies relate a
change in the phase ζ to a shift in the θ-angle. The Witten effect for line operators [18,25]
shows that the ’t Hooft operator cannot be a single-valued function of ζ.
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A natural example of such a consistent set is

L̄G := (ΛG × Λ∗G)/W. (2.12)

At the two extremes, for G = G̃ we have (Λcr × Λwt)/W, while for the
adjoint group G = Gad := G̃/Z(G̃) we have (Λmw × Λr)/W.

The most general maximal mutually local sublattice L sits in an exact
sequence

0→ Λ∗G → L → ΛG → 0. (2.13)

In order to see this consider first the projection (P, Q)→ P . This defines
a sublattice of Λmw, which must be ΛG for some G. Then since L is
maximal and local, the kernel of the map must be (0, Q) where Q ∈ Λ∗G.
While the sequence (2.13) is split it is not naturally split — reflecting the
possibility of the Witten effect — so if we consider local systems (e.g.,
over the coupling constant space or the ζ plane C∗) then (2.13) can be
nontrivial.

A more general mutual locality condition on line operators can be stated
which should apply to non-Lagrangian theories. The Hilbert space in the
presence of the line operator HL should be a representation of the spatial
rotation group SU(2). If we consider two line operators L1, L2 at 
x1, 
x2 ∈ R3

then the rotation group is broken to the group U(1)�x1�x2
, which double-covers

the group of rotations about the 
x1
x2-axis. The Hilbert space HL1L2 associ-
ated to the product of the line operators is certainly a representation of the
universal cover of U(1)�x1�x2

. Our mutual locality condition is the statement
that HL1L2 is a true representation of U(1)�x1�x2

. In N = 2 gauge theories
with a Lagrangian description we can recover the previous statement of the
mutual locality condition by moving far onto the Coulomb branch, so that
the fields sourced by the line operators can be put in the Cartan subalgebra.
Then we can apply the classical computation of the electromagnetic field in
the presence of a pair of dyons to derive (2.11).

2.3.1 Example: A1 theories

In this section, we will discuss line operator labels in A1 theories. These are
the most general Lagrangian N = 2 SCFTs built from su(2) gauge groups.
They are members of a larger class of theories denoted S in [2], to which we
refer for background and notation. These d = 4,N = 2 theories are defined
by considering a partially twisted ADE (0, 2) six-dimensional theory on a
Riemann surface C which is decorated with punctures. The remarkable S-
duality properties of these theories were elucidated in [14]. A typical theory
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in the class S admits several S-dual descriptions, as a nonabelian gauge
theory weakly coupled to non-Lagrangian matter theories. We expect half-
BPS line operators of the Wilson–’t Hooft type to exist for the nonabelian
gauge groups, but we do not know at this point how to classify the line
operators, which are available in the non-Lagrangian matter theories. The
A1 theories are a useful example, as they share many of the interesting
properties of the theories of the S class, but have a Lagrangian description
in all S-duality frames.

A warmup example is an su(2) gauge theory with N = 4 supersymme-
try [19]. There is a single coroot H and Λcr = HZ, and there is a single
root α so Λr = αZ. The duality pairing is 〈α, H〉 = 2 and hence Λwt = 1

2αZ

and Λmw = 1
2HZ. Electric charge and magnetic charge are traditionally

defined by choosing isomorphisms Λwt
∼= Z and Λmw

∼= Z, respectively, so
we identify (P, Q) = (p

2H, q
2α) with a pair of integers (p, q) ∈ Z× Z. The

consistency condition (2.11) becomes pq′ − p′q = 0 mod 2. With this iso-
morphism understood, if G = SU(2) then ΛG × Λ∗G = 2Z× Z, i.e., we have
even magnetic charge and any integral electric charge whereas if G = SO(3)
we have ΛG × Λ∗G = Z× 2Z, i.e., any integral magnetic charge, but even
electric charge. The two are related by S-duality. However, there is a third
consistent set of line operators, which is not of the form LG, and is obtained
by shifting the theta angle of the SO(3) theory by a half-period.2 This
consists of the set of (p, q) such that p = q mod 2.

Now let us return to the A1 theory on a curve C of genus g with n punc-
tures. Recall that a weak-coupling limit is specified by choosing a pants
decomposition associated with separating curves ci, i = 1, . . . , 3g − 3 + n.
The Lie algebra of the gauge group is g = su(2)⊕3g−3+n, and there are
hypermultiplets Φi1i2i3 associated with each trinion bounded by a triplet
of curves (ci1 , ci2 , ci3). These hypermultiplets are in the representation
2i1 ⊗ 2i2 ⊗ 2i3 with a reality condition (for a total of 16 independent real
scalar fields) [14].

First of all, let us note that there are several possible gauge groups associ-
ated with a given weak-coupling cusp. Let G̃ = SU(2)3g−3+n. Then allowed
gauge groups are of the form G̃/Z where Z is any subgroup of the center
Z(G̃), which acts trivially on all the 2g − 2 + n hypermultiplets. We can
express this more concretely by associating a number ε(ci) ∈ Z2 for each
i thus fixing an isomorphism Z(G̃) ∼= Z

3g−3+n
2 . Then the subgroup Zmax

that acts trivially on the trinions is defined by 2g − 2 + n conditions on the

2If we normalize the theta angle for the SO(3) theory by θ
8π2

∫
M
Tr2F ∧ F then the

periodicity of θ on a general 4-manifold M is 8π. However, on spin 4-manifolds it is 4π.
Of course, R4 is spin. In this sense, we are shifting by a half-period.
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vectors 
ε. There is one relation between these relations and hence Zmax is
generated by g elements. Fix some isomorphism Zmax ∼= Z

g
2. We denote

Gmax := G̃/Zmax. The allowed gauge groups for the A1 theory at the cusp
defined by the separating curves ci are in one–one correspondence with sub-
groups Z ⊂ Zmax. (Incidentally, the number of such subgroups is the Galois
number

Gg = 1 +
g∑

k=1

(2g − 1)(2g−1 − 1) · · · (2g−k+1 − 1)
(2k − 1)(2k−1 − 1) · · · (2− 1)

. (2.14)

For large g we have Gg ∼ 2
1
4
g2
, so there can be quite a large variety of

choices.)

Now, for g = su(2)⊕3g−3+n we extend the isomorphism described above
for su(2) to an isomorphism Λmw × Λwt

∼= Z3g−3+n × Z3g−3+n. Consistent
sets of line operators will be constructed from maximal W-invariant collec-
tions of vectors (
p, 
q) ⊂ ΛGmax × Λwt satisfying 
p · 
q′ − 
p′ · 
q = 0 mod 2 for
all pairs (
p, 
q) and (
p′, 
q′). The vector 
p specifies an SO(3)3g−3+n bundle
on R3 − {0} and the restriction 
p ∈ ΛGmax arises because the hypermultiplet
fields Φabc must be sections of the associated bundle in the representation
2a ⊗ 2b ⊗ 2c. We fix a fundamental domain for the action of the Weyl group
by taking pi ≥ 0 and qi ≥ 0 if pi = 0.

A beautiful observation of Drukker et al. [15] is that the classification of
simple line operators in A1 theories is closely related to the Dehn–Thurston
classification of isotopy classes of non-selfintersecting curves on C. Recall
that for such a curve c we can define pi = c#ci and qi = Twistci(c). Here #
is the homotopy intersection number, defined as the positive sum of inter-
sections, minimized over isotopy classes. For details of the twist see [15].
(In what follows, c sometimes denotes a curve, and sometimes denotes its
isotopy class, depending on context.) It turns out rather beautifully that
pa + pb + pc = 0 mod 2 for all trinions and this is precisely the condition
that 
p ∈ ΛGmax . We can therefore define a one–one and onto map, which we
denote τDMO, from the set of all isotopy classes of non-selfintersecting paths
on C to (ΛGmax × Λwt)/W.

Now, what consistent sets of line operators, L, can we define in these
theories? Under the correspondence τDMO the condition (2.11) is equivalent
to the condition

c#c′ = 0 mod 2. (2.15)

We will call a set P of (isotopy classes of) paths even if (2.15) holds
for all pairs in P, and maximal even if P is not properly contained in
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any larger even set. Thus, a consistent set of line operators L defines a
maximal even set of paths on C. In particular, if we choose G = G̃/Z
for some subgroup Z ⊂ Zmax, then (ΛG × Λ∗G)/W determines a maximal
even set of paths, which we can denote PG. Conversely, given P we can
project it to the magnetic charges and reconstruct an exact sequence as
in (2.13).

The S-duality group, i.e., the modular group, will change the gauge
group, as in the N = 4 example mentioned above. It is possible to give
an explicit formula for how Z changes in terms of mod-two homology.
This complements the discussion of the S-duality action on the line opera-
tors in [15].

3 Hilbert spaces, halos and wall-crossing

3.1 Framed BPS States

So far, we have only discussed UV aspects of the N = 2 theory. We are
now going to pass to the IR. We need a little notation. We denote the
Coulomb branch as B, its singular divisor as Bsing, and the lattice of vanilla
electromagnetic and flavor charges as Γ.3

We now study the Hilbert space of the theory on R1,3, with vacuum
at infinity labeled by u ∈ B, and with a simple line operator Lζ inserted
at the origin xi = 0. This Hilbert space, which we denote by Hu,L,ζ , is a
representation of the Poincaré sub-superalgebra of osp(4∗|2)ζ . In addition,
it is graded by the charge:

Hu,L,ζ =
⊕
γ∈ΓL

Hu,L,ζ,γ . (3.1)

Here, ΓL is the Poisson lattice of electromagnetic and flavor charges in the
presence of L, and is a torsor for the lattice Γ of vanilla charges. That is, it

3As is well known that Γ undergoes monodromy if u is continued along nontrivial paths
in B∗ := B − Bsing. Thus, one should speak of Γu. In mathematical terms, Γ is a fibration
of lattices over B∗ and defines a “local system,” i.e., it has a flat connection. One can

work on the universal cover B̂ of B − Bsing where Γ may be trivialized, or one can work on
the base, bearing in mind that there is nontrivial monodromy. This is a matter of taste
which we leave to the reader. For further background, see [1, 2] and references therein.
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is of the form

ΓL = Γ + γL, (3.2)

where γL ∈ Γ⊗ R, and 〈γL, γ〉 ∈ Z for all γ ∈ Γ. In terms of a path integral
formulation, the direct sum over Γ in (3.1) becomes a sum over topological
sectors.

The need for a sum over γ in (3.1) can be seen easily in a weakly coupled
pure SU(N) theory, far out on the Coulomb branch so that the gauge sym-
metry is strongly broken to U(1)N−1. Consider for example the Wilson line
operator (2.10). In the naive classical limit, the vev of this operator would
be a sum of vevs corresponding to supersymmetric Wilson lines of the IR
theory, labeled by the weights of the representation R.4 This example also
makes clear the physical origin of the shift in (3.2). Consider the example of
a fundamental Wilson line operator in a pure SU(2) gauge theory: all vanilla
BPS states carry even electric charge (in conventions where a W-boson has
charge 2), but a state in the presence of a fundamental Wilson loop should
be able to carry an odd electric charge. The freedom to add vanilla BPS
particles to the system makes it obvious that ΓL should be a torsor for Γ.

The mutual locality condition on line operators shows that the ΓL for a
consistent set of line operators L ∈ L should all lie in a common lattice ΓL,
such that

Γ ⊂ ΓL, (3.3)

with an integral antisymmetric form on ΓL restricting to the standard one
on Γ.

Each of the sectors Hu,L,ζ,γ is a representation of the Poincaré sub-
superalgebra of osp(4∗|2)ζ . When we quantize with time slices of constant
x0, the supersymmetry operators satisfy the Hermiticity conditions

(R 1
1 )
† = −R 2

2 ,

(R 2
1 )
† = R 1

2 .
(3.4)

Moreover, in the theory deformed from its superconformal point, there will
be sectors of the Hilbert space with nonzero central charges for the N = 2

4Perhaps surprisingly, in concrete examples we will see that this naive answer is missing
something: there are extra contributions to the sum over weights. A simple example is the
Wilson operator of pure SU(2) gauge theory in the fundamental representation, for which
we give the answer in (10.33) below. There are two terms corresponding to the weights
of the fundamental representation, but there is also a third term. We will attribute that
third term to an interesting boundstate of a particle with the line operator.
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Poincaré supersymmetry. The operators R A
α satisfy the algebra

{R A
α ,R B

β } = 4 (E +Re(Z/ζ)) εαβεAB, (3.5)

where E = P 0 is the energy operator. Combining this with the Hermiticity
conditions gives the BPS bound

E +Re (Z/ζ) ≥ 0, (3.6)

where Z = Zγ(u) is the standard central charge associated with the vacuum
u ∈ B in the sector γ.

Now we are ready for one of the main definitions of this paper: we define
a framed BPS state to be one which saturates this BPS bound, i.e., E =
−Re (Z/ζ). (The motivation for the name comes from the notion of framed
quiver representations.) We can specialize (3.1) to the subspace consisting
of framed BPS states:

HBPS
u,L,ζ =

⊕
γ∈ΓL

HBPS
u,L,ζ,γ . (3.7)

Note that (3.6) differs from the standard BPS bound E ≥ |Z|. There is a
nice heuristic for understanding (3.6), using an IR version of the standard
interpretation of a Wilson–’t Hooft operator as the insertion of an infinitely
heavy dyon. Extend the lattice Γ by one extra flavor charge γf , and consider
a very heavy particle, of charge γf − γ and central charge Z = ζM − Zγ ,
where M > 0. The renormalized BPS bound in the limit M → +∞ is just

E ≥ lim
M→+∞

(|ζM − Zγ | −M) = −Re(Zγ/ζ). (3.8)

BPS particles of total charge γ have energy bounded below by |Zγ(u)|.
However, we will argue below that in the presence of line operators there can
be interesting quantum states with energy levels below |Zγ(u)|, but above
the bound −Re (Z/ζ). Viewed from far away these look like a “core par-
ticle” of charge γc, located at the position of the line operator, interacting
with one (or more) “halo particle(s)” of charge γh such that γc + γh = γ.
States in which the halo particle is not bound — i.e., does not have its
wavefunction essentially confined to a finite region of space — have energies
which form a continuum starting at −Re (Zγc(u)/ζ) + |Zγh

(u)|. In addi-
tion there are bound states analogous to the multi-centered boundstates of
supergravity [26,27]. For these states the wavefunction of the halo particle is
essentially confined to a compact region of space. Such states have a discrete
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Figure 1: A schematic picture of the spectrum of energies of states with
charge γ, in the theory with the line operator Lζ inserted. At the bottom
we see the framed BPS states. Next there are discrete excited states bound
to the line operator. Finally there are various continua of unbound states,
corresponding to different possible decompositions of γ as γc + γh. The
framed BPS states are safely separated from the continua except when there
is a γh with −Re (Zγh

(u)/ζ) = |Zγh
(u)|.

energy spectrum. As long as there is no halo charge, which saturates the
bound −Re (Zγh

(u)/ζ) = |Zγh
(u)|, there is a nonzero energy gap between

the framed BPS states and the continuum states. In figure 1, we show a
schematic picture of the energy spectrum.

The condition −Re (Zγ(u)/ζ) = |Zγ(u)| defines the BPS walls:5

Ŵ (γ) := {(u, ζ)|Zγ(u)/ζ ∈ R−} ⊂ B̃ × C̃∗. (3.9)

As we vary parameters in the space B̃ × C∗, framed BPS states can mix
with the continuum whenever we hit one of the BPS walls.

3.2 Framed BPS degeneracies and the PSC

The framed BPS states transform in representations of the Lie algebra
of spatial rotations so(3). At fixed grading γ they are finite-dimensional

5In [1, 2] we considered “BPS rays,” which are just the projection of the BPS walls to
the ζ-sphere at fixed u.
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and we can define a simple index counting the framed BPS degeneracies
defined by

Ω(u, Lζ , γ) := TrHBPS
u,L,ζ,γ

(−1)(2J3). (3.10)

In fact, we can define a more refined quantity, which counts framed BPS
states. We would like to define a quantity that keeps track of the spin infor-
mation. The simple spin character Try2J3 would naively do the job, but it
might jump unpredictably if several BPS states pair up into an unprotected
representation of the SUSY algebra. To get a more robust index we recall
that framed BPS states transform under su(2)R as well, and one of the four
supercharges RA

α is a singlet under the diagonal combination of the spin
so(3) and su(2)R, namely,

Q := εαARA
α . (3.11)

So, we can define what we will call a (framed) PSC, abbreviated PSC:6

Ω(u, Lζ , γ; y) := TrHBPS
u,L,ζ,γ

(−1)2J3(−y)2J3 = TrHBPS
u,L,ζ,γ

y2J3(−y)2I3 , (3.12)

where I3 is an R-symmetry generator and

J3 := J3 + I3. (3.13)

The PSC is an index because Q is a singlet under Ja, anticommutes with
(−1)F , and is invertible on long representations of the algebra of the RA

α .
Usually, we will shorten the notation and leave the dependence on u implicit.

Specializing to y = −1 we recover the framed BPS degeneracies
Ω(u, Lζ , γ). Thanks to the rigidity of small representations of supersym-
metry, they are invariant under deformations of parameters provided no
states enter or leave the Hilbert space. However, there will be wall-crossing
phenomena analogous to the usual wall-crossing of BPS states in the absence
of line operators. We investigate this in Section 3.3.

A PSC can also be defined for the usual vanilla BPS states. The definition
of the vanilla PSC is based on the claim that the quantity

TrH(2J3)(−1)2J3(−y)2J3 (3.14)

vanishes on long representations H of the N = 2 algebra. To prove this
consider the so(3)⊕ su(2)R character Trx2J3

1 x2I32 . We obtain (3.14) from

6We thank Juan Maldacena for suggesting this improved index.
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it by

Tr(2J3)(−1)2J3(−y)2J3 = x1
∂

∂x1

(
Trx2J3

1 x2I32

)
|x1=−x2=y. (3.15)

Now, in the representation theory of the little superalgebra of a massive
particle the long representations, considered as representations of so(3)⊕
su(2)R, have the form

ρhh ⊗ ρhh ⊗ h�, (3.16)

where h� is an arbitrary finite-dimensional representation of so(3)⊕ su(2)R
and ρhh is the half-hypermultiplet representation ρhh

∼= (12 ; 0)⊕ (0; 12). On
the other hand, the short representations of the little superalgebra, consid-
ered as representations of so(3)⊕ su(2)R, have the form

ρhh ⊗ hs, (3.17)

where hs is an arbitrary finite-dimensional representation of so(3)⊕ su(2)R.
Now observe that

Trρhh
x2J3
1 x2I32 = x1 + x−11 + x2 + x−12 (3.18)

and hence (3.15) vanishes on long representations, but is nonvanishing on
short representations. In fact, its value on short representations is just

(y − y−1)Trhsy
2J3(−y)2I3 . (3.19)

Therefore, we can define an (unframed) PSC Ω(u, γ; y) by

(y − y−1)Ω(u, γ; y) := Tr(2J3)(−1)F (−y)2J3 . (3.20)

i.e.,

Ω(u, γ; y) = Trhsy
2J3(−y)2I3 . (3.21)

Note that if the isotypical decomposition of hs as an su(2)R representation
contains only the singlet then the PSC coincides with the spin character
of hs. Thus, we immediately see that a standard hypermultiplet, which
has hs = (0; 0), has PSC Ω(u, γ; y) = 1. A standard W-boson, on the other
hand, has hs = (12 ; 0) and therefore gives Ω(u, γ; y) = y + 1/y. In fact, in all
the examples of N = 2 field theories with a good UV limit of which we are
aware, the BPS particles have representations whose decompositions under
su(2)R only contain singlets. We therefore call BPS particles where hs has
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nontrivial representations of su(2)R exotic BPS particles. Similarly, we call
framed BPS states that transform nontrivially under su(2)R exotic framed
BPS states. For nonexotic BPS states our PSC is the same as the “refined
index” of [8, 10, 11] up to a (convention-dependent) sign.

We now state a set of “positivity conjectures” for both vanilla and framed
BPS states. The strongest of these is the “no exotics conjecture” mentioned
above: the isotypical decomposition of hs contains only su(2)R singlets.
That is, there are no exotic particles at smooth points on the Coulomb
branch.7 Note that by wall-crossing the existence of exotic BPS parti-
cles would surely lead to exotic framed BPS states. A weaker conjecture
is the “strong positivity conjecture”, which states that Ω(u, γ; y) (and its
framed counterpart) is a linear combination of su(2) characters χn(y) with
non-negative integral coefficients. The “weak positivity conjecture” merely
requires Ω(u, γ; y) to be positive integer at y = +1.

The no-exotics conjecture implies the strong positivity conjecture, but
the converse need not hold. A sufficient condition for the strong positivity
conjecture is that all isotypical components of hs have integral su(2)R spin.
This condition is, however, not necessary.

We will see in Section 4 that the strong positivity conjecture (even in a
weakened form) has far reaching, beautiful consequences for the framed and
standard BPS spectrum. There is strong evidence it is true for all theories
in the A1 class, in a very non-trivial fashion. Another fact which appears
to be true in all our examples is that for a fixed line operator the spaces
HBPS

u,L,ζ,γ are only nonvanishing for a finite number of charges γ. That is, there
are only a finite number of nonvanishing framed BPS invariants for a fixed
line operator. We have no simple field-theoretical argument to justify this
statement, but we suspect that this finiteness property might be universally
true in field theory. However, it must be admitted that all our evidence is
based on the A1 class of theories. This is one reason why it is important to
understand better the higher rank theories in the class S, a project to which
we hope to return.8

A final observation is in order. Spin characters have been studied recently
in the literature, but always in the context of field theory rather than super-
gravity. Our construction suggests one reason why the field theory case is
preferred: in supergravity there is no SU(2)R symmetry available, hence no
way of constructing a PSC.

7On Higgs or hybrid branches there are complications in formulating such a statement.
8Recently (August 2012) it has been shown by Diaconescu et al. that for pure SU(K)

gauge theories the no-exotics conjecture is in fact true.
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3.3 Halos and halo Fock spaces

We now describe a particularly interesting class of framed BPS states,
namely bound states between a “core” supported in a small neighborhood
of the line operator and a surrounding “halo” of BPS particles. Such con-
figurations are closely related to Denef’s halo solutions of N = 2 supergrav-
ity [26–28]. In [12], this phenomenon was used to derive the semi-primitive
WCF. As we will see shortly, halos are important for the framed version of
the wall-crossing problem as well.

We begin by working classically, in the simple case of a BPS core of charge
γc, bound to a single halo particle of charge γh. A variant of an argument
from [26] shows the following.9 The energy of a halo particle probing the
IR background associated with the core charge γc is

Ehalo = |Zγh
(u(r))| (1 + cos(αh − αζ))− Re(Zγh

(u)/ζ). (3.22)

Recall that u ∈ B stands for the value of the vacuum moduli at infinity. The
moduli detected by the probe particle at a distance r from the line operator
depends on r, and we denote Zγh

(u(r)) = |Zγh
(u(r))|eiαh(r). On the other

hand, ζ is independent of r, and we write its phase as ζ = eiαζ .

The halo particle minimizes its energy at some r with eiαh(r)/ζ = −1.
This gives a close analog of Denef’s formula for the boundstate radius of
BPS black holes [26]:10

rhalo =
〈γh, γc〉

2Im(Zγh
(u)/ζ)

. (3.23)

This result has several important consequences. First, it gives an analog of
the Denef stability condition: the halo configuration only exists for (u, ζ)
such that rhalo given in (3.23) is positive. Second, note that rhalo →∞
when Zγh

(u) = −|Zγh
(u)|ζ — in other words, when (u, ζ) lie on the BPS

wall Ŵ (γh). Unless we are very near this wall, rhalo is much smaller than
the natural cutoff for the validity of the IR description. So the picture is
that as one approaches the BPS wall Ŵ (γh), halo configurations built from
of particles of charge (a multiple of) γh reach a size which justifies treating
them purely within the IR theory. These haloes grow to infinite size when
we reach the wall, and disappear on the other side.

9We give a few details of the derivation in Appendix D.
10Indeed, using the heuristic explained near equation (3.8) with central charge ζM −

Zγc and charge γf + γc, Denef’s formula reduces to (3.23) in the M → +∞ limit.
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What are the quantum states associated with these haloes? Fortunately
it is easy to quantize the classical halo configurations: being mutually BPS,
the halo particles do not interact with one another, and simply generate
a Z2-graded Fock space of quantum states. To describe this mathemati-
cally, let H′(γh;u) be the space of vanilla BPS states of charge γ, with a
half-hypermultiplet factored out. It is a representation of spatial so(3) and
su(2)R. We define a Z2 grading by −(−1)2J3 . The usual BPS degeneracy
Ω(γh;u) is minus the superdimension of H′(γh;u) with respect to this grad-
ing. Letting Jγc,γh

= 1
2(|〈γc, γh〉| − 1), introduce the representation (Jγc,γh

)
of spatial so(3), of dimension |〈γc, γh〉|. This accounts for the spin of the
electromagnetic field from the halo–core interaction. We build a Z2-graded
Fock space on the finite-dimensional vector space (Jγc,γh

)⊗H′(γh;u), con-
sidering the Z2 grading of (Jγc,γh

) to be even.11 Concretely, if we define a
set of integers am,γh

by

Ω(u, γh;−z) = TrH′(γh;u)(−z)2J3z2I3 =
Mγh∑
−Mγh

am,γh
zm, (3.24)

where Mγh
≥ 0 is twice the maximal J3 of a halo particle, our Fock space is

generated by |am,γh
| creation operators of 2J3 eigenvaluem+m′, for eachm′

of the form m′ = −2Jγc,γh
,−2Jγc,γh

+ 2, . . . , 2Jγc,γh
− 2, 2Jγc,γh

. The oscilla-
tors are fermionic for m even (i.e., am,γh

> 0) and bosonic for m odd (i.e.,
am,γh

< 0). Note that Ω(γh;u) =
∑

m am,γh
. If 〈γc, γh〉 = 0 then we consider

(Jγc,γh
) to be the zero vector space, and no halos form. Of course, am,γh

is a piecewise continuous integer function of u, but we usually suppress the
dependence in the notation.

3.4 Framed wall-crossing

In Section 3.2, we defined the PSC Ω(L, γ;u, ζ) which “counts” framed BPS
states. But as we noted in Section 3.1, when (ζ, u) cross a BPS wall, the
framed BPS states can mix with the continuum. Hence, the standard argu-
ments for the invariance of Ω(L, γ;u, ζ) break down. This is the framed

11Given a finite-dimensional Z2-graded vector space V = V 0 ⊕ V 1 of superdimension
(n0|n1), the associated Z2-graded Fock space is the symmetric algebra on V 0 tensor the
anti-symmetric algebra on V 1. More prosaically, we choose a basis αi, i = 1, . . . , n0, and
γs, s = 1, . . . , n1, then represent the bosonic Heisenberg algebra with αi corresponding to
creation operators, and the fermionic Clifford algebra with γs corresponding to creation
operators. The unusual-looking Z2 gradings have a beautiful physical explanation [28],
ultimately related to the fact that the magnetic field forces the spin of the halo particle
to point inwards.



FRAMED BPS STATES 267

version of the “wall-crossing” problem. Fortunately, it is easier than the
full-fledged wall-crossing problem for the vanilla BPS states: the states that
disappear from the framed BPS spectrum are just the simple halo states
which we have described in Section 3.3. Hence, we can completely describe
the jump of Ω(L, γ;u, ζ) as we cross the wall.

Consider a path (ut, ζt) ∈ B̂ × Û(1), which crosses a wall Ŵ (γh). As noted
above, when we reach the wall rhalo goes to infinity. Hence, an entire Fock
space of halo boundstates, constructed from halo particles whose charge is
positively proportional to γh, either appears or disappears from the BPS
spectrum. Now let us describe the effect of this on the (framed) PSCs. Let
{xγ} be a basis for the group algebra of Γ, so that

xγxγ′ = xγ+γ′ . (3.25)

Then form the generating functional

F (u, L, ζ, {xγ}; y) :=
∑

γ

Ω(u, L, ζ, γ; y)xγ . (3.26)

(In order to keep the notation from getting too heavy we will often suppress
some of the variables when they can be safely understood as implicit.) Each
creation operator of type m, m′, γh described above contributes a factor

(1 + (−1)mym+m′
xγh

)am,γh (3.27)

to the product representation of the trace over the Fock space. Define γh :=
Zγh, and for γc ∈ ΓL let

Fγ̄c :=
∑

γ′∈γh

Ω(u, L, ζ, γc + γ′; y)xγc+γ′ . (3.28)

(The sum only depends on the projection γ̄c ∈ ΓL/γh.) This is the piece of
F corresponding to states with charge of type γc + �γh. Let F±γ̄c

denote this
generating function on the side of the wall with Im(Zγh

(u)/ζ) > 0 and with
Im(Zγh

(u)/ζ) < 0, respectively. Then we have

F±γ̄c
= F∓γ̄c

∏
γh

Mγh∏
m=−Mγh

2Jγc,γh∏
m′=−2Jγc,γh

(1 + (−1)mym+m′
xγh

)am,γh . (3.29)

Here we have slightly abused notation: the first product over γh means the
product over all halo charges giving the same wall Ŵ (γh). Whether we
choose F+ or F− on the LHS (i.e., whether we gain or lose a Fock space)
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depends on the direction in which the wall is crossed and the sign of 〈γc, γh〉.
(See (3.45) below for a more precise statement.)

This transformation resembles the effect of a “coordinate transformation”
of the formal variables xγ which multiplies each xγc by a rational function
of xγh

. Unfortunately, this interpretation is not quite compatible with the
multiplication rule (3.25). It does work out well if y = 1, as we now show.
In this case (3.29) specializes to

F±γ̄c
= F∓γ̄c

∏
γh

Mγh∏
m=−Mγh

(1 + (−1)mxγh
)|〈γh,γc〉|am,γh . (3.30)

The “coordinate” transformation

xγ → xγ

∏
γh

Mγh∏
m=−Mγh

(1 + (−1)mxγh
)〈γh,γ〉am,γh (3.31)

precisely reproduces (3.30) as we cross the wall from the side Im(Zγh
(u)/ζ) <

0 to the side Im(Zγh
(u)/ζ) > 0. Moreover, it is compatible with the product

law (3.25).

If y = −1, the factor ym′
in (3.29) coincides with −(−1)〈γh,γc〉. There is a

simple trick to tame these extra signs: modify the multiplication rule from
(3.25) to

x̂γ x̂γ′ = (−1)〈γ,γ′〉x̂γ+γ′ . (3.32)

Then, using the relation x̂γc+nγh
= x̂γc

(
(−1)〈γh,γc〉x̂γh

)n
, we get an analog

of (3.30),

F±γc
= F∓γc

∏
γh

Mγh∏
m=−Mγh

(1− x̂γh
)|〈γh,γc〉|am,γh . (3.33)

The transformation rule

x̂γ → x̂γ

∏
γh

(1− x̂γh
)〈γh,γ〉Ω(γh) (3.34)

applied to the y = −1 generating functional correctly reproduces (3.33), and
is compatible with the twisted multiplication rule (3.32).
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To state this more carefully, if ζcw is on the clockwise side of the BPS
wall Ŵ (γh) and ζccw is on the counterclockwise side, then, suppressing all
other irrelevant indices, the generating function F obeys

F (ζcw, x̂γ) = F
(
ζccw, x̂γ(1− x̂γh

)−〈γ,γh〉Ω(γh)
)

. (3.35)

The transformation (3.34) used above is exactly the symplectomorphism
introduced in [5]: defining Kγh

by

Kγh
(x̂γ) := x̂γ(1− x̂γh

)〈γ,γh〉, (3.36)

(3.34) is simply x̂γ → K−Ω(γh)
γh (x̂γ).

3.4.1 Noncommuting variables and quantum dilogarithms

For general y, we cannot interpret (3.29) in terms of a change of variables, at
least not commuting variables. But suppose we introduce formal variables
Xγ satisfying the relation

XγXγ′ = y〈γ,γ′〉Xγ+γ′ , (3.37)

and again consider the generating function

F (u, L, ζ, {Xγ}; y) :=
∑

γ

Ω(u, L, ζ, γ; y)Xγ , (3.38)

now as a function of these noncommuting variables. In this case, as we
will now see, the effect of adding or subtracting halo boundstates is nicely
summarized by a certain transformation of the Xγ . This transformation is
implemented by conjugation with the quantum dilogarithm of Faddeev and
Kashaev [29]. (See [30], Appendix A, for a useful summary of the various
properties and sobriquets enjoyed by this function.)

First, we need a mathematical lemma. Suppose 〈γc, γh〉 = n is not zero.
Let us define Laurent polynomials in y by expanding the commutative vari-
ables in the group algebra:

xγc(1 + yn−1xγh
)(1 + yn−3xγh

) · · · (1 + y3−nxγh
)(1 + y1−nxγh

)

=
|n|∑
j=0

P
(n)
j (y)xγc+jγh

. (3.39)
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Physically it is obvious that P
(n)
j (y) is just the character of the jth antisym-

metric product Λjρ|n| where ρN is the N -dimensional irreducible represen-
tation of SU(2).12 Our lemma states that the same Laurent polynomials
appear when expanding the noncommutative expression

XγcΦn(Xγh
) =

|n|∑
j=0

P
(n)
j (y)Xγc+jγh

, (3.42)

where

Φn(ξ) :=

⎧⎪⎨⎪⎩
∏n

s=1(1 + y−(2s−1)ξ) n > 0,
1 n = 0,∏|n|

s=1(1 + y(2s−1)ξ) n < 0.
(3.43)

The proof of this lemma is straightforward and will be omitted.

Using this lemma we can state that the effect of a wall-crossing is to
transform all the noncommutative variables in (3.38) by

Xγ → Xγ

Mγh∏
m=−Mγh

Φ〈γ,γh〉((−1)mymXγh
)εam,γh . (3.44)

In this transformation law, we are crossing the wall Ŵ (γh). The sign ε = +1
if we cross from the side where 〈γh, γ〉 Im(Zγh

(u)/ζ) < 0 to the side, where
〈γh, γ〉 Im(Zγh

(u)/ζ) > 0 since in this case we gain a Fockspace of halo
particles around the core charge γ. The sign ε = −1 if we cross the wall in
the other direction since in this case we lose a Fockspace of halo particle
boundstates. If we denote by F+, F− the formal generating function (3.38)
on the side of the wall with Im(Zγh

(u)/ζ) > 0 and < 0, respectively, then

12Incidentally, it is amusing and will be useful to note that there is a “q-binomial
theorem” that also identifies (take n > 0):

P
(n)
j (y) =

[n]y!

[j]y![n− j]y!
:=

[
n

j

]
, (3.40)

where

[n]y :=
yn − y−n

y − y−1
. (3.41)
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(suppressing all other irrelevant variables):

F+(Xγ) = F−

⎛⎜⎝Xγ

⎛⎝ Mγh∏
m=−Mγh

Φ〈γ,γh〉((−1)mymXγh
)am,γh

⎞⎠sign(〈γh,γ〉)⎞⎟⎠ .

(3.45)

The transformation (3.44) is elegantly summarized by conjugation with
the quantum dilogarithm. Define

Φ(X) :=
∞∏

k=1

(1 + y2k−1X)−1. (3.46)

Then the transformations (3.44) and (3.45) are simply equivalent to
the rule:

F+(Xγ) = Sγh
F−(Xγ)S−1γh

, (3.47)

where

Sγh
=
∏
γh

Mγh∏
m=−Mγh

Φ((−1)mymXγh
)am,γh , (3.48)

where once again the first product means we take the product over all parallel
charges to γh. Accordingly, the generating function of framed degeneracies
(3.38) transforms by conjugation with Sγh

.

3.5 The motivic WCF

Let B̂ be the universal cover of the smooth part of the Coulomb branch B
and consider

Ξ := B̂ × Ĉ∗ − ∪γ:∃u:Ω(γ;u) �=0Ŵ (γ). (3.49)

This space is divided into chambers — the connected components of Ξ.
Let us label these chambers by an index denoted c. Suppose we consider
two chambers c1, c2 of Ξ. Consider a path P in B̂ × Ĉ∗ connecting these
chambers. The generating functions (3.38) for a line operator L in the two
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chambers will be related by some composition of transformations of the
form (3.47):13

F (L; c1) = S(P)F (L; c2), (3.50)

where S(P) is the path ordered product of transformations associated to the
walls Ŵ (γi

h) crossed by the P on going from c1 to c2

S(P) =
∏
γi
h

Ad(Sγi
h
). (3.51)

We would like to conclude that the product of transformations
∏

γi
h
Ad(Sγi

h
)

is independent of the path P joining c1 to c2. This will be true provided the
theory has enough line operators L that knowing the action of the trans-
formations (3.50) is strong enough to determine completely S(P). We do
not have a totally general reason why this works (indeed, we do not have a
totally general reason why there should be any line operators at all). How-
ever, we will see in examples below that there are always enough line oper-
ators; indeed, in the examples there is a one–one correspondence between
line operators and electromagnetic charges at any point of the Coulomb
branch, and one can recover any Xγ as a linear combination of the functions
F (L, {Xγ}). See Section 12 below for further discussion.

The path-independence of S(P) is actually a version of the “motivic wall-
crossing formula” of Kontsevich and Soibelman [5]. To see this consider two
paths joining (ζ1, u1) to (ζ2, u2) in B̂ × Ĉ∗ as illustrated in figure 2, and let
us compare generating functions F (L, c1) and F (L, c2) for the two chambers
c1, c2 in Ξ containing (ζ1, u1) to (ζ2, u2), respectively. Suppose we go along a
path (ζ1, u1)→ (ζ2, u1)→ (ζ2, u2); and we assume that no argZγ(u) enters
or leaves the interval (arg ζ1, arg ζ2) as u varies along the path from u1 to
u2. Then all the functions F (L, c1) get transformed by the ordered product

S(ζ1, ζ2;u1) =
∏

γ:argZ(γ)∈(ζ1,ζ2)

Ad(Sγ). (3.52)

On the other hand, if we take the path which follows (ζ1, u1)→ (ζ1, u2)→
(ζ2, u2) then they get transformed instead by S(ζ1, ζ2;u2). Thus we have,

13Observe that here we have snuck in the assumption that the generating functions can
be continued from the unit circle |ζ| = 1 to C∗. That assumption is not essential in the
present argument, nor in the discussions of Sections 4 and 5. However, it will be important
in Section 6.
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Figure 2: Two paths from (ζ1, u1) to (ζ2, u2). The BPS rays appear as
codimension-1 loci in the joint (ζ, u) space. Each BPS wall Ŵ (γ) has a
coordinate transformation attached. The walls can coalesce and split as
shown, and hence the two paths in general cross different sets of BPS walls.
Nevertheless, the composition of the corresponding coordinate transforma-
tions must be independent of the path.

for all line operators L:

S(ζ1, ζ2;u1)F (L, c1) = S(ζ1, ζ2;u2)F (L, c1). (3.53)

We would like to conclude from (3.53) that the two transformations are
indeed equal:

S(ζ1, ζ2;u1) = S(ζ1, ζ2;u2). (3.54)

As we discussed above, we must make an assumption that there exist suffi-
ciently many line operators L that we can conclude (3.54).

One slight difference from the standard discussion is that we here only
obtain an equality of products of quantum dilogs in the “adjoint representa-
tion.” Nevertheless, following the discussion from equation (3.31) to (3.34)
we learn that the specialization to y = −1 gives the equality (3.54) where
now

S(ζ1, ζ2;u1) =
∏

γ:argZ(γ)∈(ζ1,ζ2)

KΩ(γBPS;u1)
γ . (3.55)

Equation (3.54) with S given by (3.55) is the form of the Kontsevich–
Soibelman WCF, which was discussed in [1, 2]. Knowing S(ζ1, ζ2;u) for
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all ζ1,2 is equivalent to knowing the set of BPS indices at u. Determining
the full BPS spectrum requires more information, namely the PSCs.

We end this section by commenting on some related literature. WCFs
involving noncommutative (q-deformed) quantum dilogarithms appeared in
the work of Kontsevich and Soibelman [5]. The classical limit (q = −1) was
also discussed there, and yielded directly a WCF for the second helicity
supertrace in N = 2 theories, proven physically in [1]. However, initially it
was not completely clear how to extend this success to the q-deformed con-
text. In [10], it was proposed that one should identify q with the parameter
y counting the spins of BPS states; in [11] this proposal was sharpened to a
precise WCF, which was shown to work in several examples. Nevertheless a
general physical proof was still missing. A novel argument was given in [31],
where the commutation relations (3.37) and the WCF were connected to the
A model open topological string and hence to Chern–Simons theory. Here,
we have given a direct proof using general notions from four-dimensional
gauge theory.

3.6 The deformed ring of line operators

As we mentioned in Section 2.2 the parallel supersymmetric line operators
preserving osp(4∗|2)ζ at different points 
xi ∈ R3 can be multiplied and re-
expanded as sums of line operators. This operation defines a ring, which
should be commutative, since there is no natural ordering of points in R3,
and associative, since they are operators. It is natural to wonder how this
ring structure is related to the framed PSCs and framed BPS degeneracies.
It turns out that the generating functions F (L) defined in equation (3.38)
are well suited to discussing this question. In this section, we are going
to see that they can be used to define a very interesting noncommutative
deformation of the ring of line operators.

Suppose we put one line operator L at 
x = 0 and another L′ at 
x′ =
(0, 0, z) displaced along the z-axis. Note that rotations generated by J3 are
symmetries of this configuration but the so(3) symmetry has been broken
to so(2). If z �= 0 and L and L′ are mutually local in the sense explained
in Section 2.3 the Hilbert space HL�xL′

�x′
is a representation of U(1)�x�x′ ⊂

SU(2). If L and L′ are simple then the Hilbert space HLL′ is also graded
by Γ + γL + γL′ , and the summands in the grading satisfy

HBPS
L�xL′

�x′ ,γ0
=

⊕
γ+γ′=γ0

HBPS
L,γ ⊗HBPS

L′,γ′ ⊗Nγ,γ′ . (3.56)
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Here, Nγ,γ′ is a one-dimensional representation of U(1)�x�x′ . It results from
the electromagnetic fields excited by the pair of dyons. Its contribution to
the PSC is therefore14

TrNγ,γ′y
2J3 = y〈γ,γ′〉. (3.57)

Recalling the definition (3.38) of the generating functions F (L) and the
Heisenberg relation (3.37) we see that equation (3.56) can be used to define
a noncommutative product of line operators:

F (L ◦y L′) := F (L)F (L′). (3.58)

In general, F (L)F (L′) �= F (L′)F (L), as is clear from examples discussed
below.

In Section 2.2, we described a commutative product on line operators.
It might therefore seem surprising to find that there is a noncommutative
deformation of this product. The distinction is whether one first takes the
OPE of operators limz→0 LL′, to produce a sum of line operators, or instead
first takes the trace on the Hilbert space. These procedures do not commute:

lim
z→0

F (LL′) �= F
(
lim
z→0

LL′
)

. (3.59)

In order to understand better the relation between the commutative and
noncommutative products, let us suppose that there is a collection of simple
objects Li which generate the set of all line operators. For example, any of
the collections L of line operators discussed in Section 2.3 would do. The
simple objects have the property that any line operator can be written as∑

ciLi where ci are positive integers. In order to define the ring structure
it suffices to compute the fusion coefficients

lim
z→0

LiLj =
∑

k

ck
ijLk. (3.60)

However, the analogous decomposition of Hilbert spaces takes the form

HLiLj = ⊕kN
k
ij ⊗HLk

(3.61)

This is an equality of U(1)�x�x′ representations. The surprise (at least for the
authors) is that in some examples it turns out that Nk

ij can be a nontrivial

14This should be contrasted with what happens for the primitive WCF for vanilla BPS
states. In that case the electromagnetic field has SU(2) spin 2j = |〈γ, γ′〉| − 1. The extra
−1 arises from the alignment of the center of mass degrees of freedom of the two separate
constituents.
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representation of U(1)�x�x′ . We introduce

ck
ij(y) := TrNk

ij
y2J3 . (3.62)

This is a Laurent polynomial in y with positive integral coefficients and
satisfies ck

ij(1) = ck
ij . In these terms, the commutative ring of line operators

(3.60) is deformed to

F (Li ◦y Lj) =
∑

k

ck
ij(y)F (Lk). (3.63)

Because the N = 2 theory is parity invariant we have ck
ij(y) = ck

ji(1/y). Note
the product ◦y is therefore commutative when y2 = 1.

In order to understand the need forNk
ij to be a nontrivial representation of

SO(2), we need to be a little cautious about the identification of the correct
quantum number J3 (and hence F = 2J3mod 2) for the system of two sepa-
rate line operators. First of all, in order for J3 even to be defined, we need the
two operators to be brought together along the z-axis. Furthermore, while
for a single line operator the definition of J3 is unambiguous (constant shifts
would not be compatible with the nonabelian rotation group), for a system
of two defects the unbroken rotation group is abelian, and overall constant
shifts may appear when comparing the J3 which appear in the definition of
the framed PSCs for LL′ and for the individual line operators Li. This shift
ambiguity is captured by the SO(2) grading of the multiplicities Nk

ij .

Note that our product formulae pass a very stringent test, consistency
with wall-crossing: as long as the products are executed with the rule
XγXγ′ = y〈γ,γ′〉Xγ+γ′ , the action of the wall-crossing transformations com-
mutes with the product.

4 Formal line operators and their remarkable wall-crossing
properties

The combination of the halo wall-crossing picture and the strong positivity
conjectures is very powerful. Strong positivity does not leave space for
cancellations in the spin character. The coefficients of ymXγ are actual
dimensions of Hilbert spaces, graded by the IR charges and so(3) spin. As
we vary ζ, the parameters and vacuum expectation values of the theory,
the halo wall-crossing concretely adds or removes subspaces of these Hilbert
spaces, but the dimensions must always remain non-negative. This is a
very powerful constraint, and in this subsection we would like to explore its
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consequences for some concrete N = 2 theories with simple, well understood
vanilla BPS spectra.

4.1 Chambers and the generating function

In this section, we make some formal definitions that summarize the behavior
of the generating functions (3.38).

Introduce the noncommutative ring Z[y, y−1, Xγ ]/I where the ideal I

is generated by the relations yXγ = Xγy and XγXγ′ = y〈γ,γ′〉Xγ+γ′ . Now
recall the space Ξ defined in (3.49). As mentioned there, Ξ is divided into
chambers. We will label the chambers by c, where c varies over some index
set. We define a strongly positive formal line operator to be a collection of
elements F (c) ∈ Z[y, y−1, Xγ ]/I such that

(1) Across walls Ŵ (γ) between chambers c+, c−,

F (c+) = SγF (c−)S−1γ , (4.1)

where c+, c− is the chamber where Im(Zγ/ζ) is positive, negative,
respectively, and Sγ is defined in (3.48).

(2) In each chamber c of Ξ,

F (c) =
∑

γ

P c
γ (y)Xγ , (4.2)

where P c
γ (y) is the character of some (true, not virtual) representation

of SU(2).

The second item above defines the “strongly positive” condition. We
note that the definition we have given is very closely related to the universal
Laurent polynomials introduced by Fock and Goncharov in their study of
cluster ensembles [17].

If the strong positivity conjecture holds, the generating function F (L) of
a line operator (3.38) is a strongly positive formal line operator. We denote
formal line operators as F . As for actual line operators, when considering
families of line operators, F is subject to monodromies in the UV parame-
ters. Of course, if we define chambers on B × C∗ rather than its universal
cover, then we will have monodromy in this space too.

In the next subsections, we will examine some examples of formal line
operators in some simple N = 2 theories. In these cases, we will find some
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important simplifications in the chamber structure. For example, we will
only consider walls involving a single hypermultiplet. The full quantum
dilogarithm technology of Section 3.4 is a bit of overkill in this case — we
can just apply (3.29) directly to remove or add haloes as necessary. The
wall-crossing rule for a single hypermultiplet in passing from a region with
Im(Zγh

/ζ) < 0 to a region with Im(Zγh
/ζ) > 0 comes out to be simply

Xγc →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
j=0

ch
(
ΛjρN

)
Xγc+jγh

〈γh, γc〉 = N > 0,

∞∑
j=0

(−1)jch(SjρN

)
Xγc+jγh

〈γh, γc〉 = −N < 0.

(4.3)

Here ρN is the N -dimensional representation of SU(2). The first line of (4.3)
clearly preserves positivity. However, the second line shows that it is highly
nontrivial to maintain positivity. Note that in the first case the sign of the
inner product is such that we move into a region, which supports a halo of γh
particles around the core γc, while in the second case we move into a region
which does not support such halo configurations. The rule for transforming
from a region with Im(Zγh

/ζ) > 0 to a region with Im(Zγh
/ζ) < 0 similarly

works out to be

Xγc →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
j=0

(−1)jch(SjρN

)
Xγc+jγh

〈γh, γc〉 = N > 0,

N∑
j=0

(
chΛjρN

)
Xγc+jγh

〈γh, γc〉 = −N < 0.

(4.4)

Again, positivity is manifestly preserved when we move into a region that
supports halo configurations, but otherwise it is not. Of course, applying
(4.3) followed by (4.4) must give the identity operator. This implies the
somewhat nontrivial identity∑

j+k=�

(−1)jch(SjρN

)
ch
(
ΛkρN

)
= δ�,0, (4.5)

for integers � ≥ 0. This is how halos are “removed” when using (4.3) to pass
from a region supporting halo configurations to one which does not.

We would like to make one final remark on equations (4.3) and (4.4).
Note that when the expression is finite it is manifestly strongly positive, but
when it is infinite it is not. This suggests that finiteness of the expansion in
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Xγ is correlated with strong positivity. In Sections 4.2 and 4.3, we will con-
struct strongly positive formal line operators in some simple field theories.
However, in Section 4.4 we will treat a more complicated field theory where
it is difficult for us to prove strong positivity of the formal line operators
we construct. Nevertheless, motivated by all the explicit examples and the
above observation, we would like to conjecture that if a formal line operator
is strongly positive in a single chamber and has a finite Darboux expansion
in all chambers then it is in fact strongly positive.

4.2 Formal line operators and U(1) gauge theory

There is a convenient toy model that captures key aspects of the behavior of
formal line operators: a U(1) gauge theory with a single hypermultiplet of
electric charge 1. This theory is not well defined in the UV, but it does cap-
ture the behavior of well-defined theories near singularities of the Coulomb
branch B.
In this example, B∗ is the punctured disc, with Γ a rank two local system.

The fiber of Γ is generated by γ1, γ2, with 〈γ1, γ2〉 = +1, and the counter-
clockwise monodromy around the origin acts by

γ1 → γ1 + γ2, γ2 → γ2. (4.6)

We denote pγ1 + qγ2 by (p, q). We can take Zγ2(u) = u. We will not need
an explicit formula for Zγ1(u), because the only nonzero vanilla BPS degen-
eracies are Ω(±γ2) = +1. There is no wall-crossing for the vanilla BPS
degeneracies.

We expect to be able to find line operators corresponding to Wilson–
’t Hooft line operators of various electric and magnetic charges. Because
of the one-loop beta function due to the presence of the charged particle,
we expect to see the effect of an anomalous R-symmetry: an R-symmetry
transformation requires a shift of the θ angle, which in turn induces, by
Witten’s effect, a shift of the electric charge of magnetically charged objects.
This results in a monodromy of line operator labels under rotation of ζ
by 2π. There will be a beautiful interplay between this monodromy and
wall-crossing.

The universal cover B̂ × Ĉ∗ is C× C with coordinates (log u, log ζ). Given
our vanilla BPS spectrum, the walls are

Ŵ (γ2) = �n∈Z{(log u, log ζ) : arg u− arg ζ = (2n+ 1)π}, (4.7)

Ŵ (−γ2) = �n∈Z{(log u, log ζ) : arg u− arg ζ = 2nπ}, (4.8)
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Figure 3: Chambers and strongly positive formal line operators in the very
simplest case, a U(1) gauge theory with a single BPS hypermultiplet. Here
n = 0 mod 2 and p > 0. Regions that are stable to halo formation are
shaded.

and hence the chambers can be taken to be

cn := {(log u, log ζ) : nπ < arg u− arg ζ < (n+ 1)π}. (4.9)

Let us now try to construct a formal line operator F
(n)
p,q , by declaring

its value in chamber cn to be F
(n)
p,q (cn) = Xp,q. This is the naive generating

function for a Wilson–’t Hooft line operator of electric charge q and magnetic
charge p. The transformation laws (4.3) and (4.4) then determine F

(n)
p,q in

all other chambers, and we may ask: do they obey the strong positivity
constraint?

First of all, if p = 0 there is no transformation and hence F
(n)
0,q (c) = X0,q

for all chambers c. This certainly obeys the constraint of formal positiv-
ity. Since they are actually independent of n we denote these formal line
operators simply by F0,q. These are Wilson line operators of charge q, and
have no interesting wall-crossing because the vanilla particles carry electric
charge only.

Now, note that in the stability condition 〈γh, γc〉ImZγh
/ζ > 0 we need

only consider γh = ±γ2, and in fact the condition is the same for these two
charges. If γc = (p, q) then the stability condition becomes −pImZγ2/ζ > 0.
Thus for p > 0, there can be halo configurations in cn for n odd and not for
n even, and if p < 0 there can be halo configurations in cn for n even and
not for n odd. See figures 3 and 4.

In analyzing the behavior of F
(n)
p,q there are four cases to consider: n can

be even or odd, and p can be positive or negative.
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Figure 4: Chambers and strongly positive formal line operators in the very
simplest case, a U(1) gauge theory with a single BPS hypermultiplet. Here
n = 1 mod 2 and p < 0. Regions that are stable to halo formation are
shaded.

(1) n = 0 mod 2, p > 0. In this case, we cross a wall of type Ŵ (γ2) in
going from cn to cn+1. We apply the second line of (4.4) and find that

F (n)
p,q (cn+1) =

p∑
j=0

[
p

j

]
Xp,q+j . (4.10)

Similarly, in passing from cn to cn−1 we pass through a wall of type
Ŵ (−γ2). Now we apply the first line of (4.3) and obtain

F (n)
p,q (cn−1) =

p∑
j=0

[
p

j

]
Xp,q−j . (4.11)

When we continue from cn+1 to cn+2 we could apply our formal rules
and use the identity (4.5), but it is simpler to work backwards, recalling
that the stability condition does not allow halos in the chamber cn+2.
Therefore, in passing from cn+2 to cn+1 through the wall Ŵ (−γ2), we
must be creating a halo of particles of charge −γ2. This operation
would indeed produce (4.10), if and only if

F (n)
p,q (cn+2) = Xp,q+p. (4.12)

In a similar way, continuing to chamber cn−2 we find F
(n)
p,q (cn−2) =

Xp,q−p. The pattern clearly continues in both directions and thus F
(n)
p,q

is a formal line operator. Moreover, this equation shows that F
(n)
p,q =

F
(n+2)
p,q+p , so without loss of generality we can reduce these operators

to a single set defined by the value in the chamber c0. The shift of
electric charge as n → n+ 2 has two independent interpretations: if
we interpret it as the result of a monodromy of the ζ variable, it is the
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monodromy of UV labels Fp,q → Fp,q+p, while if we interpret it as the
result of a monodromy in the u plane it expresses the monodromy of
the IR charge lattice Γ around the singular locus u = 0.
Finally, this example illustrates that in expanding F in terms of Xγ ,

there is no invariant distinction between the summands representing
cores and those representing haloes. Indeed, in crossing Ŵ (γ2) from cn

to cn+1 the core charge is (p, q), but when crossing Ŵ (−γ2) from cn+2

to cn+1, the core charge is (p, q + p). This is as expected from our
physical picture: the distinction between cores and haloes is sharp
only when we are very close to a wall.

(2) n = 0 mod 2, p < 0. Now the stability condition allows halos in the
chambers cn and not in cn±1, so we should expect trouble since when
we try to continue to the adjacent chambers cn±1 we cannot have halo
configurations. Indeed, now crossing the wall Ŵ (γ) into chamber cn+1

we must apply line 1 of (4.4). Acting with this transformation on Xp,q

clearly gives an expression which violates strong positivity. Thus, F (n)
p,q

does not give a formal line operator.
(3) n = 1 mod 2, p > 0. This is similar to the case of (n = 0 mod 2, p <

0) and does not give a formal line operator.
(4) n = 1 mod 2, p < 0. This is similar to the case of (n = 0 mod 2, p >

0). It does give a formal line operator, with

F (n)
p,q (cn+1) =

|p|∑
j=0

[|p|
j

]
Xp,q−j , (4.13)

and F
(n)
p,q (cn+2) = Xp,q+p. Again F

(n)
p,q = F

(n+2)
p,q+p , so we can restrict

without loss of generality to F
(1)
p,q .

In summary, because F
(n)
p,q = F

(n+2)
p,q+p it suffices to consider the chambers

n = 0 and 1 in order to construct those strongly positive formal line opera-
tors, which reduce to a monomial in some chamber. The resulting operators
are in one–one correspondence with pairs of integers (p, q). Hence, we may
simply denote them by Fp,q. If p = 0 then F0,q = X0,q in all chambers. If
p > 0 then Fp,q = Xp,q in chamber c0 and if p < 0 then Fp,q = Xp,q in cham-
ber c1. These are clearly simple line operators and in fact they are the only
simple line operators: given any formal line operator we can split it into a
piece with positive magnetic charges, a piece with no magnetic charges and
a piece with negative magnetic charges only. Clearly the piece with positive
magnetic charges can be decomposed into simple pieces just by decomposing
it into monomials in a chamber with even n. A similar statement holds true
for the piece with negative magnetic charge and odd n, and the piece with
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no magnetic charge and any n. The formal line operators Fp,q should be
identified with the PSCs of ’tHooft–Wilson loops in the U(1) theory.

Even in this simplest example the algebra of formal line operators is
already somewhat nontrivial, although simple enough to write down explic-
itly. Indeed, F±1,0, F0,±1 already generate a ring. One readily works out the
relation F1,0F−1,0 = 1 + yF0,1 by hand, but higher multiplication involves
cumbersome manipulation of q-binomial coefficients. The ring relations can
be easily worked out as follows. First, it is very easy to check that

Fp,qFr,s = yps−qrFp+r,q+s (4.14)

holds if p ≥ 0, r ≥ 0 or if p ≤ 0, r ≤ 0, because we can evaluate in chambers
c0 or c1, where the operator is a monomial. The case where p, r have opposite
sign is more nontrivial. Suppose for definiteness that p ≥ 0, r ≤ 0. Then, by
definition:

Fp,qFr,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xp,q

⎛⎝ |r|∑
j=0

[|r|
j

]
Xr,s+j

⎞⎠ in c0,

⎛⎝ p∑
j=0

[
p

j

]
Xp,q+j

⎞⎠Xr,s in c1

(4.15)

and hence carrying out the multiplications we have:

Fp,qFr,s =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
yps−qr

|r|∑
j=0

[|r|
j

]
ypjXp+r,q+s+j in c0,

yps−qr
p∑

j=0

[
p

j

]
y−rjXp+r,q+s+j in c1.

(4.16)

Now, to identify what line operator the RHS corresponds to we should view
the result in the chamber in which the line operator with magnetic charge
p+ r is a monomial. Thus, we obtain the product on line operators:

Fp,qFr,s =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
yps−qr

|r|∑
j=0

[|r|
j

]
ypjFp+r,q+s+j p+ r ≥ 0,

yps−qr
p∑

j=0

[
p

j

]
y−rjFp+r,q+s+j p+ r ≤ 0.

(4.17)
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We can easily obtain the other case where p ≤ 0, r ≥ 0 by recalling that
F (L1)F (L2) is the same as F (L2)F (L1) with the replacement y → 1/y.
A brute force check of (4.17) implies nontrivial identities on y-binomials
(the y-deformed Pascal relations),

yj

[
p

j

]
=
[
p− 1

j

]
+ yp

[
p− 1
j − 1

]
. (4.18)

4.2.1 Higher charges

A natural modification of this construction is to consider a U(1) theory
coupled to an hypermultiplet of electric charge Q. That is, we now consider
the BPS spectrum

Ω(γ) =

{
1 γ = ±Qγ2,

0 else.
(4.19)

We can get the formal line operators immediately by a small trick: if we
rescale the electric and magnetic charge lattices of the theory by an opposite
factor of Q, we go back to the Q = 1 case. The algebra relations above
apply to F ′p′,q′ where F ′p′,q′ := FQ−1p′,Qq′ . Honest line operators must have
an integral number of charges. Thus, we now obtain the relation

F1,0F−1,0 =
Q∑

j=0

[
Q

j

]
yQjF0,Qj . (4.20)

4.3 Formal line operators and N = 3 Argyres–Douglas (AD)
theory

We now describe the formal line operators for the simplest example of a
theory with wall-crossing. This is the N = 3 AD theory. See Section 9.4
of [2] for further details about this theory. Briefly, B = C− {u+, u−}. The
universal cover is already somewhat complicated, so we will work at definite
regions on the u-plane and consider the chambers in the (universal cover of
the) ζ-plane. The best description of the local system is that Γ = H1(Σu, Z)−
where Σu is the fiber of a family of Riemann surfaces over B defined by

λ2 = (z3 − 3Λ2z + u)(dz)2, (4.21)

where z ∈ C. The fibers Γu are rank two and will be taken to have gener-
ators γ1, γ2 with 〈γ1, γ2〉 = 1. Vectors pγ1 + qγ2 will sometimes be denoted
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Figure 5: BPS walls for the N = 3 AD theory at u = 0 with Λ > 0 projected
to the ζ-plane.

(p, q). There are two singular points at u = u± = ±2Λ3 around which Γ has
monodromy. (See equation (9.30) of [2].) The spectrum of BPS states was
determined in [2]. The base B should be divided into three regions Bs,B±w
on which Γ can be trivialized. Bs is a region around u = 0 and B±w are two
regions around u =∞. There is a connected wall passing through u±, which
separates Bs from B±w . We have

Ω(γ;u) =

{
1 γ = ±γ1,±γ2,

0 else
(4.22)

for u ∈ Bs and wall-crossing then determines

Ω(γ;u) =

{
1 γ = ±γ1,±γ2,±(γ1 + γ2),
0 else

(4.23)

for u ∈ B+w . The spectrum in B−w follows from monodromy or wall-crossing.

A suitable choice of cycles of Σu at u = 0 gives Zγ1 = −iΛ5/2K and Zγ2 =
−KΛ5/2 with K > 0 a (computable) constant. The projection of the BPS
walls for u = 0 into the ζ plane then appear as in figure 5. Note that in
crossing each wall Ŵ (γh) we pass from the region with Im(Zγh

/ζ) > 0 to the
region with Im(Zγh

/ζ) < 0 when traveling in the clockwise direction. Thus
when transforming across walls in the clockwise direction we should apply
the rule (4.4) while when transforming in the counterclockwise directions we
should apply the rule (4.3).

Let us follow the strategy of Section 4.2 and try to find formal line opera-
tors, which reduce to a monomialXp,q in some chamber in the ζ-plane. Intro-
duce chambers cn where π

2 (1− n) < arg ζ < π
2 (2− n). The first obstruction
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Figure 6: The first sheet of the five-sheeted cover contains four chambers.

comes from single wall-crossings in the clockwise or counterclockwise direc-
tions. This leads to the result that Xp,q can only satisfy formal positivity if:

(1) p ≥ 0, q ≥ 0 in cn for n = 1 mod 4
(2) p ≤ 0, q ≥ 0 in cn for n = 2 mod 4
(3) p ≤ 0, q ≤ 0 in cn for n = 3 mod 4
(4) p ≥ 0, q ≤ 0 in cn for n = 0 mod 4

We will now show that this is the only obstruction.

For definiteness, let us start with Xγ1 in a chamber 0 < arg ζ < π
2 in the

universal cover Ĉ∗. Wall-crossing in the clockwise direction generates the
expressions shown in figure 6. We observe some of the same phenomena we
saw in the U(1) example. Crossing from c1 to c2 we gain a halo with core
charge γ1. Crossing from c2 to c3 we gain another halo, but this time the
core charge is γ1 + γ2 and the halo charge is −γ1. Crossing from c3 to c4
we lose a halo particle, with the core charge again interpreted as γ1 + γ2
but with halo particle of charge −γ2. Now if we continue in the clockwise
direction from this chamber we generate a new expression, Xγ2 . We have
again removed a halo particle from a halo with core γ2. Not surprisingly, we
have found there is monodromy and we really must discuss the wall-crossing
on the universal cover Ĉ∗. When doing so we find the schematic pattern:

· · · → X → X → X +X → X +X +X → X +X

→ X → X → X +X → · · · (4.24)

It turns out that the pattern is repeated with a period of 20 = 4× 5. Mod-
ding out the universal cover by this periodicity we obtain a 5-fold cover of
the ζ plane. Each sheet contains four chambers for a total of 20 chambers
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Figure 7: Continuing the analytic continuation in the clockwise direction to
the second sheet.

Figure 8: Continuing the analytic continuation in the clockwise direction to
the third sheet.

labeled c1, . . . , c20. The explicit expressions for the formal line operator in
all 20 chambers are illustrated in figures 6 to 10.

Unfortunately, this does not completely construct the strongly positive
line operator because we must check that it is strongly positive in the weak-
coupling region. Moving through the marginal stability wall into the region
B+w the walls for γ1 and γ2 merge and produce a third wall leading to the
new chamber structure in the ζ plane shown in figure 11. Each of the odd
chambers splits into two so there are 6 chambers on each sheet for a total
of 30 chambers. Note that the expressions in the even numbered chambers
cannot change from the strong-coupling region. It is straightforward to check
that wall-crossing produces strongly positive elements in the odd chambers
c2n+1,±.
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Figure 9: Continuing the analytic continuation in the clockwise direction to
the fourth sheet.

Figure 10: Continuing the analytic continuation in the clockwise direction
to the fifth sheet. Clockwise wall-crossing from chamber c20 produces Xγ1

and therefore the whole process repeats. Thus, chamber 21 on the universal
cover is identified with chamber 1, and chamber numbers should be identified
modulo 20 when working on the 5-fold cover.

Thus, we have completely constructed a strongly positive formal line oper-
ator. Using the monodromy operation we can in fact produce five distinct
formal line operators defined by

F1(c1) = Xγ1 ,

F2(c1) = Xγ2 ,

F3(c1) = X−γ1 +Xγ2−γ1 ,

F4(c1) = X−γ1 +X−γ1−γ2 +X−γ2 ,

F5(c1) = X−γ2 +Xγ1−γ2 .

(4.25)
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Figure 11: Chamber structure in one of the weak-coupling regions.

Using these operators we can produce a number of other strongly positive
operators as follows. Consider Fp,q := y−pqF p

1F q
2 for n, m ≥ 0. In the cham-

ber c1 with u in the strong-coupling regime this has value X(p,q). We claim
this generates a strongly positive formal line operator. A straightforward
attempt to check this rapidly becomes very difficult, but we can prove it
using the following trick. First, note that wall-crossing straightforwardly
produces strongly positive expressions if we move two chambers in either
the clockwise or counterclockwise direction. Indeed, we find the explicit
expressions:

Fp,q(c19) =
q∑

j=0

p+j∑
k=0

[
q

j

][
p+ j

k

]
Xp+j,q−k,

Fp,q(c20) =
q∑

j=0

[
q

j

]
Xp+j,q,

Fp,q(c1) = Xp,q,

Fp,q(c2) =
p∑

j=0

[
p

j

]
Xp,q+j ,

Fp,q(c3) =
p∑

j=0

q+j∑
k=0

[
p

j

][
q + j

k

]
Xp−k,q+j .

(4.26)

Of course, since q-binomials are true spin characters so are their products.
Thus (4.26) satisfies strong positivity. Now observe that F1 becomes a
monomial in the eight chambers c20, c1, c5, c6, c10, c11, c15, c16. Similarly,
F2 becomes a monomial in the eight chambers c1, c2, c6, c7, c11, c12, c16, c17.
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Thus, in chambers c1, c6, c11, c16 the expression Fp,q will be a monomial.
Explicitly, we have

Fp,q(c6) = X(−q,p),

Fp,q(c11) = X(−q,−p),

Fp,q(c16) = X(q,−p).

(4.27)

Now, applying the two-step clockwise and anticlockwise transformations
analogous to (4.26) to each of the expressions in (4.27) one checks that wall-
crossing produces strongly positive expressions. In this way we can cover all
twenty chambers for the strong-coupling region. An argument given at the
end of Section 5.3 implies that there is no obstruction to extending these as
strongly positive operators in the weak-coupling region.

In a similar way, we can generate strongly positive formal line operators
from products of the other line operators Fi. Relabeling Fp,q above by F

(1)
p,q

we can define (with p ≥ 0, q ≥ 0 in all cases):

(1) F
(2)
p,q = y−pqF p

2F q
3 which is a monomial in c2, c7, c12, c17

(2) F
(3)
p,q = y−pqF p

3F q
4 which is a monomial in c3, c8, c13, c18

(3) F
(4)
p,q = y−pqF p

4F q
5 which is a monomial in c4, c9, c14, c19

(4) F
(5)
p,q = y−pqF p

5F q
1 which is a monomial in c5, c10, c15, c20

Should we expect the F
(i)
p,q to exhaust the list of simple strongly positive

formal line operators? We can sketch a proof, which can be formalized with
the tools presented in Section 12. Consider the expansion of some formal
line operator F in chamber c1 and look at terms of the form an1,n2Xn1γ1+n2γ2

with n1 ≥ 0 and n2 ≥ 0. Is F̃ = F −∑n1>0,n2>0 an1,n2F
(1)
n1,n2 still strongly

positive? It is positive in c1, and has a finite number of terms in all other
chambers, hence it must be positive there as well (as the wall-crossing from
a chamber to the next can only add infinitely many negative terms to a
positive sum). Next, we can consider F̃ in chamber c2 and subtract appro-
priate multiples of F

(2)
p,q , etc. At the end of the process we are left with a

decomposition of F into a positive sum of F
(i)
p,q .

We can now explore the algebra generated by these operators. By com-
puting in chamber c1 it is straightforward to compute

F1F3 = 1 + yF2. (4.28)
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Since the other operators are generated by monodromy we have

Fi−1Fi+1 = 1 + yFi. (4.29)

To get the multiplication in the other order we take y → 1/y.

4.4 Formal line operators in pure SU(2) gauge theory

We now turn to gauge theories based on a gauge group with Lie algebra su(2)
and no flavors. At first sight these are deceptively similar to the N = 3 AD
theory. To describe the chamber structure and BPS spectrum we rely on
Section 10.1 of [2]. Once again, B = C− {u+, u−}, and the best description
of the charge lattice is that Γ = H1(Σu, Z)−, where Σu is now the fiber of a
family of Riemann surfaces over B defined by

λ2 =
(
Λ2

z3
+
2u
z2

+
Λ2

z

)
(dz)2, (4.30)

where z ∈ C∗. The fibers Γu are once again rank two and vectors pγ1 + qγ2
will sometimes be denoted (p, q). One very important difference from the
N = 3 AD theory is that now

〈γ1, γ2〉 = 2. (4.31)

There are two singular points at u = u± = ±Λ2 around which Γ has mon-
odromy. (See (10.4), (10.5) of [2].) The base B should be divided into three
regions Bs,B±w on which Γ can be trivialized. Bs is a region around u = 0
and B±w are two regions around u =∞. There is a connected wall passing
through u± which separates Bs from B±w . We have

Ω(γ;u) =

{
1 γ = ±γ1,±γ2,

0 else
(4.32)

for u ∈ Bs. The inner product (4.31) leads to a more complicated wall-
crossing than in the N = 3 theory: we find

Ω(γ;u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2 γ = ±(γ1 + γ2),
1 γ = ±[γ1 + n(γ1 + γ2)], n ≥ 0,
1 γ = ±[γ2 + n(γ1 + γ2)], n ≥ 0,
0 else

(4.33)

for u ∈ B+w . The spectrum in B−w follows from monodromy or wall-crossing.
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Figure 12: BPS walls for the pure SU(2) theory for u in the weak-coupling
region, projected to the ζ-plane. For clarity the Ŵ has been dropped in
labeling the walls. In the first quadrant, there are walls for charges nγ1 +
(n+ 1)γ2 and (n+ 1)γ1 + nγ2 for n ≥ 0, which accumulate at the wall for
γ1 + γ2 from either side. The wall-crossing on each of these walls is generated
by a single hypermultiplet, except for the central walls at ±(γ1 + γ2).

Now one can compute that at u ≈ 0 there is a suitable choice of basis
cycles γ1, γ2 satisfying (4.31), so that the chamber structure in the ζ plane
is identical to that of figure 5. In the weak coupling, on the other hand,
the situation is dramatically different. For fixed u ∈ B+w the projection of
the chambers to the ζ plane is shown in figure 12. One can choose a path
to large u to compare γ1, γ2 with the usual basis of magnetic and electric
charges. We can thereby identify γ1 = −1

2Hα + α and γ2 = 1
2Hα, so that

γ1 + γ2 is the charge of the W -boson.

Let us suppose u ∈ Bs. As in the N = 3 case it is easy to check which
monomials X(p,q) remain consistent with strong positivity after single wall-
crossings in both clockwise and counterclockwise directions. The result is
again:

(1) p ≥ 0, q ≥ 0 in cn, for n = 1 mod 4
(2) p ≤ 0, q ≥ 0 in cn, for n = 2 mod 4
(3) p ≤ 0, q ≤ 0 in cn, for n = 3 mod 4
(4) p ≥ 0, q ≤ 0 in cn, for n = 0 mod 4.

In the remainder of this section, we are going to show that under arbitrary
wall-crossings these monomials generate finite expansions in Xγ . According
to the remark made at the end of Section 4.1 this is conjecturally sufficient
to prove strong positivity. We will give some plausibility arguments for this
assumption below. Using the reasoning at the end of Section 5.3, we expect
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that there is no obstruction to extending these as strongly positive operators
in the weak-coupling region.

If we attempt to construct a strongly positive formal line operator starting
from a monomial we rapidly find somewhat complicated expressions, even in
the strong-coupling regime. We will see that there is no finite monodromy
in the ζ plane. Let us begin by examining an example. It is convenient to
introduce the notation

[a, b] := X 1
2
(aγ1+bγ2)

(4.34)

and consider a formal line operator defined by starting with F (c1) = [1, 0].
We now start generating the values in the other chambers by wall-crossing in
the clockwise direction. It will insightful to organize the terms in triangular
arrays. Doing this makes it easy to recognize the annihilation of halos across
walls. Moving in the clockwise direction we find that F (c2) is given by:

[1, 2]
+
[1, 0]

(4.35)

F (c3) is given by

[−3, 2] + ρ2[−1, 2] + [1, 2]
+
[1, 0]

(4.36)

Here to save writing we identify the character of a representation with the
representation itself. Thus, ρN stands for [N ]. This proves useful as the
expressions become lengthier. Both the row and the column terms in (4.36)
can be viewed as halo configurations with [1, 2] serving as the core charge.
Next, crossing into chamber c4 the vertical column is killed because a halo
is removed but two other vertical columns are produced due to halos being
created and so F (c4) is

[−3, 2] + ρ2[−1, 2] + [1, 2]
+ +

ρ3[−3, 0] ρ2[−1, 0]
+

ρ3[−3,−2]
+

[−3,−4]

(4.37)

Once again we see that the corner term [−3, 2] serves as a core particle
for a horizontal and vertical halo. Now, moving into the next chamber
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across Ŵ (γ1) the horizontal halo in the first row collapses to its core and we
get F (c5)

[−3, 2]
+

ρ3[−3, 0] ρ2[−1, 0]
+ +

ρ3[−3,−2] + (ρ2 + ρ4)[−1,−2] + ρ3[1,−2]
+ +

[−3,−4] + ρ4[−1,−4] + Λ2ρ4[1,−4] + ρ4[3,−4] + [5,−4]
(4.38)

An interesting feature of this expression is that we must use the identity
on representations ρ2ρ3 = ρ2 + ρ4. In order to recognize the horizontal halo
in the third row we use ρ2ρ3 while to recognize the two vertical halos in
the second column, we must use ρ2 + ρ4. As a final example, continuing
clockwise across Ŵ (γ2) we find F (c6) is

[5, 6]
+

ρ5[5, 4]
+

ρ4[3, 2] Λ3ρ5[5, 2]
+ +

ρ3[1, 0] ρ4ρ3[3, 0] Λ2ρ5[5, 0]
+ + +

ρ2[−1,−2] (ρ3 + Λ2ρ4)[1,−2] ρ4ρ3[3,−2] ρ5[5,−2]
+ + +

[−3,−4] + ρ4[−1,−4] + Λ2ρ4[1,−4] + ρ4[3,−4] + [5,−4]
(4.39)

Now it is not at all obvious that moving into chamber c7 across the wall
Ŵ (−γ1) will preserve strong positivity. The problematic row is the second
to last row. We must write ρ3 + Λ2ρ4 = ρ22 + ρ5 and ρ4ρ3 = ρ5ρ2 + ρ2 so
that this row can be written as:

ρ2([−1,−2] + ρ2[1,−2] + [3,−2]) + ρ5([1,−2] + ρ2[3,−2] + [5,−2]). (4.40)

In this form it is clear that the horizontal halos will collapse and strong
positivity is preserved.

Proceeding in the counterclockwise direction we observe a similar pattern.
Crossing from c1 to c0 across Ŵ (γ1) gives simply F (c0) = [1, 0] and then
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F (c−1) is

[1, 0]
+

[1,−2]
(4.41)

passing to F (c−2) we find

[1, 0]
+

[−3,−2] + ρ2[−1,−2] + [1,−2]
(4.42)

and so forth.

The general pattern is the following. Starting in a chamber of the type
cn with n = 1 mod 4 we begin with a right triangle with vertices [a, b],
[a− 2b, b], [a, b− 2a], where a, b satisfy some inequalities a ≤ 0, b ≤ 0, a−
2b ≥ 0, b− 2a ≥ 0, . . .. Then the wall-crossings create and destroy halos
forming a right triangular array in each chamber so that after four wall-
crossings we return to a triangular array with a′ = −3a+ 4b, b′ = −4a+ 5b.
In our example, above a = 1− 4k, b = −4k after k clockwise turns. It seems
very nontrivial to check directly the strong positivity of the interior lattice
points of these triangles, but if the pattern of triangles continues this must
be the case. That is, the main challenge in proving strong positivity is show-
ing that the expressions remain polynomials in the [a, b] upon wall-crossing.
We will in fact give a rigorous argument that this finiteness is the case at
the end of this section.

While the above expressions become somewhat formidable, there is a
remarkable and special case of operators where the triangle has no mon-
odromy in the ζ plane in the strong-coupling region, so a′ = −3a+ 4b = a
and b′ = −4a+ 5b = b, that is, a = b with a, b < 0. The most basic case
a = b = −1 will turn out to correspond to the Wilson line in the fundamen-
tal representation in the physical theory. Its value in the four chambers is
shown in figure 13. The expression for the Wilson operator is sufficiently
simple that we can also check strong positivity in the weak-coupling region.
We begin with the expressions in c0 and c2 which are the same in the strong
and weak-coupling domain B+w . Crossing from c0 in the clockwise direction
we find expressions of the form [1, 1] + [2n− 1, 2n+ 1] + [−1,−1] next to the
wall for nγ1 + (n+ 1)γ2 and crossing this wall in the clockwise direction one
halo is destroyed while one is created to produce [1, 1] + [2n+ 1, 2n+ 3] +
[−1,−1]. Similarly, crossing counterclockwise from c2 we obtain expressions
[1, 1] + [2n+ 1, 2n− 1] + [−1,−1] and crossing the wall for (n+ 1)γ1 + nγ2
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Figure 13: The Wilson line operator at strong coupling. There is no mon-
odromy in the ζ plane for this expression. The corner charge serves as a
core charge for both horizontal and vertical halos. Upon crossing each wall
one halo is destroyed and one halo is created.

we get [1, 1] + [2n+ 3, 2n+ 1] + [−1,−1]. Thus, we have explicitly con-
structed a formal line operator corresponding to the Wilson loop.

The Wilson line operator, which we will call Ŵ , can be used to generate
a series of formal line operators as follows. We define recursively

G2kŴ = yG2k+1 + 1 + y−1G2k−1, (4.43)

G2k+1Ŵ = yG2k+2 + y−1G2k. (4.44)

We start the recursive procedure with an operator, which in chamber c1
is G0 = [1, 1]. (Note that this is the operator which is “missing” from the
square formed by the vertices of the Wilson operator.) Recall that [a, b] :=
X 1

2
(aγ1+bγ2)

so that [a, b] · [c, d] = y
1
2
(ad−bc)[a+ c, b+ d]. Carrying out the

multiplications we generate a series of operators whose values in chamber
c1 are

G−5 = [−2,−4] + ρ4[0,−4] + Λ2ρ4[2,−4] + ρ4[4,−4] + [6,−4]
+ ρ2([−2,−2] + ρ2[0,−2] + [2,−2]) + [−2, 0]

G−4 = [−1,−3] + ρ3[1,−3] + ρ3[3,−3] + [5,−3] + [−1,−1] + [1,−1]
G−3 = [0,−2] + ρ2[2,−2] + [4,−2]
G−2 = [1,−1] + [3,−1]
G−1 = [2, 0]

G0 = [1, 1]
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Figure 14: This figure illustrates how wall-crossings turn the Gn into mono-
mials. For example, if n = 8k, then 4k wall-crossings in the clockwise direc-
tion from c1 will turn Gn into the monomial [1, 1].

G1 = [0, 2]

G2 = [−1, 1] + [−1, 3]
G3 = [−2, 0] + ρ2[−2, 2] + [−2, 4]
G4 = [−3,−1] + ρ3[−3, 1] + ρ3[−3, 3] + [−3, 5] + [−1,−1] + [−1, 1]
G5 = [−4,−2] + ρ4[−4, 0] + Λ2ρ4[−4, 2] + ρ4[−4, 4] + [−4, 6]

+ ρ2([−2,−2] + ρ2[−2, 0] + [−2, 2]) + [0,−2] (4.45)

(Again, if one organizes these in a 2× 2 grid they form triangular arrays.)

Once again the expressions become rather complicated. However, they
can be brought under control since a sufficient number of wall-crossings
brings them to monomial form. Let Ω denote the operation of wall-crossing
across a wall in the clockwise direction. Then we claim that the wall-
crossings turn Gn into a monomial according to the pattern shown in
figure 14. The pattern shown in this figure can be proven by using induction
together with two sets of four very simple identities, which can be readily
checked by hand:

c1+4� [1, 1]Ŵ = y[0, 2] + 1 + y−1[2, 0]

c2+4� [−1, 1]Ŵ = y[−2, 0] + 1 + y−1[0, 2]

c3+4� [−1,−1]Ŵ = y[0,−2] + 1 + y−1[−2, 0]
c4+4� [1,−1]Ŵ = y[2, 0] + 1 + y−1[0,−2]

(4.46)



298 GAIOTTO ET AL.

c1+4� [2, 0]Ŵ = y[1, 1] + y−1Ω[1,−1]
c2+4� [0, 2]Ŵ = y[−1, 1] + y−1Ω[1, 1]

c3+4� [−2, 0]Ŵ = y[−1,−1] + y−1Ω[−1, 1]
c4+4� [0,−2]Ŵ = y[1,−1] + y−1Ω[−1,−1].

(4.47)

A number of highly nontrivial results follow from these identities. First,
since G2n+1 have a wall-crossing image by Ωn which admits a squareroot
the operator itself admits a squareroot. We set V̂n :=

√
G2n+1. Thus we

have for example

V̂−3 =
√

G−5 = [−1, 0] + [−1,−2] + ρ2[1,−2] + [3,−2],
V̂−2 =

√
G−3 = [0,−1] + [2,−1],

V̂−1 =
√

G−1 = [1, 0],

V̂0 =
√

G1 = [0, 1],

V̂1 =
√

G3 = [−1, 0] + [−1, 2],
V̂2 =

√
G5 = [0,−1] + [−2,−1] + ρ2[−2, 1] + [−2, 3].

(4.48)

By passing to a convenient chamber in which expressions become mono-
mials (or simple Ω images of monomials) we can easily establish many useful
ring relations. First of all, the G’s are related to the V̂ ’s by

G2n+1 = V̂ 2
n ,

G2n = y−1/2V̂n−1V̂n.
(4.49)

Next, the V̂ ’s satisfy the relations:

V̂n−1V̂n+1 = 1 + yV̂ 2
n , (4.50)

V̂nŴ = y1/2V̂n+1 + y−1/2V̂n−1. (4.51)

We will see later that it is sometimes useful to work with the subalgebra of
the G’s. Using the above method we find

G2k−1G2k+1 = y2G2
2k,

G2k−1G2k+3 = (1 + yG2k+1)(1 + y3G2k+1)
(4.52)
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for the odd-indexed operators and

G2kG2k+2 = yG2k+1(1 + yG2k+1) (4.53)

and so on for the even-indexed operators.

In Section 8.3 below, we will see how the y = 1 specialization of these
relations nicely reproduces the ring of functions on moduli spaces for SU(2)
and SO(3) gauge theories. In Section 10.3, especially in equations (10.25)
below, we will reproduce the sequence of operators V̂n at y = +1 from lam-
inations. In this way, the V̂n above provide a computation of the PSCs for
the SU(2) Nf = 0 theory.

We are now in a position to give a compelling (to us) argument that the
V̂n and G2n do indeed define strongly positive formal line operators. When
strong positivity fails there is typically an infinite series (see for examples
(4.3), (4.4)). Thus, we will use finiteness as a surrogate for strong positivity
in our argument. We wish to consider the various wall-crossings of Gn and in
particular it is not obvious from applying the rules (4.3) and (4.4)) that the
expression will be finite in some chamber cm. However, using the recursion
relations we can always express Gn as a finite polynomial in G�, G�+1, W, y±1
where we choose � so that G� and G�+1 reduce to monomials in chamber cm.
This shows that Gn is finite in every chamber. A similar argument applies
to V̂n.

Thus, we conclude that Gn and V̂n are all strongly positive formal line
operators. Furthermore, any line operator generated from a monomial [p, q]
in some chamber can be written as a product of appropriate V̂n’s. For
example, if we are in a chamber cn with n = 1 mod 4 then p, q ≥ 0 and we
can choose k so that [p, q] = y−pq/2V̂ p

4k−1V̂
q
4k. It follows that all the wall-

crossing images of [p, q] are finite polynomials in [a, b] with coefficients in
the representation ring of su(2). Thus, given our main assumption above,
[p, q] does indeed generate a strongly positive formal line operator.

As we mentioned before, these arguments apply for u in the strong-
coupling region. We have not attempted to prove strong positivity in the
weak-coupling region, but we expect it to hold because of the relation to
physical line operators described in Sections 8.3 and 10.3.

4.5 Physical versus formal line operators

In Section 3.2, we stated four conjectures: the strong and weak positivity
conjectures for framed and vanilla BPS states. In this section we state a
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further conjecture which, if true, allows one to derive the full set of simple
physical line operators using purely algebraic means, once the vanilla BPS
spectrum is known, even if the theory is non-Lagrangian.

The strong positivity conjecture for framed BPS states implies that the
generating function (3.38) of a physical line operator defines a strongly pos-
itive formal line operator. We would like to conjecture that the converse is
true, namely, that any strongly positive formal line operator is the gener-
ating function of framed BPS degeneracies for some physical line operator.
The main piece of evidence for this conjecture is that, as we will see in
Section 10, it is true in several examples.

There is a neat consistency check of this conjecture using the action of
the monodromy group. The specific UV labeling of a physical line operator
L must be independent of the IR data u, It may be subject to monodromies
only when transported along homotopically nontrivial paths in the gauge
coupling moduli space. It might also be subject to monodromy when trans-
ported around the origin in the ζ plane, although only in theories where
U(1)R is anomalous. The reason is that in such theories a rotation of ζ
can be traded for a rotation of the gauge coupling scales, i.e., a shift of the
theta angles, which can induce a monodromy of the UV labels. Formal line
operators undergo mondromy transformations in the form of a product of
KS transformations for all the BPS walls crossed under the monodromy.
This is consistent with known properties of the KS transformations in field
theories [1]: the product of KS factors around singularities in the u plane
gives the identity (or more precisely the appropriate monodromy transfor-
mation of the IR charge lattice) but the product of all KS factors around the
origin in the ζ plane does not. So no formal line operator has monodromy
transformations, which would be inappropriate for the generating function
of a physical line operator

Unfortunately, as the above examples amply demonstrate, it is rather hard
to work directly with formal line operators, and we would like to suggest that
in fact an even stronger conjecture is true allowing us to work with simpler
objects. We set y = 1 and define a (possibly larger) space of collections
L(c), defined in the chambers of Ξ, where L(c) is a positive integral linear
combinations of xγ and across neighboring chambers L(c±) are related by
appropriate y = 1 KS transformations. We might call the elements of this
space formal laminations. The reason for the name “lamination” will become
clear in Section 10. The space of formal laminations is easy to study, because
it admits a natural product, and is typically generated by a finite set of
generators. Note that if we expand the product in (3.31) only positive
integer coefficients appear in the expansion (for the appropriate sign of γ).
Thus the positivity is nicely consistent with physical expectations.
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Of course, formal line operators can be seen as formal laminations, by
setting y = 1. It is not obvious, though, that the noncommutative product
of two formal line operators will produce a linear combination

Fi ◦y Fj =
∑

k

ck
ij(y)Fk (4.54)

of formal line operators. On the other hand, it is obvious that the set of
formal laminations is closed under multiplication. In the A1 examples we
focus on, the space of formal laminations appears to coincide with the space
of physical line operators in the gauge theory. It is much easier to construct
formal laminations than formal line operators! Thus, it would be a very
powerful result if the space of formal laminations already coincides with
that of formal line operators. We would therefore suggest that this is a
question worth pursuing.

5 Relation to cluster algebras

The algebra of formal line operators is closely related to the mathematical
theory of cluster algebras. (The literature on cluster algebras is by now vast;
a couple of pointers are [32–35].) In this section, we sketch a little bit of
that relation. As we will discuss in Section 13, there are further things to
understand. In addition to making a connection with an interesting sub-
ject in mathematics, we will see that this connection allows us to construct
formal line operators using only “local” rules in moduli space, i.e., local
transformation rules between chambers of Ξ, which can be given using only
a partial knowledge of the BPS spectrum. Moreover, we will also show how
only partial knowledge of the BPS spectrum can allow one, in principle, to
construct the entire BPS spectrum.

5.1 Basic definitions of cluster algebras

The definition of a cluster algebra begins with a seed, which is simply an
m× n matrix Bij with m ≥ n and integral entries so that the n× n upper
block is skew-symmetrizable. That is, there are positive integers di, so
that Bij(dj)−1 for 1 ≤ i, j ≤ n is antisymmetric: diBij = −djBji. For each
index 1 ≤ k ≤ n, one defines a seed mutation along the direction k to be a
transformation μk : B → B′:

B′ij =

{
−Bij if i = k or j = k,

Bij + sgn(Bik)[BikBkj ]+ else.
(5.1)
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Here, we have introduced the notation [x]+ = Max{0, x} and

sgn(x) =

⎧⎪⎨⎪⎩
1 x > 0,
0 x = 0,
−1 x < 0.

(5.2)

Cluster variables are A1, . . . , Am. For each k, 1 ≤ k ≤ n, cluster transfor-
mations are defined by μk(Ai) = Ai for i �= k and

μk(Ak) =

∏
j|Bkj>0 A

Bkj

j +
∏

j|Bkj<0 A
−Bkj

j

Ak
. (5.3)

This recursive procedure defines a sequence of generators of an algebra
known as a cluster algebra. The variables Ai for n < i ≤ m are called “frozen
variables.” Cluster algebras turn out to have many beautiful and remarkable
properties.

It was shown by Fock and Goncharov in [17] that if we define

xi =
∏
j

A
Bij

j (5.4)

then the corresponding transformation of the xi is μk : xi → x′i, where

x′i =

{
x−1k i = k,

xi(1 + x
−sgn(Bik)
k )−Bik i �= k.

(5.5)

It was stressed by Kontsevich and Soibelman [5] that (5.5) can be interpreted
in terms of the symplectic transformations we call KS transformations.

5.2 Cluster algebra structure in N = 2 theories

In order to make a connection to N = 2 theory we proceed as follows.

Quite generally, let us define a charge γ ∈ Γu to be a root if Ω(γ;u) �= 0.
Let R(u) be the root system at fixed u. We define a system of positive roots
to be a disjoint decomposition R(u) = R+(u)�R−(u) where if γ ∈ R+(u)
then −γ ∈ R−(u). We will only consider systems of positive roots such that
the associated BPS rays lies in a half-space in the ζ plane. Conversely,
a choice of a half-space in the ζ plane determines a decomposition of the
root system into positive and negative roots. Given a system of positive
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roots we can define a simple root to be a positive root which is not the
sum of two other positive roots. Given any point (u, ζ) we can canonically
define a system of positive roots by declaring those to be the roots so that
ImZγ/ζ > 0. Equivalently, given a point (u, ζ) which is not on a BPS wall
we can define a system of positive roots by taking the roots whose BPS rays
lie in the half-plane on the counterclockwise side of the line through ζ. At
fixed u the point (u, ζ) sits in a chamber in the ζ-plane bounded by two
walls: one is a wall for a simple root on the counterclockwise side and one
is a wall for minus a simple root on the clockwise side, with respect to this
canonical system of positive roots. If we vary u at fixed ζ then (u, ζ) will
not cross into another chamber of Ξ unless a BPS ray for ± a simple root
sweeps past ζ. Thus, we can label the chambers in Ξ by systems of simple
roots Δ.

Now, for any chamber c of Ξ use the simple roots {γi} to define a matrix

Bij = 〈γi, γj〉Ω(γj ;u) (5.6)

This is clearly skew-symmetrizable, provided the Ω(γj ;u) are all positive.
The frozen indices n < i ≤ m label generators of the flavor sublattice. We
will now propose a transformation rule across BPS walls for the set of simple
roots, which guarantees that seed mutations occur when (u, ζ) passes along
a path from one chamber to the next. As we have just observed it must cross
a wall for ± a simple root. The projection of the path in the ζ plane moves
counterclockwise across a simple root Zγk

, from a region with ImZ−γk
/ζ < 0

to a region with ImZ−γk
/ζ > 0. This crosses the wall Ŵ (−γk). Similarly,

if the path moves clockwise across the negative of a simple root Z−γk
, from

a region with ImZγk
/ζ > 0 to a region with ImZγk

/ζ < 0 it is crossing the
wall Ŵ (γk).

For a path which moves clockwise across Ŵ (γk) the transformation

μk,+ : γi → γ′i =

{
−γk i = k,

γi + γk[Bik]+ i �= k
(5.7)

produces the new system of simple roots in the new chamber μk,+(c). Sim-
ilarly, for a path which moves counterclockwise rotation across Ŵ (−γk),
where γk is a simple root, the transformation

μk,− : γi → γ′i =

{
−γk i = k,

γi − γk[Bik]− i �= k
(5.8)
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produces the new system of simple roots in the new chamber μk,−(c). Here,
we have introduced the notation [x]− := Min{x, 0}. One can check that μk,+

is a two-sided inverse to μk,−.

Now, one can check that, provided Ω(γ′j ;u) = Ω(γj ;u) the matrix B′ij for
the new chamber is (for both μk,±) related to the matrix Bij in the old
chamber by precisely the seed mutation μk defined in (5.1).

Moreover, the Kontsevich–Soibelman transformation

K−Ω(γ0;u)
γ0

xγ = xγ(1− σ(γ0)xγ0)
−〈γ,γ0〉Ω(γ0) (5.9)

coincides with the cluster transformation (5.5) if we have σ(γ0) = −1, x′i =
x′γ′

i
, xi = xγi , γ0 = γk and γ′i = μk,+γi. Thus, for example, if we define x̂γ =

σ(γ)xγ then the framed BPS degeneracies can be computed using cluster
transformations induced by the simple root mutation according to (3.35).

This statement can be extended to the full y �= ±1 wall-crossing by using
the theory of quantum cluster algebras, [36], but for simplicity we will look
at the classical case only.

We will say that an N = 2 field theory has the cluster algebra property
if the transformations across chambers satisfy the above properties. That
is, Ω(γi;u) > 0 for the simple roots and Ω(μk,±γj ;u) = Ω(γj ;u). (To avoid
confusion regarding this second condition, observe that the chamber walls
are not walls of marginal stability, so the condition is well defined.)

One of the main advantages of having the cluster algebra property is
that one can give an algorithm for constructing the BPS spectrum and the
line operators in the theory. To see this, consider first the BPS spectrum.
Suppose we know the BPS degeneracies of the simple roots in some chamber,
and suppose we know the values of Zγi(u). These will vary throughout the
chamber, but will remain in a half-plane. Fix u and choose a value of
ζ in this chamber (thus, ImZγi(u)/ζ > 0). Now consider moving ζ in the
counterclockwise direction. It will hit a BPS line for some simple root γk. We
can now use the mutation μk,− to recompute the new basis of simple roots.
We can proceed in this way by continuing to rotate ζ counterclockwise. If
one can rotate ζ by a full angle of π then the entire BPS spectrum will
have been constructed. As we will see in two examples below, there can
be obstructions to doing this. Basically, all chambers have sets of simple
roots which are hypermultiplets only, and the BPS rays for particles of
higher spin are surrounded by an infinite set of rays for infinitely many
hypermultiplets, with the rays accumulating on the higher spin ray. Thus,
the higher spin rays are never associated to the boundary of a chamber.
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If one simply moves in the ζ plane, the process will get bogged down at
the first of such infinite sequence of hypermultiplets, unable to reach the
higher spin particle at the “end” of the sequence. On the other hand, in
A1 theories and possibly in all theories in the class S, it appears that all
chambers can be connected by a finite number of steps, as long as one is
allowed to move along generic paths in the space of (Zγ , ζ). Thus, a possible
strategy to compute the spectrum would be to use such paths to “jump”
ahead of an obstruction, and then track back in order to control the infinite
sequence of hypermultiplets on both sides of the obstruction, and hence find
the residual coordinate transformation across the obstruction. This can be
further decomposed into transformations Kγ to read off the full spectrum of
the theory.

As an example of the above procedure, suppose that Γ is two-dimensional,
Ω(γ1) = Ω(γ2) = 1, and for some positive integer n

Bij =
(
0 n
−n 0

)
. (5.10)

Begin with a chamber with ζ on the real axis so that ImZ1 > 0 and ImZ2 > 0.
If argZ1 > argZ2, then we make the series of transformations μ2,−, μ1,−,
μ2,−, . . .. The resulting pattern of simple roots has period 4 and is simply

γ
[1]
1 = γ1, γ

[1]
2 = −γ2,

γ
[2]
1 = −γ1, γ

[2]
2 = −γ2,

γ
[3]
1 = −γ1, γ

[3]
2 = γ2.

(5.11)

On the other hand, if argZ2 > argZ1 then moving ζ counterclockwise one
encounters the sequence of mutations μ1,−, μ2,−, μ1,−, . . .. If the initial cham-
ber is labeled as j = 0 then we obtain a sequence of chambers with

γ
[2j+1]
1 = −γ

[2j]
1 ,

γ
[2j+1]
2 = nγ

[2j]
1 + γ

[2j]
2 ,

(5.12)

γ
[2j+2]
1 = γ

[2j+1]
1 + nγ

[2j+1]
2 ,

γ
[2j+2]
2 = −γ

[2j+1]
2 .

(5.13)

This sequence of transformations has period 6 for n = 1. It was explicitly
realized in the weak-coupling region of N = 3 AD theories in Section 4.3.
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For n = 2 the sequence does not have a finite periodicity and μ2,−μ1,− is
transformation by the matrix

1 +N =
(
3 2
−2 −1

)
. (5.14)

Since N2 = 0, we can write immediately

γ
[2j]
1 = (2j + 1)γ1 + 2jγ2,

γ
[2j]
2 = −2jγ1 − (2j − 1)γ2.

(5.15)

This was realized in the SU(2) Nf = 0 theories in Section 4.4. Note that the
BPS rays accumulate on rays along ±(Z1 + Z2). Thus, one cannot continue
beyond this limit through a full angle of π. However, by continuing in the
clockwise direction one finds a second limiting value corresponding to the
opposite ray, so that in fact the full spectrum is indeed generated.

For the case n > 2, an interesting phenomenon appears. The transforma-
tion matrix from 2j to 2j + 2 is(

n2 − 1 n
−n −1

)
= S−1

(
λ+ 0
0 λ−

)
S, (5.16)

where 1 + λ± = 1
2(n

2 ± n
√

n2 − 4). Moving in the counterclockwise direc-
tion the limiting slope of the BPS rays is

ξImZ1 + ImZ2
ξReZ1 +ReZ2

, (5.17)

where ξ = λ++1
n > 1. Now if we consider rotating in the clockwise direc-

tion we encounter a sequence of mutations μ2,+, μ1,+, μ2,+, . . . leading to a
sequence of simple roots

γ
[2j+1]
1 = γ

[2j]
1 + nγ

[2j]
2 ,

γ
[2j+1]
2 = −γ

[2j]
2 ,

(5.18)

γ
[2j+2]
1 = −γ

[2j+1]
1 ,

γ
[2j+2]
2 = nγ

[2j+1]
1 + γ

[2j+1]
2 .

(5.19)

The limiting slope is now

ImZ1 + ξImZ2
ReZ1 + ξReZ2

(5.20)
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Figure 15: When n > 2 in the rank-2 example, we can only use cluster trans-
formations at fixed u to determine the BPS spectrum of rays lying in an
angular sector of angle less than π, indicated with the blue arrow. We have
made a convenient choice of phases for Z1 and Z2.

and the ray points in the quadrant with −π < argζ < −π/2. Since ξ > 1
the two limiting BPS rays subtend an angle less than π. There is therefore
a “gap region” as shown in figure 15 through which the above procedure
cannot explore. The spectrum of populated charges in that region has been
computed [37], and the result makes it clear what the difficulty is: the phases
of Zγ for Ω(γ) �= 0 are dense in that region, so that it is not really possible
to speak about chambers.

There are some immediate payoffs when an N = 2 theory has the cluster
algebra property. The Laurent phenomena of [38] allow us to construct
formal laminations. The construction of formal line operators involves some
kind of “quantum Laurent phenomenon” which does not appear to have
been discussed in the mathematics literature (although it is close to the
“universal Laurent polynomials” of Fock and Goncharov.) If our purpose is
just to check the strong positivity of a formal line operator, we do not really
care about the labeling of the charge lattice, hence we can just express the
generating function in terms of the Xi, forget about the γi and make sure
strong positivity is respected by all possible cluster transformations. This
can be used to streamline the derivations we gave in Sections 4.3 and 4.4
and extend them trivially to weak-coupling regions, as the sequences of
cluster transformations at strong and weak coupling are indistinguishable.
For example, if we forget about the charge labeling, the N = 3 AD theory
has only five distinct chambers in all, labeled by the five triangulations
of a pentagon. The cluster transformations have period 5 and the basic
formal line operators simply undergo a periodic sequence X → X +X →
X +X +X → X +X → X → X. The long sequences of period 20 = 4× 5
we encountered at strong coupling and 30 = 6× 5 at weak coupling were
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simply the combination of the period 5 cluster transformations and period
4 or 6 relabeling of charges.

We conjecture that theories in the class S have the cluster algebra prop-
erty. This conjecture is motivated by the work of Fock and Goncharov on
higher Teichmüller theory [36]. If our conjecture is true, then the algorithm
described above might provide a way to compute the BPS spectrum of higher
rank N = 2 gauge theories. We think this is an important idea which should
be pursued. Given the above observations a natural question one can ask
is whether every cluster algebra arises from an N = 2 theory. This too we
leave to the future.

5.3 Cluster algebra structure in A1 theories

In this section, we will show that indeed the subclass of theories of A1

type enjoy the cluster algebra property. This can be proved by the relation
between the chambers and the Wentzel-Kramers-Brillouin (WKB) triangu-
lations of C explained in [2]. Recall from Section 6 of that paper that
given (u, ζ) there is a canonical (WKB) triangulation of C. It was shown
in Section 7.8 of [2] that there is also an associated system of simple roots
{γE}E∈E(T ). Moreover, each of these simple roots supports a single hyper-
multiplet with PSC equal to 1. When (u, ζ) vary the triangulation changes
by isotopy unless there is a flip of an edge, and this can only happen when
(u, ζ) cross a BPS wall. Thus, the walls of the chamber are a subset of the
walls Ŵ (±γE) for E ∈ E(T ). Generically, we expect all the edges to con-
tribute walls of the chamber. The transformation rules for the {γE}E∈E(T )
due to a flip of an edge Ek are computed in Section 7.6 of [2], and agree
with the μk,±.

We can label the chambers by ideal triangulations of C together
with a topological class of an “adapted double cover.” An adapted double
cover of C is one with one branch point in each triangle of C together with a
choice of orientation of the lifts of the edges E so that these lifts are either all
ingoing or all outgoing at the preimages of the singular
points of C.

5.4 Formal line operators in N = 2∗ SU(2) gauge theory

We now turn to the N = 2∗ theory with gauge algebra su(2). This is
obtained from the N = 4 theory by giving a mass m to an adjoint
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hypermultiplet. It is the A1 theory where C is a once-punctured torus.15

The Seiberg–Witten differential is given by

λ2 =
(
m2℘(z|τ) + u

)
(dz)2, (5.21)

where z is a flat coordinate on an elliptic curve of modulus τ , and ℘(z|τ)
is the Weierstrass function. The Seiberg–Witten curve is of genus two with
two punctures. The local system Γ is of rank 3 and can be taken to have
generators γ1, γ2, γ3 with 〈γi, γi+1〉 = 2 for i = 1, 2, 3, where the index i is
understood to be cyclic of order 3. Note that γ1 + γ2 + γ3 generates the
one-dimensional annihilator of 〈·, ·〉. This is the rank 1 “flavor lattice.”
The normalizable parameter is u and B∗ = C− S, where S consists of

three singular points ui, where ℘(zi|τ) = −ui/m2 with ℘′(zi|τ) = 0. The
local system Γ has monodromy around these three points. The theory is
known to have SL(2, Z) symmetry, where PSL(2, Z) acts in the standard
way on the coupling constant τ .

The BPS spectrum Ω(γ;u) of the N = 2∗ theory is, unfortunately, not
known explicitly.16 Nevertheless, it is clear that the spectrum has some
stark differences from the examples we have thus far examined. In particu-
lar, there is no “strong-coupling region” with a finite spectrum. We expect
that the spectrum is always infinite, and is controlled by a variable number
of vector multiplets, each one accompanied by an infinite cohort of hyper-
multiplets. Thus the chamber structure is very complicated. Here then is
an example where the local cluster transformation rules can be used very
effectively.

In each chamber [c] there are three simple roots γi[c]; the chamber is
bounded by six walls Ŵ (±γi[c]).

∑
i γi[c] is pure flavor and we have either

〈γi[c], γi+1[c]〉 = 2 or 〈γi[c], γi+1[c]〉 = −2. We call these chambers of positive
and negative type, respectively. The chamber is the set {(u, ζ) : ImZγi[c](u)/
ζ > 0}. Note that a mutation μi,± takes a chamber of positive type to one
of negative type.

15More precisely, the A1 theory where C is a punctured torus is the N = 2∗ theory
plus some decoupled fields, namely a doublet of half-hypermultiplets under an SU(2) flavor
symmetry associated to the puncture.

16We note that the spectrum is implicitly encoded in the “spectrum generator” of
[2]. This transformation is easily written down, but its decomposition into Kontsevich–
Soibelman factors is not straightforward.
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It is convenient to define

[p, q, r] := X 1
2
(pγ1+qγ2+rγ3)

. (5.22)

When we wish to emphasize the chamber we can write [p, q, r](c). We first
observe that, in contrast to our previous examples, there are no mono-
mials [p, q, r] which can generate formal line operators. In our chamber
ImZi/ζ > 0 for i = 1, 2, 3. Examining the rules (4.3), (4.4) we see that we
must have 〈γ, γi[c]〉 < 0 for i = 1, 2, 3 where γ = 1

2(pγ1[c] + qγ2[c] + rγ3[c]).
On the other hand, γ1[c] + γ2[c] + γ3[c] is in the kernel of 〈·, ·〉 and hence
these three inequalities can never be simultaneously satisfied.

Even though we cannot generate formal line operators from monomials,
there are three nice analogs of the Wilson line operator W which proved so
useful in Section 4.4:

W1[c] = [0, 1, 1] + [0,−1,−1] + [0,−1, 1],
W2[c] = [1, 0, 1] + [−1, 0,−1] + [1, 0,−1],
W3[c] = [1, 1, 0] + [−1,−1, 0] + [−1, 1, 0].

(5.23)

These are the unique combinations that transform well across all walls of
the chamber if it is of positive type with 〈γi[c], γi+1[c]〉 = +2. For chambers
of negative type, 〈γi[c], γi+1[c]〉 = −2, the three Wilson operators are of the
form

W1[c] = [0, 1, 1] + [0,−1,−1] + [0, 1,−1],
W2[c] = [1, 0, 1] + [−1, 0,−1] + [−1, 0, 1],
W3[c] = [1, 1, 0] + [−1,−1, 0] + [1,−1, 0].

(5.24)

Let μi,± denote the transformation (mutation) across wall Ŵ (±γi[c]). The
transformation of Wi[c] by μj,± for j �= i follows the familiar pattern from
the SU(2) Wilson line: one 2-term (spin 1/2) halo collapses and one term
grows into a 2-term halo, so that we continue to get a 3-term expression in
the next chamber. That is, for i �= j we have the simple result

μi,±(Wj [c]) = Wj [μi,±(c)]. (5.25)
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On the other hand, if we mutate Wi[c] by μi,± then two terms are
unchanged, while the third term becomes a 3-term (spin 1) halo. For exam-
ple, using μ3,+ to transform to chamber c′ = μ3,+(c) we find:

μ3,+W3[c] = [1, 1, 0](c) + [−1,−1, 0](c) + ([−1, 1, 0] + [2][−1, 1, 2]
+ [−1, 1, 4])(c)

= [1, 1, 2](c′) + [−1,−1,−2](c′)
+ ([−1, 1, 2] + [2][−1, 1, 0] + [−1, 1,−2]) (c′). (5.26)

As in the case of SU(2) Nf = 0 the ring relations of the Wilson line
operators are beautifully connected to their transformation properties across
chamber walls. For example,

W1[c]W2[c] = y−
1
2 W3[c] + y

1
2 (X 1

2
γ1[c]+

1
2
γ2[c]+γ3[c]

+X 1
2
γ1[c]− 1

2
γ2[c]+γ3[c]

+X− 1
2
γ1[c]− 1

2
γ2[c]−γ3[c]

+X 1
2
γ1[c]− 1

2
γ2[c]−γ3[c]

+ (y + y−1)X− 1
2
γ2[c]+

1
2
γ1[c]

) (5.27)

The generating function multiplied by y
1
2 simplifies across either ±γ3[c]

walls: it loses a Fock space and goes to a simple Wilson line, as we can
recognize from (5.26). The general relation for products of this type is:

Wi[c]Wi+1[c] = y−1/2Wi+2[c] + y1/2μi+2,+Wi+2[μi+2,−(c)] (5.28)

For Wi+1[c]Wi[c] we change y → 1/y.

We expect that, by successively multiplying by Wilson lines we can recur-
sively generate the entire ring of formal line operators, as in the case of
Section 4.4.

Step by step we are uncovering a beautiful structure in the line operators
of this theory. In the second half of the paper, we will develop more pow-
erful tools to analyze all A1 theories. In the process, we will rediscover the
formulae of this section. For comparison with Sections 8.4 and 10.7 let us
do one last calculation: we note that [2, 2, 2] and [−2,−2,−2] are central
and that we can choose coefficients aijk ∈ Z[y1/2, y−1/2] suitably such that

W 2
1 +W 2

2 +W 2
3 − aijkWiWjWk

= 1 + y−2 +B(y2 − y−2)− (y−1 + (y − y−1)B
)
([2, 2, 2] + [−2,−2,−2])

(5.29)
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is a central operator. Here B is an arbitrary constant. The y → 1 limit of
(5.29) is (8.9).

6 Line operators and holomorphic functions on moduli
spaces

6.1 Expansion in “Darboux coordinates”

We have been studying a d = 4, N = 2 theory, equipped with a collection
L of line operators. We now consider the theory on a Euclidean spacetime
R3 × S1, where the circle has radius R, and we take periodic boundary
conditions for the fermions. At low energies, the theory is described by a
three-dimensional sigma model with a hyperkählertarget space ML. (In
Section 6.3 below we will elaborate on how the moduli spaces differ from
one another for different L.)
This sigma model was the main object of study in [1]. Let us quickly

recall a few basic points to fix notation. TopologicallyML is a torus fibra-
tion over B. The fiber over a point u ∈ B is the torus of electric and magnetic
Wilson lines of the abelian gauge fields around S1. After choosing a qua-
dratic refinement σ : ΓL → Z2 of the pairing (−1)〈γ,γ′〉, the torus fiber can
be identified with the character torus Hom(ΓL, R/2πZ). We write θ for an
element in this torus. On ML there are complex “Darboux coordinates”
Xγ , which were studied in detail in [1,2].17 In what follows, it will be more
convenient to consider instead coordinates Yγ , which differ from Xγ only by
the quadratic refinement:

Xγ = σ(γ)Yγ , (6.1)

The Yγ are actually more canonical than Xγ : their definition is independent
of the choice of σ. They obey a twisted product law

YγYγ′ = (−1)〈γ,γ′〉Yγ+γ′ . (6.2)

Now we can take the line operators Lζ of the 4-d theory to wrap the
compactification S1, thus defining corresponding loop operators. In the
low-energy limit, these become point operators in the 3-d theory. The expec-
tation value 〈Lζ〉 of such a point operator is a function on the moduli space

17We refer to [1] for our conventions on hyperkählermanifolds, their complex structures,
and the definitions of the Darboux coordinates Xγ . For a brief summary, see Section 2
of [2].
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ML. As we explain in Appendix B, the fact that Lζ preserves osp(4∗|2)ζ
implies that the 〈Lζ〉 are in fact holomorphic functions on ML in complex
structure J (ζ). It follows that they can be expressed as functions of the Yγ .
We conjecture that

〈Lζ〉 =
∑

γ

Ω(Lζ , γ)Yγ . (6.3)

Now let us try to justify (6.3). We find the following argument compelling,
although it falls short of a proof. We begin by considering 〈Lζ〉 as a trace
over the Hilbert space of the four-dimensional theory. Writing this trace
explicitly is slightly tricky:

〈Lζ〉 = TrHu,Lζ
(−1)F e−2πRHeiθ·Qσ(Q). (6.4)

There are two subtleties here. First, the torus fibers of ML define a local
system with nontrivial monodromy. Q is the charge operator measuring the
IR charge in Γ, and is thus valued in a local system. The notation θ · Q is the
natural evaluation, which has no monodromy. The second subtlety is that θ
defines boundary conditions for both electric and magnetic Wilson lines. In
order to implement such a boundary condition we should use a self-dual for-
malism. Now, it is well-known that to define the path integral of a self-dual
abelian gauge theory it is necessary to introduce a quadratic refinement of a
bilinear form on the relevant cohomology underlying the Dirac quantization
of the self-dual gauge theory [39–42]. In the present case, we should take
the Dirac quantization condition to be valued in H2(M4; Γ). In the case
M4 = (R3 − {
0})× S1, and using compactly supported cohomology, we are
led to include the quadratic refinement σ(Q) in the trace. That is the origin
of the σ(Q) in equation (6.4).
In the R →∞ limit the trace (6.4) is projected to the states with the

lowest energy, namely the framed BPS states. We can then use the infrared
description of the theory. The leading contribution we would expect from a
framed BPS state with charge γ would be of the form

σ(γ)(−1)F exp(2πRRe(Zγ/ζ) + iθγ). (6.5)

So for R →∞ we have

〈Lζ〉 ∼
∑

γ

Ω(Lζ , γ) exp(2πRRe(Zγ/ζ) + iθ̃γ), (6.6)
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where eiθ̃γ := eiθγσ(γ). This expansion is much like the desired (6.3), except
that instead of Yγ we have exp(2πRRe(Zγ/ζ) + iθ̃γ). This indeed matches
the R →∞ asymptotics of Yγ as determined in [1]. Now how about the
extension to finite R? Let us provisionally write this expansion as

〈Lζ〉 =
∑

γ

Ω(Lζ , γ)Y ′γ , (6.7)

for some set of holomorphic functions onM in complex structure ζ. In the
IR theory, the Y ′γ capture the effect of the insertion of a source of charge
γ. In particular, we expect all the detailed information about the UV line
operator to be captured by the Ω(Lζ , γ), so that the Y ′γ do not depend on
the specific choice of UV line operator Lζ . If we assume that there are
sufficiently many line operators Lζ then we can in fact regard (6.3) as a
linear transformation defining the Y ′γ . We would like to show that Yγ = Y ′γ .
Recall from [1,2] that the Xγ , and hence Yγ , can be uniquely characterized

by a set of axioms expressing their holomorphy, asymptotic behavior for
R →∞ and ζ → 0,∞, reality properties under ζ → −1/ζ̄, wall-crossing,
and multiplication. Let us compare these properties for Y ′γ and Yγ .

First, concerning holomorphy, we know that 〈Lζ〉 is holomorphic onMζ ,
and it is holomorphic in ζ ∈ C∗ by assumption. Next, as we have seen, the
asymptotics of Y ′γ as R →∞ are those of Yγ , namely,

Y ′γ ∼ Ysfγ = exp
(

πR
Zγ

ζ
+ iθ̃γ + πRζZ̄γ

)
. (6.8)

There are similar asymptotics for ζ → 0,∞, as can be deduced from formal
properties of the supersymmetric Wilson loop combined with duality. Using
the same strategy one can argue for the required reality properties under
ζ → −1/ζ̄.

Next we consider wall-crossing. There is no compelling reason to expect
any phase transition in 〈Lζ〉 as a function on B × C∗, since there is no phase
transition in the vacuum structure of the UV theory, and we are taking the
trace of a nice trace class operator so long as R > 0. Therefore, 〈Lζ〉 should
not exhibit any wall-crossing behavior. On the other hand, as we saw in
detail in Section 3.4, the framed BPS degeneracies Ω(Lζ , γ) do undergo wall-
crossing. Now note that (6.3) looks very much like the formal generating
function F (L) we introduced in (3.38), with the formal variablesXγ replaced
by the honest functions Yγ on M, and y specialized to y = −1. As (u, ζ)
crosses a wall Ŵ (γBPS), the functions Yγ have a discontinuity given by a
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symplectomorphism KΩ(γBPS)
γBPS , where Kγ was defined in (3.36). Therefore,

comparing with the discussion from (3.26) to (3.34), we see that 〈Lζ〉 will
indeed suffer no wall-crossing discontinuity, provided that Y ′γ transforms
exactly the same way as Yγ .

Finally, the Heisenberg relations (3.37) for y = −1 imply that the func-
tions Yγ should satisfy a twisted multiplication rule YγYγ′ = (−1)〈γ,γ′〉Yγ+γ′ .
This is beautifully consistent with (6.2).

This concludes our argument for (6.3) and (6.1). The main gap in the
argument is the claim that there are sufficiently many line operators to invert
equations (6.3).

6.2 Remarks on the Darboux expansion

We would like to make a number of remarks on the previous subsection.

(1) Since the index vanishes on massive representations, one might ask why
(6.4) is not simply a sum over the framed BPS states. (As does happen,
for example, in the heat kernel proof of the index theorem or in the
evaluation of the Witten index in supersymmetric quantum mechanics
on a compact target). As we noted, evaluating the operator in the
trace on framed BPS states gives the semiflat Darboux coordinates,
and not the true Darboux coordinates, giving the wrong answer. The
reason for this is very similar to the phenomenon discussed at length
in [43]: the continuum makes a nonzero contribution to the trace.

(2) As we describe in Section 7, there is a very interesting class of d =
4,N = 2 theories arising from compactification of the (2, 0) theory on
a Riemann surface C with punctures. In this case, the IR abelian
gauge theory arises from the self-dual 3-form of the abelian (2, 0) the-
ory compactified on R4 × Σ, where Σ is the Seiberg–Witten curve cov-
ering C. In the path integral of the abelian six-dimensional theory,
the sum over topological sectors is weighted by a quadratic refine-
ment of the mod-two intersection form on H3(M6;Z) [39–42]. Apply-
ing this to M6 = (R3 − {
0})× S1 × Σ and using compactly supported
cohomology the quadratic refinement of the six-dimensional theory
induces a quadratic refinement σ of the mod-two intersection form on
H1

cpt(Σ;Z) ∼= H1(Σ;Z).
(3) Given the existence of PSCs it is natural to generalize the RHS of (6.4)

to include a variable conjugate to J3 and define the twisted trace:

〈Lζ〉y := TrHu,Lζ
(−1)F e−2πRH(−y)2J3eiθ·Qσ(Q). (6.9)
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The argument of the trace still commutes with a supersymmetry εαA

RA
α . Nevertheless, the physical interpretation of (6.9) appears to be

rather different from (6.4). The reason is that if we attempt to give
a three-dimensional interpretation to (6.9) then the modified trace
requires us to glue space back to itself under a rotation around the z-
axis and R-symmetry rotation. This is a reminiscent of an Ω deforma-
tion of the four-dimensional background which preserves only a single
supercharge. (See [44] for a recent reference with references to the ear-
lier literature.) The interpretation of this quantity in terms of three-
dimensional field theory is not straightforward, and might involve a
noncommutative target space as a replacement for M. Indeed, one
might guess that at low energies the theory reduces to a quantum
mechanics problem onM and the trace projects to the lowest energy
states, where the appropriate expansion coefficients are noncommuta-
tive (much the way wavefunctions in the lowest Landau level of the
quantum Hall effect may be interpreted in terms of noncommutative
geometry). This might be a fruitful context in which to give a physical
interpretation of the deformed chiral ring of line operators discussed
in Section 3.6. This is an interesting subject for further research but
we will not pursue it in this paper, except for some related remarks in
Section 11.

(4) Finally, we can make a simple observation concerning the meaning of
the non-commutative deformation of the ring of holomorphic func-
tions on M given by the product of spin characters of the corre-
sponding line operators. The leading correction away from y = ±1
is given by a Poisson bracket {Xγ , Xγ′} = 〈γ, γ′〉XγXγ′ which coin-
cides with the natural Poisson bracket of the Xγ functions (remember
that the hyperkählermanifold M is complex symplectic in all com-
plex structures). Hence, the noncommutative product should coin-
cide with the deformation quantization of the ring of holomorphic
functions on M. We illustrate this remark with several examples
in Section 8.

6.3 Multiple moduli spaces and maximal mutually
local lattices

Let us now return to the precise definition of the moduli spaces on which
〈Lζ〉 are defined.
Let Li denote the distinct possible maximal mutually local collections of

simple line operators. For each i there is a charge lattice ΓLi , and these fit
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together in a system of inclusions18

Γmx

↗ ↖
ΓL1 · · · ΓLn

↖ ↗
Γ

(6.10)

where Γmx is the union of the ΓLi . Note that the antisymmetric pairing
〈, 〉 need not be integer-valued on Γmx. This implies in particular that Γmx

generally does not correspond to a lattice of charges in any physical N = 2
theory.

Each charge lattice L corresponds to a slightly different physical theory.
When we reduce to three dimensions this difference is important: the target
of the three-dimensional sigma model is a hyperkähler manifoldML, which
depends on L. It is a torus fibration with fiber above u ∈ B − Bsing given by

(ML)u = Hom((ΓL)u, R/Z). (6.11)

We may similarly define spaces M and Mmx corresponding to lattices Γ
and Γmx, although these do not correspond to any physical N = 2 theories.
So, there is a system of finite coverings

Mmx

↙ ↘
ML1 · · · MLn

↘ ↙
M

(6.12)

In fact, these manifolds are very closely related to one another: M and
Mmx are hyperkähler(just like theMLi), and all the covering maps in (6.12)
are local isometries. Indeed, they are fiberwise covering maps of tori. This
follows easily from the constructions of [1]: the dependence of the metric
on the fiber coordinates θ̃ arises only through factors eiθ̃γ , where γ ∈ Γ is
the charge of a vanilla BPS particle. Hence, any shift of θ̃ which leaves eiθ̃γ

invariant for all γ ∈ Γ is an isometry.

We believe the above picture extends over the singular locus Bsing. The
reason for this is the following. At a generic point u∗ ∈ Bsing the singularity

18Such a system of inclusions is also called a “lattice” in Boolean algebra. How-
ever, as that term would probably lead to awkwardness if not outright confusion, we will
not use it.
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in the fibration is due to a single BPS particle of charge γ becoming massless.
In this case, a single circle in the torus shrinks to a point over u∗. (Using
the results of Section 13.7 of [2] this is the circle described by the flow
dθ̃γ̃

dt = 〈γ, γ̃〉.) At least at large radius R of the spacetime circle we can
understand the behavior of the full hyperkählermetric u∗ in terms of the
one loop correction to the naive large radius (semiflat) metric due to the
particle of charge γ. Using the results of [1] we see that if γ is irreducible,
the circle shrinks at a single location in the fibre, at exp iθ̃γ = 1. Otherwise
if γ = Qγ0, then the metric has Q codimension two singularities which are
— generically — families of AQ−1 singularities. Using this picture of the
degeneration of the fiber we see that the relation of quotients in (6.12) is
preserved.

We will comment on these issues again in Section 7.3.1, and we will illus-
trate these ideas with concrete examples in Section 8.

6.4 A vev for a twisted moduli space

Having opened Pandora’s box by introducing (6.9) we should note that in
addition to the case y = −1 discussed above there is an interpretation for a
closely related trace:

〈Lζ〉′ := TrHu,Lζ
(−1)2I3 e−2πRHeiθ·Q, (6.13)

where we choose u, θ and use the trace to define the LHS. Once again, all
four supercharges are preserved. The extra factor (−1)2I3 acts trivially on
nonexotic framed BPS states.

As in the y = −1 case, 〈Lζ〉′ can be understood in terms of a three-
dimensional sigma model, obtained by compactification of our 4-d theory
on S1, now with the extra twist (−1)2I3 . The resulting theory is, as before,
a sigma model into a hyperkählermanifold, which we denote as M̃.

How is M̃ related toM? Both of them can be described by the method
of [1]. The main nontrivial ingredient in that description is a set of instanton
corrections, coming from BPS states of the 4-dimensional theory, with world-
lines wrapping the compactification S1. Now how does the factor (−1)2I3
modify this story? If there were exotic BPS states, then the corresponding
instanton corrections would be affected by this factor. So in that case M̃
would be distinct from M. In the absence of exotic BPS states, though,
we expect thatM and M̃ are isomorphic as hyperkählermanifolds (though
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perhaps not canonically so). At least in the examples we encounter below,
this will indeed be the case.

The same reasoning as above allows us to expand

〈Lζ〉′ =
∑

γ

Ω(Lζ , γ, y = 1)Ỹγ , (6.14)

where Ỹγ are a collection of functions on M̃, satisfying properties analogous
to the Yγ . An important point is that unlike Yγ , these functions have an
untwisted multiplication law,

ỸγỸγ′ = Ỹγ+γ′ . (6.15)

Since we have commented that the manifoldsM and M̃ should coincide
in the absence of exotic BPS states, one may wonder how to see this iden-
tification. The most obvious way to do it is to identify the functions Ỹγ

on M̃ with the functions σ(γ)Yγ on M, for some choice of the quadratic
refinement σ. This identification is consistent with the discontinuity prop-
erties of Yγ and Ỹγ if and only if σ(γ) = (−1)2J3 acting on all vanilla BPS
states. This property indeed holds for the canonical σ defined in [2] for the
A1 theories. If strong positivity holds, we should expect a similar simple
behavior for more general theories.

7 The six-dimensional viewpoint

Our considerations thus far have relied only on d = 4,N = 2 supersymmetry.
In the remainder of the paper, we are going to focus on theories denoted as
the class S (for “six”) in [2]. These theories arise from compactification of the
superconformal ADE (2, 0) theories on Riemann surfaces C with punctures.
They form a rich set of examples, and the six-dimensional viewpoint will
allow us to construct some very interesting examples of line operators. For
A1 theories we will be able to compute the vacuum expectation values of
the line operators in complete detail.

7.1 Review of the 6d (2, 0) theories

General considerations in Type IIB string theory or M-theory suggest the
existence of six-dimensional local quantum field theories with superconfor-
mal symmetry [45–47]. Very little is known about these theories. For nice
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reviews of what is known see [48, 49]. We summarize below a few of the
known results relevant for the present paper. In particular, we focus on
the theories with (2, 0) superconformal symmetry. For a summary of our
conventions on supersymmetry in five and six dimensions see Appendix E.

Abelian theories of tensor multiplets are examples of (2, 0) theories. These
are free field theories and can be described by a Lagrangian (after certain
choices are made [42]). We will instead focus on the interacting theories
for which no fundamental field-theoretic degrees of freedom, and certainly
no Lagrangian, is known or even expected to exist. These theories have an
ADE classification, and in this section g denotes the compact real form of a
simple and simply-laced Lie algebra.

In the case of the Ar theories a partial definition can be given using
DLCQ and quantum mechanics on instanton moduli space [50, 51]. What
we do know about the ADE theories is based on two statements which we
will treat as axiomatic. Once the theories are properly defined these should
become theorems:

(1) When the theory is compactified on R1,4 × S1 where S1 has radius
R, with periodic boundary conditions for fermions, the long distance
dynamics is governed by the maximally supersymmetric Yang–Mills
theory with a gauge Lie algebra g and coupling constant g2Y M propor-
tional to R.19

(2) The theory on R1,5 has a moduli space of vacua given by

M(R1,5) = (R5 ⊗ t)/W, (7.1)

where t is a Cartan subalgebra of g and W is the Weyl group. At
smooth points ofM(R1,5), the low energy dynamics is described by a
theory of a free (2, 0) tensormultiplet valued in t.

Of course, these two deformations must be compatible. For example, the
moduli space of vacua of the 5-d supersymmetric Yang-Mills theory can be
identified with M(R1,5), since the vacuum expectation values 〈Y I〉 of the
adjoint scalars in the 5 of so(5)R must be simultaneously diagonalizable.
A point of the moduli space is thus identified with an ordered 5-tuple of
simultaneously diagonalizable elements of g, up to gauge invariance. Just
the way these vev’s spontaneously break the g-symmetry to the Cartan
subalgebra t in the 5d SYM, we should think of the “gauge symmetry” of
the 6d theory being spontaneously broken to the abelian gauge group of the

19See equation (3.36) of [2] for the precise normalization in our conventions.
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free tensormultiplets valued in t. For this reason the moduli spaceM(R1,5)
is often referred to as the “Coulomb branch.”

Furthermore, in the case of the Ar theories there is a nice intuitive pic-
ture of the theory as the worldvolume of (r + 1) coincident M5 branes in
a gravitational decoupling limit, after the center of mass has been factored
out [46]. The so(5) R-symmetry is then interpreted in terms of rotations in
the space transverse to the 5-branes, and the moduli space (R5 ⊗ Rr+1)/Sr+1

parametrizes the positions of r + 1 parallel singly wrapped M5’s in the trans-
verse space. The low energy dynamics of a single M5 brane is described by
a U(1) tensormultiplet, with the scalar fields Y I representing transverse
fluctuations. A point of moduli space can thus be specified by the vacuum
expectation values of the scalar fields 〈Y I

s 〉, s = 1, . . . , r + 1. The Ar the-
ory is obtained after “decoupling” the tensormultiplet describing the overall
center of mass.

The (2, 0) theories can be defined on certain Lorentzian six-manifolds M6

and their partition functions can beWick rotated to Euclidean six-manifolds.
The 3-form fieldstrength of the gauge potential B in the tensormultiplet is
constrained to be self-dual. This implies that M6 must be oriented, and in
addition must be equipped with some extra topological data.20 Moreover,
it must be equipped with a spin structure in order to define the fermions.

Finally, we mention a very subtle aspect of these six-dimensional theories
which we do not wish to discuss in depth here. The six-dimensional theory
is not a standard quantum field theory but is probably best regarded as a
six-dimensional theory valued in an invertible seven-dimensional topological
field theory.21 The term “vector-valued quantum field theory” is also some-
times used because the partition function of these theories on a six-manifold
is valued in a vector space, and not just a number. This subtlety reveals
itself upon compactification on a circle. We said above that the 5d SYM
has gauge Lie algebra g, but to specify the theory one must choose a gauge
group G whose Lie algebra is g. There is not a unique choice of this gauge
group. Extra data must be specified which determine a projection of the
vector space of partition functions to a one-dimensional subspace [49]. Phys-
ically, such a projection might be specified by a choice of ’t Hooft flux in the
five-dimensional theory. This is already visible in the S-duality properties of
N = 4 SYM, which is a torus compactification of the six-dimensional theory:
at weak coupling, one picks a 5d gauge group when reducing on the “small”

20Technically, a differential integral lift of the fourth Wu class [41]. For physical dis-
cussions of this condition, see [39,42].

21We will not go into the precise details of this notion here. We thank D. Freed and E.
Witten for clarifying discussions on this issue.



322 GAIOTTO ET AL.

circle of the torus, and then the same gauge group appears after reduction
on the second circle. S-duality exchanges the two circles, and exchanges the
projections corresponding to Langlands dual gauge groups.

7.1.1 Chiral primary fields

The DLCQ definition of the Ar theories shows that there are local chiral pri-
mary fields generating short multiplets of the superconformal algebra [51,52].
After compactification on a circle these can be identified with gauge invari-
ant protected operators built out of the Casimirs of the scalar fields, sym-
metrized and traceless over the SO(5) indices. In the Ar case, these descend
to the operators TrY (I1...Y Ik) in the 5d SYM. They have scaling dimension
2k. It seems reasonable to assume that such chiral primary multiplets exist
not only for Ar but for all the ADE theories, and we make this assumption
in what follows. A Casimir of rank d gives rise to a dimension 2d operator
in the symmetric traceless representation of SO(5), with d indices.

7.1.2 Dynamical BPS strings

In the 6d nonabelian theory there are dynamical strings. In the M-theory
derivation of the Ar theories these arise from open M2-branes stretched
between the M5 branes. Single BPS string states are labeled by roots α ∈
Φ(g), where Φ(g) is the root system of g. A string with unit tangent vector
t̂M along the string has a central charge ZI

M = t̂MzI in the supersymmetry
algebra. The tension of the string is proportional to ‖ 
z ‖, where ‖ · ‖ is the
Euclidean norm on R5. A string excitation of a vacuum on the Coulomb
branch at a point Y ∈ R5 ⊗ t has 
z proportional to 〈α, Y 〉. These strings
should be thought of as analogous to the “off-diagonal” gauge bosons of
nonbelian gauge theory.

We can check these assertions by compactifying on S1 and using the
expected reduction to 5d SYM. The BPS strings descend to BPS par-
ticles of the 5D SYM theory. Particles corresponding to singly-wrapped
strings correspond to gauge bosons of charge α and have mass ∼ R‖〈α, Y 〉‖.
There should be no other light particles for small R (they would have to
be described by fields not present in the 5d SYM multiplet), so for example
there should not be any strings labeled by other weight vectors of g.

The dynamical strings of six dimensions also give BPS string states in the
5d SYM. On the Coulomb branch these may be described, semiclassically,
as magnetic monopoles in the three dimensions transverse to the worldsheet
of the string. Such solutions are thus labeled by ΛG = Hom(U(1), T ), the
cocharacter lattice of G. For simply laced Lie algebras Λcr and Λr are
isomorphic upon choosing a normalization of the Killing form so that roots
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have length 2. For this reason, the strings in five dimensions are most easily
understood for the choice of gauge group G̃, the simply connected compact
group associated to g.

For completeness we mention that in the 5D SYM there are also BPS
particles described by instantons in the four transverse dimensions to the
worldline. These have mass proportional to n/R, where n is the instanton
charge, and can be interpreted as KK modes arising from compactification
on S1.

7.1.3 Surface operators

In addition to chiral primary fields and dynamical strings there are surface
operators in the 6d (2, 0) theories and their 5d SYM compactifications. Our
primary goal in this section is to use these to define the line operators which
will be the focus of our studies in the remainder of the paper.

We begin with a general definition of a surface operator which is closely
analogous to that of line operators: A surface operator on a subspace
R1,1 ⊂ R1,5 has a transverse space R4. The metric is conformally equivalent
to AdS3 × S3 and has an isometry group with Lie algebra so(2, 2)⊕ so(4).
We define a surface operator on the embedded R1,1 to be the result of impos-
ing a conformally invariant boundary condition on AdS3 × S3. Note that
so(2, 2)⊕ so(4) ∼= (sl(2, R)⊕ su(2))⊕ (sl(2, R)⊕ su(2)) ∼= so(4∗)⊕ so(4∗).

As with the line operators we will focus on special surface operators that
preserve some R-symmetry and some supersymmetry. To motivate them, let
us consider the surface operators in the low energy tensormultiplet theory
on the Coulomb branch. If Σ is an oriented surface in M6 then we can define
the holonomy of the self-dual field22

hv(Σ) = exp[2π i
∫
Σ
(v, B)], (7.2)

where v ∈ Λwt is in the character group, i.e., the weight lattice, of G̃. We
impose this restriction because on topologically nontrivial manifolds large
gauge transformations of the B-field take the form B → B + ω where ω is
a globally defined closed 2-form with periods in Λcr. Note that here and in
the remainder of Section 7 Σ has nothing to do with the IR Seiberg–Witten
curve!

22We assume for simplicity in the following discussion that B is topologically trivial.
For general spacetimes and topologically nontrivial B-fields we would use instead Cheeger–
Simons differential characters.
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Under some circumstances the holonomy can be upgraded to a super-
symmetric surface operator. For simplicity consider a single tensormultiplet
with gauge group U(1). Then consider

exp
[
2πi
∫
Σ

B + κnIY Ivol (Σ)
]

, (7.3)

where vol (Σ) is the volume form on Σ from the induced metric, κ is a
constant, and we can assume without loss of generality that 
n is a unit
vector in Euclidean R5 with components nI . Let ξα, α = 1, 2 be a local
coordinate system on Σ. Then supersymmetries εr

i Q
i
r will annihilate this

operator provided

εr
i

(
dξα ∧ dξβ∂αXM∂βXN

vol (Σ)
(γMN )srδ

i
j + κ(nIΓI)ijδ

s
r

)
= 0, (7.4)

where XM (ξ) denote the embedding of the surface into M6. In order to pre-
serve supersymmetry this equation must be satisfied for constant unbroken
supersymmetries εr

i Q
i
r. For a flat surface and constant nI half the super-

symmetries will be preserved with κ = ±1. More generally, (analogously to
super Yang–Mills) Σ can be a curved surface and nI can vary. An example
which will be important below arises when the surface is R× ℘, where ℘ is
a curve in, say, the 12 the plane. If we decompose the R-symmetry space
R5 = R2 ⊕ R3, identify the R2 summand with the 12 plane, and take nI to
be the unit tangent vector to ℘ then one-quarter of the supersymmetry is
preserved. In general, the R symmetry is broken to so(4) by the direction
nI . In the special case of a plane in, say, the 01 direction we can describe
the preserved supersymmetry in a way closely analogous to our discussion
of osp(4∗|2)ζ for line operators. We define an involution of osp(8∗|4) by
reflection in the plane of the surface, together with an R-symmetry reflec-
tion in the plane orthogonal to nI . The fixed points of this involution define
a superconformal algebra which we can denote (osp(4∗|2)⊕ osp(4∗|2))�n.
We can now combine (7.2) and (7.3) to define supersymmetric surface

operators S�n(v,Σ) in the abelian tensormultiplet theory. It is then natural
to conjecture that there are corresponding surface operators S�n(R,Σ) in the
nonabelian theory associated with a representation R of g and preserving
the superconformal symmetry (osp(4∗|2)⊕ osp(4∗|2))�n. As usual, we can
check this assertion with the two available deformations. When the gauge
symmetry is strongly broken by large expectation values of Y these surface
operators will be described semiclassically by sums over the abelian surface
operators S�n(v,Σ) where v runs over the weights of the representation R.
As a second check we consider the relation to the 5d SYM which emerges
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upon compactification on a circle of radius R. If Σ = S1 × ℘ for a path
℘ ⊂ M5 then the IR limit of the nonabelian surface operator should be

L�n(R, ℘) = TrRP exp
[∫

℘
A+ κn ·RY ds

]
. (7.5)

These are indeed BPS line operators in the 5d SYM. Finally, the existence of
the nonabelian surface operators is intimately connected to the existence of
the dynamical BPS strings. For example, one could start from an su(r + 1)
theory, and move to a partial Coulomb branch, where the theory reduces
to an su(r)× u(1) theory. There will be dynamical strings charged under
the u(1) abelian factor, whose tension goes to infinity as the expectation
values of the scalars are sent to infinity, and the u(1) factor decouples. In
the limit, the dynamical strings become surface operators S�n(v,Σ), where 
n
is the direction of the Y sent to infinity.

It is well known that the insertion of line operators such as (7.5) into
a path integral can be interpreted as coupling the ambient theory to a
0 + 1-dimensional quantum mechanical system (defined by the quantiza-
tion of co-adjoint orbits) [53]. Similarly, surface operators can be repre-
sented by coupling a 1 + 1 dimensional quantum field theory defined on Σ
to the ambient theory. In this interpretation note that, as is familiar from
studies of the AdS3/CFT2 correspondence, the Lie algebra of isometries
so(2, 2) ∼= sl(2, R)l ⊕ sl(2, R)r can be interpreted as the conformal symme-
try algebra which acts separately on the left- and right-moving degrees of
freedom. This interpretation extends to allow us to interpret the unbroken
superconformal symmetry in the UV as osp(4∗|2)l ⊕ osp(4∗|2)r. Moreover,
as we have seen, in the IR the abelian surface operators descending from
S�n(R,Σ) are labeled by weights v of the representation R. This suggests
that the QFT defined on Σ should have vacua labeled by v.

Dynamical strings can end on surface operators, and they define domain
walls in the 2D QFT on Σ. A string labeled by a root α ∈ Φ(g) will be a
domain wall between vacua v1 and v2 if v1 − v2 = ±α. The configuration
can be 1

4 BPS, much in the same way as junctions between dynamical strings
can be. A typical example is a static configuration where all the strings and
the surface operator lie on a plane, the central charge vectors 〈αi, Y 〉 or 
n
also lie in a plane in the space of central charges, and the slopes in the two
planes are the same. Note that if one is interested in 1

4 BPS configurations,
the surface operators may be allowed a more general shape than a straight
line in the plane, by allowing 
n to vary along the operator, following the
variation of the tangent vector.



326 GAIOTTO ET AL.

7.2 The twisted theory compactified on a Riemann surface

We want to consider the (2, 0) theory wrapped on a Riemann surface C
as used in [2]. As described in Section 3.1.2 of [2] in order to preserve
d = 4,N = 2 supersymmetry in this compactification we must twist the
theory. The compactification R1,3 × C breaks the local Lorentz symme-
try to so(1, 3)⊕ so(2)C . We then explicitly break the R-symmetry so(2)′ ⊕
so(3)′ ⊂ so(5) and twist the theory so that the spin connection on C is
coupled to the diagonal subalgebra so(2)d ⊂ so(2)C ⊕ so(2)′. Eight super-
charges survive, forming an N = 2 susy algebra in four dimensions. The
so(3)′ is identified with the R-symmetry of d = 4,N = 2 and so(2)d is the
anomalous u(1)R symmetry of d = 4,N = 2. The multiplet of chiral pri-
mary operators of index dk contains one of maximal so(2)d charge, denoted
Ok so that the vev 〈Ok〉 becomes a holomorphic k-differential on C, and
the Coulomb branch of the 4d theory is parameterized by the vevs of these
operators (see [2] eq. (3.5)):

M(R1,3 × C) = B = ⊕H0(C, K⊗dk). (7.6)

As in [2] it is important to introduce codimension 2 defects placed at punc-
tures of C. These defects do not break any further supersymmetry. Their
effect is to create poles in 〈Ok〉. The four-dimensional IR theory is deter-
mined by the choice of C and the singularities of the 〈Ok〉 at the defect points
on C. The moduli space of gauge couplings coincides with the moduli space
of complex structures of the punctured Riemann surface C.

7.3 Moduli space

As explained at length in [2] the moduli space of vacua

M =M(R1,2 × S1 × C) (7.7)

can be identified with the moduli space of solutions to Hitchin’s equations
on C with certain singularities at the defects. These are equations on a
connection A and 1-form ϕ, which say that the complex connections

A(ζ) = R
ϕ

ζ
+A+Rζϕ̄ (7.8)

are flat for all ζ ∈ C×. In fact, in its complex structure J (ζ), the moduli
spaceM is just identified with a moduli space of flat GC-connections A(ζ)
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on C, having singularities at the punctures on C. The gauge group G has
Lie algebra g.

The nature of the singularities at the punctures depends on the precise
defects we insert on C. The simplest possibility is a “regular puncture”,
which creates simple poles in A and ϕ, hence produces a regular singularity
in A(ζ). Such a puncture determines a (ζ-dependent) conjugacy class in
GC; the monodromy of A(ζ) is restricted to lie in that class. One can
also consider “irregular punctures,” which create more intricate irregular
singularities.

We can describeMmore concretely. If we only consider regular punctures
Pi, then flat connections modulo gauge are completely captured by their
monodromy representation: so M is a space of representations of π1(C \
{Pi}) into GC, with the conjugacy class of the mondromies around punctures
fixed.23 Yet more concretely, choose a basepoint x ∈ C, based loops running
around A and B cycles on C, and based loops running around the punc-
tures Pi: then we are studying tuples {A1, . . . , Ag, B1, . . . , Bg, M1, . . . , Mn}
∈ G2g+n

C
obeying

M1 · · ·Mn =
g∏

i=1

AiBiA
−1
i B−1i , (7.9)

with Mi in fixed conjugacy classes. These tuples are considered modulo the
action of GC by simultaneous conjugation on all Ai, Bi, Mi. If we consider
irregular punctures the story becomes slightly more complicated, because at
such a singularity there is more local information than just the monodromy:
the asymptotics of the flat sections yield additionally a decomposition of
each Mi into Stokes factors and formal monodromy. See [54] for a more
in-depth discussion.

We will see below that the vevs of line operators are natural functions
on M, such as traces of products of the matrices appearing above. This
description allows us to study their semiring relations and compare with the
discussion we gave in Section 4. On the other hand, to study the relation
between line operators and spin characters we need to identify the functions
Yγ which appeared in Section 6. These are not given directly in terms of the
matrices above, and in fact we do not know how to construct them at all
for general G (except by solving the integral equation of [1]). However, for

23We say “a space of representations” instead of “the space of representations” because
of a subtlety involving discrete quotients, to be discussed momentarily.



328 GAIOTTO ET AL.

the A1 theories we do know what Yγ are [2], a fact which will be exploited
in Section 10.

7.3.1 Isogenous Hitchin moduli spaces

Our general discussion from Section 6.3 led us to expect not just one mod-
uli space M but several closely related ML, labeled by families L of line
operators. How does this choice show up in the Hitchin system?

In defining the moduli space of solutions to Hitchin equations, one always
has to divide out by the group of gauge transformations. One possibility
is to use gauge transformations valued in the simply connected form of G.
This yields some moduli space Msc. However, one could also have been
more liberal by allowing gauge transformations valued in the adjoint form
of G. The two choices differ by a finite group Δ, isomorphic to the group of
flat bundles on C with structure group Z = Z(G̃). Δ acts by isometries on
Msc, so we can consider various quotients of Msc by subgroups of Δ. We
would like to identify these quotients with the variousML.

We can state the dictionary between choices of L and subgroups of Δ more
precisely in specific examples. For A1 theories with regular singularities,
the relation is particularly simple: as we will see momentarily, a choice
of L will correspond to a choice of a set of closed paths ℘ on C. Our
proposal will be that ML is the quotient of Msc by the subgroup of Δ
corresponding to bundles which have trivial holonomy along all paths ℘ in
L. For A1 theories with irregular singularities, the situation is more difficult:
in particular,Msc is not the biggest space which occurs — one seems to need
some further discrete restrictions on the allowed gauge transformations. We
will not attempt a full analysis in this paper, but we will present a few
examples.

What is the six-dimensional motivation of the relation between a choice
of four dimensional gauge group, and of the allowed gauge transformations
in the Hitchin system? We do not have a full story available, but we do
have some useful hints. Although the Lie algebra underlying the Hitchin
system is determined by the choice of six-dimensional SCFT, the precise
choice of gauge group is rather more subtle. The issues are similar to those
discussed for the reduction along a circle in Section 7.1 above. Presumably,
when compactifying on a Riemann surface the choices of 4d gauge group will
correspond to certain choices of a projection on the vector space of partition
functions. When we compactify down from 4d to 3d on a further circle,
we do not have a further choice of projection available anymore: whatever
choice we made of 4d gauge group of the N = 2 theory will determine the
properties of the 5d theory on C.
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7.3.2 Twisted local systems

There is a second global issue which needs attention. In Section 6.4 we
emphasized that in addition to the moduli spaceM, which arises when we
compactify the theory on S1 in the usual way, there is an a priori different
space M̃ which arises when we compactify with a twist by (−1)2J3 . What
is this space?

We propose that M̃ is a slightly twisted version of M. We will not
describe the appropriate twisting of Hitchin’s equations here; instead we just
describe what M̃ looks like as a complex manifold in its complex structure
J (ζ), for ζ ∈ C×. It looks very much like M, except that we replace flat
connections by twisted flat connections. A twisted flat SL(2, C)-connection
on C is a flat SL(2, C)-connection on the unit tangent bundle to C, which
has holonomy −1 around each fiber. (Note that if we replaced −1 by +1 in
the last sentence we would have reduced to ordinary flat connections.)

It would be desirable to have a direct derivation of this twisting from the
physics of the (2, 0) theory. For our purposes in this paper we are content
with a consistency argument: M̃ as just defined will turn out to have all
the properties we described in Section 6.4. In particular, the twisting turns
out to dispose very nicely of some tricky sign issues.

Choosing a spin structure on C gives an isomorphism M̃ �M. This is
because fixing a spin structure is equivalent to fixing a flat Z2-valued local
system on the unit tangent bundle to C, which has holonomy −1 around
each fiber: tensoring with this local system gives the desired isomorphism.
The two spaces are thus isomorphic but not quite canonically isomorphic.
An exception is the case when C has genus zero, in which case there is only
a single spin structure, so the two spaces are really canonically isomorphic.

The moduli space of twisted local systems was also considered in [36,55],
for closely related (but not quite identical) reasons.

7.4 Line operators from six dimensions

We can use the nonabelian surface operators S�n(R,Σ) of the interacting
(2, 0) theory to define line operators Lζ(R, q;℘) in the d = 4,N = 2 theory,
where q is a path in R1,3 and ℘ ⊂ C is a non-self-intersecting path. We let
Σ = ℘× q and work in the twisted theory of Section 7.2. Now the twisting
has broken the R-symmetry 5 = 2⊕ 3 and we want to preserve the so(3)′
R-symmetry so 
n should be a vector in the two-dimensional subspace in the
decomposition 5 = 2⊕ 3. Let us now take q = {
0} × R to be a line along
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the time direction in R1,3. If we write out the supersymmetry condition
(7.4) for the unbroken supersymmetries preserved by the surface operator
we find that they are in fact four-dimensional supersymmetries of the form
in equation (2.2) of Section 2, as long as we allow 
n to vary along the path.
Actually, we should be more precise here: after twisting, 
n is a vector in
the tangent bundle to the curve. The best notion of “constant 
n” available
is that 
n is transported along ℘ so that the angle β between 
n and the
tangent vector to ℘ is constant. This choice is the correct one to preserve
four supersymmetries, labeled by a phase ζ = eiβ .

Now, as we observed in Section 6 if we Wick rotate the time to a Euclidean
circle of radius R then the vevs 〈Lζ(R, q;℘)〉, where q is now the Euclidean
time circle, can be interpreted as holomorphic functions on the hyperkahler
moduli space M. Using the six-dimensional viewpoint we can give a nice
interpretation of these holomorphic functions.

First, consider the IR limit of the surface operator: it is written in terms
of the surface operators of the tensormultiplet theory valued in t. Let

ϕ =
1
2
(Y 1 + iY 2) (7.10)

(as in equation (3.31) of [2]). Because of the twisting, this becomes a (1, 0)
form on C. Then for finite R, in the IR limit we must replace fields by their
zero-modes along S1 and hence

2πi
∫

q×℘
(n · Y )vol (Σ) −→ π

∫
℘

(
Rϕ

ζ
+Rζϕ̄

)
(7.11)

(The overall factor of i is removed by the Euclidean continuation of the time
circle.) Similarly, 2πi

∫
q×℘(v, B) −→ ∫

℘(v, A), where A is an abelian gauge
field of the 5d abelian SYM theory and v is a weight vector in R.24

Recall that compactification of the nonabelian (2, 0) theory on S1 leads to
a five-dimensional nonabelian super Yang–Mills theory. Now (7.10) defines
an adjoint-valued (1, 0)-form ϕ on C. In view of the above statements about
the abelian theory, it is natural to conjecture that the vev of the nonabelian

24The factor of 2π does not appear on the RHS because we use standard normalization
conventions for the gauge field so that F/2π has integral periods.
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surface operator is

〈S�n(R, q × ℘)〉 =
〈
TrRP exp

∫
℘

(
πRϕ

ζ
+A+ πRζϕ̄

)〉
, (7.12)

where now ϕ and A are valued in the nonabelian 5d SYM multiplet with
gauge algebra g, and the vev on the RHS is in the 5d SYM theory. This is
nothing else but the statement that the nonabelian surface operator should
descend to the Wilson loop of the nonabelian 5d theory. The vev on the
LHS is a holomorphic function on M. Moreover, thanks to the twisting
it is independent of the scale of C, which can therefore be made arbitrar-
ily large. Finally, the IR limit of the 5d SYM theory is free. These facts
strongly suggest that the equality in (7.12) is exact, and, moreover, the
RHS can be replaced by its classical value. The RHS of (7.12) is thus
the holonomy of A(ζ) on ℘ and we finally arrive at the main result of
this subsection:

〈Lζ(R, q;℘)〉 = TrRHol℘A(ζ). (7.13)

The answer depends on ℘ only through its homotopy class. This is a reflec-
tion of the fact that the twisting has eliminated dependence on the scale of
the metric on C.

The result (7.13) is only slightly modified if we consider the twisted com-
pactification on S1 as in Section 7.3.2. To any oriented closed non-self-
intersecting path ℘ in C we can assign a corresponding oriented closed path
℘̃ in the unit tangent bundle (by parameterizing ℘ with unit speed). Then
we can take the holonomies of twisted flat connections Ã along ℘̃:

〈Lζ(R, q;℘)〉′ = TrRHol℘̃ Ã(ζ). (7.14)

This gives a holomorphic function on M̃.

7.5 Cataloging line operators

Let us make a few more comments about this realization of line operators.

(1) Above we discussed line operators associated to closed non-self-
intersecting paths. What about paths which do have self-intersections?
The expression TrRHol℘A(ζ) clearly makes sense for self-intersecting
paths ℘, but we do not understand the physics of self-intersecting sur-
face operators in the 6d theory well enough to include them in our
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discussion. One may also wonder about “junctions” on C, where sur-
face operators corresponding to three or more representations Ri come
together. In 5d Yang–Mills the number of such intersections would be
counted by the number of identity representations in ⊗iRi: the ends
of the Wilson loops would be contracted with the corresponding inter-
twiner. Similar junctions exist in the 2d Toda theories on C [56], which
are relevant to S4 compactifications of the 4d gauge theory. This sug-
gests they should be a feature of the 6d theory as well, and yield line
operators in the 4d theories. We do not pursue this further here.

(2) There is some redundancy in our construction. For example, [57]
argued that, in the case when the ADE group is A1 and C has only reg-
ular punctures, surface operators along non-self-intersecting paths on
C carrying the fundamental representation of SU(2) suffice to describe
all UV gauge theory operators: no higher representations seem to be
needed.

(3) On the other hand, if we consider C with irregular punctures, our
discussion so far does not give all the line operators: we need to include
additional operators involving open paths on C. We will not give a
general construction of such operators here, but in Section 9.2 below
we will describe what they must look like in the A1 theories.

(4) Finally, not all the line operators we discussed here can be introduced
simultaneously, because of the constraints from mutual locality. The
choice of an allowed set of line operators L corresponds in this con-
text to choosing some restrictions on the representations and closed
paths we will allow. For example, in A1 theories, we may freely
allow arbitrary paths carrying integral-spin representations of SU(2),
but we may allow half-integral spins only on some subset S of the
paths. Locality requires that S be chosen so that the intersection
number between paths in S is always even. The corresponding mod-
uli space ML is the moduli space of SU(2) Hitchin systems, divided
by the group of Z2-connections which have trivial holonomy along all
paths in S.

8 Some examples of the moduli spaces and holomorphic
functions

This section describes the moduli spacesM, and their relation to the spaces
MLi and M̃ introduced in Sections 6.3, 6.4, 7.3.1, and 7.3.2, in the concrete
examples of theories used in this paper. We will also describe how the algebra
of functions on these spaces is related to the noncommutative algebras of
line operators described in Section 4 and to the laminations described in
Section 10.
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8.1 U(1) gauge theory and periodic Taub-NUT

We begin with the U(1) theory of Section 4.2. The torus fibration structure
of M is described as follows. The Coulomb branch B of a U(1) gauge
theory coupled to an hypermultiplet of charge 1 has a singularity at the
origin Z0,1 = a = 0, where the hypermultiplet is massless. It also has an
unphysical behavior at large distance from the origin, due to the fact that
the theory is not asymptotically free. Sufficiently close to the origin in B,
the theory makes sense. Upon dimensional reduction, the 4d gauge fields
provide two circle-valued scalars: an electric Wilson line θ̃e and a magnetic
Wilson line θ̃m. The magnetic circle shrinks to a point at the origin of the
Coulomb branch.

The metric onM is smoothed out by the 3d one-loop corrections to the
“periodic Taub-NUT” or “Ooguri-Vafa” space [58, 59]. After these correc-
tions one sees that the magnetic circle shrinks only in codimension 3 — at
the origin of the 4d Coulomb branch (a = 0) and at a specific point in the
electric circle (θ̃e = 0).

The subtleties we mentioned about different moduli spaces ML are
absent here: there are no interesting choices of L to be made in this
example.

Now let us turn to the algebra of functions on M. In the generic
complex structure, the manifold can be identified with the complex
manifold V+V− = 1− U , where U = Y0,1 = exp

(
πR
ζ a+ iθ̃e + πRζā

)
is val-

ued in C∗ and V± are more intricate holomorphic functions, valued in C.
Their asymptotics in the ζ plane are such that V+ = Y1,0 in the sector in
the ζ plane with Im(Z0,1/ζ) > 0, while V− = Y−1,0 on the opposite sec-
tor. We recognize immediately that the expansion of V p

+U q and of V p
−U q

in Yγ and their ring relations match the ones computed for the formal
line operators Fp,q and F−p,q discussed in Section 4.2, once evaluated at
y = −1.
It is also instructive to inspect the geometry associated to a U(1) gauge

theory with an hypermultiplet of electric charge Q. The equation of the
manifold now takes the form of V+V− = (1 + (−U)Q)Q, and has a set of Q
AQ−1 singularities, sitting at UQ = (−1)Q−1: the magnetic circle is shrink-
ing at Q locations on the electric circle, and it is Q times smaller than
before, so that it forms AQ−1 singularities where it shrinks. Note that this
beautifully matches the y = −1 specialization of the ring relations (4.20).
(To show this it is useful to note that at y = −1 we have [n] = (−1)n−1n,
[n]! = (−1) 1

2
n(n−1)n! and

[
n
j

]
y=−1 = (−1)j(n+1)(nj). )
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8.2 N = 3 AD theory

Let us now turn to the AD theory with N = 3 discussed in Section 4.3. We
begin by describing the fibration structure.

The three-dimensional Coulomb branch of this theory has an intuitive
structure for large radius R of the compactification circle: the neighbor-
hood of each of the two singularities in the Coulomb branch looks like the
Coulomb branch for the U(1) theory, coupled to a single particle of charge
1. The singularities are smoothed out exactly the same way, though of
course a different circle shrinks at each. Roughly speaking, the magnetic
circle shrinks at one point of the electric circle over one singularity, and the
electric circle shrinks at one point of the magnetic circle over the other sin-
gularity. The shift symmetry of the Wilson lines is completely broken. As in
the U(1) example, there are no interesting choices forMLi in this example.

Now, it follows from the matching to Hitchin systems described in [2],
Section 9, that we can describeM as the moduli space of an SU(2) Hitchin
system on the sphere, with a single irregular singularity of such a degree as
to give five Stokes sectors around the singularity. As a complex manifold,
M is given by the equation M = 1, where the monodromy matrix M is
decomposed as

M =
(
1 U1
0 1

)(
1 0
−U4 1

)(
1 U2
0 1

)(
1 0
−U5 1

)(
1 U3
0 1

)(
0 1
−1 0

)
. (8.1)

Here the triangular matrices are Stokes matrices, and the last matrix is
the formal monodromy. The Ui are holomorphic functions on the moduli
space. They have been labeled for future convenience. We will also extend
the labeling by defining Ui+5 = Ui. The equations M = 1, with a bit of
massaging,25 take an appealing form:

Ui−1Ui+1 = 1 + Ui. (8.2)

These five equations can be shown to define a smooth two-dimensional
complex submanifold of C5. If we associate the five coordinates with vertices
of a pentagon, then the coordinates attached to neighboring vertices never

25One way to prove this is to bring three factors to one side of the equation M = 1.
This then gives four equations on matrix elements which are easily seen to be equations
(8.2) for i = 2, 3, 4, 5. To get the last equation, multiply the equation for i = 4 by U2, and
note that if U3 is nonzero then we get the equation for i = 1. Similarly, if we multiply the
equation for i = 3 by U5 and divide by U4, we get the equation for i = 1. But U3 and U4

cannot simultaneously vanish.
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simultaneously vanish. There are five special divisors Ui = 0, intersecting
pairwise in a pentagonal configuration at five special points, namely U1 =
U3 = 0, U2 = U4 = U5 = −1 and its images under cyclic permutation of the
indices.

Comparing equation (4.29) with (8.2), we see that we can recover the
commutative algebra of functions by taking the limit Fi → Ui for y → 1 or
Fi → −Ui for y → −1. It appears that here M and M̃ are identical. We
will match in detail the expansion of the −Ui in Yγ and the Ui in Ỹγ with
the formal line operators in Section 10.1.

8.3 SU(2) and SO(3) Nf = 0 gauge theories

Let us now turn to the SU(2) theory discussed in Section 4.4. We begin by
describing the fibration structure over the u-plane.

The SU(2) and SO(3) Nf = 0 gauge theories in flat space differ only by
the choice of allowed sets of local line operators. We saw that there are
really three possibilities, and the third possibility can be identified with
SO(3) Nf = 0 upon a shift by π of the UV θ angle. The 3d Coulomb
branches of the three theories, M1, M2 and M3, differ only in the precise
periodicities of the Wilson line parameters. Let us start by describing the
moduli space M1 for the SU(2) case. The 4d Coulomb branch B of this
theory is remarkably similar to the one for the N = 3 AD theory, but the
charges of the particles which become massless at the singularities satisfy
〈γ1, γ2〉 = 2. Conventionally, we can set γ1 = (1, 0) and γ2 = (−1, 2). All
BPS particles have even electric charges, and instanton corrections, and
hence M1, are invariant under the Z2 shift symmetry θ̃e → θ̃e + π. As the
γi are related by SL(2, Z) transformations to a pure electric charge, the
instanton corrections at large radius give a standard periodic Taub-NUT
geometry around each singularity. For an SO(3) gauge theory we would
say instead that γ1 = (2, 0) and γ2 = (−2, 1): magnetic charges are doubled
and electric charges halved with respect to SU(2). ThenM2 has a different
Z̃2 shift isometry acting on θ̃m. As γ1 is divisible by 2, the local geometry
near the first singularity of B at large radius is expected to have two A1

singularities, permuted by Z̃2. ForM3 the roles of the two singularities are
permuted. In order to relate theMi, we can do two things. One possibility
is to quotient them by their Z2 shift symmetries, to reduce their torus fibers
to a common form, built from the lattice Γ instead of the ΓLi . The resulting
manifoldM has two A1 singularities, corresponding to the two singularities
in the 4d Coulomb branch. The second possibility is to “double up” their
torus fibers, to a larger torus modeled on the union of the ΓLi in Γ⊗ R. The
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resulting manifold Mmx is smooth and has a Z2 × Z̃2 shift isometry. The
diagram (6.12) in this case becomes

Mmx

↙ ↓ ↘
M1 M2 M3

↘ ↓ ↙
M

. (8.3)

Then quotient ofMmx by Z2 producesM1, by Z̃2 producesM2 and by the
diagonal Z2 producesM3.

How do these manifolds compare with the expected moduli space of solu-
tions of a Hitchin system? We will see now thatM1 is the standard moduli
space of a SU(2) Hitchin system, but Mmx is a natural extension of that.
This example suggests that the story for the case with irregular singularities
might be a bit more complicated than for the case with regular singularities:
even when C has genus zero, there may be choices of gauge group and of
ML.

The Hitchin system has two irregular singularities on the sphere, with a
single Stokes sector each. The condition M1M2 = 1 becomes

W

(
1 U1
0 1

)(
0 1
−1 0

)
W−1

(
1 U2
0 1

)(
0 1
−1 0

)
= 1. (8.4)

Here W is a matrix of unit determinant. There is a small residual “gauge
freedom” W → −W . Actual holomorphic functions on the moduli space of
this Hitchin system must be invariant under this Z2 transformation, but for
the moment we will ignore that. The matrix elements of W and U1,2 can
be considered as holomorphic functions on a slightly enlarged moduli space,
which will coincide withMmx.

Massaging (8.4) a bit we see it implies U1 = U2 =: U and TrW = 0, i.e.,
we can write

W =
(

V1 V0
−V2 −V1

)
. (8.5)

In addition (8.4) implies V0 + UV1 + V2 = 0; and since detW = 1 we have
V0V2 = 1 + V 2

1 . The two-dimensional spaceMmx is coordinatized by U, V0,
V1, V2 subject to these two equations.



FRAMED BPS STATES 337

We may extend V0, V1, V2 to an infinite set of useful functions Vn by

W

((
1 U
0 1

)(
0 1
−1 0

))n

=
(

Vn+1 Vn

−Vn+2 −Vn+1

)
. (8.6)

Consistency of these definitions requires that Vn−1 + UVn + Vn+1 = 0 for
all n. Moreover, since detW = 1 we have the relations Vn−1Vn+1 = 1 + V 2

n

for all n.

The trace of the monodromy has the simple form TrM1 = −U , and should
correspond to the expectation value of a fundamental SU(2) Wilson loop.
We have two natural symmetries: a Z2 acting by Vn → −Vn and a Z̃2 act-
ing by U → −U , Vn → (−1)nVn. The former is the one which we have to
quotient by in order to obtain the moduli space of solutions of the SU(2)
Hitchin system; it acts freely, so the moduli space is smooth. On the other
hand, either Z̃2 or the diagonal in Z2 × Z̃2 does have fixed points: either
U = 0 and V2n = 0, which means V2n+1 = ±(−1)ni, or U = 0 and V2n+1 = 0,
which means V2n = ±(−1)ni. Thus the quotient by either Z̃2 or the diag-
onal in Z2 × Z̃2 gives a space with two A1 singularities exchanged by the
residual Z2 symmetry. The quotient by both symmetries gives a space with
two unrelated A1 singularities. This is exactly what is expected from the
gauge theory analysis: the moduli space without any quotients appears to
coincide withMmx, the Z2 quotient withM1, and the Z̃2 quotient and the
diagonal quotient appear to coincide withM2 andM3 respectively.

It is now of some interest to compare the rings of functions on Mmx

and M1 with the results on formal line operators from Section 4.4. To
get a commutative ring we can specialize y = ±1. If we set y = 1 then we
can compare with the functions Vn on M. In this case, we have for y → 1
V̂n → Vn and W → −U . Compare the above relations to equations (4.50)
and (4.51). When we take the quotient to go toM1 then we must consider
even functions generated by the Vn. Now we have W → −U , G2n+1 → V 2

n ,
and G2n → Vn−1Vn. When discussing functions on M1 it is also possible
to set y = −1 in the algebra generated by the G’s. In this case G2n+1 →
−V 2

n , G2n+2 → −VnVn+1 and W → U . Indeed with this identification we
can check that equations (4.43), (4.44), (4.52), and (4.53), when specialized
to y = −1 are satisfied by the corresponding classical functions.

8.4 SU(2) and SO(3) N = 2∗ theory

Finally, let us consider the N = 2∗ theory discussed in Section 5.4. As
noted above C is a once-punctured torus. The fundamental group of C
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has generators α, β, m with one relation αβα−1β−1 = m. Hence, the mod-
uli space Mmx of flat SL(2, C) connections with fixed conjugacy class of
monodromy around the puncture is given by the space of SL(2, C) matrices
A, B, M satisfying

ABA−1B−1 = M, (8.7)

with a fixed trace TrM = μ+ 1/μ, modulo simultaneous overall conjuga-
tion.

From the gauge theory point of view it is clear that the algebra of holo-
morphic functions onMmx is generated by traces of holonomies which are
in turn traces of words made out of A±1 and B±1. We claim that the algebra
of holomorphic functions is in fact generated by

a := TrA, b := TrB, c := TrAB, (8.8)

and thatMmx is simply the space of (a, b, c) ∈ C3 subject to

a2 + b2 + c2 − abc = μ+ 2 +
1
μ

, (8.9)

a result that goes back to Fricke. For useful information on this moduli
space see [60, 61]. The solution space to (8.9) is smooth so long as μ �= −1.
To justify these claims note first that since the matrices are 2× 2 it suf-

fices to consider the traces of holonomies in the fundamental representation.
Next, recall that if x is a 2× 2 matrix of determinant 1 then

x2 − Tr(x)x+ 1 = 0. (8.10)

Using this for x = A±1, B±1 we can clearly reduce an expression Tr(An1

Bm1An2Bm2 · · · ) with ni, mi ∈ Z to a polynomial in traces with ni, mi ∈
{0,±1}. Then using (8.10) in the form x−1 = Tr(x)− x we can replace A−1
by A and B−1 by B (changing the polynomial) and finally, applying (8.10)
to x = AB we can reduce Tr[(AB)n] to a polynomial in Tr(AB). Moreover,
using these relations, we can write

TrM = Tr(ABA−1B−1)

= (TrA)2 − Tr(ABAB−1)

= (TrA)2 − Tr(ABA)Tr(B) + Tr(ABAB)

= (TrA)2 + (TrB)2 + (TrAB)2 − (TrA)(TrAB)(TrB)− 2, (8.11)

from which we get (8.9).



FRAMED BPS STATES 339

In order to reproduce the expected covering moduli spaces

Mmx

↙ ↓ ↘
M1 M2 M3

↘ ↓ ↙
M

(8.12)

we note thatMmx defined by (8.7) has a Z2 × Z2 symmetry group generated
by (A, B)→ (−A, B) and (A, B)→ (A,−B) so that the three nontrivial
elements act on (a, b, c) by

g1 : (a, b, c)→ (−a, b,−c)

g2 : (a, b, c)→ (a,−b,−c)

g3 : (a, b, c)→ (−a,−b, c)
(8.13)

Clearly Mi =Mmx/〈gi〉 and M =Mmx/(Z2 × Z2). Note that M is the
moduli space of flat PSL(2, C) connections with fixed conjugacy class of
monodromy around the puncture.

There are correspondingly six fixed points of elements of Z2 × Z2 on
Mmx, e.g., Fix(g3) is (0, 0,±(μ1/2 + μ−1/2)). If we take a quotient by one
of the Z2 subgroups then there are two A1 singularities, exchanged by the
remaining Z2 symmetry group. For example M3 has two A1 singularities
at [0, 0,±(μ1/2 + μ−1/2)] exchanged by g1 (or g2). If we take a quotient by
Z2 × Z2 to getM there are three distinct A1 singularities. In the fibration
M→ B these project to the three singular points in the u-plane mentioned
in Section 5.4.

The formal Wilson operators of Section 5.4 correspond neatly to the func-
tions a, b, c. To be precise, the y → 1 limit takes

W1 → a,

W2 → b,

W3 → c.

(8.14)

With this understood we recognize that equation (5.28) is the quantum skein
relation corresponding to

Tr(A)Tr(B) = Tr(AB) + Tr(AB−1). (8.15)

Note that this really is a skein relation of the form familiar from Chern–
Simons theory, since the A, B cycles intersect on the torus and may be
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resolved in two ways, with coefficients y±1/2. We will comment again on
this in Section 13. Similarly, we can also recognize equation (5.29) as
the quantum analog of (8.9). (One can check that for y → 1 we have∑

aijk → 1.)

Finally, note that the SL(2, Z) S-duality symmetry is beautifully manifest
in the moduli space since we can write the defining equation as

AB = MBA, (8.16)

which can be equivalently written as

A(BA) = M(BA)A (8.17)

BA−1 = (A−1MA)A−1B. (8.18)

Hence, we can define actions of the generators of SL(2, Z) on the holonomies
T : A → A, B → BA, M → M and S : A→ B, B → A−1, M → A−1MA.
One can check that S4 is the identity transformation, but the relation
(ST )2 = S2 is not satisfied on the holonomies. Nevertheless

STS · (A, B, M) = B−1
(
T−1ST−1 · (A, B, M)

)
B (8.19)

and hence the action on traces of holonomies does factor through the mod-
ular group.

9 A1 theories and laminations

In Sections 9 and 10, we specialize to the A1 theories. In these theories, one
can give explicit examples of the decomposition (6.14) expressing vevs of line
operators in terms of the Ỹγ , and hence compute the framed BPS degenera-
cies. In this section, we give some necessary preliminaries. Section 10 will
contain concrete results.

9.1 A brief technology review

We begin by recalling a few bits of technology used in [2], to which we refer
for more details.

Fix a point u ∈ B. u corresponds to a meromorphic quadratic differential
φ2 on C. φ2 determines the Seiberg–Witten curve Σ, which is of the form
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λ2 = φ2. The charge lattice is Γ = H1(Σ, Z)odd. The behavior of φ2 near a
regular singularity on C, say at z = 0, is dictated by a boundary condition

φ2 ∼ m2dz⊗2

z2
. (9.1)

Here m is a mass parameter corresponding to a relevant deformation of the
theory. At irregular singularities φ2 has a higher-order pole. At generic u,
φ2 has only simple zeroes; Bsing ⊂ B is the locus where not all zeroes of φ2
are simple.

Around any point of C which is neither a pole nor a zero of φ2, we can
define a local coordinate (up to sign) by w =

∫ √
φ2. We define a “WKB

curve of phase ϑ” on C to be one which becomes a straight line of inclination
ϑ when mapped to the w-plane. A generic WKB curve parameterized by t is
asymptotic to poles of φ2 as t→ ±∞. Near a regular singularity for meiϑ /∈
iR, WKB curves describe exponential spirals falling into the singularity.
Near an irregular singularity where φ2 has a pole of order26 k + 2, WKB
curves are clustered into k distinct families, each one asymptotic to one of
k “WKB rays.”

In [2] we also introduced a triangulation TWKB(u, ϑ) of C — or more
precisely of a surface obtained from C by cutting out a small disc around
each irregular singularity, and marking boundary points which divide each
boundary circle into k arcs. We abuse notation by calling this marked
surface C as well when no confusion can result. The edges of TWKB(u, ϑ)
are generic WKB curves. The vertices are the asymptotic ends of the WKB
curves: each regular singularity is a vertex, and each irregular singularity
gives a set of k vertices, one on each arc, plus an identification between these
vertices and the Stokes rays. The triangulation TWKB(u, ϑ) is “decorated”
by some additional discrete data, as follows. As we have mentioned, in
its complex structure Jζ , M is a moduli space of flat connections with
singularities. Given such a connection, and given a WKB curve on C, we
obtain a distinguished “small flat section” (defined up to rescaling) at each
asymptotic infinity: it is the section which is exponentially decaying as
we follow the WKB curve into the singularity. At a regular singularity this
small flat section is independent of which particular WKB curve we consider;
moreover it is one of the two eigensections of the monodromy around the

26In [2] the order of the irregular singularity was expressed in terms of an integer L,
but that notation would clash with our notation for line operators.
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singularity, with eigenvalue

μ = exp
[
±2πi

(
Rζ−1m− 2m(3) −Rζm̄

)]
. (9.2)

At an irregular singularity where φ2 has a pole of order k + 2, the situation is
slightly more complicated, because of Stokes phenomenon: the WKB curves
are clustered into k families as we have mentioned, each one asymptotic to
one of k WKB rays, and each WKB ray carries a different small flat section.
So in either case, we get a distinguished flat section attached to each vertex
of TWKB.

Using the decorated triangulation TWKB(u, ϑ = arg ζ), we defined in [2]
a canonical collection of coordinate functions Xγ on M. (We review this
definition in Appendix F.1.) We also defined in [2] a canonical quadratic
refinement σ on Γ, so we can define another collection of coordinate functions
by Yγ = σ(γ)Xγ . The arguments of [2] show that these Yγ indeed coincide
with the ones we have been using in this paper, for γ ∈ Γ. On the other
hand, in our discussion of framed BPS degeneracies above, we also needed
Yγ where γ belongs to one of the extended lattices ΓL. For these charges, [2]
did not provide a definition of Yγ . Since 2γ ∈ Γ we do have a definition of
Y2γ , so the difficulty is to fix the sign of a square root. We will not give a
prescription for fixing these signs here. Instead we will sidestep the difficulty
by working on the twisted space M̃L. On this space the sign difficulties are
less severe and we can indeed define the desired functions Ỹγ for all γ ∈ ΓL.
This is done in Appendix F.2.

Finally, in Appendix A of [2] we reviewed a recipe for expanding the
holonomy functions TrHol℘A on M in terms of the coordinates Yγ , mod-
ulo some sign ambiguities which we did not fix in general. In Appendix
F.2, we slightly improve this recipe, by giving an expansion of the twisted
holonomy functions on M̃ in terms of the Ỹγ , with no sign ambiguities.
This is the expansion we will use to extract the framed BPS degeneracies
Ω(u, Lζ , γ; y = 1).

9.2 The puzzle of the missing line operators

As we have just described, an A1 theory in class S is characterized by a choice
of a Riemann surface C carrying some number of “regular” or “irregular”
punctures. Much of the literature on these theories so far has focused on
regular punctures, but some of the most natural (as well as combinatorially
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simplest) examples really require the irregular ones: for example, asymp-
totically free theories like the pure SU(2) theory always require irregular
punctures, as do the realizations of AD CFTs described in [2].

How can we construct line operators in such a theory? We might try
to obtain them from closed paths on C, as described above and in [15].
However, consideration of examples quickly shows that this does not give
all of the line operators we would expect to exist. For example, the pure
SU(2) theory corresponds to C = CP1 with two irregular punctures [2]; so
up to isotopy there is just a single non-self-intersecting closed path on C.
This one can be identified with the Wilson line operator. But where are the
Wilson–’t Hooft operators?

As we will see shortly, the missing line operators correspond to certain
integral laminations, combinations of paths which are allowed to have ends
on the irregular punctures.

9.3 Decoupling flavors

Let us consider what happens to the line operators when a conformal theory
degenerates to an asymptotically free one.

We begin with an A1 theory T ′ defined using a curve C ′. Suppose that on
C ′ we have a pair of regular singularities, in a patch with local coordinate
z. We think of these singularities as sitting close together, say at z = ±ε,
with mass parameters m1, m2. We then have

φ2 =
(

m2
1

(z − ε)2
+

m2
2

(z + ε)2
+ · · ·

)
dz⊗2

=
F (z)

(z − ε)2(z + ε)2
dz⊗2. (9.3)

Consider expanding F (z) in a Taylor series around z = 0. By adjusting the
residues m1, m2 at the singularities +ε, −ε we can fix the constant and linear
terms of this series arbitrarily. Now suppose we take ε → 0 while holding
these two terms finite. In the limit we can write

φ2 =
(
Λ
z2

+
m

z
+ · · ·

)2
dz⊗2 =

(
Λ2

z4
+
2Λm

z3
+ · · ·

)
dz⊗2, (9.4)
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Figure 16: The WKB foliation in a small neighborhood of a pair of nearby
regular singular points on C ′.

where ε2(m2
1 +m2

2)→ Λ2, and (m2
1−m2

2)
2

m2
1+m2

2
→ m2. In particular, both m1 and

m2 scale like 1/ε, while either m1 +m2 or m1 −m2 is of order 1. We could
take a further limit m →∞,Λ→ 0 holding Λm fixed.

So in this scaling limit the original theory T ′(m1, m2) “degenerates” into
a theory T (m,Λ). The new theory is defined in terms of a curve C with an
irregular singularity: indeed, (9.4) is the form corresponding to an irregular
singularity from which two Stokes rays emerge.

Now we are ready to discuss line operators in the limiting theory T , by
starting with line operators in theory T ′ and observing what they become
in the limit. For some line operators the answer is rather trivial: any closed
path ℘′ which does not pass near the two colliding singular points on C ′
simply corresponds to a closed path ℘ on C, and the holonomy Hol℘′ A(ζ)
limits to Hol℘A(ζ). It is thus very natural to extend [15] by conjecturing
that ℘ corresponds to a line operator L℘ in theory T ′, and write

L℘′ → L℘ (9.5)

in the limit.

A more interesting situation arises when ℘′ does pass between the two
colliding singular points, so that it gets “pinched” in the limit ε → 0. In
this case, we have to work a little harder. First, a local analysis shows
that near the colliding singular points, for small ε and generic ϑ, the WKB
foliation looks like the field of a magnetic dipole as depicted in figure 16.
In particular, we see two distinguished bundles of leaves emerging from the
neighborhood of the colliding singularities. These two bundles are asymp-
totically approaching two distinguished rays. Moreover, applying the WKB
approximation to a vicinity of the irregular singularity after taking ε → 0,
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Figure 17: The subpath q of ℘′.

one sees that these two distinguished rays are exactly the WKB rays emerg-
ing from the singularity. (Compare Figure 42 of [2], which depicts an irreg-
ular singularity with 4 WKB rays emerging.) Similarly the spaces of small
flat sections along these WKB curves are smoothly related in this limit. It
follows that we can choose the normalization of the small flat sections s1, s2
as functions of ε in such a way that they limit to the two small flat sections
for the two Stokes rays.

Now a convenient trick for studying the lamination ℘′ is to chop ℘′ into
pieces by “inserting a complete set of states”. Given a path segment q,
and two flat sections s1, s2 along q, a general flat section s along q may be
rewritten as a sum of two terms:

s =
s1 ∧ s

s1 ∧ s2
s2 +

s ∧ s2
s1 ∧ s2

s1. (9.6)

Hence, the operator of parallel transport along q from an initial point i to
a final point f is similarly a sum:

s(f) =
s1(i) ∧ s(i)

s1 ∧ s2
s2(f) +

s(i) ∧ s2(i)
s1 ∧ s2

s1(f). (9.7)

We are going to apply this taking q to be a short segment of ℘′, and
choosing s1, s2 to be the small flat sections around our two singularities,
continued to q along the obvious shortest route. See figure 17.

Our goal is to rewrite the answer in a way that does not involve any
paths running between the singularities. To do so, we treat the two terms in
(9.7) separately. Let us consider the first term. We deform ℘′ as illustrated
in figure 18. After this deformation, the quantities s1(i) and s2(f) which
appear still make sense in the limit where the singularities collide. On the
other hand, when we try to evaluate s1 ∧ s2 we encounter a difficulty: the
fact that s1(i) and s2(f) are finite does not help us here, because we have
to evaluate s1 and s2 at the same point. This involves transporting one
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Figure 18: A deformation of ℘′ so that the endpoints of q survive the ε → 0
limit.

Figure 19: A further deformation of ℘′.

or the other along q, which runs between the singularities. To get around
this difficulty, we can re-express q as the composition of a small loop around
z1 and a new path q′ which does not get pinched, as shown in figure 19.
Evaluating s1 ∧ s2 along q thus gives a factor μ−11 (from the monodromy of
s1 around z1 — recall we define μi to be the counterclockwise monodromy
of si around zi), times a finite piece. This finite piece is again s1 ∧ s2, now
with the understanding that they are transported to a common point along
q′ rather than q. A very similar analysis applies to the second term in (9.7).
So the parallel transport becomes

s(f) = μ−11
s1(i) ∧ s(i)

s1 ∧ s2
s2(f) + μ2

s(i) ∧ s2(i)
s1 ∧ s2

s1(f), (9.8)

where all factors are finite and nonzero as ε→ 0 except for μ1 and μ2.

Now let us consider the trace of the parallel transport around ℘′ in the fun-
damental representation of SL(2, C). We have written the transport along
q as a sum of two rank-1 operators. Correspondingly the trace decomposes
as a formal sum of two distinct objects,

L℘′ = μ−11 L1 + μ2L2. (9.9)
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Figure 20: The limiting objects L1,2.

We represent each of L1,2 as a union of oriented path segments, with end-
points on the circle S1(P) around the irregular singularity P, and carrying
weights ±1. See figure 20. Each oriented path segment has both ends on
Stokes sectors emerging from the irregular singularity, so there are privileged
small flat sections si, sf at the two ends i, f . The vev of either of L1,2 is a
product over the individual segments: a segment running from i to f and
carrying weight k contributes (si ∧ sf )k.

In the strict ε→ 0 limit, for generic values of the phases of m1,2 and ζ,
both μ1 and μ2 go to 0 or ∞. One of the two terms in (9.9) will dominate
the other. So we can say that in the ε→ 0 limit Lp′ approaches one of the
two objects L1 or L2, multiplied by an infinite “renormalization” factor. We
regard L1 and L2 as good line operators for the theory T ′.

So the effect of the ε → 0 limit is to “cut” the path ℘′ in a specific fashion.
More generally, by colliding multiple pairs of singular points, we could cut
℘′ into many different segments.

Above we considered a trace of holonomy in the fundamental represen-
tation. We could similarly consider a higher spin representation, say the
kth symmetric power of the fundamental. The analog of (9.9) in that case
would be a decomposition

L℘′,k =
k∑

n=0

μ−k−n
1 μn

2L
k−n
1 Ln

2 . (9.10)

The object Lk−n
1 Ln

2 is shown in figure 21; as the notation suggests, its vev is
〈Lk−n

1 Ln
2 〉 = 〈L1〉k−n〈L2〉n. In the ε→ 0 limit, the sum is again dominated

by either the n = 0 or the n = k term.

Our construction above is closely related to one given in [62].
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Figure 21: The limiting object Lk−n
1 Ln

2 .

9.4 Laminations

What we have found above is that in A1 theories with irregular singularities
from which two Stokes lines emerge, the class of good line operators includes
not only closed paths on C carrying representations of SL(2, C), but also
open paths which end on Stokes sectors around the irregular singularities,
carrying integer weights. Our derivation involved a certain limiting proce-
dure, but it is natural to believe that the line operators attached to open
paths make sense even when the irregular singularities do not arise from this
procedure: after all, the physics defining the surface operators in the (2, 0)
theory is local on C.

What if C carries more general irregular singularities, with an arbitrary
number of Stokes lines? There is a natural proposal which generalizes what
we found above for two Stokes lines and which can be derived by colliding
multiple regular singularities.27 It is very similar to a construction used
by Fock–Goncharov in a closely related context [16]. Following (but slightly
abusing) their terminology, we will call the objects we consider laminations
(short for “integral A0-laminations”).
Recall that when C has irregular punctures, we cut out a little disk around

each irregular puncture, and divide each boundary circle into a number of
arcs. A lamination L on C is a union of curves ℘i on C ′, each either closed
or ending on boundary arcs, non-self-intersecting and mutually noninter-
secting, and considered up to isotopy. Each closed curve carries a nontrivial
irreducible representation of SL(2, C), with one exception for technical con-
venience below: a closed curve which surrounds a single regular puncture
carries an integer weight (positive or negative) rather than a representation.
In addition, each open curve ℘i carries an integer weight ki, required to be

27We have not carried out the full details of this derivation.
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positive, with one exception: if an open curve can be retracted to a segment
of the boundary containing exactly one marked point, then its weight is
allowed to be negative. The sum of the weights of all curves ending on each
segment of the boundary must vanish. There are the following equivalences:
if a curve is contractible or can be retracted to a segment of the boundary
containing no marked points, then it can be removed; if the lamination L
contains two curves ℘i, ℘j which are isotopic and carry weights ki and kj , it
is equivalent to a new lamination where ℘j is removed and ℘i carries weight
ki + kj .

We conjecture that for any A1 theory the laminations are in 1-1 corre-
spondence with simple line operators.

The vacuum expectation value of the line operator attached to such a
lamination is multiplicative on the components of the lamination. The factor
attached to a closed path ℘ is the trace of the holonomy along ℘ as usual —
with the exception of closed paths of weight k surrounding a single puncture,
to which we attach the factor μk. For an open path with weight k we have
a factor

(s1 ∧ s2)k, (9.11)

where s1, s2 are the small flat sections at the initial and final vertices of
the path, respectively. Although the factors associated to the open paths
depend on the choice of normalization of the small flat sections si, when
we take the product over components in the lamination, this normalization
cancels out. This is why we put the constraints on the weights ki in the
above definition.

We have not been careful to fix the overall sign of the vev above. Indeed,
although there is a definite prescription for this sign, we will not need it in
what follows. Instead, when we want to be careful about signs, we are going
to work on the space of twisted local systems. On the latter space there is
a natural way to fix the signs, described in Appendix F.2.

10 Examples of A1 theories

In this section, we derive the framed BPS degeneracies in some simple exam-
ples of A1 theories.

We will also comment on results for the PSCs of these theories. We will
be able to deduce the PSC’s using the following simple remark, which we
exalt with the moniker Promotion Principle. The idea is very simple. If
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Figure 22: The curve C = CP1 with a disc around infinity cut out, and five
marked points on the boundary.

one knows that the specialization of a spin character to y = 1 is equal to 1,
then the representation must be a single copy of the trivial (i.e., spin-zero)
representation of SU(2), so its character is identically equal to 1 for all y.
Note that this principle clearly fails if all we know is that the PSC is in the
representation ring of SU(2), and therefore we can only invoke the promotion
principle when the strong positivity conjecture holds. In Section 11 below
we will exploit this principle a little more systematically.

10.1 N = 3 AD theory

We begin with the N = 3 AD theory, which we briefly reviewed in Sec-
tion 4.3. The realization ofM in this case in terms of Hitchin systems was
described in Section 9.4.4 of [2]. In this one has C = CP1, with a single
irregular singularity, from which 5 Stokes lines emerge (see Figure 22 corre-
spondingly there are 5 marked points on the boundary S1. These marked
points divide the boundary into 5 sectors, which we number 1 through 5,
increasing clockwise around the circle.

In this theory there is a distinguished set of 5 laminations. Begin with
L1 as depicted in figure 23. Li+1 is obtained from Li by rotating the circle
by an angle 4π

5 counterclockwise. Repeating this operation 5 times brings
us back to the original lamination, so Li+5 = Li.

Each of the laminations Li gives rise to a family of line operators Li,ζ

parameterized by ζ. To calculate the dimensions Ω(γ;u, ζ, y = 1), according
to (6.14), we should expand the vevs 〈Li,ζ(u)〉′ in terms of the coordinate
functions Ỹγ . This can be done by the “traffic rule” algorithm we described
in Appendix F.2. We begin by drawing the WKB triangulation TWKB(ζ, u).
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Figure 23: The lamination L1 in the N = 3 theory.

Figure 24: A triangulation in the N = 3 theory. The five edges of the pen-
tagon are boundary edges. Each orange mark on the boundary is now iden-
tified with a Stokes ray emerging from the irregular singularity. The blue
points are vertices of the triangulation; we identify them with anti-Stokes
rays.

The triangulations of a pentagon all look the same up to a cyclic permutation
of the vertices, so even without knowing what ζ and u are, we know what
TWKB(ζ, u) looks like. We label the vertices as shown in figure 24.

In Appendix F.2 we defined for each edge E a function ỸE(ζ) on the
moduli space M̃. For convenience, let us lighten the notation by writing
X for the function ỸX and Y for ỸY . Then applying the traffic rules, we
quickly obtain the expansion of the vevs in terms of X and Y :

〈L1〉′ = X, (10.1)
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〈L2〉′ = Y +XY, (10.2)

〈L3〉′ = 1
X
+

Y

X
+ Y, (10.3)

〈L4〉′ = 1
X
+

1
XY

, (10.4)

〈L5〉′ = 1
Y

. (10.5)

From these vevs we immediately read off the spectrum of framed BPS states.
For example, the line operator L1(ζ) supports a single framed BPS state in
the vacuum u. This state then necessarily has spin zero. On the other
hand, L3(ζ) supports three framed BPS states, with three different charges.
Again, all these states have spin zero.

A general lamination in this theory is of the form

Lm
i Ln

i+1, m, n ∈ Z≥0. (10.6)

(The product of two nonconsecutive Li does not give a lamination, because
the edges of a lamination are not allowed to intersect one another.) The
corresponding expectation values are

〈Li〉m〈Li+1〉n, m, n ∈ Z≥0. (10.7)

Expanding such an expectation value generally leads to a more interesting
spectrum of BPS states, with multiplicities greater than 1 in some charge
sectors.

It is interesting to compute the commutative ring of these operators. For
this purpose, it is sufficient to give the ring relations for the five generators
Li. Inspection of (10.1) to (10.5) shows that Li+1Li−1 = 1 + Li. (This can
be also understood more directly as a consequence of “skein relations” which
relate the product of two intersecting laminations to a sum of laminations
where the intersection has been resolved.)

Note that the expressions (10.1) to (10.5) perfectly match up with those
of the formal line operators Fi evaluated in chamber c1 of Section 4.3, if we
make the identification Y → X−γ1 and X → Xγ2 . Moreover, (10.6) corre-
sponds nicely to the simple formal line operators F

(i)
p,q defined in

Section 4.3.
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Figure 25: The curve C = CP1 with a disc around infinity cut out, and six
marked points on the boundary.

Figure 26: A nontrivial lamination μ which can be pushed into an arbitrarily
small neighborhood of the boundary.

10.2 N = 4 AD theory

Now let us consider the N = 4 AD theory. Its realization in terms of Hitchin
systems is very similar to the N = 3 case we just discussed: the only differ-
ence is that we have 6 marked points on the boundary S1 instead of 5. See
figure 25.

One important difference from the previous case arises because 6 is even:
there are nontrivial laminations that can be pushed into an arbitrarily small
neighborhood of the boundary. An example is shown in figure 26. 〈μ〉 is
independent of the position on M: it can however be changed by a non-
normalizable deformation of the theory.
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Figure 27: The laminations L1 and L2.

Figure 28: A sample triangulation in the N = 4 AD theory.

Now define two laminations L1 and L2 as in figure 27. Also define Li+2

to be the lamination obtained from Li by rotating the circle by an angle 2π
6

clockwise. The sequence Li is thus periodic with period 12. Moreover, Li+6

can be expressed in terms of Li using the relations

L7 = μ−1L1, (10.8)

L8 = L2, (10.9)

and their images under applications of the operation (Li → Li+2, μ→ μ−1).
Any lamination is of the form

μrLm
i Ln

i+1, r ∈ Z, m, n ∈ Z≥0 (10.10)

for some i.

Now consider the triangulation shown in figure 28, which could arise as
TWKB(u, ζ) for some (u, ζ). Expanding our laminations in terms of the
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Figure 29: The curve C = CP1 with two discs cut out, and one marked point
on each boundary component.

coordinates attached to this triangulation, again using the traffic rules, gives

〈μ〉′ = XZ, (10.11)

〈L1〉′ = Z, (10.12)

〈L2〉′ = Y + Y Z, (10.13)

〈L3〉′ = 1
Z
+

Y

Z
+ Y, (10.14)

〈L4〉′ = (1 + Y )(1 +X +XY +XY Z)
Y Z

, (10.15)

〈L5〉′ = 1
Y
+

X

Y
+X, (10.16)

〈L6〉′ = 1
XY

+
1
Y

. (10.17)

Using these explicit formulas we can easily read out the relations among the
Li: we have

L1L3 = 1 + L2, (10.18)

L2L4 = (1 + L3)(1 + L9), (10.19)

L1L4 = 1 + μ+ L5 + L9, (10.20)

and their images under applications of the operation (Li → Li+2, μ→ μ−1).

10.3 SU(2), Nf = 0

Next, we treat the pure SU(2) gauge theory. This is the A1 theory where
we choose C to be CP1 with two irregular singularities, at each of which
φ2 has a pole of order 3. Topologically, as we have mentioned, we should
cut out a small disc around each of these two singularities, and divide each
boundary component into a single arc, i.e., mark a single point on each —
see figure 29.
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Figure 30: A family of laminations.

Define a lamination as follows. First take two small semicircles ℘1, ℘2
passing over the marked points of the two boundary circles. Next take two
nonintersecting curves ℘3, ℘4 running from one boundary circle to the other,
differing from one another by 1 unit of winding. These four curves form a
“maximal” set, in the sense that we cannot add any more curves which do
not intersect and are not homotopic to any of them. Assign them integer
weights ki, subject to the restrictions

2k1 + k3 + k4 = 0, 2k2 + k3 + k4 = 0, k3 ≥ 0, k4 ≥ 0. (10.21)

In this way, we obtain a family of laminations, parameterized by the set of
solutions to (10.21). We get one solution for every k3, k4 with k3 + k4 even.
See figure 30. This is only one in an infinite set of such families, since we
can choose the overall winding of ℘3, ℘4 arbitrarily.

All of these laminations give supersymmetric line operators. Which ones
are they? By applying the correspondence given in [15] to the SU(2) theory
with Nf = 4 and then sending masses to infinity along the lines of Section
9.3, one finds that these laminations correspond to Wilson–’t Hooft opera-
tors. They are the operators with labeling [(p

2Hα, q
2α)] where the magnetic

charge is p = k3 + k4, and the electric charge q is equal to the total winding,
i.e., k3 times the winding of ℘3 plus k4 times the winding of ℘4.28 Under
the monodromy ζ → e2πiζ both ℘3 and ℘4 gain two units of winding, so q
shifts by 2p units.

There are a few more laminations we have not yet described: namely, we
could take a single closed curve separating the two singularities, carrying the
spin- q2 representation of SL(2, C). This lamination corresponds to a pure
Wilson loop operator with electric charge q, i.e., in the representation with
highest weight q

2α.

28There is an ambiguity in what we mean by the “total winding” of a curve running from
one boundary to the other: all that is really canonically defined is the relative winding
between two different such curves. This ambiguity here reflects a similar difficulty in
defining the electric charge of a Wilson–’t Hooft operator in the gauge theory.
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Figure 31: A triangulation in the SU(2) theory with Nf = 0.

Figure 32: The lamination L0 in the SU(2) theory with Nf = 0.

Figure 33: The lamination L1 in the SU(2) theory with Nf = 0.

Now we are ready to consider the IR expansions of the vevs. As usual,
we begin by drawing the WKB triangulation TWKB(u, ζ). In this case, the
combinatorics are so simple that every such triangulation must look like the
one in figure 31. (In particular, this is the case independent of whether u is
in the weak- or strong-coupling region!) There are two internal edges which
we label as X and Y , differing by one unit of winding. Let L0 and L1 be the
laminations shown in figures 32 and 33. More generally we can define Ln+2k

by beginning with Ln and applying a Dehn twist k times around one of the
two boundary S1. In this way, we obtain laminations Ln for all n ∈ Z. See
for example figure 34 for L2. We have

L22n+1 = L2nL2n+2. (10.22)

(To check this just note that by Dehn twists we can reduce to the case n = 0,
and that case follows from figures 32 to 34.)

The most general lamination is of the form La
nLb

n+1, or a closed-loop
carrying some representation of SL(2, C). We let L∗ denote the lamination
consisting of a single closed-loop carrying the fundamental representation of
SL(2, C). See figure 35.
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Figure 34: The lamination L2 in the SU(2) theory with Nf = 0.

Figure 35: The lamination L∗ in the SU(2) theory with Nf = 0. Note that
the figure is drawn on CP1, so although we draw the circle going around
the irregular singularity on the left, it is homotopic to a circle which goes
around the one on the right. We abuse notation a bit by using +1 to stand
for the fundamental representation of SL(2, C).

Now we want to compute the expectation values 〈L〉′ of the line opera-
tors associated to these laminations, and to expand them in terms of the
functions ỸX and ỸY on M̃. As usual we abbreviate those functions as
X and Y below. The result for any particular lamination can be obtained
straightforwardly from the traffic rules. In fact, however, there is also a
nice uniform formula for the answer, which can be proven by exploiting the
formula (9.11) more directly. We give that derivation in Appendix G, and
here just report the answer.

Introduce Tchebyshev polynomials defined by Un(cos θ) :=
sin(n+1)θ

sin θ and
Tn(cos θ) := cos(nθ). Defining

α :=
1

2
√

XY
(XY + Y + 1) , (10.23)

the formula is

〈L2n〉′ = Y −1
[
Tn(α) +

XY − Y − 1
2
√

XY
Un−1(α)

]2
. (10.24)

In particular, all the expectation values 〈L2n〉′ can be expressed as Laurent
polynomials in X and Y with positive integer coefficients, as we expected.
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For example,

〈L−4〉′ = X−2Y −3(1 + 2Y + Y 2 +XY 2)2 (10.25)

=
1

Y 3X2
+

4
Y 2X2

+
Y

X2
+

6
Y X2

+
2Y
X

+
2

Y X
+ Y +

4
X2

+
4
X

,

(10.26)

〈L−2〉′ = 1
XY 2

(1 + Y )2 =
1

Y 2X
+

2
Y X

+
1
X

, (10.27)

〈L0〉′ = 1
Y

, (10.28)

〈L2〉′ = X, (10.29)

〈L4〉′ = Y (1 +X)2 = Y X2 + 2Y X + Y, (10.30)

〈L6〉′ = X−1(1 + (1 +X)2Y )2 (10.31)

= Y 2X3 + 4Y 2X2 + 6Y 2X +
Y 2

X
+ 4Y 2 + 2Y X +

2Y
X

+ 4Y +
1
X

,

(10.32)

and so on. We also have

〈L∗〉′ = 1√
XY

+

√
Y

X
+
√

XY . (10.33)

According to (6.14) these expansions capture the framed BPS degeneracies.
For example, in (10.33) we find three framed BPS states in the Hilbert
space with the fundamental UV Wilson loop inserted. The contributions
(XY )±

1
2 correspond to electrically charged states, of charges ±1, as we

naively expected. More surprisingly, there is also the extra contribution√
X/Y , corresponding to a state which carries no electric charge, and mag-

netic charge given by the difference of the windings of the edges X and Y .
It would be interesting to reproduce this result from a weakly coupled gauge
theory computation. In addition, the expansions (10.25) to (10.32) imply
an intricate pattern of framed BPS states bound to the UV ’tHooft–Wilson
loops, which should also be interesting to discover from the weak-coupling
point of view.

The commutative ring relation among the line operators also bears exam-
ination. For example, a simple consequence of (G.4) is

L2kL∗ = L2k−1 + L2k+1. (10.34)

This is physically very reasonable: if we bring together a Wilson loop and
a ’tHooft–Wilson loop, the latter breaks SU(2) to U(1), hence the Wilson
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Figure 36: A family of laminations in the SU(2) theory with Nf = 1.

loop decomposes into the sum of two U(1) contributions of opposite charge.
We thus obtain two ’tHooft–Wilson loops with electric charges shifted by
one unit. We also have relations L2kL2k+4 = (1 + L2k+2)2, L2kL2k+6 = 1 +
(1 + L2k+2)(1 + L2k+4) + L2∗, L2k+1L2k+3 = L2k+2(1 + L2k+2), etc. These
relations are rather challenging to understand directly in the gauge theory.

Finally, it is interesting to compare with the formal line operators in
Section 4.4. We recognize that with the identification X = [0, 2] and Y =
[−2, 0] we can identify L2n with G2n−1 and hence

√
L2n with V̂n−1 evaluated

at y = 1. The above ring relations become those of equations (4.49) to (4.53)
evaluated at y = 1. This comparison is compatible with the discussion at
the end of Section 8.3 and moreover shows that we can use the formal line
operators to compute explicitly the PSCs in these theories. Note that in
general one does not simply promote an integer n in (10.25) to [n].

10.4 SU(2), Nf = 1

Next we treat the SU(2) gauge theory with one fundamental flavor. As
explained in Section 10.2 of [2], this is the A1 theory where we choose C to
be CP1 with two irregular singularities P1 and P2, supporting poles of φ2 of
orders 3 and 4, respectively. Topologically, we cut out a disc around each
singularity, and mark a single point on S1(P1), two points on S1(P2).
A sample lamination in this theory is shown in figure 36. The integer

weights ki are subject to the restrictions

2k1 + k4 + k5 + k6 = 0, k2 + k3 + k4 = 0, k2 + k3 + k5 + k6 = 0,

k4 ≥ 0, k5 ≥ 0, k6 ≥ 0. (10.35)

Solutions to the conditions (10.4) are determined by k4, k5, k6, all ≥ 0, such
that k4 + k5 + k6 is even. So we have obtained a family of laminations
parameterized by such (k4, k5, k6).
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Figure 37: A triangulation in the SU(2) theory with Nf = 1.

These are not all the possible laminations, however, since our choice of
curves was not the most general possible. As in the Nf = 0 theory, we can
generate more laminations by a kind of Dehn twist: continuously rotate a
neighborhood of S1(P2) by an angle of π (so that the two marked points
are exchanged). The twist drags the paths ℘4, ℘5, ℘6 into new ones. By
performing repeated clockwise or counterclockwise twists on the laminations
we constructed above, we can obtain almost all of the possible laminations.
As before, we let L∗ denote the lamination consisting of a single closed curve,
which is not obtained by the above construction.

Now choose a triangulation as follows. The boundary circle S1(P2) is
divided into two segments. One segment meets a single edge; label that
edge X. The other segment meets two edges; label them Y and Z. All three
edges end on the boundary circle S1(P1). Traveling clockwise around an arc
which begins and ends on S1(P1) we meet Z, X, Y in order. See figure 37.

Let L0 be the lamination shown in figure 38. Other basic laminations Ln

are obtained from L0 by twisting around P2 as described above. Computing
their vevs then gives e.g.,

〈L−2〉′ = Y +XY + Y Z +XY Z2 + 2XY Z, (10.36)

〈L−1〉′ = X +XZ, (10.37)

〈L0〉′ = Z, (10.38)

〈L1〉′ = 1/Y, (10.39)

〈L2〉′ = 1/X + 1/XY, (10.40)

〈L3〉′ = 1/Z + 1/XZ + 1/XY 2Z + 1/Y Z + 2/XY Z. (10.41)

In general, 〈Lk〉′ is related to 〈L1−k〉′ by the simultaneous exchanges Z ↔
1/Y , X ↔ 1/X.
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Figure 38: The lamination L0 in the SU(2) theory with Nf = 1.

Figure 39: A sample lamination in the SU(2) theory with Nf = 2, in its
first realization.

We also have

〈L∗〉′ = 1 +X +XY +XY Z√
XY Z

. (10.42)

10.5 SU(2), other Nf

One can similarly describe the laminations for all the SU(2), Nf > 0 theo-
ries. Here we confine ourselves to a few brief comments.

The theory with Nf = 2 has two realizations as described in Sections 10.3
and 10.5 of [2]. Let us consider its “first realization”, in which C is CP1 with
two irregular singular points, each supporting two Stokes rays. A sample
lamination is shown in figure 39. This lamination is maximal in the usual
sense that no more curves can be added to it. We could get a more general
family of laminations by changing the weights attached to the curves.

The theory with Nf = 3 is obtained by taking C to be CP1, with one
irregular singular point supporting two Stokes rays, and two regular singular
points. A sample lamination is shown in figure 40.



FRAMED BPS STATES 363

Figure 40: A sample lamination in the SU(2) theory with Nf = 3.

Figure 41: The “tetrahedral” triangulation of CP1, appearing in the SU(2)
theory with Nf = 4. The edge between vertex i and vertex j is labeled Xij .

10.6 SU(2), Nf = 4

Next let us briefly consider the SU(2) theory with Nf = 4. This theory
corresponds to C = CP1 with 4 regular singularities. For some choice of
(ζ, u), TWKB(ζ, u) is the “tetrahedral” triangulation pictured in figure 41.
Then consider the lamination L∗ shown in figure 42. Applying the rules
of [15] we know that the corresponding operator L∗(ζ) is a Wilson loop in
one duality frame. Using the traffic rules, its vacuum expectation value is

〈L∗〉 = TrLM23RM13LM14RM24 (10.43)

which works out to be

〈L∗〉 = 1 +X13 +X24 +X13X24 +X13X14X24 +X13X23X24 +X13X14X23X24√
X13X14X23X24

.

(10.44)



364 GAIOTTO ET AL.

Figure 42: The lamination L∗ in the SU(2) theory with Nf = 4.

So this line operator supports seven BPS states, all with different
charges.

10.7 SU(2), N = 2∗

Finally, we consider the most interesting example, the N = 2∗ theory. As
we have reviewed in Section 5.4 the theory corresponds to taking C to be a
once-punctured torus with a regular singular point. The relevant quadratic
differential is φ2 = u+m2℘(z|τ). There are two turning points, and all
WKB triangulations have the same topology: two triangles, splitting some
fundamental regions of the torus in two. Without loss of generality we
can represent the edges by three lines (0, 1), (0, τ), (0, τ + 1), as shown in
figure 43. We will denote the corresponding cross-ratios as X, Y , Z. Then
the monodromy around the puncture is μ = −XY Z. The holonomies Tr(A)
and Tr(B) around the basic cycles z → z + 1 and z → z + τ of the torus
are easily computed, as the cycles cross two edges each, and hence have the
standard three-term expansion. The same is true of the cycle z → z + 1 + τ ,
which gives Tr(AB). Thus we have the expansions:

〈L0,1〉′ = Tr(A) =
√

ZY +
√

Z/Y + 1/
√

ZY , (10.45)

〈L1,0〉′ = Tr(B) =
√

XZ +
√

X/Z + 1/
√

XZ, (10.46)

〈L1,1〉′ = Tr(AB) =
√

Y X +
√

Y/X + 1/
√

Y X. (10.47)

We can compare these with the formal Wilson line operators (5.23) so that
W1 corresponds to (the classical limit) of Tr(A) etc., exactly as in Section
8.4. As a check, it follows from (10.45) that if X, Y, Z are considered to be



FRAMED BPS STATES 365

Figure 43: The generic WKB triangulation for the N = 2∗ theory.

commutative variables then substitution of (10.45) indeed leads to

(Tr(A))2 + (Tr(B))2 + (Tr(AB))2 − Tr(A)Tr(B)Tr(AB) = μ+ 2 +
1
μ

(10.48)

where we have used μ = −XY Z. This is in agreement with equation (8.9)
and is the classical limit of (5.29).

Using the “promotion principle” it follows from these expressions that the
formal line operators constructed in Section 5.4 compute the PSCs of the
N = 2∗ theory.

10.8 The millipede expansion

In the A1 theories, there is a simple description of the vanilla BPS states:
they correspond to BPS strings of the (2, 0) theory on C with finite total
mass. This amounts to WKB curves which are either closed or begin and
end on zeroes of the quadratic differential φ2. This picture was introduced
in [63,64] and played an important role in [2]. In this paper, we introduced
framed BPS states and it is natural to ask whether they are captured by a
similar geometric picture. We believe the answer is yes: in this section, we
briefly sketch a proposal to identify the framed BPS degeneracies Ω(L, γ, ζ)
directly as counting some objects which we call millipedes with body L and
phase arg ζ.

We do not define these objects in general here, but restrict to the case
when the lamination L is just a closed-loop, carrying the fundamental rep-
resentation of SL(2, C). In this case, a millipede is a closed oriented curve ξ
on Σ, which can be divided into segments as follows. Some of the segments
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Figure 44: A portion of the projection of a millipede to C. The body is
shown in purple while the legs are black. This particular millipede is of the
simplest kind, where all legs end on turning points, shown as orange crosses.

are called body segments: each body segment is a lift to Σ of a corresponding
segment of L. We require that each point of L lifts to exactly one point on
a body segment: so the body segments make up a kind of broken lift of L to
Σ. The rest of the segments are called legs. These are oriented curves along
which λ/ζ is real and non-negatively oriented. (Such segments are lifts of
WKB curves from C.) The charge of the millipede is defined to be the class
of ξ in H1(Σ, Z). We propose that the framed BPS degeneracies should be
“counting” millipedes ξ with body L, phase arg ζ, and charge γ.

Let us consider the most basic way of constructing a millipede. Begin
with a broken lift of L. Where the lift jumps from one sheet of Σ to the
other, it has boundary points p1, p2 (which project to the same point p of
C.) So the body of ξ is not closed. To fix this problem, at each boundary
point p we attach a leg segment, which runs from p1 along Σ to a zero of λ
and then returns along the other sheet of Σ to p2. (Note that this is only
possible if there is a WKB curve which runs from p to a turning point: and
there are only finitely many such “special WKB curves,” so there are only
finitely many possibilities for attaching legs to any given L.) The projection
of this picture to C explains the terminology — see figure 44.

As in the case of vanilla BPS states, the precise rules for counting these
objects are a bit subtle. The simplest case is the one we just discussed,
where all legs are running from L to turning points. Such a millipede is
isolated (has no moduli). If these are the only millipedes, and if all millipedes
have just a single leg ending on each turning point, then it is relatively
straightforward to see using the traffic rules that the number of millipedes
with body L and charge γ indeed coincides with the number Ω(L, γ).

More generally though, we may have multiple legs ending on a single
turning point; in these cases the millipede sometimes contributes −1 instead
of +1. In addition, there can also be millipedes where some legs both begin
and end on L. Such a millipede has moduli (the legs can slide back and
forth along L). We conjecture that the isolated millipedes contribute spin
zero framed BPS states and non-isolated millipedes contribute higher spin
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Figure 45: In regions of parameter space for (u, ζ) (and the gauge couplings)
where TWKB(u, ζ) looks like this picture, we can use the promotion principle
to compute the PSC’s for the line operator associated to the curve ℘.

framed BPS multiplets; this is the case at least in some simple examples,
but we have not studied the question systematically.

11 Quantum holonomy

In Section 10 we have shown how to compute the framed BPS degeneracies
for A1 theories. In this section, we sketch how one can — in principle — go
further and compute the full PSCs of the A1 theories, thereby computing
the deformed algebras of functions in these examples. The key idea is to
combine WCFs with the Promotion Principle explained at the beginning of
Section 10.

We can apply the promotion principle very straightforwardly in some
special situations (as was already done in passing in Section 10.) Suppose
we have a curve ℘ and a triangulation such that the local neighborhood of
℘ is of the form of figure 45. Suppose we wish to compute the specialization
to y = 1 of the PSC of the line operator Lζ(℘) (where the representation
R = 2 is understood.) That is, we wish to compute the expectation value
〈Lζ(℘)〉′. Applying the traffic rules of Appendix F.2, we find

〈Lζ(℘)〉′ =
√
Ỹ+Ỹ− + 1√

Ỹ+Ỹ−
+

√
Ỹ+
Ỹ−

. (11.1)

We can clearly apply the promotion principle to this expression and conclude
that

F (Lζ(℘)) = X 1
2
(γ++γ−) +X− 1

2
(γ++γ−) +X 1

2
(γ+−γ−). (11.2)
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Now suppose we wish to compute F (Lζ(℘)) for some generic (u, ζ). The
data (u, ζ) (and the coupling constants) determines a Seiberg-Witten differ-
ential and an associated WKB triangulation TWKB(ϑ, u) with ϑ = arg ζ, as
described in [2], Section 6. By varying u, ζ and the coupling constants of
the theory we attempt to find a morphism of the WKB triangulation to one
of the form of figure 45. If we can do so, then by successively applying the
transformation rules (3.47), (3.48) for the series of flips connecting these two
triangulations, we can begin with (11.2) and produce the PSCs at (u, ζ).

There are two important loopholes in the above algorithm for computing
the PSC’s. First, the algorithm can only work if C admits a triangulation
of the form of figure 45. In reality, there are situations when there is no
such triangulation. Fortunately, we can address this case by invoking a
procedure used by J. Teschner in the quantization of Teichmüller space [30].
Briefly, we choose a trinion decomposition of C such that ℘ is one of the
cutting cycles in the decomposition. Boundaries of the trinions are labeled
“ingoing” and “outgoing.” There is a triangulation compatible with the
trinion decomposition used to define Fock coordinates on Teichmüller space
(as described in Sections 13 and 14 of [30]). The algorithm we have described
above applies to the case of equation (15.4) of [30]. The other case occurs
in equation (15.5) of [30]. However, as described there, one can invoke a
recursive procedure for computing 〈Lζ(℘)〉′, and the promotion principle
will apply to the result obtained from this recursive procedure.

The second loophole is that even when a triangulation of the form of fig-
ure 45 exists it is not immediately evident that a WKB triangulation of this
form exists. We do not think this is a serious loophole, since one can always
choose a suitable weak-coupling region so that a tubular neighborhood of ℘
is a long thin tube, and Lζ(℘) corresponds to the elementary Wilson loop
of the corresponding SU(2) factor in the gauge group. It seems to us quite
reasonable that in such a region of parameter space the WKB triangulation
will be of the appropriate type, but we leave the detailed demonstration of
this claim undone in this paper.

Let us make a few further remarks:

(1) We have seen in Section 4.4 for the case of SU(2) with Nf = 0 that
some strongly positive formal line operators can be readily computed
purely algebraically and the relation to cluster algebras described in
Section 5 shows that one can proceed with local rules for joining cham-
bers in moduli space. Thus, using the promotion principle we see that
one can compute some PSC’s fairly efficiently.

(2) The above rules for computing the PSC’s are in a sense nonlocal on
C. It would be desirable to have local rules which compute framed
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PSCs, analogous to the traffic rules which we have at y = +1. We
expect such local rules to follow from the detailed 2d-4d WCF whose
existence was suggested in [65]. This work is in progress.29

(3) It follows from the relation to Teschner’s work that the deformed alge-
bra of functions onM in the A1 theories is naturally isomorphic to the
algebra of quantum geodesic operators (quantizing the geodesic lengths
in the metric of constant curvature −1) in quantum Teichmüller the-
ory for C. We would like to stress that our framework incorporates
irregular singularities and laminations, and thus provides interesting
generalizations of what has been done in the Teichmüller context.

(4) It is possible that one can go further and show that the formal expan-
sion (3.38) can be given a concrete meaning in terms of some quanti-
zation of an appropriate real slice ofM as

L̂℘ =
∑

γ

Ω(u, L, ζ, γ; y)Xγ , (11.3)

where Xγ are now concrete quantum operators acting on a definite
Hilbert space. Indeed, concrete operator interpretations of the Xγ

were constructed in [30] and in [17, 66, 67]. However, (11.3) should
have a wider range of applicability, and should not depend on a choice
of real slice. Upon choosing certain real slices and specific quantiza-
tion schemes we might expect to make some contact with the work of
Nekrasov and Shatashvili [68, 69] and Nekrasov and Witten [44].

12 Tropical labels

In this section we will sketch a way to label the simple line operators of an
N = 2 theory in terms of IR data.

There are three motivations for finding such a labeling. First, such a
labeling is desirable since so far we were only able to give labels in the case
of theories which have Lagrangians (see Section 2.3.) An IR labeling could
be applied equally well to non-Lagrangian theories. Second, it is of interest
to specify the large R or ζ asymptotics of 〈L〉. This is motivated from the
math viewpoint because we know that traces of holonomies are interesting
functions on Hitchin moduli space; it thus interesting to think about the
ζ → 0,∞ asymptotics, which turn out to be very subtle. There also appear
to be some interesting applications to physics. Third, we would like to fill
in a gap in Section 6: we would like to show that there are sufficiently many

29We have been informed by A. Goncharov that there are some known, but unpublished,
rules for computing analogous quantities in the theory of cluster ensembles [17].
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distinct line operators Li to “invert” the expansion (6.3) and give Yγ in
terms of Li.

It turns out that the subject of “tropical varieties” is useful for addressing
these questions. We will make use of an aspect of the work of Fock and
Goncharov [36] which so far has not played a role in our story.

The key idea will be to consider the leading asymptotics of a vev 〈L〉
for a simple line operator, say, as ζ → 0. The Darboux expansion (6.3)
expresses 〈L〉 as a sum of Yγ . As ζ → 0 along some ray, or R →∞ for
some fixed u, ζ one term in the sum will dominate. If we consider a path
(us, ζs) in B̂ × Ĉ∗ then two terms Ω(L1, γ1)Yγ1 and Ω(L2, γ2)Yγ2 can only
exchange dominance at a point on the path where Re(Zγ1/ζ) = Re(Zγ2/ζ).
For simple line operators it is natural from the halo picture to expect that
two such terms must have γ1 − γ2 = γ where γ supports a vanilla BPS state.
Therefore we define an anti-BPS wall W̌ (γ) for γ ∈ Γ to be a wall30

W̌ (γ) := {(u, ζ) : Zγ/ζ ∈ −iR+ and Ω(γ;u) �= 0}. (12.1)

The reason we have chosen the sign −i will become evident below. The
complement of these walls have connected components which are defined
to be the anti-chambers and will be denoted č. In general we expect that
within a given anti-chamber a single term in the Darboux expansion (6.3)
will dominate the asymptotics and we can write

〈L〉 ∼ Ω(L; γt) exp(πRZγt/ζ) (1 + · · · ) (12.2)

for a vector γt ∈ ΓL. We will call this the tropical label. In general it depends
on L and č so we write γt(L, č). Note that we have the “tropical formulae”:

γt(LL′, č) = γt(L, č) + γt(L′, č) (12.3)

and

Re(Zγt(L+L′,č)/ζ) = Max[Re(Zγt(L,č)/ζ),Re(Zγt(L′,č)/ζ)]. (12.4)

(Regarding (12.3), the product LL′ in general will not be a simple line
operator, but it can be decomposed in terms of simple line operators, and
one of the resulting ones will have the tropical label given in (12.3).)

30In our only example, that of the A1 theories, this definition will prove to be correct.
However, we note that while it is natural, it does not follow rigorously from the halo
picture that the only walls where there is an exchange of dominance are these walls. It
could in principle happen that γ1 − γ2 does not support a vanilla BPS state. If there are
examples of such a kind then the definition of a tropical theory below will have to be
modified.
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More formally, we will define an N = 2 theory to be tropical if there is a
(anti-chamber-dependent) basis {γa} for Γ so that31

(1) In any anti-chamber č the R →∞ and ζ → 0 asymptotics for all a
satisfy Ya →∞. Moreover, all simple line operators have the form:

〈L〉 = Ω(L, γt)YγtP (1/Ya) (12.5)

where P is a polynomial whose lowest order term is 1 and γt ∈ ΓL is
constant within the anti-chamber č. (The polynomial P can change
within the anti-chamber. For example ordinary chambers will divide
up the anti-chamber into more than one component.)

(2) Across anti-BPS-walls W̌ (γ0) we have the transformation law

γt(Li, č
′) = γt(Li, č)− Ω(γ0; c)〈γt(Li, č), γ0〉+γ0 (12.6)

(the anti-wall sits inside the chamber c).
(3) For all γ ∈ ΓL and any anti-chamber č there is a simple line operator

Lγ so that γ = γt(Lγ , č).
(4) If γt(L, č) = γt(L′, č) then L = L′.

In physical terms this says that a simple line operator, which usually is
given a UV label (such as a vector in L) can also be uniquely labeled by
an IR label in the (extended) charge lattice ΓL of the theory. However,
unlike the UV label, the IR label depends on the IR parameters (through
the č-dependence) and undergoes wall-crossing.

The work of Fock and Goncharov [36] suggests the conjecture that all
theories in the class S are tropical. We will now sketch why the A1 theories
are indeed tropical. (The following argument relies heavily on the technology
developed in [2], and we assume the reader is familiar with that paper.)

For simplicity, we restrict attention in this argument to the case of only
regular singular points on C. We consider a simple line operator. As
explained in [15] and Section 2.3.1 the UV label of the operator is an isotopy
class of a non-self-intersecting closed curve ℘ ⊂ C. The leading asymptotics
of 〈Lζ(℘)〉 will be extracted using the traffic rule algorithm. We choose (u, ζ)
which is not on an anti-BPS wall and set ζ = |ζ|eiϑ from which we extract
the WKB triangulation TWKB(χ) for χ = ϑ− π

2 . (See Section 6 of [2].) We
can assume that a closed path ℘ does not backtrack through the triangles
of TWKB(χ). Now we consider the traffic rule algorithm for this triangula-
tion. It was shown in Section 7.8 of [2] that for any WKB triangulation the

31We could also work with 〈Lζ〉′ and Ỹγ , which has the advantage that all expansion
coefficients are positive and there can be no cancellations.
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corresponding vectors γχ
E , where E runs over the edges of the triangulation,

form a basis of simple roots. In particular, Im(e−iχZγχ
E
(u)) > 0 for all the

edges E and therefore

Re(e−iϑZγχ
E
(u)) > 0 (12.7)

and hence the Yγχ
E
(u, θ; ζ ′) have asymptotics going to infinity, for all ζ ′ →

0 in the half-plane Hχ. This includes the ζ = eiϑ on its boundary so we
still have Yγχ

E
(u, θ; ζ)→∞. It now follows from the traffic rules that the

dominant term in 〈Lζ(℘)〉 is simply given by∏
℘∩E �=∅

√
Yγχ

E
(12.8)

and hence the tropical charge is the sum of the charges associated with the
edges crossed by ℘:

γt(L(℘), č) =
1
2

∑
℘∩E �=∅

γχ
E (12.9)

Now, let us ask how this tropical label can change. Such a change can only
happen when there is a flip of the WKB triangulation.32 But the results
of [2] show that TWKB(χ) will only change when there is a hypermultiplet
of charge γ such that χ = argZγ(u). In the present situation, χ = ϑ− π

2
and hence this means that Zγ/ζ ∈ −iR+. That is, the tropical vector γt for
Lζ(℘) can only change across the anti-BPS-walls, which are the boundaries
of č. This completes the proof of property 1 in our definition of a tropical
theory.

Now, to check property 2, consider the flip in a quadrilateral and how
it affects the laminations L1, . . . , L6 which have segments intersecting the
lamination as in figure 46. Using equations (7.23) to (7.24) of [2] we see that
the simple roots change by a mutation as χ moves in the counterclockwise
direction through a critical phase:

γ+
E+ = −γ−

E− ,

γ+
E+

i

= γ−
E−

i

+ 〈γ−
E−

i

, γ−
E−〉+γ−

E− .
(12.10)

Using this one easily checks the tropical transformation rule (12.6).

32We explicitly exclude the “juggle” transformation at this point, which would lead to
a much more complicated analysis.
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Figure 46: Using the traffic rules and the mutations of the simple roots
under a flip one can check the tropical transformation rule for γt across
chambers related by a flip. Here the red curves are pieces of six possible line
operators that intersect the relevant quadrilateral without backtracking.

In order to establish property 3 it suffices to exhibit simple line operators
whose tropical labels give ±γχ

E . Then, products of such line operators will
give any desired vector thanks to (12.3). Now, referring to figure 47, we see
that the path ℘ has tropical label

γt(L(℘)) =

⎛⎝1
2

∑
v2∈Ei

γEi +
1
2
γE

⎞⎠+

⎛⎝1
2

∑
v4∈Ei

γEi +
1
2
γE

⎞⎠ . (12.11)

Next, note that a lamination which is a small circle Cv around the vertex
v with weight −1 has L(Cv) = μ−1v and hence tropical label −1

2

∑
v∈Ei

γEi .
Therefore L(Cv1)L(Cv2)L(℘) has tropical label γE . Similarly, using the path
℘′ in figure 48 we find that L(Cv1)L(Cv2)L(℘

′) has tropical label −γE .

Finally, to establish property 4, suppose we are presented with a tropical
vector γt. Since the γEi are simple roots this has a unique decomposition
into a sum of γEi and hence we know which edges are crossed. Now consider
the dual cell-decomposition to the WKB triangulation. To each edge Ei

occurring in the tropical vector (counted with multiplicity) we associate an
edge in the dual cell-decomposition. These piece together in a unique way
to give a lamination, thus completing the proof that A1 theories (with only
regular singular points) are tropical. We expect that a similar but perhaps
more elaborate argument will cover the case with irregular singular points.
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Figure 47: After multiplying by suitable line operators with purely flavor
charge, the above line operator has tropical label γE .

Figure 48: After multiplying by suitable line operators with purely flavor
charge, the above line operator has tropical label −γE .

We end this section with a few remarks:

(1) The transformation (12.6) is a “tropical” version of the Kontsevich–
Soibelman transformation KΩ(γ0)

γ0 . We may denote it by KΩ(γ0)
t,γ0

. There
is a tropical WCF in which K is replaced everywhere by Kt. Note that
in the above we have only considered flips, associated with BPS hyper-
multiplets; we have not considered the more difficult “juggle” trans-
formations associated with vectormultiplets (see [2] Section 6.6.3.).

(2) There is a close analogy here with Stokes theory. This is not an acci-
dent, given the ζ-differential equations of [1].

(3) In the A1 theories the tropical vector γt of L(℘) has a very beautiful
physical interpretation: It is the homology class of the WKB path in
the Seiberg–Witten curve Σ, which dominates the asymptotics.
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12.1 Example: Tropical labels for the N = 3 AD theory

In equation (10.6) we wrote the general simple lamination of the N = 3 AD
theory. This decomposes the set of simple laminations into five “quadrants”
coordinatized by m, n ≥ 0. It is actually natural to glue these five quadrants
together into a single copy of Z2, as follows. Given any simple line operator
L and any triangulation with associated coordinates X, Y , we expand 〈L〉′
in terms of X and Y . The result always has the form

〈L〉′ = XaY bP (1/X, 1/Y ) (12.12)

for some polynomial P = 1 + · · · . The pair (a, b) is the tropical vector for
the operator L (in the basis γX , γY for Γ).

For example, using the triangulation we introduced above, the operators
Lm

i Ln
i+1 in each of the five quadrants are mapped respectively to (n+m, n),

(n, m+ n), (−n, m), (−m,−n), (n,−m); note that taken together these five
regions fill up Z2, so every possible IR charge has a corresponding simple
line operator. This really just follows from the fact that the leading terms
in our five canonical Li, cyclically ordered, are X, XY , Y , 1/X, 1/Y , which
are cyclically ordered in the plane of monomials.

For each triangulation, we get in this way a natural coordinatization of the
space of all simple line operators, identifying it with Z2. Flipping the trian-
gulation gives a simple piecewise-linear transformation of these coordinates.
This structure is described very nicely in [70].

13 Open problems

There are a number of interesting directions for future research involving
both the physical and mathematical aspects of framed BPS states and their
PSCs. We list some of them here.

(1) The (motivic) Kontsevich–Soibelman WCF is expected to apply not
only to the BPS degeneracies of d = 4,N = 2 field theories but also
to those of Type II string compactifications on Calabi–Yau manifolds.
Unfortunately, a clear physical derivation of the formula in the super-
gravity case remains elusive, although, ironically, the semiprimitive
WCF was first derived in the supergravity context [12]. It would there-
fore be very interesting to find some analog of the line operators used
in this paper in the supergravity context.
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(2) The framed PSC’s Ω(L, γ; y) and framed BPS indices should have a
more direct mathematical definition. It seems clear that it should be
possible to give a rigorous definition in terms of zero modes of certain
Dirac operators on moduli spaces of (singular) monopoles coupled to
appropriate vector bundles along the lines of [71–74]. Such a definition
could give a mathematical framework for testing our gauge theory
predictions. In particular, it would be interesting to do this to check
our strong positivity conjecture.33 It might well be that there are other
definitions of framed BPS indices and their PSCs, closer to Donaldson–
Thomas theory on Calabi–Yau manifolds.34

(3) Do all theories in class S have the cluster property of Section 5.3?
Can this be used to determine the BPS spectrum of such theories? In
particular, can it be used to solve the difficult problem of finding the
BPS spectrum of Ar theories for r > 1?

(4) Is there a one-one correspondence between formal laminations and
physical line operators? All all N = 2 theories tropical in the sense of
Section 12?

(5) We believe that another physical justification for the insertion of σ(Q)
in (6.4) could possibly be given along the following lines. We would
like to have a physical understanding of the role of the U(1) valued
function ψγ := eiθ̃γ and understand in particular why it is a twisted
homomorphism Tu → U(1) in the sense that ψγψγ′ = (−1)〈γ,γ′〉ψγ+γ′ .
Suppose one of the directions in R3 is considered to be the time direc-
tion. Then we could adiabatically transport a dyon of charge γ around
the circle S1. The Aharonov–Bohm phase picked up by this particle,
which we view as measuring the electric and magnetic Wilson lines,
will be ψγ . Now comparing the product ψγψγ′ to ψγ+γ′ the main dif-
ference is that the naive (−1)F parity of the pair of γ and γ′ particles
differs from that of the boundstate by a factor of (−1)〈γ,γ′〉 due to the
the spin degrees of freedom of the electromagnetic field of the pair
of dyons. Thinking this remark through one encounters a number of
subtleties which we will not try to sort out. We think it would be very
nice if a physical derivation of the twisted homomorphism could be
given along the above lines.

(6) As we have mentioned, it would be interesting to understand whether
the noncommutative deformations of functions onM can be related to
a twisted trace of the form (6.9). Related to this, as we have mentioned
above, it would be very interesting to understand the noncommuta-
tive generating functions such as (3.38) in terms of concrete operators

33We would like to thank Edward Witten for an illuminating discussion about this.
34We thank E. Diaconescu for suggesting this possibility.
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acting on explicit Hilbert spaces. This will surely involve the study of
various real sections of the spacesML.

(7) As we have remarked, the relations (5.28) are quantum skein relations
closely analogous to those familiar from Chern-Simons theory. More-
over, the 3-manifold invariants for noncompact Chern–Simons involve
the quantum dilogarithm [75]. These two facts suggest that there is a
potential connection of our results to Chern-Simons theory.

(8) In [76] Alyosha Zamolodchikov stated a recurrence conjecture for solu-
tions of certain Y -systems. For some references and background see
[77] and the talk [78]. Remarkably, several of the relevant equations
coincide with ring relations for AD theories. We would like to suggest
that Zamolodchikov’s conjecture can be understood and extended in
terms of the discrete symmetries of AD theories. This proposal was
also made by Sergio Cecotti and Cumrun Vafa, and is developed in
more detail in [79].

(9) As we indicated in the introduction, many things remain to be elu-
cidated concerning the relation of our work to cluster algebras. Let
us mention but two examples. First, some of the formulae in [80] are
closely related to laminations and line operators in SU(2) gauge the-
ories. In another direction, in [17], Fock and Goncharov have stated a
very interesting duality conjecture pairing two different kinds of clus-
ter varieties, which they call X -varieties and A-varieties. Their con-
jecture seems to be related to the labeling of asymptotic behaviors
of line operator vevs by tropical labels. We hope to give a physical
interpretation of the Fock–Goncharov duality conjecture on some other
occasion.
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Appendix A Some technical details on d = 4, N = 2 super-
symmetry

We follow the conventions of Bagger andWess for d = 4,N = 1 supersymme-
try [81]. In particular SU(2) indices are raised/lowered with ε12 = ε21 = 1.
Components of tensors in the irreducible spin representations of so(1, 3)
are denoted by α, α̇ running over 1, 2. The rules for conjugation are that
(O1O2)† = O†2O†1 and (ψα)† = ψ̄α̇.

The N = 2 supersymmetry operators are (Q A
α , Q̄α̇B) where A, B are

SU(2)R indices running from 1 to 2. They satisfy the Hermiticity condi-
tions

(Q A
α )† = Q̄α̇A (A.1)

and the N = 2 algebra

{Q A
α , Q̄β̇B} = 2σm

αβ̇
PmδA

B

{Q A
α , Q B

β } = 2εαβεABZ̄

{Q̄α̇A, Q̄β̇B} = −2εα̇β̇εABZ

(A.2)

where Z is the central charge and Pm is the Hermitian energy-momentum
vector with P 0 ≥ 0.

A line operator inserted at an origin xi = 0 of spatial coordinates preserves
an so(3)⊕ su(2)R symmetry as well as the supersymmetries:

R A
α = ξ−1Q A

α + ξσ0
αβ̇

Q̄β̇A (A.3)

Here ξ is a phase: |ξ| = 1. These operators satisfy the Hermiticity conditions

(R 1
1 )
† = −R 2

2

(R 2
1 )
† = R 1

2

(A.4)

and the algebra

{R A
α ,R B

β } = 4 (E +Re(Z/ζ)) εαβεAB (A.5)
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where E = P 0 is the energy operator and ζ = ξ−2. This algebra implies that(
R 1
1 + (R 1

1 )
†
)2

=
(
R 2
1 + (R 2

1 )
†
)2

= 4(E +Re(Z/ζ)) (A.6)

from which we obtain the BPS bound

E +Re(Z/ζ) ≥ 0. (A.7)

Appendix B Holomorphy of line operator vevs

In this appendix we would like to explain in detail how the correlation
functions 〈Lζ〉 of operators annihilated by the R A

α may be regarded as
holomorphic functions onM in complex structure ζ. We will also comment
briefly about the relation with Rozansky–Witten twists of the 3d theory.

The crucial step of the identification is to match the 4d supercharges and
the supercharges of the low energy 3d sigma model with hyperkählertarget
space M. After 4d Lorentz invariance is broken by the circle compactifi-
cation, the 4d supercharges can be collected into a doublet

(
Q A

α , σ0
αβ̇

Q̄β̇A
)

which we can denote as Q A
a α, where the new index a takes values 1, 2. The

4d spinor index α can be identified with a 3d spinor index, and Q A
a α can be

identified with the supercharges of a 3d N = 4 theory. Notice that whereas
the A index is acted upon by the 4d SU(2)R R-symmetry, which remains
a symmetry of the 3d theory, in general there is no symmetry of the 4d
theory which rotates the a = 1, 2 supercharges into each other. The a index
is not an index for any SU(2) symmetry. The 4d U(1)R symmetry, if not
broken by masses or gauge coupling scales, of course rotates the a = 1, 2
components in opposite directions.

These facts agree neatly with the general properties of 3d sigma models
with a generic hyperkählertarget space. As we will detail shortly, these mod-
els always have an SU(2)R R-symmetry rotating the fermionic fields, but a
second R-symmetry group must take the form of an isometry of the bosonic
target space, which rotates the hyperkählerforms among themselves. Hence
a second R-symmetry group may be present only if the hyperkählertarget
manifold has special properties. It can take the form of a U(1)R isometry
which rotates two of the three hyperkählerforms among themselves, or of an
SU(2)′R isometry group rotating all three hyperkählerforms.

In the target space of the sigma model M the Riemannian structure
group SO(4n) is reduced to (SU(2)× USp(2n))/Z2, and the tangent space
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TX ⊗ C ∼= S ⊗ V where S is a trivial rank 2 complex vector bundle, while
V is a rank 2n complex bundle with structure group USp(2n). A choice of
line in S determines a complex structure onM. These are parametrized by
CP 1 and we let ζ be an inhomogeneous coordinate on this twistor sphere.
Locally we can introduce vector fields Wai, with i = 1, . . . , 2n spanning V
and a = 1, 2 spanning S. The fermionic fields ψAi

α are an SU(2)R doublet of
space-time spinors, which are sections of V . The general form of the SUSY
transformations acting on a function F onM is

[Q A
a α, F ] = ψAi

α WaiF (B.1)

In particular, the supercharges are also sections of the trivial bundle S.

When we reduce the 4d vector multiplets to 3d, we easily recover this
structure. The 4d fermions indeed transform as doublets of SU(2)R. The n

4d fermions ψA
α join with the n conjugate σ0

αβ̇
ψ̄β̇A into the 2n components

of the symplectic bundle V . One can check that QA
α acts as a holomor-

phic differential operator on functions on M in complex structure ζ = 0:
it obviously annihilates the anti-holomorphic 4d scalars, and less obviously
annihilates the anti-holomorphic combinations of electric and magnetic Wil-
son lines. Similarly Q̄β̇A acts as an anti-holomorphic differential operator
in complex structure ζ = 0. This completes the identification of the index
a of the 4d supercharges with the index a in the 3d sigma model transfor-
mation laws. The identification is unaffected by the quantum corrections,
which leave the target space hyperkähler, and do not modify the complex
structure at ζ = 0.

In particular, the choice of a set R A
α of 4d supercharges coincides with

the choice of a line in S, and a complex structure in M. The vector fields
which appear in

[R A
α , F ] = ψAi

α

(
ξ−1W1i + ξW2i

)
F (B.2)

are anti-holomorphic in complex structure ζ = ξ2. Therefore 〈L(ζ, . . . )〉 are
holomorphic functions onM in complex structure ζ.

It may be interesting to draw a comparison with the topologically twisted
version of the 3d sigma model, a la Rozansky–Witten [82]. The topological
twist replaces the 3d Lorentz group with the diagonal combination of the old
3d Lorentz group and SU(2)R. There is a CP 1 worth of topological charges,
which coincide with R A

α δα
A. Clearly the 4d line operators we consider here

give rise to point-like topological observables in the 3d theory. This might
prove to be a useful point of view.
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Appendix C Fixed point equations

An N = 2 vectormultiplet has a scalar ϕ, fermions ψαA, in the (2;1)⊗
2 of so(1, 3)⊕ su(2)R, (and their complex conjugates ψ̄α̇A := (ψ A

α )†), an
Hermitian gauge field Am and an auxiliary field DAB = DBA satisfying the
reality condition (DAB)∗ = −DAB. After multiplication by i all these fields
are valued in the adjoint.35 The supersymmetry transformation laws are36

[QαA, ϕ] = −2ψαA

[Q̄α̇A, ϕ] = 0

[QαA, Am] = iψ̄β̇A(σ̄m)β̇α

[Q̄α̇A, Am] = −i(σ̄m)
β
α̇ψβA (C.1)

[QαA, ψβB] = σmn
βα FmnεAB + iDABεβα +

i

2
gεβαεAB[ϕ†, ϕ]

[Q̄α̇A, ψβB] = −iεABσm
βα̇Dmϕ

[QαA, DBC ] =
(
εABσmβ̇

α Dmψ̄β̇C +B ↔ C
)
+ g

(
εAB[ϕ†, ψαC ] +B ↔ C

)

The fixed point equations for the supersymmetries R A
α are

F0� − i

2
εjk�Fjk − iD�(ϕ/ζ) = 0

D0(ϕ/ζ)− g

2
[ϕ†, ϕ] = 0

(C.2)

If the structure group g is reduced to the Cartan subalgebra then we can
write a static solution of the form

F =
1
2
ωS ⊗ ρM

ϕ = ζ
ρM

r
+ ϕ∞

(C.3)

35Our convention is that generators of u(N) are N ×N anti-hermitian matrices. In
“geometric” conventions where the covariant derivative is d+A, the present gauge field
is related by Ageometric = igAhermitian.

36Here we deviate slightly from Bagger-Wess conventions. Our scalar field ϕ =
√
2ABW

where ABW is the scalar component of a BW chiral multiplet.
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where ρM ∈ t and ωS = sin θdθdφ in terms of standard angular coordinates
around an origin. If ρM ∈ ΛG then A will be properly quantized. This solu-
tion defines UV boundary conditions defining an ’t Hooft operator labeled
by an element of ΓG.

(There is an interesting subtlety that comes up in these equations. If
we take ρM , ρE ∈ t to be constant and ϕ = ζ(ρM − iρE)/

√
2 + ϕ∞ and F =

1
2ωS ⊗ ρM + 1

2 ∗ ωS ⊗ ρE then the fixed-point equations and Bianchi identi-
ties are satisfied but the equation of motion is not !)

Appendix D Fixed-point equations in the low energy
effective theory

The fixed-point equations (C.2) apply in the infrared theory, but their inter-
pretation is a little different.

Let us recall that the charge lattice in the IR theory, Γ̂ has an antisym-
metric form 〈·, ·〉 and fits in a sequence

0→ Γf → Γ→ Γgauge → 0 (D.1)

Here the lattice of flavor charges is in the annihilator of 〈·, ·〉, and the quotient
Γgauge is symplectic. We denote the projection map γ → γ̄.

The low energy Seiberg-Witten effective IR theory is a self-dual abelian
gauge theory with an invariant fieldstrength F ∈ Ω2(R1,3)⊗ V , where V =
Γgauge ⊗ R is a symplectic vector space. The values of the moduli determine
a compatible complex structure I on V . The fieldstrength satisfies dF = 0
and the anti-self-duality constraint:

(∗ ⊗ I)F = −F (D.2)

Moreover, in the sector of the Hilbert space labeled by γc, there is a quan-
tization condition: ∫

S2∞

F
2π

= γc. (D.3)

A solution to the fixed point equations (C.2) in the low energy effective
theory can be obtained by taking

F =
1
2
(ωS ⊗ γc − ωH ⊗ I(γc)) (D.4)
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where ωH = ∗4ωS = dr ∧ dt
r2 . The fixed point equations will be solved if the

vectormultiplet moduli become r-dependent according to the equation

2Im
[
ζ−1Z(γ;u(r))

]
=
〈γ, γc〉

r
+ 2Im

[
ζ−1Z(γ;u)

] ∀γ ∈ Γ̂ (D.5)

This is obtained by considering the imaginary part of equation (C.2). That
equation is written in a fixed duality frame. Making the equation duality
invariant leads to (D.5).

Equation (D.5) is a modification of the standard attractor equation. The
usual attractor equation is written inN = 2 supergravity. The field theoretic
limit of that equation gives an equation of the form (D.5) with the important
exception that ζ = eiα is the (constant) phase of the central charge Z(γc;u)
and Γf = 0. This generalization of the attractor equation is not entirely
new. The equations for “orientiholes” similarly replace the phase eiα in the
attractor equations by −eiα [83].

The dynamics of a probe BPS particle of charge γh ∈ Γ̂ moving in one of
the above field configurations is governed by the action∫

|Z(γh;u(r))|ds+
∫
〈γh,A〉 (D.6)

where we integrate along the worldline of the probe particle. The energy of
such a particle at rest is therefore

E = |Z(γh;u(r))| − 〈γh,A0〉

= |Z(γh;u(r))|+ (γh, γc)
r

(D.7)

Now, by taking the real part of the fixed point equations (C.2) and writing
the duality invariant extension we find

〈γh,F0�〉 = ∂�Re(Z(γ;u(r))/ζ) (D.8)

where x� is a spatial coordinate and x0 a time coordinate. The halo radius
(3.23) is obtained by finding the point at which the energy is stationary for
γ = γh.

In this way we derive the formula (3.22) for the energy of a halo particle
in the ζ-attractor background. The halo radius (3.23) is obtained by setting
the RHS of (D.5) to zero for γ = γh.
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Appendix E Six-dimensional supersymmetry

The (2, 0) superconformal algebra in R1,5, denoted here as osp(8∗|4), has
even subalgebra osp(8∗|4)0 = so(6, 2)⊕ so(5). To form the odd subspace
we choose one of the chiral spinor representations Δ± of so(6, 2). Δ± are
quaternionic spaces, each isomorphic to H4. Let us choose Δ+ for definite-
ness. Next let Δ′ ∼= H2 be the irreducible spinor rep of so(5). The odd
subspace is osp(8∗|4)1 = Δ+ ⊗R Δ′. It is 32-real-dimensional.

The sub-superalgebra of Poincaré supersymmetry has even subalgebra
so(5, 1)⊕ so(5) and now there is a chiral spinor Δ′+ ∼= H2 of so(5, 1) which
is used to define the odd subspace Δ′+ ⊗Δ′ of 16 Poincaré supercharges.

It is useful to introduce a representation of the Clifford algebra Cl(1+, 5−)
in terms of 8× 8 complex-valued matrices of the form

ΓM =
(

0 γ̄M ṡ
r

γM s
ṙ 0

)
(E.1)

with r = 1, . . . , 4 indexing the chiral spin rep while ṙ = 1, . . . , 4 indexes the
antichiral rep. Of course M = 0, 1, . . . 5 run over spacetime dimensions.
Then (ΓM )∗ = BΓMB−1 where

B =
(

Bs
r 0
0 Bṡ

ṙ

)
(E.2)

The chiral representations Δ′± are pseudoreal. There is also

C =
(
0 crṡ

c̄ṙs 0

)
(E.3)

so that (CΓM )tr = −(CΓM ) and (ΓMC−1)tr = −(ΓMC−1). The tensor crṡ

gives the invariant contraction of Δ′+ with Δ′− to the singlet.

For the R-symmetry so(5) ∼= usp(4) identify the spinor Δ′ with the 4 of
USp(4). If we wish to introduce indices we let i, j = 1, . . . , 4. Gamma matri-
ces have index structure ΓIi

j with I = 1, . . . 5. Indices are raised and lowered
with the symplectic matrix J ij and its inverse. Thus (ΓI) j

i = Jii′J
jj′ΓIi′

j′ .

We have (ΓIi
j)
∗ = −ΓI j

i and ΓI
ij := Jii′ΓIi′

j is antisymmetric.
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If we denote Poincaré supersymmetries by Qi
r then we impose

(Qri)† = Bs
rJ

ijQsj (E.4)

so there are 16 Hermitian supercharges. The basic supersymmetry algebra is

[Qi
r, Q

j
s] = 2i(γ̄M c̄)rsJ

ijPM (E.5)

where PM is the Hermitian translation operator. The coefficient 2i is deter-
mined by dimensional reduction to the d = 4,N = 2 algebra described above.
Acting on field multiplets there can be extra terms on the RHS due to
gauge transformations. Acting on states in solitonic sectors there can be
extra terms from “central extensions.” Indeed, the Poincaré superalgebra is
extended in the presence of string-excitations to

[Qri, Qsj ] = 2i(γ̄M c̄)rsJ
ijPM + 2(γ̄M c̄)rsΓIijZI

M (E.6)

where the ZI
M correspond to the “central charges” of a BPS string.

The superconformal algebra has a field representation known as the “ten-
sormultiplet” usually denoted (B, ψ, Y ) where B is a locally-defined real
two-form potential on R1,5 with anti-self-dual fieldstrength (with orienta-
tion ε012345 = +1), ψ ∈ (Δ′+ ⊗Δ′) satisfies a reality constraint, and Y is a
real scalar field in the 5 of so(5) [84]. If we write out indices then we denote
the fields in the tensormultiplet by (BMN , ψi

r, Y
I). The supersymmetry

transformations under the Poincaré supersymmetries are:

[Qi
r, Y

I ] = iΓIi
j ψj

r

[Qi
r, ψsj ] = i(γ̄M c̄)rsΓIij∂MY I − i

12
J ij(γ̄c̄)MNP

rs HMNP

[Qi
r, BMN ] = i(γMN )srψ

i
s

(E.7)

The scaling dimension of Y I is 2, that of ψ is 5/2 and BMN has scaling
dimension 2 so that B = 1

2BMNdxM ∧ dxN and H := dB are dimensionless.
The fieldstrength H must be anti-self-dual and in our normalization for
a U(1) tensormultiplet H has integral periods on manifolds of nontrivial
topology.

The supersymmetry transformations only close onshell and the closure of
[Qri, Qsj ] on BMN is only up to a gauge transformation by ΛN = −2(γ̄N c̄)sr
ΓIijY I + 2J ij(γ̄P c̄)srBNP . Acting on a string state the induced gauge trans-
formation acts by measuring the charge of the string. This leads to the cen-
tral charge ZI

M = t̂MY I , from which one computes the tension of the string√
Y IY I .
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The superpoincare algebra in 5 dimensions has bosonic subalgebra
so(1, 4)⊕ so(5). The spin representation Δ′′ of so(1, 4) is again isomorphic
to H2 and the odd subspace is Δ′′ ⊗Δ′ for 16 real supersymmetries. The
super-Yang-Mills multiplet is (A, χ, Y ) where A is a connection, χ ∈ Δ′′ ⊗Δ′
and Y is a scalar, all valued in a Lie algebra g. We have deliberately used
the same notation Y for the scalars since the dimensional reduction of a ten-
sormultiplet gives a u(1) vectormultiplet. However, in this case it is better
to normalize the scalar to be ΦI = RY I of scaling dimension 1.

Appendix F Fock–Goncharov coordinates and traffic rules

In (6.3) we identified certain line operator vevs 〈Lζ〉 as the traces of
holonomies of flat connections around loops on C. In (6.14) we identified
the vevs 〈Lζ〉′ similarly as traces of holonomies of twisted flat connections.
In this appendix we explain how to expand these holonomies in terms of
the corresponding Fock–Goncharov-like coordinates. The basic idea of the
calculation is not new and can be found in many places; the only part which
may be novel is that in the twisted case we are able to define positive expan-
sions even for holonomies in the fundamental representation of SL(2, C).

F.1 The coordinates

We first briefly recall the definition of the Fock–Goncharov coordinates.
These were introduced in [36]; a slightly adapted version, convenient for
our purposes, was described in [2]. We suppose given a “decorated trian-
gulation” T of C. This means a triangulation of C such that each vertex
is a regular singularity, or a marked point on a small disc cut out around
an irregular singularity. The “decoration” means a certain discrete choice
associated to each vertex. For regular singularities we choose one of the
two eigenspaces of the monodromy; for irregular singularities we choose an
identification between the marked points and the Stokes lines emerging from
the singularity. In either case, given a vertex and a flat connection A, the
choice of decoration gives us a way to pick out a flat section s (solution of
(d+A)s = 0) up to scalar multiple. For regular singularities s is chosen
to be an eigenvector of the monodromy. For irregular singularities it is a
section which is exponentially decaying along the anti-Stokes (aka WKB )
ray. s might not exist globally on C because of monodromies, but at least
we can take it to exist on any simply connected domain.

Given any decorated triangulation T of C and any E ∈ Edges(T ), we
consider the quadrilateral QE which has E as its diagonal. Number the four



FRAMED BPS STATES 387

vertices 1 through 4, counterclockwise from one of the ends of E. Then
the decoration of T provides four flat sections si. We can parallel transport
them to any common point in QE and then evaluate their SL(2, C) invariant
cross ratio:

YE =
(s1 ∧ s2)(s3 ∧ s4)
(s2 ∧ s3)(s4 ∧ s1)

. (F.1)

We also want a version of the above for the case of twisted local systems.
In this case the flat sections s̃i are defined over the punctured tangent bundle
of C, or more precisely over some simply connected subsets thereof. So we
must be somewhat more careful about how we transport the flat sections
s̃i. We use non-self-intersecting and mutually non-intersecting paths from
the vertices to a common point P∗ in the interior of QE . Having done so
we consider the circle of tangent vectors over P∗: we have a rank 2 flat
connection over this circle, with holonomy −1, and four vectors s̃i at points
ti cyclically ordered around the circle. We want to define a “twisted cross
ratio” of these four vectors. We adopt the convention that wedge-products
s̃i ∧ s̃i+1 are defined by parallel-transporting the two vectors to a common
point along the arc between ti and ti+1 which does not contain the other
two tj (i.e., taking the “short way” around the circle), taking their wedge
product, and then dividing by the SL(2, C) invariant volume form. With
this convention we can write

ỸE =
(s̃1 ∧ s̃2)(s̃3 ∧ s̃4)
(s̃2 ∧ s̃3)(s̃4 ∧ s̃1)

. (F.2)

F.2 Traffic rules

In Appendix A of [2] we reviewed a well-known algorithm for computing
holonomies and their traces in terms of Fock–Goncharov coordinates associ-
ated to a triangulation. We call this algorithm the “traffic rule algorithm.”
Here we describe the extensions of the traffic rules needed to cover the sit-
uations of twisted local systems and laminations.

So fix a triangulation T and a twisted local system, i.e., a point of M̃.
Also fix an edge E, and a co-orientation v of E. The pair (E, v) determine
a simply connected domain D(E, v) in the unit tangent bundle, fibered over
E (consisting of all tangent vectors which point to one side of E; by abuse
of notation we also use v to denote any of these tangent vectors). Let l and
r denote the two vertices of E, chosen so that v is on the left of E when it
is traversed from l to r. We will be interested in flat sections of our twisted
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Figure 49: The sections s̃l and s̃r are initially defined in contractible regions
of the unit tangent bundle over patches near the two vertices. To evaluate
the wedge product s̃l ∧ s̃r, they must be transported to a common point
x ∈ C and a common tangent vector at x. The figure shows two different
ways of doing so, corresponding to two choices of co-orientation of the edge:
either transport both sections north or south, along the indicated paths.
The gray circles indicate the fibers of the unit tangent bundle, to which
the paths are lifted. The small dots on the gray circles indicate the lifted
tangent vectors. These two ways of defining s̃l ∧ s̃r differ by a factor −1: to
see this, note that as we go around the loop formed by the four paths, the
tangent vector winds once around the fiber, and the holonomy of our local
system around the fiber is −1 ∈ SL(2, C).

local system over D(E, v). These form a two-dimensional space S(E, v),
with two distinguished vectors s̃l and s̃r determined by the decorations at
the vertices (up to overall scale, which we fix arbitrarily as usual).

Then we can define a quantity N(E) by N(E) = s̃l∧s̃r

vol , where vol is the
SL(2, C)-invariant volume form. Crucially, N(E) so defined does not depend
on the choice of co-orientation v. Indeed, reversing v exchanges s̃l and s̃r,
which introduces a minus sign; but reversing v also changes the domain in
which we evaluate the wedge product, and as shown in figure 49, this change
introduces a second minus sign. (This is the moment where working with
twisted local systems helps us.)

Define

τ(E) =
√

N(E) (F.3)

where we just choose once and for all one of the two possible square roots;
this is an independent choice for each E. Having made these choices, we
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also obtain a definition of
√
ỸE : with notation as in the previous section,

we fix √
ỸE =

τ(E12)τ(E34)
τ(E23)τ(E41)

. (F.4)

Now consider an edge E lying on a face F . F determines two co-
orientations of E, namely vin pointing into F and vout pointing out of F .
Let l and r denote the two vertices of E, chosen so that vin is on the left
of E when it is traversed from l to r; let El and Er be the other two edges
of F , containing l and r respectively. Now define two bases of the spaces of
flat sections:

Bin(E, F ) =
(

s̃l
τ(Er)

τ(El)τ(E)
, s̃r

τ(El)
τ(Er)τ(E)

)
, (F.5)

Bout(E, F ) =
(

s̃r
τ(El)

τ(Er)τ(E)
, s̃l

τ(Er)
τ(El)τ(E)

)
, (F.6)

defined over D(E, vin) and D(E, vout) respectively. The normalization fac-
tors have been chosen so that both of these bases have determinant 1.

We want to study parallel transport along paths p on C. Chopping p
into pieces, we can write this parallel transport concretely as a product
of matrices relative to the bases Bin,out(E, F ) for various E, F which p
encounters.

A path segment running from edge E to E′ on a face F lifts to the
unit tangent bundle to give a path segment from D(E, vin) to D(E′, v′out).
The corresponding parallel transport, relative to the bases Bin(E, F ) and
Bout(E′, F ), depends on whether the path turns right or left: a short direct
computation using the Plücker relations gives

L =
(
1 1
0 1

)
, R =

(
1 0
1 1

)
. (F.7)

Similarly, parallel transport along a path segment crossing an edge E from
face F to F ′ is given by the matrix

ME =

⎛⎝√ỸE 0

0 1/
√
ỸE

⎞⎠ (F.8)

That is, Bin(E, F ′) = Bout(E, F )ME . See figure 50.
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Figure 50: Parallel transport matrices associated to path segments.

Figure 51: The basic combination of open curves with net weight zero on
each boundary arc.

Define Ỹp =
∏

E ỸE where the product runs over all edges crossed by p.
Using the definition of ỸE , we see that Ỹp is the product of various N(E),

all raised to even powers. This means that
√
Ỹp can be canonically defined

independent of any choices. The holonomy of the twisted local system along
a path p is a product of matrices R, L and ME over all the edges crossed by

p. Hence this holonomy is 1/
√
Ỹp times a matrix with entries polynomials

in the ỸE , with positive integer coefficients. In particular this means that

the trace of the holonomy is is 1/
√
Ỹp times a polynomial in the ỸE , with

positive integer coefficients.

We can also calculate the expectation values of line operators corre-
sponding to laminations. Recall that a lamination can contain, in addition
to closed curves, open curves ending on boundary arcs, carrying integer
weights. This requires us to augment slightly our traffic rules to specify
what to do at the open ends. In fact, we cannot give simple rules for a sin-
gle open curve: rather we have to consider combinations of curves such that
the total weight ending on each boundary arc is zero. Without loss of gen-
erality we can restrict to the simplest such combination, shown in figure 51.
By an isotopy we can always arrange that all four of the ends appearing in
that figure lie on the same boundary edge. After doing so, we simply drop
the curve segment carrying weight −1 (we will choose normalized sections
such that this segment contributes 1). As for the other two curve segments,
we first choose an orientation on each segment, and then assign them row
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Figure 52: Four ways an open edge can begin or end, and the corresponding
basis vectors in the space of flat sections.

or column vectors (representing basis elements in B(E, vin) or B(E, vout)∗),
given by the rules in figure 52 and

BL =
(
0 1

)
, BR =

(
1 0

)
, (F.9)

EL =
(
1
0

)
, ER =

(
0
1

)
. (F.10)

These formulas follow directly from the definition of the lamination vev
(which we recall says we parallel transport the flat sections associated to
the vertices at the two ends of the path to a common point and take their
wedge product): here we are transporting the normalized section from the
end of the path to the beginning.

Appendix G SU(2) Nf = 0 and Tchebyshev polynomials

In this appendix we establish the formula (10.24), giving the expansion of
〈L2n〉′ in the SU(2) theory with Nf = 0. We use freely the notation from
Section 10.3.

As we have mentioned in the main text, we simplify our lives and avoid
the words “twisted local system” by working on M instead of M̃. As a
result it will be difficult to fix some signs and choices of square root; we
simply fix them at the end by demanding positivity, since we have already
shown that on M̃ the desired expansions indeed have positive coefficients.

Map figure 29 to an annulus so there is an inner and outer circle. Introduce
small flat sections s1 attached to the WKB ray on the outer circle and s2
attached to the WKB ray on the inner circle. Let M denote the clockwise
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monodromy operator. Then combining the factors (9.11) gives

〈L2n〉 = − (s2 ∧Mns1)2

(s1 ∧Ms1)(s2 ∧Ms2)
. (G.1)

In particular, 〈L0〉 = 1/Y and 〈L2〉 = X. It follows that 〈L1〉 =
√

X
Y .

Also introduce s± of M so that Ms± = λ±1s±, for some λ ∈ C∗. We can
expand s2 = αs+ + βs−, s1 = γs+ + δs−, and a small computation shows
that

〈L2n〉 = −
βγ
αδ λ2n − 2 + αδ

βγ λ−2n

(λ− λ−1)2
. (G.2)

(We assume s1, s2 are in general position.) Then, defining

eθ :=

√
βγ

αδ
, eϕ := λ, (G.3)

we can express

√
〈L2n〉 = i

sinh(θ + nϕ)
sinhϕ

= i
(
sinh θ

sinhϕ
Tn(coshϕ) + cosh θ Un−1(coshϕ)

)
,

(G.4)

where we have introduced the Tchebyshev polynomials Un(cos θ) :=
sin(n+1)θ

sin θ
and Tn(cos θ) := cos(nθ). In particular

1√
Y
= i

sinh θ

coshϕ
,
√

X = i
sinh(θ + ϕ)
sinhϕ

. (G.5)

Inverting (G.5) gives

2 coshϕ =
1√
XY

(XY + Y + 1) , (G.6)

2 cosh θ =
i√
XY

(XY − Y − 1), (G.7)

so altogether we obtain the desired result

〈L2n〉 = Y −1
[
Tn(coshϕ) +

XY − Y − 1
2
√

XY
Un−1(coshϕ)

]2
. (G.8)
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