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Abstract

Bundle gerbes with connection and their modules play an important
role in the theory of two-dimensional sigma models with a background
Wess–Zumino flux: their holonomy determines the contribution of the
flux to the Feynman amplitudes of classical fields. We discuss addi-
tional structures on bundle gerbes and gerbe modules needed in similar
constructions for orientifold sigma models describing closed and open
strings.

1 Introduction

Bundle gerbes [18] are geometric structures related to sheaves of line bun-
dles; see [19, 25] for recent historical essays. They appear naturally in the
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mathematical context of lifting principal G-bundles to Ĝ-bundles for central
extensions Ĝ of a Lie group G by a circle. In the physical context, they arise
in studies of quantum field theory anomalies [6] or, together with bundle
gerbe modules, in a construction of groups of string theory charges [2]. The
present paper has been mainly motivated by the role that bundle gerbes
equipped with Hermitian connections play in the theory of two-dimensional
(2D) sigma models with a Wess–Zumino (WZ) term [20, 28] in the action
functional. Classically, the fields of such a sigma model are maps φ from
a 2D surface Σ, called the worldsheet, to the target manifold M equipped
with a metric and a closed 3-form H. The WZ term describes the back-
ground H-flux. Locally, it is given by integrals of the pullbacks φ∗B of local
Kalb–Ramond 2-forms B on M such that dB = H. The ambiguities in defin-
ing such a functional SWZ(φ) globally in topologically non-trivial situations
were originally studied with cohomology techniques in [1] and [9] for closed
worldsheets, and in [15] for worldsheets with boundary. They may be sorted
out systematically using bundle gerbes with connection over the manifold
M and, in the case with boundary, bundle gerbe modules; see [5, 10, 11]. In
particular, a choice of a bundle gerbe G with connection, whose curvature
3-form is H, determines unambiguously the Feynman amplitudes eiSWZ(φ) on
closed oriented worldsheets Σ. In the beginning of Section 1 of this paper,
we recall the definition [18] of bundle gerbes with connection and review
their 1-morphisms and the 2-morphisms between 1-morphisms, all together
forming a 2-category [24,26].

The WZ term in the action functional plays an essential role in Wess–
Zumino–Witten (WZW) sigma models [27], assuring their conformal sym-
metry on the quantum level and rendering them soluble. The target space
of a WZW sigma model is a compact Lie group G equipped with a bundle
gerbe whose curvature is a bi-invariant closed 3-form H. Bundle gerbes and
their modules are specially useful in treating the case [7] of WZW models
with non-simply connected target groups G′ that are quotients of their cov-
ering groups G by a finite subgroup Γ0 of the center Z(G) of G [12]. A gerbe
G′ over G′ = G/Γ0 may be thought of as a gerbe G over G equipped with
a Γ0-equivariant structure that picks up in a consistent way isomorphisms
between the pullback gerbes γ∗G and G for each element γ ∈ Γ0. The notion
of equivariant structures on gerbes extends to the case of gerbes over gen-
eral manifolds M on which a finite group Γ0 acts preserving the curvature
3-form H, possibly with fixed points. A gerbe over M with such an equi-
variant structure may be thought of as a gerbe over the orbifold M/Γ0 and
it may be used to define the WZ action functional for sigma models with the
orbifold target. Gerbes with equivariant structures with respect to actions
of continuous groups will be discussed elsewhere; see also [16]. They find
application in gauged sigma models with WZ term.
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Motivated by the theory of unoriented strings [21, 22], one would like to
define the WZ action functional for unoriented (in particular unorientable)
worldsheets Σ. More exactly, one considers so-called orientifold sigma
models. Their classical fields φ̂ map the oriented double Σ̂, which is equipped
with an orientation-changing involution σ such that Σ = Σ̂/σ, to the target
M equipped with an involution k so that φ̂ ◦ σ = k ◦ φ̂. Assuming that
k∗H = −H, one may define the WZ action functional for such fields using a
gerbe G over M with curvature H additionally equipped with a Jandl struc-
ture [23]. Such a structure on G may be considered as a twisted version of a
Z2-equivariant structure for the Z2 action on M defined by k. It picks up in
a consistent way an isomorphism between k∗G and the dual gerbe G∗.

One may consider more general orientifold sigma models with the WZ
term, corresponding to an action on M of a finite group Γ with elements
γ such that γ∗H = ε(γ)H for a homomorphism ε from Γ to {±1} ≡ Z2.
The notions of Γ0-equivariant and Jandl structures on a gerbe G may be
merged into the one of a (Γ, ε)-equivariant structure, which we shall also
call a twisted-equivariant structure. Such a structure consistently picks up
isomorphisms between γ∗G and either G or G∗, according to the sign of ε(γ).
The twisted-equivariant structures on gerbes are introduced in Section 1 and
are the main topic of the present paper. A special case of such structures
occurs when the normal subgroup Γ0 = ker ε of Γ acts on M without fixed
points. If ε ≡ 1 so that Γ0 = Γ, we are back to the correspondence between
gerbes over M with Γ0-equivariant structure and gerbes over M ′ = M/Γ0.
If ε is non-trivial, so that Γ/Γ0 = Z2, then the action of Γ on M induces a
Z2-action on M ′, with the non-trivial element of Z2 acting as an involution
k′ inverting the sign of the projected 3-form H ′. In this situation, gerbes over
M with curvature H and (Γ, ε)-equivariant structure correspond to gerbes
over M ′ with curvature H ′ and a Jandl structure. This descent theory for
bundle gerbes is discussed in Section 2.

The present paper provides a geometric theory extending and complet-
ing the discussion of our previous paper [14] that was devoted to the study
of gerbes with twisted-equivariant structures over simple simply connected
compact Lie groups. Such gerbes are needed for applications to the orien-
tifolds of WZW models. In [14], we used a local description of gerbes and
cohomological tools. Section 3 of the present paper establishes the relation
between the geometric and cohomological languages.

For oriented worldsheets Σ with boundary, the classical fields φ : Σ �� M
are often constrained to take values in special submanifolds D of M on the
boundary components of Σ. Such submanifolds are called (D-)branes in
string theory. The extension of the definition of the WZ action to this case
requires a choice of a bundle gerbe G with curvature H and of gerbe modules
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over the submanifolds D. Gerbe modules may be viewed as vector bundles
with connection twisted by the gerbe. In the context of the 2-category of
bundle gerbes, they can also be viewed as particular 1-morphisms [26]. In
Section 4, we adapt this notion to the case of gerbes with (Γ, ε)-equivariant
structures needed for applications to orientifold sigma models on worldsheets
with boundary. We also discuss a presentation of such gerbe modules in
terms of local data and develop their descent theory.

The Feynman amplitudes eiSWZ(φ) of fields φ defined on closed world-
sheets are given by the holonomy of gerbes [11]. In the case of unoriented
worldsheets, the gerbes have to be equipped additionally with a Jandl struc-
ture [23]. For oriented worldsheets with boundary, the holonomy giving
the Feynman amplitudes receives also contributions from the gerbe mod-
ules over the brane worldvolumes that provide the boundary conditions of
the theory [5, 10, 11]. In this paper, we introduce a generalization of both
notions for unoriented worldsheets with boundary using gerbe modules for
gerbes with a Jandl structure. This is discussed in both the geometric and
the local language in Section 5.

In Conclusions, we summarize the contents of the present paper and sketch
the directions for further work that includes extending the discussion [14] of
the orientifold WZW models on closed worldsheets to the ones on worldsheets
with boundary.

2 Twisted-equivariant bundle gerbes

We review bundle gerbes and their algebraic structure in Section 2.1
and define twisted-equivariant structures on them in Section 2.2. Twisted-
equivariant structures include two extremal versions: the untwisted one,
which is just an ordinary equivariant structure, and the twisted Z2-equivariant
one, which coincides, as we discuss in Section 2.3, with a Jandl structure.

2.1 The 2-category of bundle gerbes

In the whole paper, we work with the following conventions:

• Vector bundles are Hermitian vector bundles with unitary connection,
and isomorphisms of vector bundles respect the Hermitian structure
and the connections. These conventions in particular apply to line
bundles.

• If π : Y �� M is a surjective submersion between smooth manifolds,
we denote by

Y [k] := Y ×M · · · ×M Y,
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the k-fold fibre product of Y with itself (composed of the elements in
the Cartesian product whose components have the same projection to
M). The fibre products are, again, smooth manifolds in such a way
that the canonical projections πi1...ir : Y [k] �� Y [r] are smooth maps.

In the following, we collect the basic definitions.

Definition 2.1 ([18]). A bundle gerbe G over a smooth manifold M is a
surjective submersion π : Y �� M , a line bundle L over Y [2], a 2-form C ∈
Ω2(Y ), and an isomorphism

μ : π∗12L⊗ π∗23L �� π∗13L

of line bundles over Y [3], such that two axioms are satisfied:

(G1) The curvature of L is fixed by

curv(L) = π∗2C − π∗1C.

(G2) μ is associative in the sense that the diagram

π∗12L⊗ π∗23L⊗ π∗34L
π∗
123μ⊗id

��

id⊗π∗
234μ

��

π∗13L⊗ π∗34L

π∗
134μ

��
π∗12L⊗ π∗24L π∗

124μ
�� π∗14L

of isomorphisms of line bundles over Y [4] is commutative.

Example 2.1. On any smooth manifold M , there is a family Iω of trivial
bundle gerbes over M , labelled by 2-forms ω ∈ Ω2(M). The surjective sub-
mersion of Iω is Y := M and the identity π := idM , the line bundle over
Y [2] ∼= M is the trivial line bundle (equipped with the trivial flat connec-
tion), and the isomorphism μ is the identity between trivial line bundles. Its
2-form is the given 2-form C := ω.

Associated to a bundle gerbe G over M is a 3-form H ∈ Ω3(M) called
the curvature of G. It is the unique 3-form which satisfies π∗H = dC. The
trivial bundle gerbe Iω has the curvature dω.

We would like to compare two bundle gerbes using a notion of morphisms
between bundle gerbes. The morphisms between such gerbes which we con-
sider here have been introduced in [26]. For simplicity, we work with the
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convention that we do not label or write down pullbacks along canonical
projection maps, such as in (2.1) and (1M1) below.

Definition 2.2. Let G1 and G2 be bundle gerbes over M . A 1-morphism

A : G1
�� G2

consists of a surjective submersion ζ : Z �� Y1 ×M Y2, a vector bundle A
over Z, and an isomorphism

α : L1 ⊗ ζ∗2A �� ζ∗1A⊗ L2 (2.1)

of vector bundles over Z ×M Z, such that two axioms are satisfied:

(1M1) The curvature of A obeys

1

n
tr(curv(A)) = C2 − C1,

where n is the rank of A.
(1M2) The isomorphism α commutes with the isomorphisms μ1 and μ2 of

the gerbes G1 and G2 in the sense that the diagram

ζ∗12L1 ⊗ ζ∗23L1 ⊗ ζ∗3A
μ1⊗id ��

id⊗ζ∗23α

��

ζ∗13L1 ⊗ ζ∗3A

ζ∗13α

��

ζ∗12L1 ⊗ ζ∗2A⊗ ζ∗23L2

ζ∗12α⊗id

��
ζ∗1A⊗ ζ∗12L2 ⊗ ζ∗23L2

id⊗μ2

�� ζ∗1A⊗ ζ∗13L2

of isomorphisms of vector bundles over Z ×M Z ×M Z is
commutative.

These 1-morphisms are generalizations of so-called stable isomorphisms
[17]. They are generalized in two aspects: we admit vector bundles of rank
possibly higher than 1 (this makes it possible to describe gerbe modules by
morphisms), and these vector bundles live over a more general space Z than
just the fibre product Y1 ×M Y2 (this makes the composition of morphisms
easier).
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A 1-morphism A : G �� G′ requires that the curvatures of the bundle
gerbes G and G′ coincide. This follows from axiom (1M1) and the fact that
the trace of the curvature of a vector bundle is a closed form.

Example 2.2. Every bundle gerbe G has an associated 1-morphism

idG : G �� G

defined by the identity surjective submersion idZ of Z := Y [2], the line bundle
A := L of the bundle gerbe G itself, and the isomorphism

π∗13L⊗ π∗34L
π∗
134μ

�� π∗14L
π∗
124μ−1

�� π∗12L⊗ π∗24L

of line bundles over Z ×M Z = Y [4], where we have identified ζ1 = π12 and
ζ2 = π34. The axioms for this 1-morphism follow from the axioms of the
bundle gerbe G.

The 2-categorial aspects of the theory of bundle gerbes enter when one
wants to compare two 1-morphisms.

Definition 2.3. Let A : G1
�� G2 and A′ : G1

�� G2 be 1-morphisms
between bundle gerbes over M . A 2-morphism

β : A �� A′

is a surjective submersion ω : W �� Z1 ×P Z2, where P := Y1 ×M Y2,
together with a morphism βW : A1

�� A2 of vector bundles over W , such
that the diagram

L1 ⊗ ω∗
2A1

α1 ��

id⊗ω∗
2βW

��

ω∗
1A1 ⊗ L2

ω∗
1βW⊗id

��
L1 ⊗ ω∗

2A2 α2

�� ω∗
1A2 ⊗ L2

(2.2)

of morphisms of vector bundles over W ×M W is commutative. We shall
often omit the subscript in βW if it is clear from the context that the notation
refers to the bundle isomorphism.

Due to technical reasons, one has to define a certain equivalence relation
on the space of 2-morphisms [26], whose precise form is not important for this
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paper. A 2-morphism β : A �� A′ is invertible if and only if the morphism
βW of vector bundles is invertible. This, in turn, is the case if and only if
the ranks of the vector bundles of A and A′ coincide.

Bundle gerbes over M , 1-morphisms and 2-morphisms as defined above
form a strictly associative 2-category BGrb(M) [26]. We describe below
what that means. Most importantly for us, we can compose 1-morphisms:

Definition 2.4. The composition of two 1-morphisms A : G1
�� G2 and

A′ : G2
�� G3 is the 1-morphism

A′ ◦ A : G1
�� G3

defined by the following data: its surjective submersion is ζ : Z̃ �� Y1 ×M Y3

with Z̃ := Z ×Y2 Z
′ and the canonical projections to Y1 and Y3, its vector

bundle over Z̃ is Ã := A⊗A′, and its isomorphism is given by

L1 ⊗ ζ̃∗2 Ã L1 ⊗ ζ∗2A⊗ ζ ′∗2 A
′

α⊗id

��
ζ∗1A⊗ L2 ⊗ ζ ′∗2 A

′

id⊗α′

��
ζ∗1A⊗ ζ ′∗1 A

′ ⊗ L3 ζ̃∗1 Ã⊗ L3.

The axioms for this 1-morphism are easy to check. If we tacitly assume the
category of vector spaces to be strictly monoidal, it turns out that the compo-
sition of 1-morphisms defined in this manner is, indeed, strictly associative,

(A′′ ◦ A′) ◦ A = A′′ ◦ (A′ ◦ A).

The simplicity of Definition 2.4 (compared, e.g., to the one given in [24]) and
the strict associativity of the composition of 1-morphisms are consequences
of our generalized definition of 1-morphisms. One can now show

Proposition 2.1 ([26]). A 1-morphism A : G �� G′ is invertible, also called
1-isomorphism, if and only if its vector bundle is of rank one.
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In a 2-category, invertibility means that there exists a 1-isomorphism A−1

acting in the opposite direction, together with 2-isomorphisms

il : A−1 ◦ A �� idG and ir : idG′ �� A ◦ A−1, (2.3)

which satisfy certain coherence axioms [26]. The 2-category BGrb(M) of
bundle gerbes over M also provides the following structure:

(a) The vertical composition of two 2-morphisms β1 : A �� A′ and β2 :
A′ �� A′′ to a new 2-morphism

β2 • β1 : A �� A′′,

which is associative and has units idA for any 1-morphism A.
(b) The horizontal composition of two 2-morphisms β12 : A12

�� A′
12 and

β23 : A23
�� A′

23 to a new 2-morphism

β23 ◦ β12 : A23 ◦ A12
�� A′

23 ◦ A′
12,

which is compatible with the vertical composition.
(c) Natural 2-isomorphisms

ρA : idG2 ◦ A �� A and λA : A ◦ idG1
�� A (2.4)

associated to any 1-morphism A : G1
�� G2, which satisfy the equality

idA′ ◦ ρA = λA′ ◦ idA. (2.5)

The 2-category of bundle gerbes has pullbacks: for every smooth map
f : M �� N , there is a strict 2-functor

f∗ : BGrb(N) �� BGrb(M). (2.6)

Thus, for any bundle gerbe G, we have a pullback bundle gerbe f∗G; for any 1-
morphism A : G1

�� G2, a pullback 1-morphism f∗A : f∗G1
�� f∗G2; and

for every 2-morphism β : A �� A′, a pullback 2-morphism f∗β : f∗

A �� f∗A′. These pullbacks are essentially defined as pullbacks of the
surjective submersions and the structure thereon, details can be found in
[26]. If a bundle gerbe G has curvature H, its pullback f∗G has curvature
f∗H. The strictness of the 2-functor (2.6) means that f∗idG = idf∗G and
f∗(A′ ◦ A) = f∗A′ ◦ f∗A whenever A and A′ are composable 1-morphisms.
If g : X �� M is another map, we find (f ◦ g)∗ = g∗ ◦ f∗.

In order to concentrate on what we need in this paper, we define the
dual G∗ of a bundle gerbe G without emphasizing its role in the 2-categorial
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context. G∗ consists of the same surjective submersion π : Y �� M as G,
the 2-form −C ∈ Ω2(Y ), the line bundle L∗ over Y [2] and the inverse of the
dual of the isomorphism μ, which is an isomorphism

μ∗−1 : π∗12L
∗ ⊗ π∗23L

∗ �� π∗13L
∗

of line bundles over Y [3]. If H is the curvature of G, the curvature of G∗ is
−H. If A : G1

�� G2 is a 1-morphism, we define an adjoint 1-morphism

A† : G∗
1

�� G∗
2

in the following way: it consists of the same surjective submersion ζ : Z ��

Y1 ×M Y2 as A, it has the vector bundle A∗ over Z, and the isomorphism

α∗−1 : L∗
1 ⊗ ζ∗1A

∗ �� ζ∗2A
∗ ⊗ L∗

2

of vector bundles over Z ×M Z. The axioms for this 1-morphism follow
immediately from those for A. Finally, for a 2-isomorphism β : A1

�� A2,
we define an adjoint 2-isomorphism

β† : A†
1

�� A†
2.

It has the same surjective submersion ω : W �� Z1 ×P Z2 as β, and the
isomorphism β∗−1

W : A∗
1

�� A∗
2 of vector bundles over W . Notice that all

these operations are strictly involutive:

G∗∗ = G, A†† = A and β†† = β. (2.7)

Remark 2.1. In the context of some more structures in the 2-category
BGrb(M), as described in [26], namely a duality 2-functor ()∗ and a functor
assigning inverses A−1 to 1-isomorphisms A, and certain 2-morphisms β# :
A−1

2
�� A−1

1 to 2-isomorphisms β : A1
�� A2, we find A† = A∗−1 and

β† = β#−1.

2.2 Twisted-equivariant structures

An orientifold group (Γ, ε) for a smooth manifold M is a finite group Γ
acting smoothly on the left on M , together with a group homomorphism
ε : Γ �� Z2 = {−1, 1}. We label the diffeomorphisms implementing the
action by the group elements themselves, for instance γ : M �� M .
Note that γ2 ◦ γ1 = γ2γ1.
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Next, we define an action of the orientifold group (Γ, ε) on bundle gerbes
over M and their 1- and 2-morphisms. The value ε(γ) indicates whether a
group element γ ∈ Γ acts just by pullback along γ−1 or also by additionally
taking adjoints. Explicitly, for a bundle gerbe G, we set

γG :=

{
(γ−1)∗G, if ε(γ) = 1,
(γ−1)∗G∗, if ε(γ) = −1.

Similarly, for a 1-morphism A : G �� H, we have a 1-morphism

γA : γG �� γH

defined by

γA :=

{
(γ−1)∗A, if ε(γ) = 1,
(γ−1)∗A†, if ε(γ) = −1.

Finally, for a 2-isomorphism β : A �� A′, we have a 2-isomorphism

γβ : γA �� γA′

defined by

γβ :=

{
(γ−1)∗β, if ε(γ) = 1,
(γ−1)∗β†, if ε(γ) = −1.

Note that our conventions and (2.7) imply

(γ1γ2) = γ1γ2,

so that γ is a left action on gerbes and their 1- and 2-morphisms. We
use the same notation for differential forms, i.e., γω := ε(γ)(γ−1)∗ω for any
differential form ω on M . If H is the curvature of a bundle gerbe G, the
curvature of γG is γH.

Definition 2.5. Let (Γ, ε) be an orientifold group for M and let G be
a bundle gerbe over M . A (Γ, ε)-equivariant structure on G consists of
1-isomorphisms

Aγ : G �� γG

for each γ ∈ Γ, and of 2-isomorphisms

ϕγ1,γ2 : γ1Aγ2 ◦ Aγ1
�� Aγ1γ2
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for each pair γ1, γ2 ∈ Γ, such that the diagram

γ1γ2Aγ3 ◦ γ1Aγ2 ◦ Aγ1

γ1ϕγ2,γ3◦id

��

id◦ϕγ1,γ2 �� γ1γ2Aγ3 ◦ Aγ1γ2

ϕγ1γ2,γ3

��
γ1Aγ2γ3 ◦ Aγ1 ϕγ1,γ2γ3

�� Aγ1γ2γ3

(2.8)

of 2-isomorphisms is commutative.

We call a bundle gerbe G with (Γ, ε)-equivariant structure a (Γ, ε)-
equivariant bundle gerbe or twisted-equivariant bundle gerbe. If ε is constant,
a (Γ, ε)-equivariant bundle gerbe G is just called a Γ-equivariant bundle gerbe.
The curvature H of a twisted-equivariant bundle gerbe satisfies γH = H. A
twisted-equivariant structure on a bundle gerbe G is called normalized if
the following choices concerning the neutral group element 1 ∈ Γ have been
made:

(a) the 1-isomorphism A1 : G �� G is the identity 1-isomorphism idG ;
(b) the 2-isomorphism ϕ1,γ : Aγ ◦ idG �� Aγ is the natural

2-isomorphism λAγ from the 2-category of bundle gerbes;
(c) accordingly, the 2-isomorphism ϕγ,1 : idγG ◦ Aγ

�� Aγ is the natural
2-isomorphism ρAγ from the 2-category of bundle gerbes.

Bundle gerbes with normalized twisted-equivariant structures will give rise
to elements in normalized group cohomology, as we shall see in Section 3. A
twisted-equivariant structure on a bundle gerbe G is called descended if all
surjective submersions, i.e., the surjective submersions ζγ of the
1-isomorphisms Aγ and the surjective submersions ωγ1,γ2 of the
2-isomorphisms ϕγ1,γ2 , are identities. This will be important in Section 2.

Example 2.3. As an example, let us equip the trivial bundle gerbe Iω from
Example 2.1 with a twisted-equivariant structure, for any orientifold group
(Γ, ε) of M . This is possible for 2-forms ω ∈ Ω2(M) with γω = ω for all
γ ∈ Γ. Since then γIω = Iγω = Iω, we may choose Aγ := idIω for all γ ∈ Γ.
Accordingly, we can also choose

ϕγ1,γ2 := ρidIω
= λidIω

: idIω ◦ idIω
�� idIω .

Diagram (2.8) commutes due to condition (2.5). We denote this canonical
(Γ, ε)-equivariant structure by Jω. It is normalized and descended.
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We recall that there exist canonical bundle gerbes over all compact simple
Lie groups [12, 16]. All normalized twisted-equivariant structures on these
canonical bundle gerbes were classified (up to equivalence defined below)
in [14] using cohomological considerations (see also Section 3): they arise in
numbers ranging from 2 to 16. The corresponding geometrical constructions
will appear in [13].

Let us formulate the definition of a (Γ, ε)-equivariant structure in terms of
line bundles and their isomorphisms. For convenience, we assume the (Γ, ε)-
equivariant structure to be descended (see also Lemma 2.1 below). The
pullback bundle gerbe (γ−1)∗G has the surjective submersion πγ : Yγ

�� M
in the commutative pullback diagram

Yγ ��

πγ

��

Y

π

��
M

γ−1
�� M

,

with Yγ := Y and πγ := γ ◦ π, and the rest of the data is the same as for G.
The 1-isomorphism Aγ : G �� γG is now a line bundle Aγ over Zγ := Y ×M

Yγ and an isomorphism

αγ : π∗13L⊗ π∗34Aγ
�� π∗12Aγ ⊗ π∗24L

ε(γ) (2.9)

of line bundles over Zγ ×M Zγ , satisfying the compatibility axiom (1M2),
namely

π∗13L⊗ π∗35L⊗ π∗56Aγ
π∗
135μ⊗id

��

id⊗π∗
3456αγ

��

π∗15L⊗ π∗56Aγ

π∗
1256αγ

��

π∗13L⊗ π∗34Aγ ⊗ π∗46L
ε(γ)

π∗
1234αγ⊗id

��
π∗12Aγ ⊗ π∗24L

ε(γ) ⊗ π∗46L
ε(γ)

id⊗π∗
246με(γ)

�� π∗12Aγ ⊗ π∗26L
ε(γ).

(2.10)

Here, and in the following, we have regarded the fibre products of Zγ with
itself as a subset of Y 4 and Y 6 respectively, and used the projections
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πij : Y k �� Y 2 carefully: in (2.9) we have well-defined projections π12, π34 :
Zγ ×M Zγ �� Zγ and π13, π24 : Zγ ×M Zγ �� Y [2], and similarly in (2.10).
Furthermore, Lε(γ) stands for the dual line bundle L∗ and με(γ) for the
isomorphism μ∗−1 if ε(γ) = −1.

The surjective submersion of the 1-isomorphism γ1Aγ2 is the identity on
Zγ2

γ1 := Yγ1 ×M Yγ1γ2 , whose projection to the base space M makes the dia-
gram

Zγ2
γ1

��

Zγ2

��
M

γ−1
1

�� M

commutative. Further, γ1Aγ2 consists of the line bundle Aε(γ1)
γ2 over Zγ2

γ1 , and
of the isomorphism α

ε(γ1)
γ2 , which stands for α∗−1

γ2
if ε(γ1) = −1. Next, apply-

ing Definition 2.4 for the composition of two 1-morphisms to γ1Aγ2 ◦ Aγ1 ,
we have to form the fibre product

Zγ1,γ2 := Zγ1 ×Yγ1
Zγ2

γ1
∼= Y ×M Yγ1 ×M Yγ1γ2

with the surjective submersion π13 : Zγ1,γ2 �� Y ×M Yγ1γ2 . The line bundle
of the composition γ1Aγ2 ◦ Aγ1 is the line bundle π∗12Aγ1 ⊗ π∗23A

ε(γ1)
γ2 over

Zγ1,γ2 , and its isomorphism is

(id ⊗ π∗2356α
ε(γ1)
γ2

) ◦ (π∗1245αγ1 ⊗ id) : π∗14L⊗ π∗45Aγ1 ⊗ π∗56A
ε(γ1)
γ2

�� π∗12Aγ1 ⊗ π∗23A
ε(γ1)
γ2

⊗ π∗36L
ε(γ1γ2)

Finally, we come to the 2-isomorphisms ϕγ1,γ2 , whose surjective submer-
sion ω is by assumption the identity on Zγ1,γ2 , so that they induce the
isomorphisms

ϕγ1,γ2 : π∗12Aγ1 ⊗ π∗23A
ε(γ1)
γ2

�� π∗13Aγ1γ2

of line bundles over Zγ1,γ2 satisfying the compatibility condition (2.2) for
2-morphisms, which, here, amounts to the commutativity of the diagram
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(turned by 90 degrees compared to (2.2) for presentational reasons)

π∗14L⊗ π∗45Aγ1 ⊗ π∗56A
ε(γ1)
γ2

id⊗π∗
456ϕγ1,γ2 ��

π∗
1245αγ1⊗id

��

π∗14L⊗ π∗46Aγ1γ2

π∗
1346αγ1γ2

��

π∗12Aγ1 ⊗ π∗25L
ε(γ1) ⊗ π∗56A

ε(γ1)
γ2

id⊗π∗
2356α

ε(γ1)
γ2

��

π∗12Aγ1 ⊗ π∗23A
ε(γ1)
γ2 ⊗ π∗36L

ε(γ1γ2)
π∗
123ϕγ1,γ2⊗id

�� π∗13Aγ1γ2 ⊗ π∗36L
ε(γ1γ2)

(2.11)

of isomorphisms of line bundles over Zγ1,γ2 ×M Zγ1,γ2 . The commutativity
of diagram (2.8) from Definition 2.5 is equivalent to that of the diagram

π∗12Aγ1 ⊗ π∗23A
ε(γ1)
γ2 ⊗ π∗34A

ε(γ1γ2)
γ3

π∗
123ϕγ1,γ2⊗id

��

id⊗π∗
234ϕ

ε(γ1)
γ2,γ3 �� π∗12Aγ1 ⊗ π∗24A

ε(γ1)
γ2γ3

π∗
124ϕγ1,γ2γ3

��
π∗13Aγ1γ2 ⊗ π∗34A

ε(γ1γ2)
γ3 π∗

134ϕγ1γ2,γ3

�� π∗14Aγ1γ2γ3

(2.12)

of isomorphisms of line bundles over Zγ1,γ2,γ3 ∼= Y ×M Yγ1 ×M Yγ1γ2 ×M

Yγ1γ2γ3 .

Summarizing, a descended (Γ, ε)-equivariant structure on the bundle gerbe
G is

1. A line bundle Aγ over Zγ of curvature curv(Aγ) = ε(γ)π∗2C − π∗1C for
each γ ∈ Γ.

2. For each γ ∈ Γ, an isomorphism

αγ : π∗13L⊗ π∗34Aγ
�� π∗12Aγ ⊗ π∗24L

ε(γ)

of line bundles over Zγ ×M Zγ such that the diagram (2.10) is com-
mutative.

3. For each pair (γ1, γ2) ∈ Γ × Γ, an isomorphism

ϕγ1,γ2 : π∗12Aγ1 ⊗ π∗23A
ε(γ1)
γ2

�� π∗13Aγ1γ2
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of line bundles over Zγ1,γ2 such that the diagrams (2.11) and (2.12) are
commutative.

If the (Γ, ε)-equivariant structure is normalized, we have A1 := L and the
isomorphism α1 := π∗124μ

−1 ◦ π∗134μ. The normalization constraints ϕγ,1 =
ρAγ and ϕ1,γ = λAγ imply ϕ1,1 = μ.

Next, we would like to compare two (Γ, ε)-equivariant bundle gerbes.

Definition 2.6. Let (Γ, ε) be an orientifold group for M and let Ga and Gb

be bundle gerbes over M equipped with (Γ, ε)-equivariant structures J a =
(Aa

γ , ϕ
a
γ1,γ2

) and J b = (Ab
γ , ϕ

b
γ1,γ2

), respectively. An equivariant 1-morphism

(B, ηγ) : (Ga,J a) �� (Gb,J b)

is a 1-morphism B : Ga �� Gb of the underlying bundle gerbes together with
a family of 2-isomorphisms

ηγ : γB ◦ Aa
γ

�� Ab
γ ◦ B,

one for each γ ∈ Γ, such that the diagram

γ1γ2B ◦ γ1Aa
γ2

◦ Aa
γ1

γ1ηγ2◦idAa
γ1

��

idγ1γ2B◦ϕ
a
γ1,γ2 �� γ1γ2B ◦ Aa

γ1γ2

ηγ1γ2

��

γ1Ab
γ2

◦ γ1B ◦ Aa
γ1

id
γ1Ab

γ2
◦ηγ1

��
γ1Ab

γ2
◦ Ab

γ1
◦ B

ϕb
γ1,γ2

◦idB

�� Ab
γ1γ2

◦ B

(2.13)

of 2-isomorphisms is commutative.

Equivariant 1-morphisms can be composed in a natural way: if

(Ga,J a)
(B,ηγ) �� (Gb,J b)

(B′,η′
γ)

�� (Gc,J c)

are two composable equivariant 1-morphisms, their composition consists of
the 1-morphism B′ ◦ B : Ga �� Gc and the 2-morphisms

γ(B′ ◦ B) ◦ Aa
γ = γB′ ◦ γB ◦ Aa

γ

id◦ηγ �� γB′ ◦ Ab
γ ◦ B

η′
γ◦id �� Ac

γ ◦ (B′ ◦ B) .
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This composition is associative. We also have an identity equivariant
1-morphism associated to a (Γ, ε)-equivariant bundle gerbe (G,J ) given by
(idG , λ

−1
Aγ

• ρAγ ). An equivariant 1-morphism (B, ηγ) is called invertible or
equivariant 1-isomorphism if the 1-morphism B is invertible. In this case, an
inverse is given by (B−1, η−1

γ ). Hence, equivariant 1-isomorphisms furnish an
equivalence relation on the set of (Γ, ε)-equivariant bundle gerbes over M .

Definition 2.7. Two twisted-equivariant bundle gerbes over M are called
equivalent if there exists an equivariant 1-isomorphism between them.

The set of equivalence classes of twisted-equivariant bundle gerbes over
M will be further investigated in Sections 2 and 3. Let us anticipate here
the following fact.

Lemma 2.1. Every twisted-equivariant bundle gerbe is equivalent to one
with descended twisted-equivariant structure.

Proof. We recall Theorem 1 of [26]: for every 1-morphism A : G �� H, there
exists a “descended” 1-morphism Des(A) : G �� H whose surjective sub-
mersion ζ : Z �� Y ×M Y ′ is the identity, together with a 2-isomorphism
σA : A �� Des(A). For every 2-morphism ϕ : Aa �� Ab, there exists a
2-morphism

Des(ϕ) : Des(Aa) �� Des(Ab)
such that the diagram

Aa
σAa ��

ϕ

��

Des(Aa)

Des(ϕ)

��

Ab
σAb

�� Des(Ab)

(2.14)

is commutative. For a given (Γ, ε)-equivariant structure J = (Aγ , ϕγ1,γ2) on
a bundle gerbe G, we define A′

γ := Des(Aγ) and ϕ′
γ1,γ2

:= Des(ϕγ1,γ2). Due
to the commutativity of (2.14), the new ϕ′

γ1,γ2
still satisfy condition (2.8) for

(Γ, ε)-equivariant structures. Then, the choices B = idG and ηγ = σAγ define
an equivariant 1-isomorphism which establishes the claimed equivalence. �

We call an equivariant 1-morphism between bundle gerbes with normalized
(Γ, ε)-equivariant structures normalized if η1 : B ◦ idGa �� idGb ◦ B is given
by the natural 2-morphisms of the 2-category, η1 = ρ−1

B • λB. We call an
equivariant 1-morphism descended if the surjective submersion of B is the
identity.
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Let us, again, describe what an equivariant 1-morphism (B, ηγ) is in terms
of line bundles and isomorphisms thereof. We assume it to be descended for
simplicity. The 1-isomorphism B : Ga �� Gb consists of a vector bundle B
over Z := Y a ×M Y b and of an isomorphism β : π∗13L

a ⊗ π∗34B �� π∗12B ⊗
π∗24L

b over Z [2] satisfying axiom (1M1). The composition γB ◦ Aa
γ we have

to consider is the 1-morphism with the vector bundle π∗12A
a
γ ⊗ π∗23B

ε(γ) over

Zγ
1 := (Za)γ ×Y a

γ
Zγ

∼= Y a ×M Y a
γ ×M Y b

γ ,

and with the isomorphism

(id ⊗ π∗2356β
ε(γ)) ◦ (π∗1245α

a
γ ⊗ id) : π∗14L

a ⊗ π∗45A
a
γ ⊗ π∗56B

ε(γ)

�� π∗12A
a
γ ⊗ π∗23B

ε(γ) ⊗ π∗36(L
b)ε(γ) (2.15)

of vector bundles over (Zγ
1 )[2]. The other composition, Ab

γ ◦ B, is the 1-
morphism with the vector bundle π∗12B ⊗ π∗23A

b
γ over

Zγ
2 := Z ×Y b (Zb)γ ∼= Y a ×M Y b ×M Y b

γ ,

and with the isomorphism

(id ⊗ π∗2356α
b
γ) ◦ (π∗1245β ⊗ id) : π∗14L

a ⊗ π∗45B ⊗ π∗56A
b
γ

�� π∗12B ⊗ π∗23A
b
γ ⊗ π∗36(L

b)ε(γ) (2.16)

of vector bundles over (Zγ
2 )[2]. The 2-isomorphisms ηγ correspond now to

isomorphisms

ηγ : π∗12A
a
γ ⊗ π∗24B

ε(γ) �� π∗13B ⊗ π∗34A
b
γ (2.17)

of vector bundles over Zγ
1 ×P Z

γ
2
∼= Y a ×M Y a

γ ×M Y b ×M Y b
γ , where P :=

Y a ×M Y b
γ , and these isomorphisms satisfy the compatibility condition

π∗15L
a ⊗ π∗56A

a
γ ⊗ π∗68B

ε(γ)

id⊗π∗
5678ηγ

��

�� π∗12A
a
γ ⊗ π∗24B

ε(γ) ⊗ π∗48(L
b)ε(γ)

π∗
1234ηγ⊗id

��
π∗15L

a ⊗ π∗57B ⊗ π∗78A
b
γ

�� π∗13B ⊗ π∗34A
b
γ ⊗ π∗48(L

b)ε(γ),

(2.18)

where the horizontal arrows are given by (2.15) and (2.16), respectively.
Finally, the commutativity of diagram (2.13) implies the commutativity of
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the diagram

π∗12A
a
γ1

⊗ π∗23(A
a
γ2

)ε(γ1) ⊗ π∗36B
ε(γ1γ2)

π∗
123ϕa

γ1,γ2
⊗id

��

id⊗π∗
2356η

ε(γ1)
γ2

��

π∗13A
a
γ1γ2

⊗ π∗36B
ε(γ1γ2)

π∗
1346ηγ1γ2

��

π∗12A
a
γ1

⊗ π∗25B
ε(γ1) ⊗ π∗56(A

b
γ2

)ε(γ1)

π∗
1245ηγ1⊗id

��
π∗14B ⊗ π∗45A

b
γ1

⊗ π∗56(A
b
γ2

)ε(γ1)

id⊗π∗
456ϕb

γ1,γ2

�� π∗14B ⊗ π∗46A
b
γ1γ2

.

(2.19)

For completeness, and as a preparation for Section 5, we would also like to
introduce equivariant 2-morphisms. Suppose that we have (Γ, ε)-equivariant
bundle gerbes (Ga,J a) and (Gb,J b), and that we have two equivariant
1-morphisms (B, ηγ) and (B′, η′γ) between these. An equivariant 2-morphism

φ : (B, ηγ) �� (B′, η′γ)

is a 2-morphism φ : B �� B′, which is compatible with the 2-morphisms
ηγ and η′γ in the sense that the diagram

γB ◦ Aa
γ

γφ◦idAa
γ

��

ηγ �� Ab
γ ◦ B

idAb
γ
◦φ

��
γB′ ◦ Aa

γ
η′

γ

�� Ab
γ ◦ B′

(2.20)

of 2-morphisms is commutative.

In terms of morphisms between vector bundles, φ is just a morphism
φ : B �� B′ of vector bundles over Z = Y a ×M Y b which is compatible with
the isomorphisms β and β′ in the sense that the diagram

π∗13L
a ⊗ π∗34B

β ��

id⊗π∗
34φ

��

π∗12B ⊗ π∗24L
b

π∗
12φ⊗id

��
π∗13L

a ⊗ π∗34B
′

β′
�� π∗12B

′ ⊗ π∗24L
b

(2.21)
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is commutative, and diagram (2.20) imposes the commutativity of

π∗12A
a
γ ⊗ π∗24B

ε(γ)
ηγ ��

id⊗π∗
24φε(γ)

��

π∗13B ⊗ π∗34A
b
γ

π∗
13φ⊗id

��
π∗12A

a
γ ⊗ π∗24B

′ε(γ)

η′
γ

�� π∗13B
′ ⊗ π∗34A

b
γ .

(2.22)

Naturally, twisted-equivariant bundle gerbes, equivariant 1-morphisms and
equivariant 2-morphisms form, again, a 2-category, but we will not stress this
point.

2.3 Jandl gerbes

In this section, we consider the particular orientifold group (Z2, id). The
non-trivial group element of Z2 is denoted by k, and its action k : M �� M
is an involution. According to Definition 2.5, a (normalized) Z

id
2 -equivariant

structure is a single 1-isomorphism

Ak : G �� k∗G∗

and single 2-isomorphism

ϕk,k : k∗A†
k ◦ Ak

�� idG

such that

λAk
• (id ◦ ϕk,k) = ρAk

• (k∗ϕ†
k,k ◦ id). (2.23)

It is easy to see that this is exactly the same as a Jandl structure [23]: the
1-isomorphism A := k∗Ak : k∗G �� G∗ and the 2-isomorphism ϕ defined by

k∗A
ρ−1

k∗A �� idG ◦ k∗A
ir ◦ idk∗A �� A∗ ◦A† ◦ k∗A

idA∗ ◦ϕk,k�� A∗ ◦ idG
λA∗ �� A∗

yield a Jandl structure as described in [26]. Hence, we will call a (Z2, id)-
equivariant structure just a Jandl structure and a (Z2, id)-equivariant bundle
gerbe Jandl gerbe.
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Now, we elaborate the details of a Jandl structure, which we may assume
to be descended according to Lemma 2.1. The 1-isomorphism Ak consists of
a line bundle Ak over Zk := Y ×M Yk of curvature

curv(Ak) = −(π∗2C + π∗1C) (2.24)

in the notation of Section 2.2, together with an isomorphism

αk : π∗13L⊗ π∗34Ak
�� π∗12Ak ⊗ π∗24L

∗ (2.25)

of line bundles over Zk ×M Zk satisfying axiom (1M2). The composition
k∗A†

k ◦ Ak is the 1-isomorphism with the surjective submersion id on

Zk,k = Zk ×Yk
Zk

k
∼= Y ×M Yk ×M Y,

the line bundle π∗12Ak ⊗ π∗23A
∗
k over Zk,k and the isomorphism

(id ⊗ π∗2356α
∗−1
k ) ◦ (π∗1245αk ⊗ id) : π∗14L⊗ π∗45Ak ⊗ π∗56A

∗
k

�� π∗12Ak ⊗ π∗23A
∗
k ⊗ π∗36L

of line bundles over Zk,k ×M Zk,k. The 2-isomorphism ϕk,k corresponds to
a bundle isomorphism

ϕk,k : π∗12Ak ⊗ π∗23A
∗
k

�� π∗13L, (2.26)

compatible with αk by virtue of the commutativity of the diagram

π∗14L⊗ π∗45Ak ⊗ π∗56A
∗
k

id⊗π∗
456ϕk,k

��

�� π∗12Ak ⊗ π∗23A
∗
k ⊗ π∗36L

π∗
123ϕk,k⊗id

��
π∗14L⊗ π∗46L �� π∗13L⊗ π∗36L.
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Finally, (2.23) gives the commutativity of

π∗12Ak ⊗ π∗23A
∗
k ⊗ π∗34Ak

π∗
123ϕk,k⊗id

��

id⊗π∗
234ϕ∗−1

k,k �� π∗12Ak ⊗ π∗24L
∗

π∗
124ρ

��
π∗13L⊗ π∗34Ak

π∗
134λ

�� π∗14Ak.

(2.27)

It is worthwhile to discuss a trivialized Jandl gerbe. This is a Jandl gerbe
(G,J ) equipped with a trivialization, i.e., a 1-isomorphism T : G �� Iρ.
Here, the 2-categorial formalism can be used fruitfully. In [26], a functor

Bun : Hom(Iρ1 , Iρ2) �� Bun(M) (2.28)

is defined: for every 1-morphism A : Iρ1
�� Iρ2 between trivial bundle

gerbes over M , it provides a vector bundle Bun(A) over M ; and for every
2-morphism β : A �� A′, it provides a morphism

Bun(β) : Bun(A) �� Bun(A′)

of vector bundles over M . If the 1-morphism A : Iρ1
�� Iρ2 has a vec-

tor bundle A over ζ : Z �� M ×M M ∼= M , the vector bundle Bun(A) is
uniquely characterized by the property that ζ∗Bun(A) ∼= A. Accordingly,
the rank n of Bun(A) is equal to the rank of A, and its curvature satisfies,
by axiom (1M1),

1

n
tr(curv(Bun(A))) = ρ2 − ρ1.

The functor Bun has the following compatibility properties:

• Bun(A2 ◦ A1) = Bun(A1) ⊗ Bun(A2);
• Bun(idIρ) = 1;
• Bun(f∗A) = f∗Bun(A);
• Bun(A†) = Bun(A)∗;

in which 1 denotes the trivial line bundle with the trivial flat connection.

Let us return to the Jandl gerbe (G,J ) and the trivialization T : G �� Iρ.
First, we form a 1-isomorphism R : Iρ

�� I−k∗ρ by composing

Iρ
T −1

�� G Ak �� k∗G∗ k∗T †
�� I−k∗ρ, (2.29)
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and a 2-isomorphism ψ : k∗R† ◦ R �� idIρ by composing

k∗R† ◦ R T ◦ k∗A†
k ◦ k∗T †−1 ◦ k∗T † ◦ Ak ◦ T −1

id◦il◦id

��

T ◦ k∗A†
k ◦ idk∗G∗ ◦ Ak ◦ T −1

id◦ρAk
◦id

��

T ◦ k∗A†
k ◦ Ak ◦ T −1

id◦ϕk,k◦id

��
T ◦ idG ◦ T −1

λT ◦id

��
T ◦ T −1

i−1
r

�� idIρ .

(2.30)

In this definition, we have used the 2-isomorphisms il and ir from (2.3)
associated to the inverse 1-isomorphism k∗T †−1, and the 2-isomorphisms ρ
and λ from (2.4). Equation (2.5) assures that it is not important whether
one uses λ or ρ.

Now we apply the functor Bun to the 1-isomorphism R and the
2-isomorphism ψ. The first yields a line bundle R := Bun(R) over M of
curvature −(k∗ρ+ ρ), and the second (using the above rules) an isomor-
phism

φ := Bun(ψ) : R⊗ k∗R∗ �� 1

of line bundles over M . Finally, condition (2.23) implies that

φ⊗ idR = idR ⊗ k∗φ†

as isomorphisms from R⊗ k∗R∗ ⊗R to R. In other words, the pair (R,φ)
is a k-equivariant line bundle over M . Summarizing, every trivialized Jandl
gerbe gives rise to an equivariant line bundle.

Remark 2.2. One could also use the functor Bun to express a trivialized
twisted-equivariant structure in terms of bundles over M in the case of a
general orientifold group (Γ, ε). The result is not (as probably expected) a
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Γ-equivariant line bundle over M but a family Rγ of line bundles over M of
curvature γρ− ρ, together with isomorphisms

φγ1,γ2 : Rγ1 ⊗ γ1Rγ2
�� Rγ1γ2

of line bundles, which satisfy a coherence condition on triples γ1, γ2, γ3 ∈ Γ.

It will be useful to investigate the relation between the equivariant line
bundles associated to two equivariantly isomorphic Jandl gerbes. Suppose
that (Ga,J a) and (Gb,J b) are Jandl gerbes over M with respect to the same
involution k : M �� M , and suppose further that (B, ηk) : (Ga,J a) ��

(Gb,J b) is an equivariant 1-isomorphism. Let T b : Gb �� Iρ be a trivial-
ization of Ga and let T a := T b ◦ B be the induced trivialization of Ga. We
obtain the k-equivariant line bundles (Ra, φa) and (Rb, φb) over M in the
manner described above.

Lemma 2.2. The 2-isomorphism ηk induces an isomorphism κ : Ra �� Rb

of line bundles over M that respects the equivariant structures in the sense
that the diagram

Ra ⊗ k∗(Ra)∗
φa

��

κ⊗k∗κ∗−1

��

1

Rb ⊗ k∗(Rb)∗
φb

�� 1

of isomorphisms of line bundles over M is commutative.

Proof. The 2-isomorphism ηk : k∗B† ◦ Aa
k

�� Ab
k ◦ B induces an

isomorphism

k∗B† ◦ Aa
k ◦ B−1 ηk◦id �� Ab

k ◦ B ◦ B−1 id◦i−1
r �� Ab

k ◦ idGb

λAb
k �� Ab

k.

The composition of the above 1-morphisms with (T b)−1 from the right and
with k∗(T b)† from the left yields a 2-isomorphism η′k : Ra �� Rb according
to (2.29). Then, we have κ := Bun(η′k). It is straightforward to check that
the 2-isomorphism η′k and the two 2-isomorphisms ψa and ψb from (2.30) fit
into a commutative diagram, such that applying the functor Bun yields the
assertion we had to show. �
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3 Descent theory for Jandl gerbes

In this section, we consider an orientifold group (Γ, ε) whose normal subgroup
Γ0 := ker(ε) of Γ acts on M without fixed points, so that the quotient M ′ :=
M/Γ0 is equipped with a canonical smooth-manifold structure such that
the projection p : M �� M ′ is a smooth map. We remark that there is a
remaining smooth group action of Γ′ := Γ/Γ0 on M ′. We also still have a
group homomorphism ε′ : Γ′ �� Z2, so that (Γ′, ε′) is an orientifold group
for M ′.

Theorem 3.1. Let (Γ, ε) be an orientifold group for M with Γ0 acting with-
out fixed points, and let (Γ′, ε′) be the quotient orientifold group for the quo-
tient M ′ := M/Γ0. Then, there is a canonical bijection

⎧⎨
⎩

Equivalence classes
of (Γ, ε)-equivariant

bundle gerbes over M

⎫⎬
⎭ ∼= ��

⎧⎨
⎩

Equivalence classes
of (Γ′, ε′)-equivariant
bundle gerbes over M ′

⎫⎬
⎭ .

Note that Theorem 3.1 unites two interesting cases:

1. The original group homomorphism ε : Γ �� Z2 is constant ε(γ) = 1.
In this case, Γ0 = Γ and (Γ′, ε′) is the trivial (orientifold) group. Here,
Theorem 3.1 reduces to the well-known bijection

⎧⎨
⎩

Equivalence classes
of Γ-equivariant

bundle gerbes over M

⎫⎬
⎭ ∼= ��

{
Isomorphism classes of
bundle gerbes over M ′

}
.

This bijection was used in [12] to construct bundle gerbes on non-simply
connected Lie groups G/Γ0 from bundle gerbes over the universal cov-
ering group G.

2. The original group homomorphism ε : Γ �� Z2 is non-trivial. In this
case, Γ′ = Z2 and ε′ = id. Here Theorem 3.1 reduces to a bijection

⎧⎨
⎩

Equivalence classes
of (Γ, ε)-equivariant

bundle gerbes over M

⎫⎬
⎭ ∼= ��

{
Equivalence classes of
Jandl gerbes over M ′

}
.

We will use this bijection in [13] to construct Jandl gerbes over non-
simply connected Lie groups.
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In the sequel of this section, we shall prove Theorem 3.1 assuming, for
simplicity, that all equivariant structures are normalized. First, we start with
a given (Γ, ε)-equivariant bundle gerbe over M and construct an associated
quotient bundle gerbe G′ over M ′ along the lines of [11].

By Lemma 2.1, we may assume that the (Γ, ε)-equivariant structure is
descended. If π : Y �� M is the surjective submersion of G, the fibre
products of the surjective submersion ω : Y �� M ′ with itself, defined by
ω := p ◦ π, are disjoint unions

Y ×M ′ Y ∼=
⊔

γ∈Γ0

Zγ and Y ×M ′ Y ×M ′ Y ∼=
⊔

(γ1,γ2)∈Γ2
0

Zγ1,γ2 .

We recall that the (Γ, ε)-equivariant structure on G in particular has a line
bundle Aγ over Zγ of curvature

curv(Aγ) = ε(γ)π∗2C − π∗1C (3.1)

for each γ ∈ Γ, and for each pair (γ1, γ2) ∈ Γ2 an isomorphism

ϕγ1,γ2 : π∗12Aγ1 ⊗ π∗23A
ε(γ1)
γ2

�� π∗13Aγ1γ2

of line bundles over Zγ1,γ2 , such that diagram (2.12) is commutative.

Definition 3.1. The quotient bundle gerbe G′ over M ′ is defined as follows:

(i) its surjective submersion ω : Y �� M ′ is the composition of the surjec-
tive submersion π : Y �� M of G with the quotient map
p : M �� M ′;

(ii) its 2-form is the 2-form C ∈ Ω2(Y ) of G;
(iii) its line bundle A over Y ×M ′ Y is given by the line bundle A|Zγ := Aγ

over each component Zγ of Y ×M ′ Y ;
(iv) its isomorphism is given by the isomorphism ϕγ1,γ2 over each compo-

nent Zγ1,γ2 of Y ×M ′ Y ×M ′ Y .

The axioms (G1) and (G2) for the quotient bundle gerbe follow from (3.1)
and (2.12), respectively.

In the case of non-trivial ε, we enhance the quotient bundle gerbe G′ to a
Jandl gerbe. Let us, for simplicity, denote by Γ− ⊂ Γ the subset of elements
γ ∈ Γ with ε(γ) = −1. To define a Jandl structure J ′ on the quotient bundle
gerbe G′, we use the line bundles Aγ over Zγ for γ ∈ Γ− (which have not been
used in Definition 3.1), and the isomorphisms ϕγ1,γ2 for elements γ1, γ2 ∈ Γ
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with either γ1 ∈ Γ− or γ2 ∈ Γ− (which have not been used yet either). The
1-isomorphism

A′
k : G′ �� k∗G′∗ (3.2)

is defined as follows: the fibre product P := Y ×M ′ Yk of the surjective sub-
mersions of the two bundle gerbes can be written as

P ∼=
⊔

γ∈Γ−

Zγ ,

and the line bundle A′
k over P is defined as A′

k|Zγ := Aγ . It has the correct
curvature curv(A) = −π∗2C − π∗1C in the sense of axiom (1M1). The two-fold
fibre product has the components

P ×M ′ P ∼=
⊔

γ1,γ2,γ3∈Γ−

Zγ1,γ2,γ3 .

Now, we have to define an isomorphism α of line bundles over P ×M ′ P ,
which is an isomorphism

α|Zγ1,γ2,γ3 : π∗13Aγ1γ2 ⊗ π∗34Aγ3
�� π∗12Aγ1 ⊗ π∗24A

∗
γ2γ3

,

on the component Zγ1,γ2,γ3 , where we have a dual line bundle because the
target of the isomorphism A is the dual bundle gerbe. We define this iso-
morphism as the composition of

π∗134ϕγ1γ2,γ3 : π∗13Aγ1γ2 ⊗ π∗34Aγ3
�� π∗14Aγ1γ2γ3 ,

with no dual line bundle on the left since ε(γ1γ2) = 1, with the inverse of

π∗124ϕγ1,γ2γ3 : π∗12Aγ1 ⊗ π∗24A
∗
γ1γ3

�� π∗14Aγ1γ2γ3 .

The isomorphism α defined in this manner satisfies axiom (1M2) for
1-morphisms due to the commutativity condition (2.12) for the isomorphisms
ϕγ1,γ2 . This completes the definition of the 1-isomorphism A′

k.

We are left with the definition of the 2-isomorphism ϕ′
k,k :

k∗A′†
k ◦ A′

k
�� idG′ for which we use the remaining structure, namely the

1-isomorphisms ϕγ1,γ2 with γ1, γ2 ∈ Γ−. The 1-morphism k∗A′†
k ◦ A′

k has a
surjective submersion ω : W → Y ×M ′ Y for W = Y ×M ′ Yk ×M ′ Y . Upon
the identification

W ∼=
⊔

γ1,γ2∈Γ−

Zγ1,γ2 ,
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ω is induced by the natural maps Zγ1,γ2 → Zγ1γ2 . Over the component
Zγ1,γ2 , the line bundle of k∗A′†

k ◦ A′
k is equal to π∗12Aγ1 ⊗ π∗23A

∗
γ2

and we
define the bundle isomorphism ϕ′

k,k|Zγ1,γ2 as

ϕγ1,γ2 : π∗12Aγ1 ⊗ π∗23A
∗
γ2

�� π∗13Aγ1γ2 .

Indeed, the 1-isomorphism idG has the line bundle of the bundle gerbe G′

which is Aγ1γ2 over Zγ1γ2 . The axiom for ϕ′
k,k can be deduced from the

commutativity condition for the 2-isomorphisms ϕγ1,γ2 .

Finally, we have to assure that the 2-isomorphism ϕ′
k,k satisfies (2.23) for

Jandl structures. To see this, we have to express the natural 2-isomorphisms
ρA and λA by the given 2-isomorphisms ϕγ1,γ2 . According to their def-
inition, we find ρA|Zγ1,γ2 = ϕγ1,γ2 and λA|Zγ1,γ2 = ϕγ2,γ1 for γ1 ∈ Γ− and
γ2 ∈ Γ0. Then, equation (2.23) reduces to the commutativity condition for
the 2-isomorphisms ϕγ1,γ2 . This completes the definition of the Jandl struc-
ture J ′ on the quotient bundle gerbe G′.

The second step in the proof of Theorem 3.1 is to demonstrate that the
procedure described above is well-defined on equivalence classes. For this
purpose, we show that an equivariant 1-morphism

(B, ηγ) : (Ga,J a) �� (Gb,J b)

between (Γ, ε)-equivariant bundle gerbes over M induces a 1-morphism B′

between the quotient bundle gerbes Ga ′ and Gb ′. We may assume again that
the 1-morphism B is descended. Then, it consists of a line bundle B over
Z := Y a ×M Y b, and of an isomorphism β of line bundles over Z ×M Z. The
additional 2-isomorphisms correspond to bundle isomorphisms

ηγ : π∗12A
a
γ ⊗ π∗24B

ε(γ) �� π∗13B ⊗ π∗34A
b
γ .

of line bundles over Y a ×M Y a
γ ×M Y b ×M Y b

γ ; see (2.17).

The quotient 1-morphism B′ is defined as follows. Its surjective submersion
is the disjoint union Z̃ of Z̃γ := Z ×Y b (Zb)γ ∼= Y a ×M Y b ×M Y b

γ over all
γ ∈ Γ0, together with the projection

π13 : Z̃γ �� Y a ×M Y b
γ

whose codomain is the γ-component of the fibre product of the surjective
submersions of the two quotient bundle gerbes. Its line bundle B′ is defined
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as B′|Z̃γ ≡ B′
γ := π∗12B ⊗ π∗23A

b
γ , which has the correct curvature:

curv(B′
γ) = π∗12curv(B) + π∗23curv(Ab

γ)

= π∗2C
b − π∗1C

a + π∗3C
b − π∗2C

b = π∗3C
b − π∗1C

a.

In order to define the isomorphism of B′, we have to consider the fibre product

Z̃ ×M ′ Z̃ ∼=
⊔

γ,γ′,γ′′∈Γ0

Y a ×M Y b ×M Y b
γ ×M Y a

γγ′ ×M Y b
γγ′ ×M Y b

γγ′γ′′

and set

π∗14A
a
γγ′ ⊗ π∗456Bγ′′ π∗14A

a
γγ′ ⊗ π∗45B ⊗ π∗56A

b
γ′′

π∗
1245ηγγ′⊗id

��
π∗12B ⊗ π∗25A

b
γγ′ ⊗ π∗56A

b
γ′′

id⊗π∗
256ϕb

γγ′,γ′′

��
π∗12B ⊗ π∗26A

b
γγ′γ′′

id⊗π∗
236ϕb−1

γ,γ′γ′′

��
π∗12B ⊗ π∗23A

b
γ ⊗ π∗36A

b
γ′γ′′ π∗123B

′
γ ⊗ π∗36A

b
γ′γ′′ .

This isomorphism satisfies axiom (1M2) due to the commutativity of the
diagram for the isomorphisms ηγ from Definition 2.6 and the one for the
ϕb

γ1,γ2
from Definition 2.5.

In the case of ε non-trivial, we enhance the quotient 1-morphism B′ to an
equivariant 1-morphism

(B′, η′k) : (Ga′,J a′) �� (Gb ′,J b ′)

between Jandl gerbes overM ′. To this end, we have to define the 2-isomorphism

η′k : k∗B′† ◦ A′a
k

�� A′b
k ◦ B′ (3.3)

for k the non-trivial group element of Γ′ ∼= Z2, and A′a
k and A′b

k the
1-isomorphisms (3.2) of the quotient Jandl structures on Ga′ and Gb′, respec-
tively. Collecting all definitions, we establish that the 1-morphism k∗B′† ◦
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A′a
k on the left has the submersion Z l := P a ×Y a

k
Z̃k which, for Z̃ ∼=⊔

γ∈Γ0
Y a ×M Y b ×M Y b

γ , becomes a disjoint union over the fibre products
Y a ×M Y a

γ′ ×M Y b
γ′ ×M Y b

γ′′ for γ′, γ′′ ∈ Γ−. Over this space, it has a line
bundle Al defined componentwise as π∗12A

a
γ′ ⊗ π∗23B

∗ ⊗ π∗34(A
b
γ′−1γ′′)∗. The

1-morphism A′b
k ◦ B′ on the right has the submersion Zr := Z̃ ×Y b P b, which

is the disjoint union of the fibre products Y a ×M Y b ×M Y b
γ × Y b

γ′′ , with
γ ∈ Γ0 and γ′′ ∈ Γ−, and over that, a line bundle Ar defined component-
wise as π∗12B ⊗ π∗23A

b
γ ⊗ π∗34A

b
γ−1γ′′ . The 2-morphism (3.3) is now defined on

the surjective submersion

W :=
⊔

γ∈Γ0,γ′,γ′′∈Γ−

Y a ×M Y a
γ′ ×M Y b ×M Y b

γ′ ×M Y b
γ ×M Y b

γ′′

with the projections π1246 to Z l and π1356 to Zr. We then declare the
following isomorphism between the pullbacks of Al and Ar to W :

π∗1246A
l π∗12A

a
γ′ ⊗ π∗24B

∗ ⊗ π∗46(A
b
γ′−1γ′′)∗

π∗
1234ηγ′⊗id

��
π∗13B ⊗ π∗34A

b
γ′ ⊗ π∗46(A

b
γ′−1γ′′)∗

id⊗π∗
346ϕb

γ′,γ′−1γ′′

��
π∗13B ⊗ π∗36A

b
γ′′

id⊗π∗
356(ϕb

γ,γ−1γ′′)
−1

��
π∗13B ⊗ π∗35A

b
γ ⊗ π∗56A

b
γ−1γ′′ π∗1356A

r.

It involves the isomorphism ηγ′ belonging to the equivariant 1-morphism;
see (2.17). Since γ′ ∈ Γ− here, we have, by now, used all the structure of
(B, ηγ). It is straightforward to check that these isomorphisms satisfy the
compatibility axiom and make the diagram (2.13) commutative.

We have, so far, obtained a well-defined map

q :

⎧⎨
⎩

Equivalence classes
of (Γ, ε)-equivariant

bundle gerbes over M

⎫⎬
⎭ ��

⎧⎨
⎩

Equivalence classes
of (Γ′, ε′)-equivariant

bundle gerbes over M ′

⎫⎬
⎭ .
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In order to finish the proof of Theorem 3.1, we now show that q is surjective
and injective. Let us start with the observation that the pullback G := p∗G′

of any bundle gerbe G′ over M ′ along the projection p : M �� M ′ has a
canonical Γ0-equivariant structure. This comes from the fact that G = γG
for all γ ∈ Γ0, so that Aγ := idG and

ϕγ1,γ2 := λidG = ρidG : idG ◦ idG �� idG

define a Γ0-equivariant structure.

Let us have a closer look at this Γ0-equivariant structure. To this end,
notice that G has the surjective submersion Y := M ×M ′ Y ′ �� M whose
fibre products have, each, an obvious projection Y [k] �� Y ′[k]. The line
bundle L and the isomorphism μ of G are pullbacks of L′ and μ′ along this
projection. The 1-isomorphisms Aγ have the surjective submersion Zγ ∼=
Y [2] and the line bundles Aγ := L, see Example 2.2. The 2-isomorphisms
ϕγ1,γ2 have the surjective submersions Zγ1,γ2 ∼= Y [3] and the isomorphisms
ϕγ1,γ2 := μ.

We can, next, pass to the quotient bundle gerbe G′′. Its surjective sub-
mersion is Y ′′ := Y whose fibre products Y ′′[k] = Γk−1

0 × Y [k] come, each,
with an obvious projection to Y [k]. In fact, the line bundle L′′ and the
multiplication μ′′ for G′′ are pullbacks of L and μ, respectively, along these
projections. Summarizing, the quotient bundle gerbe G′′ has the structure
of G′ pulled back along the composed projections Y ′′[k] �� Y ′[k], which are
fibre-preserving. It is well-known that such bundle gerbes are isomorphic.

Let, now, J ′ be a Jandl structure on G′ consisting of a line bundle A′
k

over Z ′ := Y ′ ×M ′ Y ′
k, and of an isomorphism α of line bundles over Z ′[2]. To

the above canonical Γ0-equivariant structure, we add 1-isomorphisms Aγ :
G �� γG for γ ∈ Γ−. The relevant fibre product Zγ = Y ×M Yγ projects
to Z ′, so that the line bundle Aγ is defined as the pullback of A′

k along
this projection. Similarly, the isomorphism α′ pulls back to the isomorphism
of Aγ . The Jandl structure J ′ also contains a 2-isomorphism ϕ′

k,k, which
naturally pulls back to the 2-isomorphisms ϕγ1,γ2 that we need to complete
the definition of a canonical (Γ, ε)-equivariant structure J on the pullback
bundle gerbe G. We conclude, along the lines of the above discussion, that
(G,J ) descends to a Jandl gerbe over M ′ which is equivariantly isomorphic
to (G′,J ′).

It remains to prove that the map q is injective. Thus, we assume that two
(Γ, ε)-equivariant bundle gerbes (Ga,J a) and (Gb,J b) descend to a pair of
equivariantly isomorphic Jandl gerbes (Ga′,J a′) and (Gb′,J b′) over M ′. Let
(B′, η′k) be an equivariant 1-isomorphism between the latter Jandl gerbes. If
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we assume it to be descended, B′ is based on the fibre product

Z ′ = Y a′ ×M ′ Y b′ ∼=
⊔

γ∈Γ0

Y a ×M Y b
γ

and the line bundle B′ over Z ′ has components B′
γ . Its isomorphism is

β′γ1,γ2,γ3
: π∗13A

a
γ1γ2

⊗ π∗34B
′
γ3

�� π∗12B
′
γ1

⊗ π∗24A
b
γ2γ3

. (3.4)

The additional 2-isomorphism η′k is, in the notation of Section 2.2, an iso-
morphism of line bundles over

Z ′k
1 ×P ′ Z ′k

2
∼=

⊔
γ1,γ2,γ3∈Γ−

Y a ×M Y a
γ1

×M Y b
γ1γ2

×M Y b
γ1γ2γ3

,

with components

(η′k)γ1,γ2,γ3 : π∗12A
a
γ1

⊗ π∗24B
′∗
γ2γ3

�� π∗13B
′
γ1γ2

⊗ π∗34A
b
γ3
, (3.5)

according to (2.17). Let us, now, construct an equivariant 1-isomorphism

(B, ηγ) : (Ga,J a) �� (Gb,J b)

out of this structure. Its existence will prove that the map q is injective.

The 1-isomorphism B : Ga �� Gb has the surjective submersion Y a ×M

Y b and we take the line bundle B′
1 over that space as its line bundle B

(all the other line bundles B′
γ with γ 
= 1 are to be ignored). Similarly,

the isomorphism β′1,1,1 serves as the isomorphism β of B. It remains to
construct the 2-isomorphisms ηγ . For γ ∈ Γ−, these we define them as the
isomorphisms

(η′k)γ,γ−1,γ : π∗12A
a
γ ⊗ π∗24B

′∗
1

�� π∗13B
′
1 ⊗ π∗34A

b
γ

from (3.5), while for γ ∈ Γ0, as the isomorphisms

β′1,γ,1 : π∗13A
a
γ ⊗ π∗34B

′
1

�� π∗12B
′
1 ⊗ π∗24A

b
γ

from (3.4) (pulled back along the map that exchanges the second and the
third factor). Finally, all the relations that these isomorphisms should obey
are readily seen to be satisfied.
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4 Twisted-equivariant Deligne cohomology

In this section, we relate the geometric theory developed in Sections 1 and 2
to its cohomological counterpart introduced in [14].

4.1 Local data

Let (Γ, ε) be an orientifold group for M , and let G be a bundle gerbe over
M with (Γ, ε)-equivariant structure J , consisting of 1-isomorphisms Aγ and
of 2-isomorphisms ϕγ1,γ2 . We assume that there is a covering O = {Oi}i∈I

and a left action of Γ on the index set I such that γ(Oi) = Oγi, and such
that there exist sections si : Oi

�� Y . We define

MO :=
⊔
i∈I

Oi

and construct the smooth map

s : MO
�� Y : (x, i) � �� si(x).

There are induced maps s : M [k]
O

�� Y [k] on all fibre products, where M [k]
O

is just the disjoint union of all non-empty k-fold intersections Oi1...ik :=
Oi1 ∩ . . . ∩Oik of open sets in O. They may be used to pull back the line
bundle L, the 2-form C and the isomorphism μ of G. Choose, now, sec-
tions σij : Oij

�� s∗L (of unit length) and define smooth functions gijk :
Oijk

�� U(1) by

s∗μ(σij ⊗ σjk) = gijk · σik,

extract local connection 1-forms Aij ∈ Ω1(Oij) such that

s∗∇σij = 1
iAij σij ,

where ∇ stands for the covariant derivative, and define 2-forms Bi := s∗iC ∈
Ω2(Oi). Axiom (G1) gives the equation

dAij = Bj −Bi on Oij . (4.1)

Since μ preserves connections, one obtains

Aij −Aik +Ajk = ig−1
ijkdgijk on Oijk, (4.2)



654 KRZYSZTOF GAWĘDZKI ET AL.

and axiom (G2) infers the cocycle condition

gijl · gjkl = gikl · gijk on Oijkl. (4.3)

One can always choose the sections σij such that Aij and gijk have the
antisymmetry property Aij = −Aji and gijk = g−1

jik = g−1
ikj = g−1

kji.

We continue by extracting local data of the 1-isomorphisms

Aγ : G �� γG

consisting, each, of a line bundle Aγ over Zγ = Y ×M Yγ and of an isomor-
phism

αγ : π∗13L⊗ π∗34Aγ
�� π∗12Aγ ⊗ π∗24L

ε(γ)

of line bundles over Zγ ×M Zγ , see the discussion in Section 2.2. Note that
sγ−1i ◦ γ−1 : Oi

�� Yγ is a section into Yγ , i.e., πγ ◦ (sγ−1i ◦ γ−1) = idOi ,
and so we get the map sγ : MO

�� Yγ : (x, i) � �� sγ−1i(γ−1(x)) compatible
with the projections to M . Note that also σγ−1i γ−1j ◦ γ−1 : Oij

�� s∗γL is
a section. Furthermore, we have a mixed map

zγ : MO
�� Zγ : (x, i) � �� (si(x), sγ−1i(γ

−1(x))) (4.4)

into the space Zγ . Note that π1 ◦ zγ = s and π2 ◦ zγ = sγ , so that the pull-
back of αγ along zγ is an isomorphism

z∗γαγ : s∗L⊗ π∗2z
∗
γAγ

�� π∗1z
∗
γAγ ⊗ s∗γL

ε(γ)

of line bundles overMO ×M MO (the two maps π1, π2 above are the canonical
projections from MO ×M MO to MO). Choose new unit-length sections σγ

i :
Oi

�� z∗γAγ and obtain local connection 1-forms Πγ
i ∈ Ω1(Oi), as well as

smooth functions χγ
ij : Oij

�� U(1) by the relation

z∗γαγ(σij ⊗ σγ
j ) = χγ

ij · (σ
γ
i ⊗ (σε(γ)

γ−1iγ−1j
◦ γ−1)).

In order to simplify the notation in the following discussion, we write

γfi := ((γ−1)∗fγ−1i)
ε(γ) and γΠi := ε(γ)(γ−1)∗Πγ−1i (4.5)

for U(1)-valued functions fi and 1-forms Πi, respectively, and likewise for
components of generic p-form-valued Čech cochains encountered below. In
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this notation, axiom (1M1) gives

γBi −Bi = dΠγ
i . (4.6)

Since αγ preserves connections, one obtains

γAij −Aij = Πγ
j − Πγ

i − iχγ−1
ij dχγ

ij , (4.7)

and axiom (1M2) gives

γgijk · g−1
ijk = χγ−1

ij · χγ
ik · χγ−1

jk . (4.8)

One can, again, choose the sections such that χγ
ij = (χγ

ji)
−1.

Finally, we extract local data from the 2-isomorphisms ϕγ1,γ2 . Consider
the space Zγ1,γ2 = Y ×M Yγ1 ×M Yγ1γ2 and the isomorphism

ϕγ1,γ2 : π∗12Aγ1 ⊗ π∗23A
ε(γ1)
γ2

�� π∗13Aγ1γ2

of line bundles over Zγ1,γ2 . We use the map

zγ1,γ2 : MO
�� Zγ1,γ2 ,

(x, i) � �� (si(x), sγ−1
1 i(γ

−1
1 (x)), sγ−1

2 γ−1
1 i(γ

−1
2 (γ−1

1 (x))))

to pull back the isomorphism ϕγ1,γ2 toMO. Note that π12 ◦ zγ1,γ2 = zγ1 , π23 ◦
zγ1,γ2 = zγ2 ◦ γ−1

1 and π13 ◦ zγ1,γ2 = zγ1γ2 . Hence, we may use the sections
σγ

i : Oi
�� z∗γAγ to extract smooth functions fγ1,γ2

i : Oi
�� U(1) by the

relation

z∗γ1,γ2
ϕγ1,γ2(σ

γ1
i ⊗ (σγ2

γ−1
1 i

◦ γ−1
1 )ε(γ1)) = fγ1,γ2

i · σγ1γ2
i .

From the requirement that ϕγ1,γ2 respect connections, it follows that

γ1Π
γ2
i − Πγ1γ2

i + Πγ1
i = i(fγ1,γ2

i )−1dfγ1,γ2
i . (4.9)

The compatibility condition (2.11) for the 2-morphism ϕγ1,γ2 becomes

γ1χ
γ2
ij · (χγ1γ2

ij )−1 · χγ1
ij = (fγ1,γ2

i )−1 · fγ1,γ2
j , (4.10)

and the condition imposed on the morphisms ϕγ1,γ2 in Definition 2.5, equiv-
alent to the commutativity of diagram (2.12), reads

γ1f
γ2,γ3
i · (fγ1γ2,γ3

i )−1 · fγ1,γ2γ3
i · (fγ1,γ2

i )−1 = 1. (4.11)
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Summarizing, the bundle gerbe has local data c := (Bi, Aij , gijk), and
the (Γ, ε)-equivariant structure has local data bγ := (Πγ

i , χ
γ
ij) and aγ1,γ2 :=

(fγ1,γ2
i ). If the (Γ, ε)-equivariant structure is normalized, the mixed map

z1 : MO
�� Z1 = Y [2] defined in (4.4) is z1 = Δ ◦ s, so we may choose σ1

i :=
Δ∗σii and obtain Π1

i = Aii = 0. With this choice, we find, for α1 = (1 ⊗
π∗124μ

−1) ◦ (π∗134μ⊗ 1), the local datum χ1
ij = g−1

iij · gijj = 1. For ϕ1,γ , we get
f1,γ

i = (χγ
ii)

−1giii = 1, and, analogously, fγ,1
i = χγ

iigiii = 1. Finally, f1,1
i =

giii = 1.

Let us now extract local data of an equivariant 1-morphism

(B, ηγ) : (G,J ) �� (G′,J ′)

between two (Γ, ε)-equivariant bundle gerbes over M . We may choose an
open covering O of M with an action of Γ on its index set as above, such that
it admits sections si : Oi

�� Y and s′i : Oi
�� Y ′ for both bundle gerbes.

The 1-morphism B provides a vector bundle B over Z := Y ×M Y ′ of some
rank n. Generalizing the mixed map (4.4), we have a map

z : MO
�� Z : (x, i) � �� (si(x), s′i(x)). (4.12)

Just as above, we choose an orthonormal frame of sections σa
i : Oi

�� z∗B,
a = 1, . . . , n, and obtain local connection 1-forms Λi ∈ Ω1(Oi, u(n)) with val-
ues in the set of Hermitian (n× n)-matrices, alongside smooth functions
Gij : Oij

�� U(n) defined by the relation

(z∗∇)σa
i = 1

i
(Λi) a

b σb
i

z∗β(σij ⊗ σa
j ) = (Gij) a

b (σb
i ⊗ σ′ij),

where β is the isomorphism of B over Z ×M Z and σij and σ′ij are the sections
chosen to extract local data of the two bundle gerbes G and G′. Analogously
to (4.6), (4.7) and (4.8), we have

B′
i −Bi = 1

n
tr(dΛi),

A′
ij −Aij = Λj −G−1

ij · Λi ·Gij − iG−1
ij dGij , (4.13)

g′ijk · g−1
ijk = Gik ·G−1

jk ·G−1
ij .

Again, the sections σa
i can be chosen such that Gij = G−1

ji . The 2-isomor-
phisms ηγ : γB ◦ Aγ

�� A′
γ ◦ B are, following the discussion in Section 2.2,
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isomorphisms

ηγ : π∗12Aγ ⊗ π∗24B
ε(γ) �� π∗13B ⊗ π∗34A

′
γ

of vector bundles over Zγ
1 ×P Z

γ
2
∼= Y ×M Yγ ×M Y ′ ×M Y ′

γ ; see (2.17). We
compose a map

zγ : MO
�� Zγ

1 ×P Z
γ
2 : (x, i)

� �� (si(x), sγ−1i(γ
−1(x)), s′i(x), s

′
γ−1i(γ

−1(x))),

into that space and define smooth functions Hγ
i : Oi

�� U(n) by

z∗γηγ(σγ
i ⊗ (σa

γ−1i ◦ γ−1)ε(γ)) = (Hγ
i ) a

b (σb
i ⊗ σ′γi ).

Since ηγ preserves the connections, we obtain

γΛi = (Hγ
i )−1 · Λi ·Hγ

i + i(Hγ
i )−1dHγ

i + Π′γ
i − Πγ

i . (4.14)

The commutativity of diagram (2.18) implies that

γGij = χ′γ
ij · (χ

γ
ij)

−1 · (Hγ
i )−1 ·Gij ·Hγ

j . (4.15)

Here, we have extended the notation of (4.5) to U(n)-valued functions and
u(n)-valued 1-forms in the following way:

γΛi :=

{
(γ−1)∗Λγ−1i, if ε(γ) = 1,
−(γ−1)∗Λγ−1i, if ε(γ) = −1,

γGi :=

{
(γ−1)∗Gγ−1i, if ε(γ) = 1,
(γ−1)∗Gγ−1i, if ε(γ) = −1,

(4.16)

with the overbar denoting the complex conjugation. These definitions coin-
cide with (4.5) for n = 1. The commutativity of diagram (2.19) leads to

Hγ1γ2
i · fγ1,γ2

i = f ′γ1,γ2
i ·Hγ1

i · γ1H
γ2
i . (4.17)

Thus, an equivariant 1-morphism has local data β := (Λi, Gij) and ηγ :=
(Hγ

i ) satisfying (4.14), (4.15) and (4.17).

Finally, for completeness, assume that φ : (B, ηγ) �� (B′, η′γ) is an equi-
variant 2-morphism, i.e., φ : B �� B′ is a morphism of vector bundles over
Z subject to the two conditions of Section 2.2. We use the map z : MO

�� Z
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from (4.12) to pull back φ and to extract smooth functions (Ui) a
a′ defined on

Oi by

z∗φ(σa
i ) = (Ui) a

a′ σ′a
′

i .

Here, a = 1, . . . , n and a′ = 1, . . . , n′, where n and n′ are ranks of the vector
bundles B and B′, respectively. The condition that φ preserves Hermitian
metrics and the connections yields

U †
i · Ui = 1 and Λi = U †

i · Λ′
i · Ui + iU †

i dUi. (4.18)

The two remaining conditions, namely the commutativity of diagrams (2.21)
and (2.22) impose the relations

Gij = U †
i ·G′

ij · Uj and Hγ
i = U †

i ·H ′γ
i · γUi. (4.19)

4.2 Deligne cohomology-valued group cohomology

It is convenient to put the local data extracted above into the context of
Deligne hypercohomology. We denote by U the sheaf of smooth U(1)-valued
functions on M , and by Λq the sheaf of q-forms on M . The Deligne complex
in degree 2, denoted by D(2), is the complex

0 �� U
1
i
dlog

�� Λ1 d �� Λ2 (4.20)

of sheaves over M . Together with the Čech complex of the open cover O, it
gives a double complex whose total complex K(D(2))

0 �� A0
D0 �� A1

D1 �� A2
D2 �� A3 (4.21)

has the cochain groups

A0 = C0(U),

A1 = C0(Λ1) ⊕ C1(U),

A2 = C0(Λ2) ⊕ C1(Λ1) ⊕ C2(U),

A3 = C1(Λ2) ⊕ C2(Λ1) ⊕ C3(U),
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and the differentials

D0(fi) = (−if−1
i dfi , f

−1
j · fi),

D1(Πi, χij) = (dΠi , −iχ−1
ij dχij + Πj − Πi , χ

−1
jk · χik · χ−1

ij ),

D2(Bi, Aij , gijk) = (dAij −Bj +Bi,−ig−1
ijkdgijk +Ajk −Aik

+Aij , g
−1
jkl · gikl · g−1

ijl · gijk).

The cohomology of this complex is the hypercohomology of the double com-
plex induced from (4.20). Its groups are denoted by H

k(M,D(2)). The local
data c = (Bi, Aij , gijk) extracted above from the bundle gerbe G are an ele-
ment of A2, and the properties (4.1), (4.2) and (4.3) show that D2(c) = 0.
This is the Deligne cocycle of a bundle gerbe [9].

In [14], we turned the complex An into a complex of left Γ-modules, where
the action of Γ is given by (4.5) and its extension to higher order forms.
Thus, γc are the local data of γG for the same choice of sections. The local
data bγ = (Πγ

i , χ
γ
ij) extracted above from 1-isomorphisms Aγ give an element

bγ ∈ A1, and the properties (4.6), (4.7) and (4.8) amount to the relations

γc− c = D1bγ . (4.22)

Furthermore, the local data aγ1,γ2 = (fγ1,γ2
i ) extracted from 2-isomorphisms

ϕγ1,γ2 give an element aγ1,γ2 ∈ A0, and its properties (4.9) and (4.10) are
equivalent to the identities

γ1bγ2 − bγ1γ2 + bγ2 = −D0aγ1γ2 . (4.23)

The additional constraint (4.11) reads:

γ1aγ2,γ3 − aγ1γ2,γ3 + aγ1,γ2γ3 − aγ1,γ2 = 0 (4.24)

(where the right-hand side represents the trivial Čech cochain (1) in the
additive notation). As recognized in [14], the equations above show that
group cohomology is relevant in the present context. For each Γ-module An,
we form the group of Γ-cochains Ck(An) = Map(Γk, An), together with the
Γ-coboundary operator

δ : Ck(An) �� Ck+1(An)

defined as

(δn)γ1,...,γk+1
= γ1nγ2,...,γk+1

− nγ1γ2,...,γk+1

+ · · · + (−1)knγ1,...,γkγk+1
+ (−1)k+1nγ1,...,γk

.
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When expressed in terms of this coboundary operator, (4.22), (4.23) and
(4.24) become

(δc)γ = D1bγ , (δb)γ1,γ2 = −D0aγ1,γ2 and (δa)γ1,γ2,γ3 = 0. (4.25)

These are (2.13)–(2.14) of [14]. In group cohomology, a cochain nγ1,...,γn

is called normalized if nγ1,...,γn = 0 whenever some γi = 1. Notice that the
cochains ηγ and aγ1,γ2 are normalized if the (Γ, ε)-equivariant structure on
G is normalized.

The coboundary operator δ commutes with the differential Dn, and so
the groups Ck(An) form again a double complex. Its hypercohomology is
denoted by H

n(Γ,K(D(2))ε), where the subscript ε on K(D(2)) indicates
that the action of Γ on the latter module is the one inherited from (4.5).
The collection (c, bγ , aγ1,γ2), representing the bundle gerbe G with (Γ, ε)-
equivariant structure, defines an element in the degree 2 cochain group of
this total complex. Equations (4.25) together with D2c = 0 show that it is
even a cocycle, defining a class in H

2(Γ,K(D(2))ε).

In the same way as above, local data β = (Λi, Gij) and ηγ = (Hγ
i ) of an

equivariant 1-isomorphism fit into this framework. The restriction to 1-
isomorphisms means that the functions Λi and Hγ

i take values in U(1), and
that the 1-forms Λi are real-valued. Note that the conventions (4.16) coincide
with the definitions (4.5) in the abelian case. Then, β ∈ A1 and ηγ ∈ A0.
Equations (4.13), (4.14) and (4.15), and (4.17) mean

c′ = c+D1β, b′γ = bγ + (δβ)γ +D0ηγ and

a′γ1,γ2
= aγ1,γ2 − (δη)γ1,γ2 . (4.26)

These are (2.15) to (2.17) of [14]. Thus, (Γ, ε)-equivariant bundle gerbes,
which are related by an equivariant 1-isomorphism define the same class in
H

2(Γ,K(D(2))ε).

Proposition 4.1. The map⎧⎨
⎩

Equivalence classes
of (Γ, ε)-equivariant

bundle gerbes over M

⎫⎬
⎭ �� H

2(Γ,K(D(2))ε)

defined by extracting local data as described above is a bijection.

Proof. This follows from the usual reconstruction of bundle gerbes,
1-morphisms and 2-morphisms from given local data, see, e.g., [24]. The
reconstructed objects have the property that they admit local data from
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which they were reconstructed. Thus, in order to see the surjectivity, one
reconstructs a bundle gerbe G, the 1-morphisms Aγ and the 2-morphisms
ϕγ1,γ2 from given local data. The cocycle condition assures that all neces-
sary diagrams are commutative, so that one obtains a twisted-equivariant
bundle gerbe whose local data are the given one. To see the injectivity,
assume that the class of the cocycle c of a given twisted-equivariant bundle
gerbe (G,J ) is trivial, c = D1(d). Then, one can reconstruct an equivariant
1-isomorphism (G,J ) �� (I0,J0) from the cochain d. �

The geometric descent theory from Section 2 implies, via Proposition 4.1,
results for the cohomology theories, namely a bijection

H
2(Γ,K(D(2))ε) ∼= H

2(Γ′,K(D(2))ε′),

whenever the normal subgroup Γ0 := ker(ε) acts without fixed points so that
(Γ′, ε′) is an orientifold group for the quotient manifold M ′. In the next
section, we will use Proposition 4.1 in the opposite direction.

4.3 Classification results

In this section, we present a short summary of the classification results from
[14]. In general, there are obstructions to the existence of a (Γ, ε)-equivariant
structure on a bundle gerbe G, and if these vanish, there may be inequivalent
choices thereof. We use Proposition 4.1 to study these issues in a purely
cohomological way. To this end, we are looking for the image and the kernel
of the homomorphism

pr : H
2(Γ,K(D(2))ε) �� H

2(M,D(2)), (4.27)

which sends a twisted-equivariant Deligne class to the underlying ordinary
Deligne class.

As shown in [14], the image can be characterized by hierarchical obstruc-
tions to the existence of twisted-equivariant structures on a given bundle
gerbe G. If we assume that the curvature H of G is (Γ, ε)-equivariant in the
sense that γH = H for all γ ∈ Γ, these obstructions are classes

o1 ∈ H2(M,U(1)), o2 ∈ H2(Γ, H1(M,U(1))ε) and

o3 ∈ H3(Γ, H0(M,U(1))ε). (4.28)

The latter two are Γ-cohomology groups, with the action of Γ on the coeffi-
cients induced from (4.5). The class o2 is well-defined if o1 vanishes, and o3
is well-defined if o1 and o2 vanish.
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Let us now discuss the kernel of the homomorphism (4.27), i.e., the ques-
tion what the set of equivalence classes of twisted-equivariant bundle gerbes
with isomorphic underlying bundle gerbe looks like. We infer that pr is
induced from the projection

pn :
⊕

p+q=n

Cp(Aq) �� An (4.29)

of chain complexes, whose cohomologies are H
n(Γ,K(D(2))ε) and H

n(M,
D(2)), respectively. The kernel of pn forms, again, a complex whose coho-
mology will be denoted by Hn. Explicitly, a class in H2 is represented by a
pair (bγ , aγ1,γ2) with bγ ∈ A1 and aγ1,γ2 ∈ A0 such that

D1bγ = 0, (δb)γ1,γ2 = −D0aγ1,γ2 and (δa)γ1,γ2γ3 = 0.

Equivalent representatives satisfy b′γ = bγ + D0ηγ and a′γ1,γ2
= aγ1,γ2 −

(δη)γ1,γ2 for a collection ηγ ∈ A0. Comparing this with (20) in [14], we
conclude that the group HΓ, which we considered there is obtained from H2

by additionally identifying cocycles (bγ , aγ1,γ2) and (b′γ , a
′
γ1,γ2

) if there exists
a β ∈ A1 such that D1β = 0 and b′γ = bγ + (δβ)γ .

Lemma 4.1. The group H2 fits into the exact sequences

0 �� H2 /H1(M,U(1)) �� H2(Γ,K(D(2))ε)
pr �� H2(M,D(2))

and

0 �� H2(Γ, H0(M,U(1))ε) �� H2 �� C1(H1(M,U(1))).

Proof. The first sequence is just a piece of the long exact sequence obtained
from the short exact sequence, which is (4.29) extended by its kernel to the
left, together with the well-known identification H

k(M,D(2)) ∼= Hk(M,U(1))
for k = 0, 1 [4]. The second sequence can be obtained by the same trick:
we project out another factor qn : ker(pn) �� C1(An−1) from the exact
sequence of complexes, yielding a short exact sequence

0 �� ker(q)• �� ker(p)•
q �� C1(A•−1) �� 0

of chain complexes. The interesting part of its long exact sequence is

C1(H0(M,U(1))) δ �� H2(ker(q)) �� H2 �� C1(H1(M,U(1))),
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for which an easy computation shows that H2(ker(q)) coincides with
ker(δ|C2(H0(M,U(1)))). �

We have now derived results on the image and the kernel of the projec-
tion (4.27). When the underlying manifold is 2-connected, H2(M,U(1)) =
H1(M,U(1)) = 0 and H0(M,U(1))ε = U(1)ε as Γ-modules, so that the
obstructions (4.28) and Lemma 4.1 boil down to

Proposition 4.2. Let M be a 2-connected smooth manifold and let G be a
bundle gerbe over M with (Γ, ε)-equivariant curvature.

(a) G admits (Γ, ε)-equivariant structures if and only if the third obstruction
class o3 ∈ H3(Γ, U(1)ε) vanishes.

(b) In the latter case, equivalence classes of (Γ, ε)-equivariant bundle gerbes
whose underlying bundle gerbe is isomorphic to G are parameterized by
the group H2(Γ, U(1)ε).

This was the starting point for the calculations in finite-group cohomology
of [14]. Namely, on a compact connected simple and simply connected Lie
group, there is a canonical family Gk of bundle gerbes with (Γ, ε)-equivariant
curvature for Γ a semidirect product of Z2 (generated by the ζ-twisted inver-
sion g �� ζ · g−1, with ζ from the centre of G) and a subgroup of the centre
of G. Since these Lie groups are 2-connected, the obstruction classes and the
classifying groups for (Γ, ε)-equivariant structures on Gk may be computed
by calculations in finite-group cohomology.

5 Equivariant gerbe modules

Gerbe modules can be described conveniently as 1-morphisms [26]:

Definition 5.1. Let G be a bundle gerbe over M . A G-module is a 1-
morphism

E : G �� Iω.

The rank of the vector bundle of E is called the rank of the bundle-gerbe
module, and the 2-form ω is called its central curvature.

Let us extract the details of this definition. We assume that the 1-
morphism E is descended in the sense that it consists of a vector bundle
E over Y ∼= Y ×M M . Similarly as in Lemma 2.1, this can be assumed up
to natural 2-isomorphisms; see Theorem 1 in [26]. By axiom (1M1), the
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curvature of the vector bundle E satisfies

1

n
tr(curv(E)) = π∗ω − C.

The G-module consists also of an isomorphism

ρ : L⊗ π∗2E �� π∗1E

of vector bundles over Y [2] which satisfies, by axiom (1M2), the condition

π∗13ρ ◦ (μ⊗ id) = π∗12ρ ◦ (id ⊗ π∗23ρ). (5.1)

The latter resembles the axiom for an action ρ of a monoid L on a module
E, hence the terminology. The above definition of a bundle-gerbe module
coincides with the usual one; see, e.g., [2, 10].

Definition 5.2. Let (Γ, ε) be an orientifold group for M and let (G,J ) be
a (Γ, ε)-equivariant bundle gerbe over M . A (G,J )-module is a 2-form ω
on M that satisfies the condition γω = ω for all γ ∈ Γ, together with an
equivariant 1-morphism

(E , ργ) : (G,J ) �� (Iω,Jω),

where Jω is the canonical (Γ, ε)-equivariant structure on the trivial bundle
gerbe Iω from Example 2.3.

Thus, a (G,J )-module is a G-module E : G �� Iω together with a 2-morphism

ργ : γE ◦ Aγ
�� E

for every γ ∈ Γ, such that the diagram

γ1γ2E ◦ γ1Aγ2 ◦ Aγ1

γ1ργ2◦idAγ1

��

idγ1γ2E◦ϕγ1,γ2 �� γ1γ2E ◦ Aγ1γ2

ργ1γ2

��
γ1E ◦ Aγ1 ργ1

�� E

(5.2)

is commutative for all γ1, γ2 ∈ Γ. We say that a (G,J )-module is normalized
if the equivariant 1-morphism (E , ργ) is normalized.

We already discussed equivariant 1-morphisms in terms of vector bundles
and isomorphisms of vector bundles in Section 2.2, so that we only have to
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apply these results to the particular case at hand. We recall that the (Γ, ε)-
equivariant structure on G consists of a line bundle Aγ over Zγ of curvature
curv(Aγ) = ε(γ)π∗2C − π∗1C for each γ ∈ Γ, and of isomorphisms

αγ : π∗13L⊗ π∗34Aγ
�� π∗12Aγ ⊗ π∗24L

ε(γ)

of line bundles over Zγ ×M Zγ subject to various conditions. The G-module
E : G �� Iω consists of a vector bundle E over Y and of an isomorphism
ρ : L⊗ π∗2E �� π∗1E over Y [2] satisfying (5.1). The 2-morphisms ργ are
isomorphisms

ργ : π∗12Aγ ⊗ π∗2E
ε(γ) �� π∗1E (5.3)

of vector bundles over Zγ
1 ×P Z

γ
2 , see (2.17), which is just Zγ here. The

compatibility condition (2.18) now reads

π∗13L⊗ π∗34Aγ ⊗ π∗4E
ε(γ)

id⊗π∗
34ργ

��

�� π∗12Aγ ⊗ π∗2E
ε(γ)

π∗
12ργ

��
π∗13L⊗ π∗3E π∗

13ρ
�� π∗1E,

(5.4)

and the commutative diagram (5.2), which is a specialization of (2.19),
becomes

π∗12Aγ1 ⊗ π∗23A
ε(γ1)
γ2 ⊗ π∗3E

ε(γ1γ2)
π∗
12ϕγ1,γ2⊗id

��

id⊗π∗
23ρ

ε(γ1)
γ2

��

π∗13Aγ1γ2 ⊗ π∗3E
ε(γ1γ2)

π∗
13ργ1γ2

��
π∗12Aγ1 ⊗ π∗2E

ε(γ1)
π∗
12ργ1

�� π∗1E.

(5.5)

Definition 5.3. A (Ga,J a)-module (Ea, ρa
γ) and a (Gb,J b)-module (Eb, ρb

γ)
are called equivalent if there exists an equivariant 1-isomorphism (B, ηγ) :
(Ga,J a) �� (Gb,J b) and an equivariant 2-isomorphism

ν : (Eb, ρb
γ) ◦ (B, ηγ) �� (Ea, ρa

γ).

In particular, the bundle gerbes Ga and Gb are isomorphic, the 2-forms
ωa and ωb of the two gerbe modules coincide, and the two modules have
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the same rank. If the 1-isomorphism B has a line bundle B over Z and an
isomorphism β, this equivariant 2-morphism is just an isomorphism

ν : B ⊗ π∗2E
b �� π∗1E

a (5.6)

of line bundles over Z that satisfies the usual axiom for 2-isomorphisms
and the additional equivariance condition (2.22), which now becomes the
commutative diagram

π∗12A
a
γ ⊗ (π∗24B ⊗ π∗4E

b)ε(γ)
π∗
34ρb

γ◦ηγ⊗id
��

id⊗π∗
24νε(γ)

��

π∗13B ⊗ π∗3E
b

π∗
13ν⊗id

��
π∗12A

a
γ ⊗ π∗2(E

a)ε(γ)
ρa

γ

�� π∗1E
a.

Concerning the local data of a (G,J )-module, we only have to specialize
the local data of an equivariant 1-morphism to the case in which the second
bundle gerbe is a trivial one equipped with its canonical (Γ, ε)-equivariant
structure, see Section 4.1. Thus, let c = (Bi, Aij , gijk) be local data of
the bundle gerbe G with respect to some invariant open cover O, and let
bγ = (Πγ

i , χ
γ
ij) and aγ1,γ2 = (fγ1,γ2

i ) be local data of the (Γ, ε)-equivariant
structure. Evidently, the trivial bundle gerbe Iω has local data c′ = (ω, 0, 1),
and its canonical equivariant structure Jω has local data b′γ = (0, 1) and
a′γ1,γ2

= (1). A (G,J )-module of rank n, i.e., an equivariant 1-morphism

(E , ργ) : (G,J ) �� (Iω,Jω),

has local data β = (Λi, Gij) and ηγ = (Hγ
i ) satisfying (4.13), (4.14), (4.15)

and (4.17). Explicitly, we have 1-forms Λi ∈ Ω1(Oi, u(n)), and smooth func-
tions Gij : Oij

�� U(n) and Hγ
i : Oi

�� U(n). The equations are

ω = Bi + 1

n
tr(dΛi), Λj = G−1

ij ΛiGij −Aij + iG−1
ij dGij and

Gij ·Gjk = gijk ·Gik.

These are just the relations for an ordinary G-module, see (2.3) in [10].
Equivariance is expressed by the relations

γΛi = (Hγ
i )−1ΛiH

γ
i + i(Hγ

i )−1dHγ
i − Πγ

i ,

γGij = (Hγ
i )−1 ·Gij ·Hγ

j · (χγ
ij)

−1, (5.7)
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Hγ1γ2
i = Hγ1

i · γ1H
γ2
i · (fγ1,γ2

i )−1,

where we have used the conventions (4.5) and (4.16).

If a (G,J )-module (E , ργ) and a (G′,J ′)-module (E ′, ρ′γ) are equivalent
in the sense of Definition 5.3, and (c, bγ , aγ1,γ2) and (c′, b′γ , a

′
γ1,γ2

) are local
data of the two gerbes, there exist local data (Ri, uij) and (hγ

i ) of the equi-
variant 1-isomorphism (B, ηγ) satisfying (4.26). There are also functions Ui :
Oi

�� U(n) coming from the equivariant 2-morphism ν. If β = (Λi, Gij)
and ργ = (Hγ

i ) are local data of (E , ργ), and, similarly, β′ and ρ′γ are those
of (E ′, ρ′γ), (4.18) and (4.19) take the form

Λ′
i = U−1

i ΛiUi + iU−1
i dUi −Ri, G′

ij = U−1
i ·Gij · Uj · u−1

ij and

H ′γ
i = U−1

i ·Hγ
i · γUi · (hγ

i )−1.

A particular situation that we shall discuss explicitly is the orientifold
group (Z2, id), and a bundle gerbe G with (normalized) Jandl structure
J = (Ak, ϕk,k). In this situation, we call a (G,J )-module a Jandl mod-
ule. Given such a (normalized) Jandl module (E , ρk), E : G �� Iω is a
bundle-gerbe module whose curvature satisfies k∗ω = −ω, and there is a
single 2-isomorphism

ρk : k∗E† ◦ Ak
�� E

such that the diagram

E ◦ k∗A†
k ◦ Ak

id◦ϕk,k ��

k∗ρ†k◦id
��

E ◦ idG

λE

��
k∗E† ◦ Ak ρk

�� E

(5.8)

of 2-isomorphisms is commutative. Still more specifically, we assume that
there is a trivialization T : G �� Iρ. As discussed in Section 2.3, the triv-
ialization and the Jandl structure induce a k-equivariant line bundle (R,φ)
over M of curvature −(k∗ρ+ ρ). This was obtained by applying the functor
Bun of (2.28) to the 1-isomorphism

R = k∗T † ◦ Ak ◦ T −1 : Iρ
�� I−k∗ρ.
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In the same way, we form the 1-morphism E ◦ T −1 : Iρ
�� Iω, and get a

vector bundle E := Bun(E ◦ T −1). We have, further, a 2-isomorphism

k∗(E ◦ T −1)† ◦ R k∗E† ◦ k∗T †−1 ◦ k∗T † ◦ Ak ◦ T −1

id◦il◦id

��
k∗E† ◦ idk∗G∗ ◦ Ak ◦ T −1

id◦ρAk
◦id

��
k∗E† ◦ Ak ◦ T −1

ρk◦id �� E ◦ T −1

that induces, via Bun, an isomorphism

ϑ : R⊗ k∗E∗ �� E (5.9)

of vector bundles over M . Finally, diagram (5.8) implies that this morphism
is compatible with the equivariant structure φ on R in the sense that the
diagram

R⊗ k∗R∗ ⊗ E

φ⊗id
����

��
��

��
��

�
id⊗k∗ϑ∗

�� R⊗ k∗E∗

ϑ
����

��
��

��
��

E

of morphisms of vector bundles over M is commutative. Summarizing, every
Jandl module for a trivialized Jandl gerbe gives rise to a vector bundle
together with an isomorphism (5.9).

In Section 2, we described the descent theory of twisted-equivariant bundle
gerbes as a way to obtain (all) Jandl gerbes over a smooth manifold M ′. In
the same way, we have

Proposition 5.1. Let (Γ, ε) be an orientifold group for M with Γ0 acting
without fixed points, and let (Γ′, ε′) be the quotient orientifold group for the
quotient M ′ := M/Γ0. Then, there is a canonical bijection

⎧⎪⎪⎨
⎪⎪⎩

Equivalence classes of
equivariant modules for

(Γ, ε)-equivariant
bundle gerbes over M

⎫⎪⎪⎬
⎪⎪⎭

∼= ��

⎧⎨
⎩

Equivalence classes of equi-
variant modules for (Γ′, ε′)-equi-
variant bundle gerbes over M ′

⎫⎬
⎭ .
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Note that the latter proposition unites (as did Theorem 3.1 before) the two
cases of Γ0 = Γ and Γ/Γ0 = Z2.

Since a (G,J )-module is nothing but an equivariant 1-morphism between
(G,J ) and (Iω,Jω), we can apply the descent theory developed in Section 2
and pass to an associated quotient 1-morphism. The only thing to note is
that the quotients are (Iω)′ ∼= Iω′ for the descended 2-form ω′ ∈ Ω2(M ′), and
(Jω)′ ∼= Jω′ . But this is clear since all involved line bundles are the trivial
ones, and all involved isomorphisms are identities. This way, it becomes
obvious how the map in Proposition 5.1 is defined and that it is surjective.
It remains to check that it is well-defined on equivalence classes and injective.
For this purpose, we have to amend the discussion of Section 2 by providing
a descent construction for equivariant 2-morphisms. Suppose that we have
a (Ga,J a)-module (Ea, ρa

γ) and an equivalent (Gb,J b)-module (Eb, ρb
γ), i.e.,

there is an equivariant 1-isomorphism (B, ηγ) : (Ga,J a) �� (Gb,J b) and an
equivariant 2-isomorphism

ν : (Eb, ρb
γ) ◦ (B, ηγ) �� (Ea, ρa

γ). (5.10)

We have to construct an equivariant 2-isomorphism

ν ′ : (Eb′, ρb′
k ) ◦ (B′, η′k) �� (Ea′, ρa′

k ), (5.11)

which guarantees that the quotient Jandl modules are equivalent. Notice
that the 1-morphism on the right side has the vector bundle Ea over Y a,
and the one on the left side has a vector bundle over the disjoint union of
Y a ×M Y b ×M Y b

γ over all γ ∈ Γ0, which is defined componentwise as π∗12B ⊗
π∗23A

b
γ ⊗ π∗3E

b. This follows from the definition of quotient 1-morphisms
and from Definition 2.4. Thus, the 2-morphism we have to construct has
components ν ′γ : π∗12B ⊗ π∗23A

b
γ ⊗ π∗3E

b �� π∗1E
a, and we define them as

π∗12B ⊗ π∗23A
b
γ ⊗ π∗3E

b
id⊗ρb

γ �� π∗12B ⊗ π∗2E
b ν �� π∗1E

a,

where ν comes from the given 2-morphism as in (5.6). It is straightforward
to check that this, indeed, defines an equivariant 2-isomorphism.

Conversely, if an equivariant 1-isomorphism

(B′, η′k) : (Ga′,J a′) �� (Gb′,J b′)

is given, every equivariant 2-isomorphism (5.11) immediately induces an
equivariant 2-isomorphism (5.10) for (B, ηγ) the equivariant 1-isomorphism
constructed on page 652. This shows that the map from Proposition 5.1 is
injective.
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6 Holonomy for unoriented surfaces

We show that a Jandl gerbe over a smooth manifold M together with Jandl-
gerbe modules over submanifolds of M provides a well-defined notion of
holonomy for unoriented surfaces with boundary, for example for the Möbius
strip. This notion merges the holonomy for unoriented closed surfaces from
[23] with that of the holonomy for oriented surfaces with boundary from
[5,11]. In the first subsection, we discuss its definition in terms of geometric
structures, and then we develop expressions in terms of local data.

6.1 Geometrical definition

In short, holonomy arises by pulling back a bundle gerbe G along a smooth
map φ : Σ �� M to a surface Σ, where it becomes trivializable for dimen-
sional reasons. For any choice of a trivialization T : φ∗G �� Iρ, there is a
number

HolG(φ,Σ) := exp
(

i
∫

Σ
ρ

)
∈ U(1). (6.1)

The integral requires Σ to be oriented, and its independence of the choice of
T requires Σ to be closed.

If Σ has a boundary, the expression (6.1) is no longer well-defined since
a boundary term emerges under a change of the trivialization. We shall
assume for simplicity that the boundary has only one connected component.
Compensating the boundary term then requires choices of a G-brane [5, 10,
11], a submanifold Q ⊂M together with a G|Q-module E : G|Q �� Iω. The
maps φ : Σ �� M which we take into account are now supposed to satisfy
φ(∂Σ) ⊂ Q. If E is the vector bundle Bun(φ∗E ◦ T −1) over ∂Σ constructed
in Section 5, the formula

HolG,E(φ,Σ) := exp
(

i
∫

Σ
ρ

)
· tr (HolE(∂Σ)) ∈ C, (6.2)

written in terms of the vector bundle E of E is invariant under changes
of the trivialization T . If the boundary is empty, it reduces to (6.1). A
generalization to several G-branes in the case of more than one boundary
component is straightforward.

If Σ is unoriented, e.g., if it is unorientable, it is important to notice that
there is a unique two-fold covering pr : Σ̂ �� Σ, called the oriented double,
where Σ̂ is oriented and equipped with an orientation-reversing involution
σ : Σ̂ �� Σ̂ that permutes the sheets of Σ̂ so that Σ = Σ̂/σ. To obtain
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holonomy for unoriented surfaces, two changes in the above setup have to
be made [23]. First, the bundle gerbe G has to be equipped with a Jandl
structure, i.e., a twisted-equivariant structure with respect to an involution
k : M �� M . Second, the holonomy is taken for smooth maps φ̂ : Σ̂ �� M ,
which are equivariant in the sense that the diagram

Σ̂
φ̂ ��

σ

��

M

k

��
Σ̂

φ̂

�� M

is commutative. This is just the stack-theoretic way to talk about a smooth
map Σ �� M/k without requiring that the quotient M/k be a smooth man-
ifold.

The pullback of the Jandl gerbe (G,J ) along φ̂ is a Jandl gerbe over the
surface Σ̂, and hence trivializable. As discussed in Section 2.3, any choice
of a trivialization T : φ̂∗G �� Iρ defines a σ-equivariant line bundle (R̂, ϕ̂)
over Σ̂ of curvature −(σ∗ρ+ ρ), which, in turn, descends to a line bundle R
over Σ. To define the holonomy, we further need to choose a fundamental
domain F of Σ in Σ̂. This is a submanifold F ⊂ Σ̂ with (possibly piecewise
smooth) boundary such that

F ∩ σ(F ) ⊂ ∂F and F ∪ σ(F ) = Σ̂, (6.3)

see figure 1 for an example. In the case of a closed surface Σ, it is a key obser-
vation that the involution σ restricts to an orientation-preserving involution
on the boundary ∂F , so that the quotient F̄ := ∂F/σ is a closed oriented

Figure 1: Panel (a) shows the Möbius strip. Panel (b) is a Möbius strip (in
the middle layer) together with its oriented double. The latter is an ordinary
strip with a bright and a dark side. Panel (c) shows a fundamental domain.
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1D submanifold of Σ [23]. Then, the holonomy is defined by

HolG,J (φ̂,Σ) := exp
(

i
∫

F
ρ

)
· HolR(F̄ ). (6.4)

This expression is invariant under changes of the trivialization T and of the
fundamental domain F [23]. In the case when the surface Σ is orientable, the
oriented double Σ̂ has two global sections s : Σ �� Σ̂ intertwined by com-
position with the involution σ. The choice F := s(Σ) with ∂F = ∅ satisfies
HolG,J (φ̂,Σ) = HolG(φ̂ ◦ s,Σ), where on the right side Σ is taken with the
orientation pulled back by s from Σ̂.

Below, we introduce a simultaneous generalization of the formulæ (6.4)
and (6.2) appropriate for unoriented surfaces with boundary. In addition to
the choice of a Jandl structure on the bundle gerbe G, the following new
structure will be required.

Definition 6.1. Let G be a bundle gerbe over M and let J be a Jandl struc-
ture on G with involution k : M �� M . A (G,J )-brane is a submanifold
Q ⊂M such that k(Q) = Q, together with a (G,J )|Q-module (E , ρk).

We consider maps φ̂ : Σ̂ �� M that satisfy the boundary condition
φ̂(∂Σ̂) ⊂ Q. As auxiliary data, we choose a trivialization T : φ̂∗G �� Iρ

and obtain the associated σ-equivariant line bundle (R̂, ϕ̂) over Σ̂. The pull-
back of the Jandl module (E , ρk) along φ̂ to ∂Σ̂ yields a Jandl module for the
trivialized Jandl gerbe: as discussed in Section 5, it induces a vector bundle
E over ∂Σ̂. A further auxiliary datum is, again, a fundamental domain F
of Σ in Σ̂. In order to account for the boundary, we need to choose a lift
(a closed 1D submanifold) �̂ ⊂ ∂Σ̂ of ∂Σ. It is easy to see that these lifts
always exist.

Remark 6.1. If the boundary ∂Σ consists of several components, one can
choose a separate (G,J )-brane for each component �. It is easy to generalize
the subsequent discussion to this case.

We now define a 1D oriented closed submanifold F̄ that generalizes the
one used in the closed case. As a set, it is defined to be

F̄ := pr(∂F \ �̂), (6.5)

see figure 2. This space is equipped with the structure of an oriented 1D
piecewise smooth manifold as follows. Let U ⊂ F̄ be a small open neighbour-
hood. If U ∩ ∂Σ = ∅, we have U = Û/σ with Û := pr−1(U) ⊂ ∂F so that U
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Figure 2: On the left, the Möbius strip with a fundamental domain as in
Figure 1, together with a lift �̂ of the boundary ∂Σ (the thick line). On the
right, the associated 1D oriented submanifold F̄ of Σ.

is 1D and oriented like in the situation for a closed surface. Otherwise, there
exists a unique continuous section s : U �� ∂F such that s(U) ∩ �̂ = ∅. This
section induces the structure of a 1D and oriented manifold on U . It is easy
to see that the orientations coincide on intersections.

Definition 6.2. Let J be a Jandl structure on a bundle gerbe G over M , let
(Q, E , ρ) be a (G,J )-brane and let φ̂ : Σ̂ �� M be an equivariant smooth
map with φ̂(∂Σ̂) ⊂ Q. Given a trivialization

T : φ̂∗G �� Iρ,

let R̄ be the induced line bundle over Σ, and let E be the pullback vector
bundle over ∂Σ̂. Choose, furthermore a fundamental domain F of Σ in its
oriented double Σ̂ and a lift �̂ of the boundary of Σ. Then, the holonomy
along φ̂ is defined as

HolG,J ,E
(
φ̂,Σ

)
:= exp

(
i
∫

F
ρ

)
· HolR̄(F̄ ) · tr

(
HolE(�̂)

)
.

Obviously, the holonomy formulae (6.4) and (6.2) are reproduced for an
empty boundary or an oriented Σ, respectively. In particular, formula (6.1)
is reproduced for an oriented closed surface.

Theorem 6.1. Definition 6.2 depends neither on the choice of the trivial-
ization T nor on the choice of the fundamental domain F nor on the choice
of the lift �̂.

We give a complete proof of this theorem in the next section in terms of local
data. Before we switch to local data, let us elaborate on those properties of
the holonomy formula that can conveniently be discussed in the geometric
setting.
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For example, one can check that the holonomy of Definition 6.2 is indepen-
dent of the choice of the trivialization. If two trivializations T : φ̂∗G �� Iρ

and T ′ : φ̂∗G �� Iρ′ are present, we form the composition

T ′ ◦ T −1 : Iρ
�� Iρ′ .

The functor Bun induces a line bundle T := Bun(T ′ ◦ T −1) over Σ̂ of cur-
vature ρ′ − ρ. The holonomy of T captures the difference that arises in the
first factor:

exp
(

i
∫

F
ρ′
)

= exp
(

i
∫

F
ρ

)
· exp

(
i
∫

F
ρ′ − ρ

)

= exp
(

i
∫

F
ρ

)
· HolT (∂F ). (6.6)

Notice that Q̂ := σ∗T ⊗ T is a line bundle over Σ̂ with a canonical σ-equi-
variant structure given as the permutation of the two tensor factors. From
the definition of F̄ , we find, for the holonomies of T and the descent line
bundle Q,

HolT (∂F ) = HolQ(F̄ ) · HolT (�̂). (6.7)

Let R̂ and R̂′ be the σ-equivariant line bundles associated to the trivializa-
tions T and T ′, respectively. We then obtain an isomorphism

R̂ ∼= Q̂⊗ R̂′

of σ-equivariant line bundles over Σ̂; see the discussion after Definition 10 in
[26]. For the descent line bundles, this implies an isomorphism R ∼= Q⊗R′,
so that

HolQ(F̄ ) · HolR′(F̄ ) = HolR(F̄ ). (6.8)

Concerning the vector bundles E and E′, note that we have a 2-isomor-
phism

E ◦ T ′−1 ◦ T ′ ◦ T −1 ∼= E ◦ T −1,

which induces, via the functor Bun, an isomorphism E′ ⊗ T ∼= E of vector
bundles over ∂Σ̂. This shows that

HolT (�̂) · tr
(
HolE′(�̂)

)
= tr

(
HolE(�̂)

)
. (6.9)
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Formulae (6.6)–(6.9) prove that the holonomy in Definition 6.2 does not
depend on the choice of the trivialization.

Another result on the holonomy is

Proposition 6.1. The holonomy for the unoriented surface Σ determines a
square root of the holonomy for the oriented double,

(
HolG,J ,E

(
φ̂,Σ

))2
= HolG,E(φ̂, Σ̂).

Proof. To see this, one chooses a fundamental domain F and a lift �̂ for
the first of the two factors on the left-hand side, and makes the choices
F ′ := σ(F ) and �̂′ := σ(�̂) for the second factor. The square on the left-hand
side consists, after reordering of the factors, of

exp
(

i
∫

F
ρ

)
· exp

(
i
∫

F ′
ρ

)
(6.3)
= exp

(
i
∫

Σ̂
ρ

)

and HolR(F̄ ) · HolR(F̄ ′) = 1 (the latter identity follows from the fact that
the submanifolds F̄ and F̄ ′ are the same sets, but with opposite orienta-
tions), as well as of tr(HolE(�̂)) · tr(HolE(�̂′)) = tr(HolE(∂Σ̂)). Altogether,
this reproduces the holonomy formula (6.2) for Σ̂. �

Finally, let us discuss what happens to the holonomy when we pass to
equivalent background data.

Proposition 6.2. Suppose that (B, ηk) : (Ga,J a) �� (Gb,J b) is an equi-
variant 1-isomorphism between Jandl gerbes, that (Ea, ρa) and (Eb, ρb) are
Jandl modules for (Ga,J a) and (Gb,J b), respectively, and that ν :
Eb ◦ B �� Ea is a 2-isomorphism. Then,

HolGa,J a,Ea(φ̂,Σ) = HolGb,J b,Eb(φ̂,Σ) (6.10)

for any smooth equivariant map φ̂ : Σ̂ �� M .

Proof. We fix the choices of the fundamental domain F and of the lift �̂
for both sides of (6.10). To compute the holonomy on the right-hand side,
we choose a trivialization T b : φ̂∗Gb �� Iρ. It induces a trivialization T a :=
T b ◦ B which we use to compute the left-hand side. Since T a and T b have the
same 2-form ρ, the first factor of the holonomy formula from Definition 6.2
is the same on both sides of (6.10).
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Associated to the trivialized Jandl gerbes φ̂∗(Ga,J a) and φ̂∗(Gb,J b), there
are σ-equivariant line bundles over Σ̂, as discussed in Section 2.3. By
Lemma 2.2, these line bundles are isomorphic as equivariant line bundles
and hence induce isomorphic line bundles Ra and Rb over Σ. Isomorphic
line bundles have equal holonomies, therefore also the second factor of the
holonomy formula from Definition 6.2 coincides on both sides of (6.10).

Finally, we induce a 2-isomorphism

Eb ◦ (T b)−1 �� Eb ◦ B ◦ (T b ◦ B)−1 ν◦id �� Ea ◦ (T a)−1 ,

whose image under the functor Bun yields an isomorphism Eb �� Ea of
vector bundles over ∂Σ̂. Again, these vector bundles have equal holonomies,
so that also the third factor coincides on both sides. �

Of course, it follows that equivalent Jandl modules have equal holonomies.
We remark, however, that the 2-isomorphism ν in Proposition 6.2 does not
have to be equivariant. In other words, the holonomy from Definition 6.2
cannot distinguish all equivalence classes of Jandl modules.

6.2 Local-data counterpart

Here, we rewrite the holonomy for unoriented surfaces (with boundary) from
Definition 6.2 in terms of local data. Thus, let O = {Oi}i∈I be an open cover
of M , with k(Oi) = Oki, that permits to extract local data, namely the data
c = (Bi, Aij , gijk) of the bundle gerbe G, the data b = (Πi, χij) and a = (fi)
of the Jandl structure J (see Section 4.1), and the data β = (Λi, Gij) and
φ = (Hi) of the (G,J )|Q-module (Q, E , ρ), see Section 5. The local data of
the bundle gerbe satisfy relations (4.1)–(4.3). For reader’s convenience, let
us recall the relations between the local data of the Jandl structure and those
of the gerbe module, specialized to the present case of the orientifold group
(Z2, id). Concerning the Jandl structure, these are (4.6) to (4.8), namely

−k∗Bki −Bi = dΠi, −k∗Aki kj −Aij = Πj − Πi − iχ−1
ij dχij and

k∗g−1
ki kj kl · g

−1
ijl = χ−1

ij · χil · χ−1
jl , (6.11)

as well as (4.9) to (4.11), namely

− k∗Πki + Πi = if−1
i dfi, k∗χ−1

ki kj · χij = f−1
i · fj and

k∗f−1
ki · f−1

i = 1. (6.12)



BUNDLE GERBES FOR ORIENTIFOLD SIGMA MODELS 677

Concerning the gerbe module, these are (5.7),

−k∗Λki = H−1
i · Λi ·Hi + iH−1

i dHi − Πi,

k∗Gki kj = H−1
i ·Gij ·Hj · χ−1

ij and 1 = Hi · k∗Hki · f−1
i . (6.13)

From the open cover O of M , an equivariant smooth map φ̂ : Σ̂ �� M
induces an open cover of Σ̂ with open sets V̂i := φ̂−1(Oi). Let T be a tri-
angulation of Σ which is subordinate to this cover in the following sense.
The preimage of each triangular face t ∈ T in Σ̂ is supposed to have two
connected components, and we require that if t̂ is one of these components,
there exists an index i(t̂) ∈ I such that t̂ ⊂ V̂i(t̂). The indices may be chosen
such that

i(σ(t̂)) = ki(t̂).

For the edges e and the vertices v, we make similar choices of indices.

According to the prescription from Definition 6.2, we have to choose a
fundamental domain. As described in [23], this can be done by selecting one
of the two components of the preimage of each face t ∈ T , to be denoted
by t̂. For a sufficiently well-behaved triangulation (e.g., one with trivalent
vertices),

F :=
⋃
t∈T

t̂ (6.14)

is a smooth submanifold with piecewise smooth boundary, as required. The
subsequent discussion does not use this assumption. Next, we have to choose
a trivialization T : φ̂∗G �� Iρ. With respect to the cover V̂i, it has local
data θ = (Θi, τij) with

(ρ, 0, 1) = φ∗c+D1θ. (6.15)

Finally, we choose a lift �̂ of ∂Σ.

Equipped with these choices of F , T and �̂, we start to translate the
formula of Definition 6.2 into the language of local data. The first factor is

F1 := exp
(

i
∫

F
ρ

)
= exp

(
i
∑
t∈T

∫
t̂
ρ

)
= exp

(
i
∑
t∈T

∫
t̂
φ̂∗Bi(t̂) + dΘi(t̂)

)
.
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Figure 3: An orientation-reversing edge e between two faces t1 and t2 in Σ,
which are lifted to different sheets. The edge e itself is, here, lifted to the
same sheet as t1.

Here, the orientation on t̂ is the one induced from Σ̂. Using Stokes’ Theorem
and (6.15), we obtain

F1 =
∏
t∈T

exp
(

i
∫

t̂
φ̂∗Bi(t̂)

) ∏
ê∈∂t̂

exp
(

i
∫

ê
φ̂∗Ai(t̂)i(ê) + Θi(ê)

)

·
∏
v̂∈∂ê

φ̂∗gε(v̂,ê)

i(t̂)i(ê)i(v̂)
(v̂) · τ−ε(v̂,ê)

i(ê)i(v̂) (v̂) · τ
ε(v̂,ê)

i(t̂)i(v̂)
(v̂).

Here, the edge ê has the orientation induced from the boundary of t̂, and
ε(v̂, ê) = ±1 is negative if, in this orientation, v̂ is the starting point of ê, and
positive otherwise. We make two manipulations in this formula. First, the
very last factor can be dropped since every vertex in a fixed face t̂ appears
twice, each time with a different sign of ε. Second, many edges ê appear twice
and with different orientations, so that the corresponding integrals of Θi(ê)

cancel. More precisely, the edges which appear only once can be of two types.
If e is a common edge of two faces t1 and t2, we call e orientation-reversing
whenever t̂1 and t̂2 have no common edge (see figure 3), and we denote by
E the set of orientation-reversing edges. For each orientation-reversing edge
e ∈ E, we choose a lift ê. The second type of edges that appear only once
are those on the boundary of Σ. We denote the set of these edges by B. Any
e ∈ B belongs to a unique face t, and the lift t̂ determines a lift ê such that
ê ∈ ∂t̂. We can now write the above formula as

F1 =
∏
t∈T

exp
(

i
∫

t̂
φ̂∗Bi(t̂)

) ∏
ê∈∂t̂

exp
(

i
∫

ê
φ̂∗Ai(t̂)i(ê)

) ∏
v̂∈∂ê

φ̂∗gε(v̂,ê)

i(t̂)i(ê)i(v̂)
(v̂)

×
∏
e∈E

exp
(

i
∫

ê
Θi(ê) + σ∗Θki(ê)

) ∏
v̂∈∂ê

τ
−ε(v̂,ê)
i(ê)i(v̂) (v̂) · σ

∗τ−ε(v̂,ê)
ki(ê) ki(v̂)(v̂)

×
∏
e∈B

exp
(

i
∫

ê
Θi(ê)

) ∏
v̂∈∂ê

τ
−ε(v̂,ê)
i(ê)i(v̂) (v̂).
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The second factor F2 := HolR(F̄ ) is more complicated because the line
bundle R over Σ whose holonomy we need is only given abstractly as a
descended σ-equivariant line bundle (R̂, ϕ̂) over Σ̂. As described in [23], we
can compute its holonomy by integrating the local data of R̂ along piecewise
lifts of F̄ , and then use the local data of its equivariant structure ϕ̂ at points
where the lift has a jump. According to the definition of R̂, its local data can
be determined from the one of the trivialization T and the Jandl structure
by the formula −θ + φ̂∗b+ σ∗θ. Thus, the line bundle R̂ has local connection
1-forms

Ψi := −Θi + φ̂∗Πi − σ∗Θki

on V̂i, and transition functions

ψij := τ−1
ij · φ̂∗χij · σ∗τ−1

ki kj

on V̂i ∩ V̂j . Its equivariant structure ϕ̂ has local data fi. Mimicking the
definition (6.5) of F̄ , we fix the subset B̄ ⊂ B consisting of those edges e for
which ê is not contained in the lift �̂ of ∂Σ. Note that F̄ is simply covered by
the lifts ê of edges in E ∪ B̄ we chose before. As remarked above, these lifts
typically do not patch together, i.e., there exist vertices v ∈ e1 ∩ e2 between
pairs of edges e1, e2 ∈ E ∪ B̄ such that ê1 ∩ ê2 = ∅. In order to take care of
these, let us choose, for all vertices v, a lift v̂. Then, the second factor is

F2 =
∏

e∈E∪B̄

exp
(

i
∫

ê
Ψi(ê)

) ∏
v̂∈∂ê

ψ
−ε(ê,v̂)
i(ê)i(v̂)(v̂) ·

∏
v̂∈∂ê

φ̂∗f ε(ê,v̂)
i(v̂) (v̂). (6.16)

Here, the sign in the exponent of the transition functions ψij is due to our
conventions for the relation between connection 1-forms and transition func-
tions of a line bundle. Note that a vertex v contributes to the last factor of
(6.16) only if it belongs to the adjacent edges in E ∪ B̄ whose lifts do not
patch together.

As for the third factor, local data of the vector bundle E are provided
by the expression φ̂∗β − θ. For each edge e ∈ B, we denote by ê�̂ the corre-
sponding lift such that ê�̂ ⊂ �̂. Then,

F3 := tr
(
HolE(�̂)

)
= tr P

∏
e∈B

exp

(
i
∫

ê�̂

φ̂∗Λi(ê�̂)
− Θi(ê�̂)

)

×
∏

v̂∈∂ê�̂

φ̂∗G
−ε(v̂,ê�̂)

i(ê�̂)i(v̂)(v̂) · τ
ε(v̂,ê�̂)

i(ê�̂)i(v̂)(v̂),
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where the symbol P indicates that the edges e have to be ordered according
to the orientation on �̂ (which is the one induced from ∂Σ̂). Since we take
the trace, it does not matter at which vertex one starts.

We may now compute the product F1 · F2 · F3, which is, by construction,
the holonomy of Definition 6.2. We claim that all occurrences of Θi and τij
drop out: First of all, for each edge e ∈ E, the contributions from F1 and
F2 are

exp
(

i
∫

ê
Θi(ê) + σ∗Θki(ê)

)
· exp

(
i
∫

ê
−Θi(ê) − σ∗Θki(ê)

)

×
∏
v̂∈∂ê

τ
−ε(v̂,ê)
i(ê)i(v̂) (v̂) · σ

∗τ−ε(v̂,ê)
ki(ê) ki(v̂)(v̂) · τ

ε(v̂,ê)
i(ê)i(v̂)(v̂) · σ

∗τ ε(v̂,ê)
ki(ê) ki(v̂)(v̂),

which is obviously equal to 1. For each edge e ∈ B̄, we have contributions
from all three factors, namely

exp
(

i
∫

ê
Θi(ê)

)
· exp

(
i
∫

ê
−Θi(ê) − σ∗Θki(ê)

)
· exp

(
i
∫

ê�̂

−Θi(ê�̂)

)

×
∏
v̂∈∂ê

τ
−ε(v̂,ê)
i(ê)i(v̂) (v̂) · τ

ε(v̂,ê)
i(ê)i(v̂)(v̂) · σ

∗τ ε(v̂,ê)
ki(ê) ki(v̂)(v̂) ·

∏
v̂∈∂ê�̂

τ
ε(v̂,ê�̂)

i(ê�̂)i(v̂)(v̂).

By the definition of B̄, we have ê = σ(ê�̂), with opposite orientations. Hence,
these contributions also cancel out. For the remaining edges e ∈ B \ B̄, we
only have contributions from F1 and F3, namely

exp
(

i
∫

ê
Θi(ê)

) ∏
v̂∈∂ê

τ
−ε(v̂,ê)
i(ê)i(v̂) (v̂) · exp

(
i
∫

ê�̂

−Θi(ê�̂)

) ∏
v̂∈∂ê�̂

τ
ε(v̂,ê�̂)

i(ê�̂)i(v̂)(v̂).

Here, we know that ê = ê�̂, so that these terms cancel out, too. Finally, we
end up with the following local holonomy formula:

HolG,J ,E(φ̂,Σ) =
∏
t∈T

exp
(

i
∫

t̂
φ̂∗Bi(t̂)

) ∏
ê∈∂t̂

exp
(

i
∫

ê
φ̂∗Ai(t̂)i(ê)

)

×
∏
v̂∈∂ê

φ̂∗gε(v̂,ê)

i(t̂)i(ê)i(v̂)
(v̂)

∏
e∈E∪B̄

exp
(

i
∫

ê
φ̂∗Πi(ê)

)
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×
∏
v̂∈∂ê

φ̂∗χ−ε(v̂,ê)
i(ê)i(v̂)(v̂) ·

∏
v̂∈∂ê

φ̂∗f ε(v̂,ê)
i(v̂) (v̂)

×
∏
e∈B

tr P exp

(
i
∫

ê�̂

φ̂∗Λi(ê�̂)

) ∏
v̂∈∂ê�̂

φ̂∗G
−ε(v̂,ê�̂)

i(ê�̂)i(v̂)(v̂). (6.17)

Let us briefly review where the particular terms come from. The first line
pairs up the local data of the bundle gerbe with the triangulation of the
fundamental domain. The second line takes care of the orientation-reversing
edges. It pairs up the local data of the Jandl structure with lifts of these
edges, and compensates inconsistent lifts. The third line pairs up the local
data of the gerbe module with �̂.

If the boundary is empty, B = ∅, then formula (6.17) reduces exactly to
the one given in [23] for the holonomy of closed unoriented surfaces written
in terms of local data. If the surface is oriented, we can make choices such
that E = B̄ = ∅, so that the formula reduces to the one given in [10] for
the holonomy of oriented surfaces with boundary. Finally, if the surface is
oriented and closed, only the first line survives and reduces to the formula
found in [1, 9].

We remark that the local data θ of the trivialization have vanished com-
pletely from the formula (6.17). This reflects the independence of Defini-
tion 6.2 of the choice of trivializations demonstrated in the previous sec-
tion. Similarly, Proposition 6.2 implies that (6.17) is independent of the
choice of local data of the bundle gerbe, the Jandl structure and the equi-
variant gerbe module. It is a good exercise to check this directly by show-
ing that the local holonomy formula (6.17) is independent of the choices of
the subordinated indices i, the lifts ê and v̂, and that it remains unaltered
when passing to a finer triangulation or to cohomologically equivalent local
data. In order to complete the proof of Theorem 6.1, it is then enough to
show that the local expression (6.17) is independent of the choice of the
lifts t̂ of the faces of the triangulation T and of that of the lift �̂ of the
boundary �.

Let us first suppose that we replace a triangle t̂ by t̂′ differing from σ(t̂)
by the orientation or, in short, t̂′ = −σ(t̂). We write the first line of the local
holonomy formula (6.17) as

∏
t∈T

H(t̂),



682 KRZYSZTOF GAWĘDZKI ET AL.

where H(t̂) is the contribution of the face t with the choice t̂ of the lift. One
obtains after simple algebra employing relations (6.11):

H(t̂′) = H(t̂) ·
∏
ê∈∂t̂

I(ê) with

I(ê) := exp
(

i
∫

ê
φ̂∗Πi(ê)

)
·
∏
v̂∈∂ê

φ̂∗χ−ε(v̂,ê)
i(ê)i(v̂)(v̂).

To compute the changes in the second line, let Et := ∂t ∩ (E ∪ B̄) be the
set of those edges of t that are either orientation-reversing or located on the
boundary. We may assume that the edges ê chosen for them satisfy ê ∈ ∂t̂.
Under the replacement of t̂ by t̂′, the set Et changes to the complementary
set of edges of t and we may assume that the edges ê′ chosen for them satisfy
ê′ ∈ ∂t̂

′. We have using relations (6.12):
∏

e∈∂t\Et

I(ê′) =
∏

e∈∂t\Et

I(ê)−1 ·
∏
v̂∈∂ê

φ̂∗f−ε(v̂,ê)
i(v̂) (v̂), (6.18)

where ê denotes the edge in t̂ projecting to e ⊂ t (with the orientation
induced from t̂) and where we have used the fact that, for e 
⊂ Et, ê′ and
σ(ê) differ only by the orientation, i.e., ê′ = −σ(ê). Note that∏

ê∈∂t̂

I(ê) ·
∏

e∈∂t\Et

I(ê)−1 =
∏
e∈Et

I(ê),

which is a needed expression, a part of the original second line. The remain-
ing factors ∏

e∈∂t\Et

∏
v̂∈∂ê

φ̂∗f−ε(v̂,ê)
i(v̂) (v̂)

from (6.18) compensate the remaining changes in the second line. Indeed,
again with ê ∈ ∂t̂ and v̂′ = σ(v̂),

∏
e∈∂t\Et

·
∏

v̂∈∂ê′

φ̂∗f ε(v̂,ê′)
i(v̂) (v̂) ·

∏
e∈∂t\Et

·
∏
v̂∈∂ê

φ̂∗f−ε(v̂,ê)
i(v̂) (v̂)

=
∏

e∈∂t\Et

·
∏

v̂′∈∂ê

φ̂∗f ε(v̂′,ê)
i(v̂′)

(v̂′) ·
∏

e∈∂t\Et

·
∏
v̂∈∂ê

φ̂∗f−ε(v̂,ê)
i(v̂) (v̂)

=
∏

e∈∂t\Et

·
∏
v̂∈∂ê

φ̂∗f−ε(v̂,ê)
i(v̂) (v̂)

=
∏
e∈Et

·
∏
v̂∈∂ê

φ̂∗f ε(v̂,ê)
i(v̂) (v̂),
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where the last equality follows from the identity∏
ê∈∂t̂

·
∏
v̂∈∂ê

φ̂∗f ε(v̂,ê)
i(v̂) (v̂) = 1.

We infer that the local holonomy formula does not change when t̂ is replaced
by t̂′.

Next, we want to analyze the effect of the change of the lift of � from �̂
to �̂′ = −σ(�̂). Only the lines two and three of the local holonomy formula
(6.17) change in this case. In the third line L3, we find a change of the form

L′
3 = L3 ·

∏
e∈B

I(ê�)−1.

Here we have used the relations (6.13) and the identities

tr(G) = tr(G−1) and tr
(
ei Λ
)

= tr
(
eiΛ
)

valid for G ∈ U(n) and Λ ∈ u(n). In the second line L2, we find

L′
2 =

∏
e∈B\B̄

I(ê�̂) ·
∏

v̂∈∂ê�̂

φ̂∗f
ε(v̂,ê�̂)

i(v̂) (v̂)

where ê�̂ ⊂ �̂ is taken with the orientation inherited from �̂. Multiplying both
lines together, we obtain

L′
3 · L′

2 = L3 ·
∏
e∈B̄

I(ê�̂)
−1 ·

∏
e∈B\B̄

∏
v̂∈∂ê�̂

φ̂∗f
ε(v̂,ê�̂)

i(v̂) (v̂) .

On the right-hand side, we may pass back from ê�̂ to ê�̂′ = −σ(ê�̂) using
(6.12): to obtain

∏
e∈B̄

I(ê�̂)
−1 =

∏
e∈B̄

I(ê�̂′)
∏

v̂∈∂ê�̂′

φ̂∗f
ε(v̂,ê�̂′ )
i(v̂) (v̂)

and, for v̂′ = σ(v̂),

∏
e∈B\B̄

∏
v̂∈∂ê�̂

φ̂∗f
ε(v̂,ê�̂)

i(v̂) (v̂) =
∏

e∈B\B̄

∏
v̂′∈∂ê�̂′

φ̂∗f
ε(v̂′,ê�̂′ )

i(v̂′)
(v̂′)

=
∏
e∈B̄

∏
v̂′∈∂ê�̂′

φ̂∗f
−ε(v̂′,ê�̂′ )

i(v̂′)
(v̂′) ,
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where the last equality follows from the obvious identity

∏
e∈B

∏
v̂′∈∂ê�̂′

f
ε(v̂′,ê�̂′ )

i(v̂′)
(v̂′) = 1 .

Upon performing all these transformations, we arrive at the formula:

L′
3 · L′

2 = L3 ·
∏
e∈B̄

I(ê�̂′) ·
∏

v̂∈∂ê�̂′

φ̂∗f
ε(v̂,ê�̂′ )
i(v̂) (v̂) .

Noting that ê�̂′ = ê for e ∈ B̄, we identify the right-hand side with L3 · L2.
This ends the proof of the independence of the local expression (6.17) of the
lift �̂.

Thus, altogether, the local holonomy formula (6.17) is independent of
all the arbitrary choices made. Accordingly, also the geometric holonomy
formula from Definition 6.2 is manifestly associated only to the bundle gerbe,
its Jandl structure and its modules, and, of course to the equivariant map
φ̂ : Σ̂ →M . This proves Theorem 6.1.

7 Conclusions

We considered in this paper manifolds M equipped with a closed 3-form H
and an orientifold-group action. The latter is an action of a finite group
Γ on M such that, for γ ∈ Γ, one has γ∗H = ε(γ)H for a homomorphism
ε : Γ → {±1}. We introduced the notion of a (Γ, ε)-equivariant (or twisted-
equivariant) structure on a gerbe G over M with curvature H. This notion
extends that of a so-called Jandl structure introduced in [23], to which it
reduces for Γ = {±1} and ε(±1) = ±1.

In the case of Γ0 = ker(ε) acting on M without fixed points, equivalence
classes of (Γ, ε)-equivariant gerbes over M were shown to descend to equiva-
lence classes of gerbes over M ′ = M/Γ0, with (Γ′, ε′)-equivariant structures
for Γ′ = Γ/Γ0 and ε′ induced from ε. For Γ0 = Γ, this gives a way to con-
struct gerbes over M ′ from gerbes over M , and for Γ/Γ0 = Z2, it enables
to construct gerbes with Jandl structure over M ′. Working with local data,
we showed that equivalence classes of (Γ, ε)-equivariant gerbes can be iden-
tified with classes of the 2nd hypercohomology group of a double complex
of chains on Γ with values in the (real) Deligne complex in degree 2. This
identification permitted to study the obstructions to the existence of (Γ, ε)-
equivariant structures on a given gerbe G with curvature H. In the case of
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2-connected manifolds, the unique obstruction takes values in the cohomol-
ogy group H3(Γ, U(1)ε), where the coefficient group U(1) is taken with the
action (γ, u) � �� uε(γ) of Γ. If this obstruction vanishes, equivalence classes
of (Γ, ε)-equivariant structures on G are parameterized by cohomology classes
in H2(Γ, U(1)ε). This agrees with the purely local analysis of [14].

In [14], these results were applied to the case of gerbes Gk with curvature
H = k

12π trg−1dg∧3 over simple simply-connected compact Lie groups G, for
integer k. We considered there the orientifold groups Γ = Z2 � Z with Z a
subgroup of the center Z(G) of G acting on G by multiplication, and the non-
trivial element of Z2 sending g ∈ G to (ζg)−1 for ζ ∈ Z(G). In that paper,
we also computed the classes [u] ∈ H3(Γ, U(1)ε) obstructing the existence
of (Γ, ε)-equivariant structures on the gerbes Gk and found the trivializing
chains v such that u = δv whenever [u] vanishes. These data enter an explicit
construction of (Γ, ε)-equivariant structures on the gerbes Gk that will be
described in [13] in analogy to the construction of [12] for the orbifold group
Γ = Z with trivial ε. Such structures on Gk permit to construct orientifold
WZW models for closed surfaces.

With applications to the boundary field theories in view, we discussed
above twisted-equivariant gerbe modules, and their equivalence, as well as
the descent theory for them. These results will be used to construct bound-
ary orientifold WZW models. The construction, extending the one of [10]
for the orbifold case, is postponed to [13]. We also plan to compare in
[13] our geometric approach to WZW orientifolds to the algebraic ones
of [3, 8].

The (Γ, ε)-equivariant structures on gerbes and gerbe modules are used
to define the contribution of the H-flux to the Feynman amplitudes of the
orientifold sigma models. Such contributions describe the gerbe holonomy
along surfaces in M defined by classical fields, with contributions from gerbe
modules in the case of surfaces with boundary. We discussed above the
holonomy for surfaces in the particular case of Jandl structures in both
geometric and local terms, extending the discussion of [23] to the bound-
ary case. In [13], we shall relate the surface holonomy to the more stan-
dard loop-holonomy of connections on line and vector bundles with (Γ, ε)-
equivariant structures over spaces of closed and open curves (“strings”) in
M . Such structures will be obtained from twisted-equivariant gerbes and
gerbe modules by transgression, see [11] for the discussion of the orbifold
case. They play an important role in the geometric quantization of ori-
entifold sigma models where the equivariant sections of the bundles over
the spaces of curves represent quantum states of the theory. This is the
approach that we will adopt in [13] for the orientifolds of boundary WZW
models.
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