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Abstract

It is shown that for any irrational rotation number and any admis-
sible gap labelling number the almost Mathieu operator (also known as
Harper’s operator) has a gap in its spectrum with that labelling number.
This answers the strong version of the so-called “Ten Martini Problem”.
When specialized to the particular case where the coupling constant is
equal to one, it follows that the “Hofstadter butterfly” has for any quan-
tum Hall conductance the exact number of components prescribed by the
recursive scheme to build this fractal structure.

Introduction

The present work is concerned with the spectral properties of the simplest
kind of discrete Schrédinger-type operators with an almost periodic poten-
tial. These operators form a self-dual class with respect to the Fourier
transform, with exactly one operator being invariant. More specifically, a
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precise one-to-one relationship between gaps and admissible gap labelling
numbers will be established. While relegating the technical formulation of
the problem and the outline of its proof to the first section, we are going to
dwell for the rest of the introduction on the significance of this result in the
special case of the self-dual operator for physics and mathematics.

Recent progress that has occurred in solid state physics through the devel-
opment of new experiments which led to improved measurements, has made
it possible to obtain improved physical evidence for the presence of the
butterfly fractal spectrum. In [4] portions of the “Hofstadter butterfly”
have been observed in lateral superlattices patterned on GaAs/AlGaAs het-
erostructure by exploiting the quantum Hall conductance as a diagnostic
tool. One way to view the significance of the present paper is the recogni-
tion, that this diagnostic approach to detecting the fractal structure exper-
imentally is on solid theoretical ground, at least as long as the “Hofstadter
butterfly” is accepted as a paradigm for the quantum Hall effect: Knowing
the specific value of the quantum Hall conductance, it is possible to allocate
the corresponding gap components in the fractal structure in a prescribed
way, without running the risk of missing one. This follows from the consid-
erations in [8], where it was shown that, assuming that the strong version of
the “Ten Martini problem” holds, the components associated with the same
quantum Hall conductance can be counted by means of a specific combinato-
rial formula. In another experiment cold neutral atoms in an optical lattice
were used to exhibit salient features of the butterfly fractal [6]. The employ-
ment of lasers allows the simulation of a magnetic flux through the lattice.
The success of this approach for specific rotation numbers depends on the
visibility of the particle density, which in turn depends on its periodicity. As
shown by a specific experiment in [6] (figure 4(b)), the visibility decreases
for the irrational rotation number a = % Again, as the present work will
show, it is reassuring to know, that the butterfly fractal does not allow for
unexpected transitions at irrational rotation numbers to occur, which could
not be picked up through a suitably designed experiment.

We turn now to the mathematical significance of the present work, which
at this point is somewhat speculative in nature. The set of quantum Hall
numbers is a cyclic subgroup of the additive group of real numbers. If g is
the positive generator of this group, then each quantum Hall number g can
be written as g = kg, for a suitable integer k. As was shown in [8] under the
assumption that the strong version of the “Ten Martini conjecture” holds,
the number of components in the butterfly fractal with a common positive
quantum Hall number q is equal to

®(2k), where ®(n) = Zgo(j),
j=1
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and ¢ is Euler’s totient function. On the other hand, an observation by
J. Franel from the 1920s asserts that the Riemann hypothesis is true if and
only if the relation

J=®(n)
holds for any € > 0. Here r§n) is the jth Farey fraction of order n. For a
detailed exposition of this subject see Edmund Landau’s lectures on num-
ber theory [7], Band 2, Kapitel 13, or [3], Section 12.2. Note that the Farey
fractions, in the order as they appear in this asymptotic formula, occupy
a prominent position in the butterfly fractal. So it appears that the but-
terfly fractal holds information about the Riemann hypothesis, the exact
nature of which remains yet to be determined. Inspired by the colour cod-
ing of the butterfly fractal according to the Hall conductance, which was
also introduced in [8], and which has become quite popular in recent years,
it is tempting to take a cue from Marc Kac, who is not only alleged to have
offered ten martinis as a reward for the solution of the eponymous problem
which is the subject of this work, but who also famously asked “Can one
hear the shape of a drum?”, and pose the question, “Can one see the hue of
the Riemann hypothesis?”

Finally, we turn to a description of the organization of the paper. In
Section 1 the problem will be introduced in a form that is conducive to the
employment of tools which are needed to solve it. Based on three proposi-
tions, two of which are known results, while the third one still needs to be
established, the short proof of the major result will be given in that section.
In Section 2, material from this author’s previous work will be assembled
in a fashion that facilitates its usage in the present context, and a number
of preparatory results will be established. In Section 3, the proof for the
outstanding proposition will be provided.

Section 1

The observation that gaps tend to open up readily for small coupling con-
stants due to basic perturbations of the degenerate case, that is when the
coupling constant is equal to zero, naturally leads to a search for an argu-
ment that allows one to show that those gaps can not close as the coupling
constant increases. The advantage of such an approach goes beyond mere
expediency. By establishing the persistence of gaps as opposed to proving
the existence of gaps for specific parameters, one can reach through to the
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elusive self-dual case “from the outside”. It is the purpose of the present
work to develop such an argument. Earlier attempts can be readily traced
in the literature. For instance the major thrust in [5] is along the same
line: If one substitutes the conjecture C3 in that paper, which at this point
remains unproven, by the combination of Proposition 2 and Proposition 3
below, then one can simply follow the argument provided in “Remarque
3.2.4” in [5] to obtain the desired result. In conclusion our proof will require
two legs to stand on: The first leg establishes that gaps with prescribed
labels open up for sufficiently small (but by no means uniform!) coupling
constants. This has been rigorously shown in [5]. The second leg guarantees
that (open) gaps can’t close, as the coupling constant increases. Our argu-
ment to accomplish this has two components. First, we need to show that
if a gap closes, then it follows that the Lyapunov exponent, considered as a
function of two real parameters, namely the coupling constant and the spec-
tral parameter, has a local maximum in one of the resolvent sets. Second,
we need to prove that the Lyapunov exponent does not have any critical
points. It is the proof of the second component that will occupy the main
body of the paper.

We turn now to outlining the setting for the proof of that particular
component. Let a be an irrational number, let u and v be unitary operators
satisfying the relation

uv = ™y, (1.1)

and let A, be the (abstract) C*-algebra generated by u and v. Furthermore,
let 7 be the unique tracial state on A,. This is a positive linear functional,
standardized by setting 7(e) = 1, where @ denotes the unit element in A,,
such that 7(ab) = 7(ba) holds for all elements in a, beA,. In this setting we
define for any positive coupling constant § the almost Mathieu operator as
follows,

h(B) =u+ u* + (v +v"). (1.2)

As usual, the upper right asterisk denotes the adjoint of an operator. The
integrated density of states can now be identified with the restriction of the
functional 7 to the abelian C*-algebra generated by h((3). To obtain the
integrated density of states proper, all one has to do is to represent this
restricted functional by a probability measure on the spectrum of h(3). In
light of the comments made above we can now formulate our first proposi-
tion, which establishes the first leg of the argument.

Proposition 1.1 ([5]). For any number re[0,1] NZ + oZ there exists a
positive number By with the property that for any [e(0, o], the operator
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h(B) has a gap in its spectrum with the label r. More specifically, there
ezists a real number sg in the resolvent set of h(B3), such that the spectral
projection p associated with the interval (—oo, sg] has the property T(p) = r.

We turn now to the second leg. First, we need to define the Lyapunov
exponent in a way that is compatible with the present settings.

L:RxC—R,L(B,z) =71(log |h(B) — z]).

While the operator log |h(5) — z| = log[(h(8) — 2z)(h(3) — 2)]% is an element
of A, for zeC\Sp(h(B)), Sp(h(B)) denoting the spectrum of h(f3), this is
not the case for zeSp(h(3)). However, for any complex number this operator
is contained in L'(A, ), the space of “integrable operators” associated with
Ay and 7. By virtue of the so-called Thouless formula the number L(f, 2)
is seen to coincide with the usual definition of the Lyapunov exponent for
h(3) at z. We can now formulate our next statement.

Proposition 1.2. The function L is jointly continuous is both variables.
Moreover, for 3 <1, L(3,z) =0 for every zeSp(h(3)).

While this follows for rotation numbers satisfying a diophantine condition
from the present author’s earlier work in conjunction with the semicontinuity
of the spectrum (for badly approximable numbers see [12], Proposition 2.12,
and for sufficiently well approximable numbers see [10], Corollary 2.3), a
proof which does not rely on any diophantine condition is implicit in [2].
Indeed, the crucial Proposition 9 towards the end of that paper is valid
for any pair of sufficiently smooth potentials, not just those which differ
by the spectral parameter E. The remaining argument then carries through
essentially without change.

The third statement, which will be proved in Sections 2 and 3, is as
follows.

Proposition 1.3. For every zeR\Sp(h(3)),
(T((h(B) = 2)7 1), 7((h(B) = 2)"'v)) # (0,0).

The following theorem, whose proof is the main objective in the sequel,
has many precursors. The most up-to-date partial result appears to be [1],
where the stated claim is that the strong version of the “Ten Martini Prob-
lem” holds for a set of badly approximable rotation numbers, and for all
coupling constants other than 0 and 1. For a survey of contributions that
preceded this partial result the reader is referred to that paper.
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Theorem 1.4. For everyre[0, 1] N (Z + oZ) there exists seR\Sp(h(3)) such
that the spectral projection p associated with the interval (—oo,s] has the

property T(p) = .

Proof. By duality it suffices to consider the case 0 < # < 1 only. Let r¢[0, 1] N
(Z + o), and choose [y as in Proposition 1.1. For some Be(O,ﬁo) let
55 be as in Proposition 1.1. Let €, be the connected component of R =
{(8,t)eR* x R/teR\Sp(h(B3))} containing the point (3, s5). Since 3 can
be chosen arbitrarily close to zero, it suffices to show that €2, contains a
point whose first coordinate is equal to 1. Suppose this were not true. Then
Q. C[0,1] x [~4,4], and therefore Q, is compact. By Proposition 1.2 the
function L is continuous on €, and it takes the value zero on the boundary
0Q,. Tt follows that L has a local maximum at some point (3, s¢) in €.
Since L is infinitely differentiable in 2, the gradient of L at (3, s¢) vanishes.
Thus

O (Berse) ={(se —h(BN ) =0,

oL
%(Bea se) = T((h(Be) — 56)_1(U +v%)) = 27((h(Be) — Se)_lv) = 0.
By Proposition 1.3 this is impossible. |

Remarks. 1) While the first of the two partial derivatives occurring in
the proof is obvious, the second one warrants a few words of explanation.
Differentiating the first of the above partial derivatives with respect to (3,
by invoking the formula

0
B

and then antidifferentiating the result with respect to z yields the claimed
formula plus a function, which depends on 3 only, f(3) say. In order to
show that f(3) is actually zero, one would simply like to let z approach

infinity, because g—é then approaches zero. This is of course impossible,

(2= ()" = (2 = h(B)) " (v +v")(z = h(B)) ",

since z is confined to a (bounded) gap. Therefore, one has to replace the
real parameter z by a complex one, z =t + ie, for a small positive number
€. Repeating the steps just outlined in this particular situation, and then
laegting € approach zero, yields the claimed formula for the partial derivative

o8

2) Tt is worthwhile mentioning, that at this stage it is already clear that
any possible critical point for the function L has to be a local maximum.
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Indeed, taking the second partial derivatives

2
f,jw, 2) = —1((z — h(B) %),

0?L _ h(G)) ! * h(B)) L
359232 = 7((z = h(B) N + vz = (B)
= 7((2 = h(B)) (v +v%)),

&L - *
g (0:2) = =(l(z = hE) T (w+ v,

and applying the Cauchy—Schwarz inequality shows that the determinant of
the Hessian of the function L is strictly positive. Since the diagonal entries
of the Hessian are negative numbers, the claim follows.

Section 2

We now turn to the expansion and refinement of the settings introduced in
Section 1. In the following, we assume throughout that « is a fixed irrational
number, and that 3 is a positive number less than 1. For p, geZ, we define
the standardized monomials

— ~—bgmai, p,q
Wpg = € ur v,

and for zeC\Sp(h(5)),

cpq(2) = T((M(B) — Z)_l)wpq-

The standardization ensures that these numbers are real valued whenever
z is a real number. The double sequence {c,4(2)} solves the following system
linear equations for s = z,

cos Taq(Tpy1,qg + Tp—1,4) + BcosTap(Tp g1 + Tpg—1) = STpg,

sinmaq(zpi1,g — Tp—1,4) — Bsinmap(xp g1 — Tpg—1) =0, (2.1)

for all p, geZ, except p = g = 0. We shall refer to the system (2.1) with the
case p = ¢ = 0 exempted by (2.1)*.

Before we proceed with our objective, we are going to dwell a little on
the linear system (2.1). First, if one multiplies the second equation by the
imaginary unit ¢, and adds the result to the first equation, then one obtains
Harper’s equation on the two dimensional lattice, which is so common in
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physics, and there are no algebraic complications attached to this equation.
By contrast, the system (2.1) and its truncated version (2.1)*, combines two
features which call for a specifically designed approach to generate and ana-
lyze its solutions (see [11]). On the one hand, the system is largely overde-
termined, giving rise to redundancies: Asymptotically there are roughly
twice as many equations than variables. On the other hand, the system
is degenerate along the diagonals p = ¢ and p = —¢: a recursion involving
4 x 4 matrices to generate the solutions of this system collapses as one tries
to cross either one of those two axes. The tenet underlying the proof of
Proposition 1.3 is that these two features, reflecting intrinsic properties of
the operator h(/3), must also hold the key to its more elusive spectral proper-
ties. Generally speaking, for numbers s in the spectrum of i(/3) the system
(2.1) yields uniformly bounded solutions, which are obtained by evaluating
certain states defined on the C*-algebra A, at the standardized monomials
Wpq. (In [9], where it was shown that the linear dimension of the space of
uniformly bounded solutions is always either equal to one or to two, they
were referred to as “eigenstates”.) For s = z in the resolvent set of h([3),
the double sequence {cp4(2)} is always exponentially decaying as |p| — oo
and |g| — oco. This is the crucial property we shall exploit in the proof.
However, in order to take advantage of it, we first need to “homogenize” the
double sequence. In other words, we have to find a double sequence solv-
ing the homogeneous system (2.1), which preserves some measure of that
exponential decay, but also shares the vanishing conditions that hail from a
possible critical point for the function L. To this effect, we need to delve a
bit deeper into system (2.1)*.

The solutions to this system form a linear space of dimension 6. Up to
a scaling factor to be determined below, there are four solutions with the
property that each of those has non-vanishing coefficients only in exactly
one of the four sectors separated by the lines p = ¢ and p = —q in the two-
dimensional lattice. The components of these four solutions are nothing but
the “Fourier coefficients” of the resolvent of perturbations of h(3), which
are obtained by multiplying the generators u and v with suitable complex
numbers of modulus larger than one or less than one. Put in technical
terms, expanding these resolvents in terms of the standardized monomials
Wpq yields a “non-commutative” multiple Laurent series whose coefficients
are exactly those solutions. To assign a symbol to each of the four solu-
tions, let us say that RI();’O) (s) vanishes for p < O,Rz(,gl'o)(s) vanishes for
p >0, Ré%’l)(s) vanishes for ¢ <0, and Rég’fl)(s) vanishes for ¢ > 0. All
four of these solutions can be computed by means of a two component
recursion of the type (3.13) in [11]. Since we assumed [ to be less than
one, it follows that R1-0(s) and R(-19(s) decay exponentially of order
B along any line in the lattice with slope 1 or —1, and that R(O’l)(s) as
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well as R(O~1)(s) grow exponentially of order 3! along the four lines with
slope 1 or —1 through the points (0,1) or (0,—1) in exactly one direc-
tion. Taking the arithmetic mean of R (z) and R(-10(z), both suit-
ably scaled, yields a solution {d,q(z)} of (2.1)* which has the following
properties:

1
dpq(2) = djp||q(2), for all p, geZ; dy o(2) = §;dpq(z) =0 for |q| > |p|. (2.2)

lim B7Pl|d, i p(2)] < 00, Tim B7Pl|d,, ,(2)] < 0o, for all keZ. (2.3)

|p|—00 |p|—o0

Returning to our objective, it now follows that the double sequence ¢pq(2) =
Cpq(2) — dpg(z) solves system (2.1) and has the following additional
properties:

{¢pq(2)} decays two — sided exponentially along any line in the
lattice with slope 1 or — 1 (2.4)
If coo(z) = co1(2) =0, then ¢py(z) =0 for [p|,|q| < 1. (2.5)

We are going to shelve this for a while, and turn to the discussion of a cer-
tain subalgebra of the C*-algebra A,. For two elements a,beA, we denote
by alg*(a,b) the x-algebra generated by a and b. Next, we define two dis-
tinguished elements.

U=6"2u+ 670,V =w_1,,
which satisfy the relations
UV = A 2VU, U*V = A2VU*, where A = ™. (2.6)

One way to look at these two elements is that, while mimicking the genera-
tors for the rotation algebra A,, they also allow for the representation of the
element h((3) in a form that resembles representing the degenerate element
h(0) in terms of u and v,

h(B) = U+ U*.

The next step is to complete the mimicry, rendering alg*(U, V) as much as
possible a look-alike of alg*(u,v). What’s missing from the picture is a basic
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symmetry, a conjugate linear involutive automorphism that assigns to one
of the generators its adjoint, while fixing the other one. Such a symmetry
is readily available for alg*(u,v),

o(u) =u*,o(v) =w. (2.7)

Reversal of the roles of u and v leads to another symmetry, which is equiv-
alent to the one just defined. But due to the asymmetric nature of the
elements U and V, only one of them survives the mimicry. To obtain such
a symmetry for alg*(U, V), we first introduce an automorphism of A, that
appeared for the first time in [12],

pp(u) = vuv(uo + B) ! (v*u* + ),

ps(v) = v(uv + B) "L u* + ). (2.8)
Note that, due to the general properties of Ay, it is quite easy to define
automorphisms of A,. All one has to do is to assign unitary elements
in A, to the two generators which preserve the fundamental commutation
relation (1.1). Any assignment of this kind extends automatically to an
automorphism. Since it can be shown that U is a generator for A, in
other words the set of all (non-commutative) polynomials in U and U* is

norm dense in A,, the automorphism pg is uniquely determined by the
identity,

ps(u+ Bv) = u* + fo. (2.9)
Thus, composition of o and pg,
93 =098,

yields a conjugate linear automorphism that is uniquely determined by the
assignments

og(u) = vu*v(u*v + B)~Hw*u + B),
o5(v) = v(u*v + B) " H(v*u + B). (2.10)

The restriction of this symmetry to the algebra alg*(U, V) is exactly what
we need,

Ug(U) =T, UQ(W) = V" (2.11)

While the first relation is obvious, the second one can be checked through
straightforward manipulations. Our next objective is to show that this
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symmetry, when evaluated at the standardized monomials, yields elements
whose expansion in the standardized monomials have desirable exponential
decay properties. First, we observe that

o0

(wo+ )"t => (=) (v u)",

n=0

and taking the adjoint on both sides yields of course a similar expansion.
This shows that og(wpg) is a product of vPT? and an element that has a
power series expansion in the monomial wq 1 whose radius of convergence
is equal to B7!. In conclusion, we obtain the following representation,

og(Wpq) = Z rPDwe i q—m, where lim |r®9 ]\m\ < B. (2.12)

[m|—o0
me

In preparation for the proof of Proposition 1.3 in the next section we intro-
duce two linear functional ¢, and ¢, e og, which are defined for zeR\
Sp(h(()) on the algebra alg*(u,v) by the assignments

P2 (Wpq) = dpg(2),

0z @ 0(Wpg) = Z Tv(TIL)’q)‘Pz(wm,erqu)

me

Notice that, by (2.4) and (2.12) the terms in the sum on the right-hand side
of the second formula decay exponentially of an order less than or equal
to 6. The second formula defines essentially the composition of the first
functional with the symmetry og. Since og is conjugate linear, we have to
conjugate the terms in the sum in order to render the resulting functional
linear. We are now going to show that the two functionals are actually
equal.

Y, =, ®03. (2.13)

To see this, we need to return briefly to the settings at the beginning of
the present section. First, since og(h(5)) = h(5), we also have og((h(5) —
2)~Y = (h(B) — 2)~!. Note that, by our assumption, z is a real number.
This means that all we need to show is, that the functionals ¥, and 9, e 03,
which are defined below, are equal.

0 (wpg) = RO (2),9. @ 05(wpq) ZM% (Wmpigom).  (2.14)
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and that a similar statement holds for R(=39)(2). Again, since o(h(8)) =
h(B), and since R19)(z) solves the system (2.1)*, the second functional
solves the system (2.1)* as well. However, since by the representation in
(2.12) and the vanishing properties of R1:0)(2), 9, ® 05(w,,) vanishes for all
indices located below or on the the line p = —¢q in the two dimensional lattice,
the double sequence {1, ® o 5(wp,)} must be a linear combination of R0 (z)
and RO (2). Since ROV (z) grows exponentially of order S~ along the

two lines with slope 1 or —1 through the point (0,1), while ¥, ® o5(wpq)

and R]E,}]’O)(z) vanish or decay exponentially along these two lines, it follows

that {1, ® 05(wp,)} is just a scalar multiple of R(M9)(2). But since og is
unital, the two double sequences must actually be equal. A similar statement
can now be obtained for R(-19(2) along a similar line of reasoning. This
concludes our argument establishing the validity of (2.13).

Remark. Restricting the solutions of the system (2.1)*, viewed as lin-
ear functionals on the linear space alg*(u,v), to the subspace alg*(U, V),
reduces the linear dimension from 6 to 5.

Section 3

We turn now to the proof of Proposition 1.3. Henceforth, we shall simply
write ¢ for the functional ¢, introduced in Section 2, because we shall
assume that z is a fixed real number in the resolvent set of h(3). The
idea of the proof is to exploit the decay conditions of p(w,q) along lines
with slope —1 in the two dimensional lattice, to construct a functional
on alg*(u,v), with the property that ¢ can be recovered from 1 by the
identity ¥ (aU) = p(a) for all aecalg*(u,v), and then showing that such a
functional can not exist, in case the function L in Section 1 has a critical
point. Of course, there are infinitely many functionals with this property.
One simply has to implement a separate elementary recursion along every
single line with slope —1. The crux is to impose constraints which restrict
the availability of such functionals severely. More specifically, we shall prove
the following.

Lemma 3.1. There exists a linear functional 1 on alg*(u,v), having the
properties,

(1)Vaealg*(u,v) : Y(aU) = ¢(a).
(1)VpeNo, YaeZ  (UPV) = F{OPT1), (U Y'VY) = G{{TP0).
(ii)Vacalg® (u, ) - $((h(5) — 2)a) = v(a(h(B) — 2)U) = 0.
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Proof. First, we extend slightly the settings of Section 2. Let 9B be the set
of elements a in A, which can be written in the form

N 1
a= g E kmn—mWmn—m, where 1im |kp, n—pm|™ < 00

n=—N me [ml—o0

for —N <n < N. (3.1)
This set is an involutive subalgebra of A,. Also, (2.12) implies
o3(B) = B. (3.2)

Furthermore,

Ul=p"2 Z(—ﬁ)”(u*v)"u*e%.
n=0

Now (2.3) allows us to extend the definition of the functional ¢ to elements
of the form (3.1) as follows:

N
(P(a) = Z ka,n—m@(wm,n—m)-

n=—N me

Obviously, this extended functional is also linear. Moreover, by (2.13)

plop(a)) = ¢la), aeB, (3-3)
and since the double sequence {¢p,(2)} in Section 2 solves the system (2.1),
A((h(B) = 2)a) = pla(h(B) — 2)) = 0, aeB. (3.4)
We are now going to define the functional ¢ as follows,
bla) = p(aU™),  ae®.

We need to check that i) has the claimed properties. By construction this
is obvious for (i). Next, if p is a non-negative integer, and ¢ is an arbitrary
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integer, then (2.11) and (3.3) yield,

P(UPVY) = p(UPVIU ) = p(0p(UPVIU-1)) = o(UPV-9U-1)
_ RO,

which establishes the first identity in (ii). The second identity can be shown
in the same way. Finally, (3.4) yields,

which establishes (iii) as well. O

Remark. Tracking the significance of the decay condition (2.4) through the
discussion so far, one observes that this condition is far stronger than what is
needed to make the arguments work. It would be enough to assume that the
double sequence in (2.4) does not increase exponentially of an order larger
than or equal to 3~! along any line with slope —1 in the two-dimensional
lattice. All one has to do is to impose a stronger exponential decay condition
on the elements in the algebra ‘B.

In the proof of the following lemma, we shall be using nothing but the
relation (2.6), as well as the following:

U*U = AV + A 'V* + ye, wherey = g+ 57F (3.5)

Lemma 3.2. If v is a linear functional defined on alg*(U, V) such that for
some non-zero real number t the following two conditions hold,

(i)Vaealg®(U, V) : (U + U* — te)a) = 0,9 (a(U + U* — te)U) = 0,
(i)y(U) = $(U") = (V) = (V") = ¢(e) = 0,

then ¢(UV) = 0.
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Proof. Since

(U + U* — te)UVY = U*VY + U*UV? — tUVY,
V(U2 + U*U — tU) = AM9U?VY + U UV — A2 UV,

(i) yields

P(UFUVY) = typ(UV) — p(U>V9),
Y(UFUVY) = tA2p(UV?) — N9 (U2VY),

hence,
tp(UVY) = (1 + A2)(U?V?), forq # 0. (3.6)

Next, we derive two elementary identities involving (UV) and (UWV?2).
Employing the second identity in (i) with a = VU*, yields

Y(VU*(U? 4+ U*U — tU)) = 0,
hence
(VU D)) + (VU (U'D)) — ty(V(U*V)) = 0,
which by virtue of (3.5) yields

VAV + A7V +9e)U) + (VU OV + A7V + 7e))
— tp(VAV + A7WV* + vye)) = 0,

and so by (ii),
Xp(VPU) + 1 (VU) + 9 (VUV) + 49 (VU*) = A (V*) = 0,
which finally implies by (2.6)
NYp(UV?) + yA2PpTUV) + Ap(U*V?) 4 A A2 (U*V) — tAp(V?) = 0.
Combining this with
P((U+TUNV) = (V) =0,

which follows from the first identity in (i) for a =V, and from (ii), we
conclude

Np(UV?) + (A2 = A" )(UV) + Mp(U*V?) — tay(V?) = 0.
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Combining this with

Y((U+TU"V?) = tp(V?),
which is true by the first identity in (i) for a = V2, yields

AP(UV?) + (A% = A7) P(UV) + A(tp(V?) — p(UV?)) — tayp(V?) = 0.
(3.7)

Next, since
Y(U+U* —te)UV) =0,

which holds by the first identity in (i) for a = UV, properties (3.5) and (ii)
yield

P(UV) + Mp(V?) — tp(UV) = 0.

Combining this with (3.6) for ¢ = 1 yields,
t 2 _
mTﬂ(UW) + Ap(V7) = typ(UV) =0,

which in turn simplifies to

At
$(V?) = 55 (UV).
Combining this with (3.7) yields
MUV 9002 - AUV + LUV - deuv)
\2t2
- mw(UV) =0,
which simplifies to
(X5 = N (UV?) + (A2 = A Hy(UV) = 0. (3.8)

Next, starting over again, using the first identity in (i) with a = U?V,
$((U+ U* - te)U*V) = 0,
or equivalently,

$H(UPV) + ¢ ((U*U)UV) — t4(U*V) = 0,
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yielding together with (3.5),
Y(UBV) + (AV + A7 V* 4+ 4e)UV) — tp(UV) = 0,
which by (ii) implies,
D(U3V) + A3p(UV?) 4+ 49(UV) — tep(U?V) = 0.

Employing (3.6) to this for ¢ = 1, we obtain,
2

VUV)+ 0OV + (1= 3

) H(UV) = 0. (3.9)

On the other hand, the second identity in (i) with a = UV yields,
Y(UV(U? + U*U — tU)) = 0,
or equivalently
P(UVU?) + (UV(U*U)) — tp(UVU) = 0,

hence by (3.5),

Y(UVU?) 4+ p(UVAV + AIV* + ye)) — tp(UVU) = 0,
which by (ii) and (2.6) yields,

Mp(UPV) 4+ Mp(UV?) + 4p(UV) — tA2p(UV) = 0,

and after invoking (3.6) for ¢ = 1 again,

22

4 3 2

>¢(UW) = 0.

Finally, multiplying this by A~* and subtracting it from (3.9) we obtain,

1— )22
14+ )2

(A3 = A 3)Y(UV?) + [(1 Ay - tz] Y(UV) =0.  (3.10)

Now suppose that ¥)(UV) # 0. Then comparison of (3.8) with (3.10) yields,

(8 = AF)02 = X3y = (=) (L= A7) 7 - L 7).



710 NORBERT RIEDEL

which turns into,
A At A2 )y = (2 - X2 - 2D

Since the number on the right-hand side of this equation is real, it follows
that A=6 — A\=% — X\=2 must be real as well or equivalently

PR S NP M P S
This in turn implies that
AZ A0 A L AT NE -1 =0

This conflicts with the fact that, o being irrational, the set {\?"/neZ} is
dense in the unit circle. Therefore, ¥(UV) = 0, as claimed. O

Remark. Performing the kind of manipulations in the proof of Lemma 2.2
for more general terms of the form UPVY and (U*?)VY one can actually
show that the functional ¢ “almost” vanishes. If the condition 1 (U?) = 0
is added, then ¢ vanishes completely.

Proof of Proposition 1.3. First note that the functional ¢ cannot be
zero. This is true because the double sequence {cp,(z)} decays exponen-
tially as |p| — oo and |g| — oo, while this is not true for {dp,(2)}. If {dpe(2)}
were decaying exponentially as |p| — oo and |g| — oo, then the two solutions
Rio(z) and R_10(z) of the system (2.1)* would give rise to two distinct
inverses of the same element h(() — z, which is of course impossible. Now
suppose that

Since the double sequence {¢(wpq)} solves the system (2.1), this implies that
 is non-zero if and only if

(V) # 0.

The vanishing conditions for ¢ translate into several vanishing conditions
for ¢. First, by Lemma 2.1,
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Furthermore,

B-24(e) + B2ep(uv) = Y(u'U) = p(u*) =0,
B3 u) + B24(e) = (W U) = p(v*) =0,
or, equivalently,

B734(e) + B2 P(VF) = 0,
B7EA(V) + B2 (e) = 0.

By Lemma 2.1(ii),

v(e) = v(e), v(V*) = (V).

This yields a linear system for 1 (e) and ¥(V),

B21(e) + B2 Ap(V) = 0,

BE(e) + B2 Mp(V) = 0.
Since the determinant of this system,
1 1
2 2\ _
A S Ca )
pz G2A

is non-zero for 3 # 1, it follows that
P(e) = (V) = ¢(V*) =0.
Finally, by Lemma 3.1(iii), since ¢(e) = 0, and 9(U) = p(e) = 0
$(U*) = (U + U* - ze) = 0.

In conclusion we have shown, that i (more precisely its restriction to
alg*(U,V)) satisfies the conditions (i) and (ii) of Lemma 2.2, letting

t= zﬁ_%. Therefore,
p(V) = (VU) = A*¢(UV) = 0.

Since we observed at the beginning of the proof that ¢(V) cannot be zero,
we have reached a contradiction. O
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