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Abstract

We discuss the relation between Liouville theory and the Hitchin inte-
grable system, which can be seen in two ways as a two step process
involving quantization and hyperkähler rotation. The modular duality
of Liouville theory and the relation between Liouville theory and the
SL(2)-WZNW-model give a new perspective on the geometric Langlands
correspondence and on its relation to conformal field theory.

1 Introduction

1.1 Motivation

It is known for a while that the low-energy theory of N = 2 supersym-
metric gauge theories in four dimensions can be described in terms of the
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data characterizing an algebraically integrable system, which is canonically
associated to a given gauge theory [12, 17, 30]. More recently it was found
that studying the gauge theories in finite volume [56], or in the presence of
certain deformations like the so-called Omega-deformation [51] is a useful
tool to extract some highly non-trivial non-perturbative information about
such gauge theories. It was in particular recently argued in [53] that the
gauge theory in the presence of a certain one-parameter deformation can at
low energies effectively be described in terms the quantization of the above-
mentioned algebraically integrable system. An amazing correspondence was
furthermore observed in [1, 56] between the partition functions of a cer-
tain class of gauge theories on S4 and the correlation functions in Liouville
theory [74, 78, 80]. Knowing the modular transformation properties of the
Liouville conformal blocks [57, 74, 75, 78] now allows us to investigate and
test the S-duality conjectures in these gauge theories, as illustrated in [2,11].

It seems, however, that the deeper reasons for this relationship between
a two-dimensional (2D) and a 4D theory remain to be understood. A clue
in this direction may be seen in the fact that the instanton partition func-
tions which represent the building blocks of the partition functions studied
in [1,56] are obtained by specializing the two-parameter family Z(a, ε1, ε2; q)
of instanton partition functions introduced in [47, 49, 51]. The functions
Z(a, ε1, ε2; q) not only allow one to obtain the Seiberg–Witten prepoten-
tial of the gauge theory on R

4 in the limit where both ε1 and ε2 tend to
zero [51,52], but also the Yang’s potential determining the spectrum of the
quantized integrable model mentioned above in the limit where only one of
the two parameters ε1 or ε2 vanishes. This was observed in [53] for a cer-
tain class of examples, and is expected to hold much more generally. The
functions Z(a, ε1, ε2; q) were identified with the conformal blocks of Liouville
theory in [1].

This indicates that the relationship between certain gauge theories and
Liouville theory involves in particular a two-parametric deformation of the
algebraically integrable model associated to the gauge theories on R

4, which
ultimately produces Liouville theory as a result. One of my intentions
in this paper is to clarify in which sense this point of view is correct.
Such a study may be seen as being complementary to the recent work
of Nekrasov and Witten [55], where certain aspects of the correspondence
between Liouville theory and gauge theory were understood by studying a
certain two-parameter generalization of the setup from [53]. We will make
some comments on this relation in the conclusions.

Another piece of motivation comes from the relations discussed in [39]
between 4D gauge theories and the geometric Langlands correspondence.
A puzzling aspect of the resulting picture is the fact that the geometric
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Langlands correspondence is also related to conformal field theory as shown
in the works of Beilinson, Drinfeld, Feigin, Frenkel and others, see [24] for a
nice review and further references. However, the relation between the gauge
theory approach to the geometric Langlands correspondence of [39] and the
conformal field theory approach has remained mostly unclear up to now. The
author feels that the above-mentioned relations between the gauge theory
and conformal field theory offer new clues in this regard. It is therefore my
second main aim to clarify the relations between the quantization of the
Hitchin system, the geometric Langlands correspondence and the Liouville
conformal field theory.

1.2 From the Hitchin integrable system to Liouville theory

One of my aims is to explain that it is possible to understand the relation
between the Liouville and the Hitchin systems in two ways as the result of
a two-step process which is a combination of a one-parameter deformation
and quantization, schematically:

Hitchin system
(A)ε2

↙ ↘ (B)ε1
Fuchsian quantized

isomonodromic Hitchin
deformations systems

(C)ε1
↘ ↙ (D)ε2

Liouville theory

(1.1)

where the arrows may be schematically characterized as follows:

(A) Hyperkähler rotation for the Hitchin moduli space MH(C). This is
explained in Section 3.

(B) Quantization of the Hitchin system in the sense discussed in [53] and
[55] with quantization conditions determined by Yang’s potential (Sec-
tion 4).

(C) Quantization of the Hitchin moduli spacesMH(C). This is explained
in Section 6.

(D) This arrow will be referred to as quantum hyperkähler rotation. The
motivation for this terminology come from the closure of the diagram
together with the observation that the quantized Hitchin system can
be recovered from Liouville theory in suitable limits, as discussed in
Section 5.

The parameters ε1, ε2 that govern the different relations will also be param-
eterized as

ε1 = �b, ε2 = �/b, (1.2)
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with b being the parameter that is often used in the literature on Liou-
ville theory.

Liouville theory is known to be related to the quantum theory of
Teichmüller spaces [76, 77]. The Teichmüller spaces can be identified with
one of the connected components of the moduli spaces of flat SL(2,R)-
connections on Riemann surfaces. We will show that the relations above can
be understood as natural generalizations of the relation between Liouville
theory and the quantization of Teichmüller spaces to the other components
of the moduli spaces of flat SL(2,R)-connections.

1.3 Separation of variables

It is known for a while that the Hitchin system is related to the conformal
field theory by a similar-looking two-step procedure of deformations and
formal quantization.

Hitchin system
(a)ε ↙ ↘ (b)

�

Isomonodromic Beilinson–Drinfeld
deformations system

(c)ǩ ↘ ↙ (d)k
KZB-equations

(1.3)

(a)ε The Hitchin system can be obtained as a limit of the isomonodromic
deformation system as shown in [45,46].

(b)� The quantization of the Hitchin Hamiltonians constructed by Beilin-
son–Drinfeld [3].

(c)k The Knizhnik–Zamolodchikov–Bernard (KZB) equations of the
Wess-Zumino-Novikov-Witten (WZNW) conformal field theory can be
obtained as a formal quantization of the ismonodromic deformation
system, as was observed for g = 0 in [32,58] and shown for g > 0 in [5].

(d)ǩ The eigenvalue equation for the Gaudin Hamiltonians, which are the
g = 0 cases of the quantized Hitchin Hamiltonians arise in the critical
level limit of the Knizhnik–Zamolodchikov (KZ) equations as shown
for g = 0 in [61] and for g > 0 in [5].

The whole diamond of relations was discussed in [5, 46].

The diagram (1.3) is of course not unrelated to the previous one in (1.1).
On the classical level there are two natural representations for the Hitchin
system, one coming from the representation of an open dense subset of the
Hitchin moduli space MH(C) as T ∗BunG, the other is related to a natural
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map Sov fromMH(C) to a Hilbert scheme (T ∗C)[h] of points on T ∗C which
can also be used to introduce a set of coordinates for MH(C). The change
of variables Sov is closely related to what is called the separation of variables
(SOV) in the integrable systems literature [64].

Moreover indeed, we are going to explain that the full set of relations
between the diagrams (1.1) and (1.3) originates from the change of variables
underlying the SOV method. For the quantized Hitchin system the relation
between the diagrams was found in [64] for g = 0 and for g = 1 in [14]. It
is related to the quantum version of the SOV method. At the bottom of
(1.3) and (1.1) one finds on the level of systems of differential equations
a correspondence between the null-vector decoupling equations of Belavin–
Polyakov–Zamolodchikov (BPZ) and the KZ equations discovered in [66].
The correspondence between the respective systems of differential equations
can be extended to a correspondence between Liouville theory and SL(2)-
WZNW-model on the level of the full correlation functions as was estab-
lished in [59] for g = 0 and extended to higher genus in [36]. We will finally
show that the relation between the Fuchsian isomonodromic deformation
equations and the theory of isomonodromic deformations of flat holomor-
phic connections can also be seen to follow from a variant of the change of
variables as used in the SOV method.

The relations in (1.3) were so far only discussed on the level of system of
differential equations. The connection with Liouville theory allows us to go
much further: It enables us to construct and parameterize interesting spaces
of solutions to the KZB equations which are complete in the sense that all
the monodromies can be represented as linear transformations.

1.4 Geometric Langlands correspondence

Our second main aim in this article is to point out relations to the geo-
metric Langlands correspondence and a certain generalization thereof. The
geometric Langlands correspondence (see [24] for a nice review and further
references) is often schematically presented as a correspondence between

LG− local systems −→ D −modules on BunG (1.4)

It is connected to the quantization of the Hitchin Hamiltonians [3] by noting
that an important part of the D-module structure on the right-hand side of
(1.4) can be represented as the system of eigenvalue equations

HrΨ = ErΨ, (1.5)
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for the quantized Hitchin Hamiltonians Hr, with Hr being certain second-
order differential operators on a line bundle on BunG.

We are going to propose that important aspects of the geometric Lang-
lands correspondence can be understood as arising in a suitable limit from a
correspondence between the conformal blocks of Liouville theory and those
of the SL(2)-WZNW model that will be described below. This correspon-
dence is based on the relations observed in [66] between the BPZ and KZ
systems of differential equations. We are going to show that this correspon-
dence opens the way to construct the conformal blocks of the SL(2)-WZNW
model from those of Liouville theory. The possibility to reconstruct the
SL(2)-WZNW model from the Liouville theory,

Lioub −→ WZNWk(sl2) (1.6)

may be seen as a kind of inversion of the Drinfeld–Sokolov reduction. The
correspondence (1.6) will be shown to reproduce important aspects of the geo-
metric Langlands correspondence in the limit k → −2, which is called the
critical level limit. The KZ equations yield the eigenvalue equations for the
Hitchin Hamiltonians representing the right-hand side of (1.4). This limit is
related to the limit b→∞ in the Liouville theory. Liouville theory has the
profound property to be self-dual under inversion of the parameter b, which
means that almost1 all characteristic quantities of Liouville theory like in
particular the conformal blocks are unchanged if one replaces b by 1/b. This
phenomenon will be referred to as the modular duality of Liouville theory.
The modular duality of Liouville theory implies that the critical level limit
is equivalent to the classical limit in Liouville theory. Fuchsian differential
equations of the second order arise naturally in this limit. The monodromies
of the solutions to these Fuchsian differential equations are the local systems
on the left-hand side of (1.4).

On the level of the representation theory of chiral algebras a related way to
explain the local geometric Langlands correspondence was developed in [18],
see also [23] and in particular [24, Section 8.6] for a nice discussion. Relations
between the geometric Langlands correspondence and the SOV method have
first been discussed in [22], which was an important source of inspiration for
this work.

There are two elements that the relationship with Liouville theory adds
to the story. First, it allows one to lift certain aspects of the geometric

1The only exception being the dependence on the cosmological constant, the parameter
in front of the interaction term e2bϕ in the Liouville action.
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Langlands correspondence from the local level (opers on a disc versus rep-
resentations of the current algebra at the critical level) to the global level
where both sides of (1.4) are associated to Riemann surfaces. Even more
interesting appears to be the possibility to extend the geometric Langlands
correspondence from the level of D-modules to the level of the multival-
ued holomorphic solutions of the differential equations coming from the
D-module structure.

1.5 Modular duality versus Langlands duality

The modular duality of Liouville theory offers another way to construct an
SL(2)-WZNW model from Liouville theory [27], obtained from the first by
the exchange b→ b−1, schematically

WZNWǩ(sl2) ←− Lioub −→ WZNWk(sl2)

(1.7)

The level ǩ of the SL(2)-WZNW model on the left is determined by

ǩ + 2 = (k + 2)−1 = −b2. (1.8)

We are going to show that the corresponding relations between spaces of
conformal blocks lead to another approach to the geometric Langlands cor-
respondence in which both sides of (1.4) are obtained in the limit b→∞.
The same limit that reduces the KZB equations to the eigenvalue equations
of the quantized Hitchin Hamiltonians is now observed to be the classical
limit ǩ →∞ for the dual WZNW model WZNWǩ(sl2). Local systems will
be found to arise very naturally in the classical limit ǩ →∞ of the WZNW
model. This means that the somewhat asymmetric looking geometric Lang-
lands correspondence (1.4) is obtained in the limit b→∞ from a much more
symmetric looking duality between two WZNW-models at different levels,

PSL(2)− local systems ↔ D-modules on BunSL(2)

↑ ↑
WZNWǩ(sl2) ←− Lioub −→ WZNWk(sl2)

(1.9)

It seems natural to call the relations schematically represented at the bottom
of (1.9) a quantum geometric Langlands correspondence. Other approaches
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to defining “quantum” versions of the geometric Langlands correspondence
have been discussed in [24,26,40,67].

The author views this paper as a first look on a huge iceberg, most of
which remains invisible. It is hoped that this look stimulates further inves-
tigations of this subject.

In the first part of our present paper we will mostly illustrate the picture
proposed above by examples related to Riemann surfaces of genus 0. The
forthcoming second part of the paper [79] will discuss the cases of higher
genus in more detail. Nevertheless, whenever easily possible we will present
the relevant background and the main claims in full generality already in
this paper.

2 The classical Hitchin system

The following is a (rather incomplete) reminder of some basic definitions
and results about the Hitchin system.

2.1 Self-duality equations versus Higgs pairs

The Hitchin moduli space MH(C) on a Riemann surface C is the space of
solutions (A, θ) of the SU(2) self-duality equations

FA +R2[θ, θ̄] = 0,
∂̄Aθ + θ ∂̄A = 0,

∂Aθ̄ + θ̄ ∂A = 0,
(2.1)

where dA = d+A is an SU(2)-connection on a vector bundle V , and θ is a
holomorphic one-form with values in End(V ), modulo SU(2) gauge transfor-
mations. MH(C) is a space of complex dimension 6g − 6 + 2n if C = Cg,n

is a Riemann surface of genus g with n marked points.

Decomposing dA into the (1, 0) and (0, 1) parts ∂A and ∂̄A, respectively,
we may associate to each solution a holomorphic vector bundle E with holo-
morphic structure being defined by ∂̄A = ∂̄ +A0,1. Equations (2.1) imply
in particular that θ is holomorphic with respect to the holomorphic struc-
ture defined by ∂̄A. This means that each solution of the self-duality equa-
tions (2.1) defines a Higgs pair (E , θ), which is a pair (E , θ) of objects, with
E being a holomorphic vector bundle, and θ ∈ H0(C,End(E)⊗ Ω1

C). Con-
versely, Higgs pairs come from solutions of the self-duality equations iff they
are stable, which means that any θ-invariant sub-bundle of V must have a
degree that is smaller than half of the degree of V [34].
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We will allow for a finite number of regular singularities on C. Introducing
a local coordinate yr near the singular point zr, r = 1, . . . , n, we will require
that the singular behavior is of the form

A =
1
2i
Ar

(
dyr

yr
− dȳr

ȳr

)
+ regular, θ =

1
2
θr
dyr

yr
+ regular, (2.2)

with θr and Ar being simultaneously diagonalizable matrices, and Ar skew-
Hermitian.

There is a natural slice withinMH(C) defined by the condition θ = 0. It
is clearly isomorphic to BunG(C), the moduli space of holomorphic bundles
on C. Sections θ of H0(C,End(E)⊗KC), where KC is the canonical line
bundle, naturally represent vectors in the cotangent space of BunG(C). It
follows that an open dense subset ofMH(C) is naturally isomorphic to the
cotangent bundle T ∗BunG(C).

2.2 The Hitchin integrable system

To begin with, let us consider an SL(2) Higgs pair (E , θ). Associate to it the
quadratic differential

ϑ = tr(θ2). (2.3)

Expanding ϑ with respect to a basis {ϑ1, . . . , ϑ3g−3+n} of the 3g − 3 + n-
dimensional space of quadratic differentials,

ϑ =
3g−3+n∑

r=1

Hr ϑr, (2.4)

defines functions Hr, r = 1, . . . , 3g − 3 + n on MH(C), which are called
Hitchin’s Hamiltonians. The subspaces ΘE ⊂MH(C) defined by the equa-
tionsHr = Er for E = (E1, . . . , E3g−3+n) are abelian varieties (complex tori)
for generic E. This means that MH(C) can be described as a torus fibra-
tion with base B, which can be identified with the space Q(C) of quadratic
differentials on the underlying Riemann surface C.

There is a complex structure I onMH(C) for which both E and complex
analytic coordinates for the fibers ΘE are holomorphic. Associated with the
complex structure I is the holomorphic symplectic structure ΩI , which can
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be defined as

ΩI = 2iR
∫

C
tr(δθ ∧ δA0,1), (2.5)

where ∂̄A = ∂̄ +A0,1. The functions Hr are Poisson-commuting with respect
to the Poisson structure coming from the symplectic structure ΩI .

The assertions above can be summarized in the statement that MH(C)
is an algebraically completely integrable system in complex structure I. It
is useful to encode the values of E into the definition of the spectral curve

Σ = {(v, y)|det(v − θ(y)) = 0}, (2.6)

which defines a double cover Σ of the surface C.

Certain generalizations of this set-up will become relevant for us later.
Instead of considering holomorphic G = SL(2)-bundles one may consider
bundles in G = GL(2). One may furthermore consider Higgs fields θ in
H0(C,End(E)⊗ L), with L being a line bundle different from the canonical
line bundle Kc. In this case one gets additional degrees of freedom and
additional Hamiltonians from tr(θ). This will be discussed in more detail in
Part II of this paper.

2.3 SOV

In the SOV method [64, 65], one maps the dynamics of an integrable sys-
tem to the motion of a divisor on the spectral curve. It furnishes a set of
canonically conjugate variables which can be used as a starting point for the
quantization of the model.

Let BunG be the moduli space of holomorphic vector bundles E on V . In
the case of SL(2)-bundles on Cg,n, for example, we have

d := dimC(Mk) = 3g − 3 + n. (2.7)

The SOV amounts to the existence of a birational map

Sov : T ∗M→ (T ∗C)[d],

from T ∗M to the Hilbert scheme of points on T ∗C, which is a symplecto-
morphism on open dense subsets. The open dense subset of (T ∗C)[d], which
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is relevant here is the set

Y ≡ ((T ∗C)d −Δ)/Sd,

with Δ being union of all diagonals and Sd is the symmetric group. On this
subset one may choose coordinates (y, v) ≡ [(y1, v1), . . . , (yd, vd)] such that
the symplectic form ΩI becomes

ω =
d∑

r=1

dvr ∧ dyr. (2.8)

The main idea behind the definition of the coordinates (y, v) can be described
most easily in the case of g = 0 with n marked points corresponding to the
Gaudin model. Choosing a gauge where A0,1 = 0, the Higgs pair (V, θ) is
characterized by Higgs fields of the form

θ =
(
θ0 θ+

θ− −θ0

)
, θa =

n∑
r=1

θa
r

y − zr
, (2.9)

subject to the global sl2-invariance constraints
∑n

r=1 θ
a
r = 0 for a = −, 0,+.

ϑ(y) is the form

ϑ(y) =
n∑

r=1

(
δr

(y − zr)2
+

Hr

y − zr

)
, (2.10)

where δr are central elements, and the Hr are the Hitchin Hamiltonians. In
the following we will mostly consider a slightly simpler version of this model
obtained by sending zn →∞, θ−n → 0 and imposing

∑n−1
r=1 θ

a
r = δa,0

√
δn for

a = −, 0. The difference is in the treatment of the global sl2-invariance, and
will turn out to be inessential even on the quantum level.

The coordinates yr are then found as the zeros of θ−(y),

θ−(y) = u

∏n−3
j=1 (y − yj)∏n−1
i=1 (y − zi)

, u =
n−1∑
i=1

μizi, (2.11)

where μr = Resy=zrθ
−(y). The conjugate variables vr can be found from

the condition that the point (yr, vr) of T ∗C lies on the curve Σ,

v2
r = ϑ(yr) = tr(θ2(yr)). (2.12)

Given the tuple (y, v) one recovers the spectral curve Σ as the curve that
goes through all points (yr, vr), while for fixed values of the conserved quan-
tities one may view the equations v2

r = ϑ(yr) as equations determining the
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“momenta” vr in terms of the variables yr and the values of the conserved
Hamiltonians.

The SOV for g > 0 was discussed in [31, 44]. It can be recast in a form
more similar to the g = 0 case as will be discussed in [79].

2.4 Special geometry of the base of the Hitchin fibration

It is known that the base of any algebraically completely integrable system
canonically has special geometry [17]. In the case at hand it can be described
as follows. The spectral curve Σ is a double covering of the surface C. On
Σ let us introduce the differential

dS = vdy. (2.13)

We then get the special coordinates ar, aD
s as the periods of S along the

homology cycles αr, βs, r, s = 1, . . . , h, respectively,

ar =
∫

αr

dS, aD
r =

∫
βr

dS. (2.14)

Both a = (a1, . . . , ah) and aD = (aD
1 , . . . , a

D
h ) represent systems of coordi-

nates for the base B. The change of coordinates can be described in terms
of a holomorphic function F(a) called prepotential such that

aD
r =

∂F
∂ar

. (2.15)

There are coordinates τ = (τ1, . . . , τh) on the torus fibers ΘE(a) which are
Poisson-conjugate to the variables a. The coordinates (a, τ) are action-angle
variables for the Hitchin system.

3 Isomonodromic deformations as a deformation of the
Hitchin system

3.1 Hitchin moduli space as space flat connections

There is a useful description of the Hitchin moduli space MH as a moduli
space of flat complex connections. To each solution (A, θ) to the self-duality
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equations (2.1), we may associate the connection

∇ = ∇′ +∇′′,
∇′ = ∂A +Rθ,

∇′′ = ∂̄A +R θ̄.
(3.1)

The connection is flat thanks to equations (2.1). In (3.1) we have introduced
a parameter R, which can be eliminated by a rescaling of θ, θ̄, but which is
sometimes useful.

Conversely, given a flat connection ∇ on a vector bundle V on C, there
is a canonical way to associate to it a solution to the self-duality equations.
For given connection ∇, let ρ : π(X)→ PSL(2,C) be its monodromy repre-
sentation. The key result [9,13,62] to be used is the existence of a canonical
Hermitian metric h on the fibers of V , which may be represented as a smooth
ρ-equivariant harmonic map from the universal cover C̃ of C to H = G/K,
with K being the maximal compact subgroup of G = PSL(2,C). The metric
h allows us to decompose the connection ∇ into the component ∇K = d+A
preserving the subgroup K, and the component Θ orthogonal to Lie algebra
of K. Decomposing further into the (1, 0) and (0, 1) parts ∇′ = ∂A +Rθ and
∇′′ = ∂̄A +Rθ̄ yields a solution to the self-duality equations, as is reviewed
in [63, Section 2].

3.2 Flat connection versus local systems

Using the complex structure of the underlying surface, it is possible to rep-
resent the connections ∇ in holomorphic terms. To this aim one may note
that ∇′′ = ∂̄A +Rθ̄ is an integrable holomorphic structure and ∇′ is an
integrable holomorphic connection on E = (V,∇′′). We may introduce local
trivializations such that ∇′′ = ∂̄. The connection ∇ is then locally described
by holomorphic differential operators of the form

∇′ = (∂y +M(y)) dy. (3.2)

One may furthermore trivialize the bundle by means of a basis of local
solutions of ∇′s = 0. The transition functions between the patches of such
a trivialization must then be constant. This means that a flat connection ∇
on a surface C canonically defines a local system, a vector bundle defined by
a local trivialization with constant transition functions between the patches.

Let LocG(C) be the moduli space of G-local systems for a complex group
G. The space LocPSL(2,C)(C) is also known as the space of projective struc-
tures on C.
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Two alternative realizations of local systems will be used. First, each
local system canonically defines a representation

ρ : π1(C)→ PSL(2,C). (3.3)

Conversely, each such representation ρ canonically defines a local system, see
e.g., [24, Section 3.1] for the three-line proof. The space of local systems is
therefore isomorphic to the space Hom(π1(C),PSL(2,C)) of representations
of the fundamental group π1(C) in PSL(2,C). In the following, we will often
identify the representations ρ of π1(C) with the corresponding local systems.

Alternatively, one may associate to each local system a pair of objects
(E ,∇′), where E is a holomorphic vector bundle on C, and ∇′ is a
holomorphic connection, which may be locally represented in the form

∇′ =
∂

∂y
+M(y), (3.4)

where M(y) is a matrix-valued holomorphic function. The correspondence
between local systems and pairs (E ,∇′) is called the Riemann–Hilbert cor-
respondence.

It may also be useful to consider holomorphic vector bundles Ẽ with mero-
morphic connections ∇̃′. As illustrated later, we may then have pairs (Ẽ , ∇̃′)
which have the same monodromy representation ρ : π(X)→ PSL(2,C) as a
given local system (E ,∇′).

3.3 Hyperkähler structure

For a given Higgs bundle (E , θ) one may introduce, generalizing the decom-
position (3.1), a one-parameter family of flat connections as

∇ζ = ∇′
ζ +∇′′

ζ ,
∇′

ζ = ∂A +
1
ζ
R θ,

∇′′
ζ = ∂̄A + ζR θ̄.

(3.5)

Associated to this one-parameter family of flat connections are a one-
parameter family of natural complex structures J (ζ) and holomorphic
symplectic forms �ζ on the Hitchin moduli space MH(C) [34]. The com-
plex structures J (ζ) can be characterized by the property that holomorphic
functions of the flat connection ∇ζ like the traces of monodromies of ∇ζ are
holomorphic in complex structure Iζ . The holomorphic symplectic forms �ζ
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can be defined as

�ζ =
1
2

∫
C

tr(δAζ ∧ δAζ), (3.6)

where A is defined by ∇ζ = d+Aζ . The form �ζ can be expanded as

�ζ = − i

2ζ
ω+ + ω3 −

i

2
ζ ω−, (3.7)

where, in particular, ω+ ≡ ΩI , the natural holomorphic symplectic form
associated to the Higgs bundle picture forMH(C) defined in (2.5).

In order to describe the situation in purely holomorphic terms, let EζR

be the holomorphic structure on the vector bundle V defined by ∇′′
ζ = ∂̄A +

ζRθ. On EζR let us, following [63, Section 4], consider the holomorphic
ε-connection, which locally is obtained from ∇′

ζ by

∂ε ≡ ε∇′
ζ = ε∂ + I(y), ε =

ζ

R
. (3.8)

I(y) transforms under gauge transformations as I → g−1Ig + εg−1∂g.

3.4 Drinfeld–Sokolov reduction

Important for us will be a special class of local systems called opers [4], which
in the case g = sl2 may be described as bundles admitting a connection that
locally looks as in (3.4) with

M(y) =
(

0 t(y)
1 0

)
. (3.9)

The equation (∂y +M(y))φ = 0 now implies that the component χ of φ =
(η, χ) solves a second-order differential equation of the form

(∂2
y + t(y))χ = 0. (3.10)

Under holomorphic changes of the local coordinates on C, the differential
operator ∂2

y + t(y) transforms as

t(y) �→ (y′(w))2t(y(w))− 1
2
{y, w}, {y, w} ≡ y′′′

y′
− 3

2

(
y′′

y′

)2

, (3.11)

which is the transformation law characteristic for a projective connection.
The transformation law (3.11) follows from the transformation law for a
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connection if one takes into account that a compensating gauge transforma-
tion is generically needed in order to recover the form (3.9) of the connection
after having changed the local coordinate.

It is useful to note that any local system can be represented in the form
(3.9) away from finitely many points on C, as discussed in [24, Section 9.6].
In order to see this for G = SL(2) in a simple way, let us represent the
elements of the connection matrices M(y) as

M(y) =
(
α(y) β(y)
γ(y) −α(y)

)
. (3.12)

γ(y) may be set to one by a singular gauge transformation

∂y +M ′ ≡ g · (∂y +M) · g−1, g =
(
h 0
0 h−1

)
, (3.13)

where h(y) =
√
γ(y). The gauge transformation g is singular at the zeros

w1, . . . , wd of γ(y). This is where M ′(y) has additional singularities. By
means of a further gauge transformation one may set the diagonal elements
of M ′(y) to zero, leading to

M ′(y) =
(

0 t(y)
1 0

)
. (3.14)

The corresponding equation (∂2
y + t(y))χ = 0 has regular singular points

z1, . . . , zn and w1, . . . , wd. The behavior near the singular points is of
the form

t(y) ∼ δr
(y − zr)2

+
Hr

y − zr
, near y = zr,

t(y) ∼ −3
4(y − wk)2

+
κk

y − wk
, near y = wk.

(3.15)

However, the additional singularities as w1, . . . , wd are gauge artefacts, and
the monodromy of ∂y +M ′(y) is the same as the one of ∂y +M(y). The
singular points w1, . . . , wd of t(y) are called apparent singularities which
expresses the fact that the monodromy around these singular points is trivial
in PSL(2,C). It can be shown [22, Section 3.9] that this implies the equations

tk,2 + t2k,1 = 0, where t(y) =
∑
i=0

tk,i(y − wk)i−2. (3.16)

These equations give relations between the parameters wk, κk′ and Hr of
the projective connection ∂2

y + t(y).
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3.5 Space of opers

Of particular importance for us will be the cases where d = 0, where there are
no apparent singularities. Let Opsl2(C) the space of sl2-opers on a Riemann
surface C. Two opers P and P ′ differ by a holomorphic quadratic differen-
tial ϑ = P − P ′. This implies that the space Opsl2(Cg,n) of sl2-opers on a
fixed surface Cg,n of genus g with n marked points is 3g − 3 + n-dimensional.
Complex analytic coordinates for Opsl2(Cg,n) are obtained by picking a ref-
erence projective connection P0, a basis ϑ1, . . . , ϑ3g−3+n for the vector space
of quadratic differentials, and writing any other projective connection P as

P = P0 +
3g−3+n∑

r=1

Hr ϑr. (3.17)

The parameters Hr are sometimes called accessory parameters.

The monodromy representations ρP : π1(Cg,n)→ PSL(2,C) of the differ-
ential operators P will generate a 3g − 3 + n-dimensional subspace of the
space LocPSL(2,C)(Cg,n) of local systems. Varying the complex structure
of the underlying surface C, too, we get a subspace of LocPSL(2,C)(C) of
complex dimension 6g − 6 + 2n. The space of opers forms an affine bun-
dle P over the Teichmüller space of deformations of the complex structure
of C. Standard Teichmüller theory identifies the space of quadratic differ-
entials with the holomorphic cotangent space of the Teichmüller space of
deformations of the complex structure of C. It follows that P is canon-
ically isomorphic to the cotangent bundle T ∗T (C) over the Teichmüller
space T (C). It is important that the mapping P → Hom(π1(C),PSL(2,C))
defined by associating to the projective connection P its monodromy repre-
sentation ρP is locally biholomorphic, and that the corresponding mapping
T ∗T → Hom(π1(C),PSL(2,C)) is symplectic in the sense that the canonical
cotangent bundle symplectic structure is mapped to the natural symplectic
structure ΩJ ≡ �ζ |ζ=1 on the space of flat complex connections, see [42]
and references therein. We may, therefore, choose a set of local coordinates
q = (q1, . . . , q3g−3+n) on T (Cg,n) which are conjugate to the coordinates Hr

defined above in the sense that the Poisson brackets coming from this sym-
plectic structure are

{qr, qs} = 0, {Hr, qs} = δr,s, {Hr, Hs} = 0. (3.18)

Other useful sets of coordinates for the space of opers can be defined in
terms of the monodromy map M : Opsl2(Cg,n)→ Hom(π1(Cg,n),PSL(2,C))
as follows. Let C be a pants decomposition of Cg,n defined by a collection
{γ1, . . . , γ3g−3+n} of simple mutually non-intersecting closed curves. To each
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curve γr there corresponds a unique generator γr of the fundamental group
π1(Cg,n). For given oper, let

Lr := 2 cosh
lr
2

:= tr(ρP (γr)). (3.19)

The tuple lP = (l1, . . . , l3g−3+n) can be used to parameterize Opsl2(Cg,n) at
least locally. For given l = (l1, . . . , l3g−3+n) one may generically find acces-
sory parameters Hr = Hr(l, q) such that (3.19) is satisfied (Riemann–Hilbert
correspondence).

3.6 Isomonodromic deformations

The representation of the connection ∇ in terms of holomorphic data (E ,∇′)
was using the complex structure on C. It is natural to ask how (E ,∇′) vary
if we consider variations of the complex structure of C for fixed monodromy
of the connection ∇. This defines families of compatible flows on the space
of pairs (E ,∇′) [5, 45, 63]. The differential equations characterizing these
flows are called the isomonodromic deformation equations. For g = 0 one
gets well-known systems of partial differential equations, and more explicit
forms of the resulting equations for g > 0 were obtained in [45].

3.6.1 Example: the Schlesinger system

In the case of g = 0 with n punctures we can describe LocSL(2,C) as the space
of all meromorphic connections of the form

∂y +M(y) = ∂y +
n∑

r=1

Mr

y − zr
, Mr ∈ sl(2,R)C, (3.20)

with fixed conjugacy class of Mr. The equations

∂

∂zs
Mr =

[Mr,Ms]
zr − zs

, r �= s,

∂

∂zr
Mr =

∑
s �=r

[Mr,Ms]
zr − zs

(3.21)

ensure that the monodromy of ∂y +M(y) stays constant under variations of
the complex structure of C. Equation (3.21) are integrable, and define what
is called the Schlesinger system.
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3.6.2 Separation of variables for the Schlesinger system

For the case at hand (g = 0) it is particularly easy to see that the relation
between the holomorphic connection (3.20) and the second-order differential
operator ∂2

y + t(y) is based on a change of variables very similar to the one
that was giving the SOV for the Gaudin model in Section 2.3. Following the
discussion in Section 3.4 leads to the differential equation (∂2

y + t(y))χ = 0
with t(y) of the form

t(y) =
n∑

r=1

(
δr

(y − zr)2
+

Hr

y − zr

)
−

l∑
k=1

(
3

4(y − wk)2
− κk

y − wk

)
. (3.22)

In order to eliminate the constraints following from projective invariance,
let us choose zn = 0, zn−1 = 1, zn−2 =∞. t(y) may then be written in
the form

t(y) =
δn
y2

+
δn−1

(1− y)2 +
υ

y(y − 1)
+

n−3∑
r=1

(
δr

(y − zr)2
+
zr(zr − 1)
y(y − 1)

Hr

y − zr

)

−
d∑

k=1

(
3

4(y − wk)2
− wk(wk − 1)

y(y − 1)
κk

y − wk

)
. (3.23)

In the case where d = n− 3, equations (3.16) can be written explicitly as

κ2
k +

n∑
r=1

(
Δr

(wk − zr)2
+

Hr

wk − zr

)
−

d∑
k=1
k′ �=k

(
3

4(wk − wk′)2
− κk

wk − wk′

)
= 0,

(3.24)

Equation (3.24) can be solved to express Hr in (3.23) in terms of variables
wk and κk. The resulting expression is a quadratic polynomial Hr(κ,w)
in the variables κk. This is precisely the form of an projective connection
considered in the theory of the Garnier systems. The monodromy of the pro-
jective connection ∂2

y + t(y) stays constant under a variation of the variables
zr provided that κk, wk are varied according to

∂wk

∂zr
=
∂Hr

∂κk
,

∂κk

∂zr
= −∂Hr

∂wk
. (3.25)

These equations are nothing but the rewriting of the Schlesinger equa-
tions (3.21) in terms of the separated variables wk defined by the condition
of γ(wk) = 0, where γ(y) is defined in (3.12).
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3.6.3 Symplectic structure

The Hamiltonian form of the isomonodromic deformation equations (3.25)
naturally suggests the Poisson structure

{wr, ws} = 0, {κr, ws} = δr,s, {κr, κs} = 0. (3.26)

In the generalization to higher genus [37, 38] it is natural to set d = 3g −
3 + n. The positions wk of the apparent singularities together with the
residues κk introduced in (3.15) then form a local set of coordinates for the
subset of Hom(π1(C),PSL(2,C)) given by the monodromies of the Fuchsian
differential operators ∂2

y + t(y). This Poisson structure (3.26) coincides with
the one coming from the holomorphic symplectic form ΩJ on Hitchin moduli
space [38].

3.7 Real slices

A real slice in the space Hom(π1(C),PSL(2,C)) is naturally defined by the
requirement that the representation ρ ∈ Hom(π1(C),PSL(2,C)) is conjugate
to a subgroup of PSL(2,R). The space Hom(π1(C),PSL(2,R)) has finitely
many connected components, as will be described in the following.

3.7.1 Representation in terms of Higgs pairs

Let us first describe how these components are represented in terms of Higgs
pairs (E , θ). For a given effective divisor D of degree d, and chosen square-

root K
1
2
C of the canonical line bundle let us consider holomorphic bundles E

of the form

E = L1 ⊕ L2,
L2 := K

+ 1
2

C ,

L1 := K
− 1

2
C ⊗D.

(3.27)

Let us then consider Higgs fields of the form

θ =
(

0 ϑ
γ 0

)
, (3.28)

where γ is a holomorphic section of the line bundle corresponding to D, and
ϑ is a quadratic differential.
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3.7.2 Representation in terms of flat connections

It can be shown (see [34] for details) that the flat connection ∇ = d+A
associated to such Higgs pairs may then be represented in the form

A =

⎛
⎜⎝
−1

2
∂ϕ R

1
ζ
ϑ e−ϕ

R
1
ζ
γ eϕ +

1
2
∂ϕ

⎞
⎟⎠ dz +

⎛
⎜⎝ +

1
2
∂̄ϕ R ζ γ̄ eϕ

Rζ ϑ̄ e−ϕ −1
2
∂̄ϕ

⎞
⎟⎠ dz̄. (3.29)

It is manifest that this is a SU(1, 1)-connection when ζ = 1. The flatness is
equivalent to

∂∂̄ϕ = R2(γγ̄ e2ϕ − ϑϑ̄ e−2ϕ). (3.30)
This is a variant of the Sinh-Gordon equation. It reduces to a variant of the
Liouville-equation for ϑ = 0. In this case, equation (3.30) implies that

ds2 = γγ̄ e2ϕ dzdz̄ (3.31)

is a metric of constant negative curvature on C. This metric has conical
singularities with excess angle 2π at the zeros of γ.

3.7.3 Complex structures on the real slices

Let Hom(π1(C),PSL(2,R))d be the connected component in Hom(π1(C),
PSL(2,R)) that is described in this way. It will be important for us to
note that there is a convenient description of Hom(π1(C),PSL(2,R))d as
a complex analytic manifold associated to this description. It is proven
in [34, Section 10], see also [29, Section 6.2], that Hom(π1(C),PSL(2,R))d

has the structure of a holomorphic vector bundle over the symmetric power
Symd(C), with fiber over D ∈ Symd(C) being the vector space

{ϑ ∈ H0(C,K2
c )|div(ϑ) ≥ D} � C

3g−3+n−d. (3.32)

The relation to the representation in terms of Fuchsian differential equa-
tions described in Section 3.4 is easy to see: The divisor D is the collection
(w1, . . . , wd) of apparent singularities. Equations (3.16) imply that there are
d relations among the 3g − 3 + n holomorphic quadratic differentials.

3.7.4 Teichmüller component

Of particular interest and importance is the case where d = 0. The rep-
resentations ρ ∈ Hom(π1(C),PSL(2,R))0 are then Fuchsian, which means
that quotient of the upper half-plane by the representation ρ produces a
Riemann surface C with natural constant curvature metric induced from
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the hyperbolic metric of upper half-plane [29]. The component Hom(π1(C),
PSL(2,R))0 is therefore called the Teichmüller component.

The relation to the discussion above can easily be seen as follows. Setting
d = 0 implies that γ can be set to unity in above equations. Each point in
Hom(π1(C),PSL(2,R))0 can be represented by a flat connection of the form
(3.29). It is shown in [34, Theorem (11.2)] that any solution of the flatness
condition (3.30) defines a metric of constant negative curvature via

ds2 = e2ϕ(dz + e−2ϕϑ̄ dz̄)(dz̄ + e−2ϕϑ dz). (3.33)

We see that the quadratic differentials ϑ parameterize deformations of the
constant negative curvature metric associated to the complex structure of
C. The natural complex structure on the Teichmüller space T (C) of such
deformations coincides with the complex structure on the Teichmüller com-
ponent Hom(π1(C),PSL(2,R))0 introduced in Section 3.7.3, as follows from
the fact that e−2ϕϑ̄ is the so-called harmonic Beltrami-differential associated
to the quadratic differential ϑ from Teichmüller theory.

One should note, however, that in order to get the corresponding Fuchsian
representative ∂2

y + t(y), we need to set ϑ = 0, as was observed above. It is
not hard to show that t(y) is then equal to the so-called energy-momentum
tensor associated to the metric of constant negative curvature,

t(y) = −(∂zϕ)2 + ∂2
zϕ. (3.34)

This means that the space of opers Opsl2(C) is another slice in Hom(π1(C),
PSL(2,C)) which intersects the real slice Hom(π1(C),PSL(2,R))0 transver-
sally. This fits naturally to our earlier observation that the space of opers
is naturally isomorphic to the holomorphic cotangent space of T (C): While
Hom(π1(C),PSL(2,R))0 is naturally isomorphic to the Teichmüller space,
the space Opsl2(C) represents the cotangent space of T (C). Both spaces are
naturally isomorphic to each other, but this isomorphism is not holomorphic,
as it involves the constant curvature metric e2ϕdzdz̄.

3.8 Kähler potential on the real slices

The symplectic structure ΩJ on Hom(π1(C),PSL(2,C)), restricted to the
real slices Hom(π1(C),PSL(2,R))d gives us the natural symplectic structure
ΩR

J we will consider. We have seen, on the other hand, that the real slices
Hom(π1(C),PSL(2,R))d have a natural complex structure related to the the
complex structure from the Teichmüller theory.
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For d = 0 it is known that the symplectic structure Hom(π1(C),
PSL(2,R))d is Kähler w.r.t. this symplectic structure, with Kähler poten-
tial given by the Liouville action. The Liouville action functional Scl[ϕ] is
defined as

SL[ϕ] =
1
2π

∫
Cg,n

d2z

(
1
2
(∂aϕ)2 + 8πμb2e2ϕ

)
+ [boundary terms], (3.35)

with a suitable choice of boundary terms which was determined in [68–70].
The Liouville action defines a natural symplectic form on T (C) as

ΩT = 2i ∂∂̄Scl, (3.36)

where ∂, ∂̄ are the holomorphic and anti-holomorphic components of the de
Rham differential on Tg,n respectively. It was shown in [68–72] that ΩT coin-
cides with the Weil–Petersson symplectic form from the Teichmüller theory,
which in turn is known to coincide [28, 34] with the symplectic structure
ΩR

J on Hom(π1(C),PSL(2,R))0. This implies that the Poisson structure on
the real slices is still of the form (3.18), but the variables H are no longer
independent, but rather given as functions of the variables q. A convenient
reference projective connection PS is e.g., given by the Schottky uniformiza-
tion, and

P − PS =
1
2
∂SL[ϕ], (3.37)

for a suitable choice of boundary terms in the definition of the Liouville
action functional [68–72].

For g = 0, C0,n = P
1 \ {z1, . . . , zn} one can represent P in the form

P = ∂2
y + t(y), t(y) =

n∑
r=1

(
δr

(y − zr)2
+

Hr

y − zr

)
. (3.38)

The parameters Hr are restricted by the relations

n∑
r=1

Hr = 0,
n∑

r=1

(zrHr + δr) = 0,
n∑

r=1

(z2
rHr + 2δrzr) = 0. (3.39)

The coordinates qr conjugate to the Hr may be chosen as cross-ratios of the
coordinates z1, . . . , zn. Alternatively, one may set zn =∞, zn−1 = 1 and
zn−2 = 0, and identify the remaining coordinates q1 ≡ z1, . . . , qn−3 ≡ zn−3

as the conjugates of H1, . . . , Hn−3, respectively.

For d > 0 one needs to take into account the fact that the quadratic dif-
ferentials that are holomorphic on C are constrained by the relations (3.16).
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For general g let us pick a set {ϑ1, . . . , ϑ3g−3+n−d} of linearly independent
holomorphic quadratic differentials. In order to generate all Teichmüller
deformations one has to add d meromorphic quadratic differentials
{ϑmer

1 , . . . , ϑmer
d }, where ϑmer

k has a pole at the point wk. Expanding

P − P0 =
3g−3+n−d∑

r=1

Hr ϑr +
d∑

k=1

κk ϑ
mer
k , (3.40)

The quadratic differentials define (1, 0)-forms on T (C). There are corre-
sponding local coordinates q1, . . . , q3g−3+n−d and w1, . . . , wd such that these
(1, 0)-forms are representable as dqr and dwk, respectively. The only non-
vanishing Poisson brackets are then

{κk, wl} = δr,s, {Hr, qs} = δr,s. (3.41)

The coordinates wk will parameterize the positions of the apparent singu-
larities.

3.9 Limit to the Hitchin system

Let us now consider the limit ζ → 0, R→∞ such that Rζ stays constant.
This implies in particular that the integrable holomorphic structure ∇′′

ζ =
∂̄A + ζRθ is kept fixed in the limit. The ε-connection ∂ε = ε∂ − I becomes
the Higgs field θ. In terms of opers, one may take the limit by rescaling
t(y) = ε−2ϑε(y). The transformation of ϑε(y) is then

ϑε(y) �→ (y′(w))2 ϑε(y(w))− ε2

2
{y, w}. (3.42)

For ε→ 0 we get the transformation law of quadratic differentials. We may
in this sense regard the space Opsl2(C) as a deformation Bε of the base B of
the Hitchin fibration.

The complex structure J (ζ) turns into the complex structure I charac-
teristic for the Hitchin integrable system, and the symplectic structure �ζ

becomes the symplectic structure ΩI of T ∗BunG in the sense that

ΩI = Res
ζ=0

(�ζ).

One may furthermore study the isomonodromic deformation equations in
this limit. This is slightly delicate, but the upshot is that isomonodromic
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deformation equations indeed reduce to the equations of motion of the
Hitchin system in this limit [45].

We may naturally distinguish two types of observables, the Hamiltonians
Hr on the one hand, and the traces Lr = 2 cosh lr

2 = tr(ρP (γr)) of mon-
odromies on the other hand. It seems natural to refer to them as local and
non-local observables, respectively. The former are clearly related to the
Hitchin Hamiltonians Hr in the limit under consideration. In order to study
the asymptotics for ε→ 0 of the latter, let us note that the leading Wentzel-
Kramers-Brillouin (WKB) approximation to the solutions of the equation
(ε2∂2

y + ϑ(y))χ(y) = 0 can be constructed in terms of the differential dS
introduced in (2.13) as

χ±(y) = exp
(
i

ε

∫ y

dz v±

)
, (3.43)

where v± are two choices of a branch for the solution of the equation v2 =
ϑ(z). It follows easily from (3.43) that the parameters lr are related to the
action variables ar introduced in (2.14) in the limit ε→ 0,

lr =
4π
ε
ar, r = 1, . . . , 3g − 3 + n, (3.44)

as follows from (3.43). We may therefore regard the non-local observables
Lr parameterizing the monodromies of the flat connections as deformations
of the action variables ar associated to the special geometry of the Hitchin
fibration.

These remarks are supposed to clarify the meaning of the arrow marked
(A)ε2 in (1.1). In this regard let us note in particular that the relation
between the isomonodromic deformations and the Hitchin system involves
a hyperkähler rotation in the parameter ζ.

4 Quantization of the Hitchin system

4.1 Quantization scheme

The quantization of an algebraically integrable system like the Hitchin sys-
tem can roughly be approached in the following way.

(a) Deform the space of (algebraic) functions on the phase space to a
non-commutative algebra A, whose elements are supposed to become
the observables of the quantum theory. Of particular interest are the
Hamiltonians whose proper definition will typically involve ordering
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issues. Integrability means that A should contain a commutative sub-
algebra I of “sufficient size” generated by the quantized Hamiltonians.

(b) Choose a Lagrangian subspace L of the phase space, here MH, and
represent the quantized algebra of observables as algebraic differential
or difference operators on L.

(c) Choose a ∗-structure on the algebra of observables and find a scalar
product on the space of functions that realizes the ∗-structure via
hermitian conjugation.

For any given value of E there is typically a finite-dimensional space of
solutions to the eigenvalue equations HΨ = EΨ of the Hamiltonian H ∈ A
that have suitable analytic properties. Normalizability of the solutions w.r.t.
the scalar product introduced in step (c) then selects in many cases a dis-
crete subset of the possible values of E and thereby yields the quantization
conditions.

In the case of the Hitchin system it is in most cases difficult to implement
step (c) explicitly since the complex structure on the phase space typically
depends on the complex structure of the underlying surface C, and is hard
to describe explicitly, making the definition of a suitable scalar product
difficult. The only known examples of Hitchin-type systems where it is
know how to implement step (c) explicitly are the Calogero systems.

In the following, we shall describe basic elements of steps (a) and (b), but
instead of implementing (c) we shall discuss another approach. Integrability
means that the phase space in question has the structure of a torus fibration
with base B. We will (inspired by [53]) propose to replace step (c) by

(c′) Define a suitable “deformation” Bε of the base B, and a function
W : Bε → C called Yang’s potential whose critical points define the
eigenvalues.

Such a procedure appears to be well-motivated in the case of algebraically
integrables systems for the following reason. In some prototypical examples
like the quantum Toda chain it is possible to prove that the quantization
conditions obtained in step (c) can indeed be recast in the form (c′) for a
suitable choice of the Yang’s potential W [43]. As W depends analytically
on all parameters, one may use the characterization of the spectrum in terms
of the Yang’s potential even in cases when step (c) is hard to implement.

In the case of the Hitchin system, the space Bε will be identified with the
moduli space of opers. Our proposal will be to identify the Yang’s potential
with the semiclassical Liouville conformal blocks, which leads to a precise
definition in terms of the theory of ordinary differential equations.
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4.2 Semiclassical quantization of the separated variables

One possible approach to the quantization of the Hitchin system can be
based on using the separated variables (y, t) ≡ [(y1, t1), . . . , (yh, th)] with
symplectic form (2.8) as a starting point. In view of (2.8) it seems nat-
ural to regard the variables tr as momenta, the yr as coordinates. The
quantization of equation (2.12) defining the spectral curve of the Hitchin
system would then naturally lead to the differential equation

(ε2∂2
yr

+ ϑ(yr))χ(y) = 0. (4.1)

These equation will in the following be referred to as the Baxter equations.

The leading WKB approximation to the solutions of the Baxter equa-
tion (4.1) can be constructed in terms of the differential dS introduced
in (2.13),

χ±(y) = exp
(
i

ε

∫ y

dz v±

)
, (4.2)

where t± are two choices of a branch for the solution of the equation
v2 = ϑ(z).

There are a few natural possibilities one could discuss for the definition
of quantization conditions.

4.2.1 Real quantization

It may happen that the integrable system of physical interest is actually a
real slice of the algebraically integrable system under mathematical study.
This is the case e.g., in the Calogero model, which is a special case of the
Hitchin system, see e.g., the discussion in [53]. In this case one needs to
impose a reality condition on the coordinate functions ar (or aD

r ) of the base
of the torus fibration. Combined with the Bohr–Sommerfeld quantization
conditions one arrives at the conditions

ar = 2πε nr, nr ∈ Z, (4.3)

where as are the periods of the Seiberg–Witten differential dS = dy v w.r.t.
the cycles generating a canonical basis for H1(Σ,Z),

ar =
∫

αr

dS, aD
s =

∫
βs

dS. (4.4)

The concrete choice of a basis (α1, . . . , α3g−3+n;β1, . . . , β3g−3+n) may be
tricky. For later convenience we will henceforth assume that the αr coincide
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with a maximal set of simple closed curves defining a pants decomposition
of Cg,n. Nekrasov and Shatashvili [53] discussed the quantization conditions
(4.3) in a related context.

4.2.2 Complex quantization

In the present case, there is an interesting alternative one can discuss. The
phase space in question has a complex structure, allowing one to require
that the ∗-structure on the algebra of observables acts as complex conjuga-
tion. One may simply choose the Lagrangian subspace L to be a complex
subspace, and assume that the algebra A of observables is realized both
by holomorphic and anti-holomorphic differential operators. For g = 0 one
thereby gets the SL(2,C)-Gaudin model.

One of the basic requirements that an eigenfunctions of the Hitchin Hamil-
tonians should satisfy is single-valuedness. In order to find a single-valued
solution of the eigenvalue equations we need to form linear combinations of
the form

φ(y, ȳ) = (χ+(y), χ−(y)) · K ·
(
χ̄+(ȳ)
χ̄−(ȳ)

)
. (4.5)

Single-valuedness of φ leads to the Bohr–Sommerfeld quantization conditions
K = diag(1,−1) and

Re(ar) = πε nr, Re(aD
s ) = πε nD

s , (4.6)

where as and aD
s are the periods of the Seiberg–Witten differential dS = dy v

as above. The derivation of (4.6) is discussed in detail for the closely related
SL(2,C)-XXX-model in [10].

Remark 4.1. It is interesting to note2 that the conditions (4.6) coincide
with the so-called attractor equations.

4.3 Quantization of the Hitchin Hamiltonians

A dense open subset of MH is isomorphic to T ∗BunG, the moduli space
of stable G-bundles (here G = SL(2)) on C. This forms the basis to an
alternative approach to the quantization of MH, in which the Lagrangian
subspace L taken to be (possibly a real slice of) BunG. States in the quantum
theory can then be described in terms of functions (or sections of some line
bundle) on BunG. Linear coordinates on the fibers of T ∗BunG play the role of

2This fact has independently been remarked by S. Shatashvili, who had discussed it in
various lectures long before this paper has appeared.
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momenta and would consequently be realized as differential operators. The
complex structure on BunG (which is coming from the complex structure on
Cg,n) allows us to distinguish holomorphic and anti-holomorphic coordinates
and the corresponding differential operators.

Hitchin’s Hamiltonians are constructed from tr(θ2). As θ is holomorphic
in complex structure I, they should become holomorphic differential opera-
tors on BunG after quantization. Beilinson and Drinfeld [3] constructed such
differential operators from the representation theory of affine Kac-Moody
algebras at the critical level, as will be reviewed in Section 7 below. Here
we will discuss the example of g = 0 where Hitchin’s Hamiltonians can be
quantized in an elementary way.

4.3.1 Example: the SL(2, C)-Gaudin model

In the case of g = 0, M parameterizes the choices of parabolic structures
at the marked points zn. On an open dense subspace one may use the
collection of complex numbers (x1, . . . , xn) modulo Moebius-transformations
as coordinates forM. The complex number xr parameterizes a point in the
flag manifold G/B “attached” to marked point zr.

We will consider the tensor product of n principal series representations
Pj of SL(2,C). It corresponds to the tensor product of representations of
the Lie algebra sl(2,C) generated by differential operators J a

r acting on
functions Ψ(x1, x̄1, . . . , xn, x̄n) as

J −
r = ∂xr , J 0

r = xr∂xr − jr, J +
r = −x2

r∂xr + 2jrxr, (4.7)

and the complex conjugate operators J̄ a
r . The Casimir of the representation

Pjr is parameterized via jr as jr(jr + 1). The Gaudin Hamiltonians are
defined as

Hr ≡
∑
s �=r

Jrs

zr − zs
, H̄r ≡

∑
s �=r

J̄rs

z̄r − z̄s
, (4.8)

where the differential operator Jrs is defined as

Jrs := ηaa′J a
r J a′

s := J 0
r J 0

s +
1
2
(J +

r J −
s + J −

r J +
s ), (4.9)

while J̄rs is the complex conjugate of Jrs. The Gaudin Hamiltonians are
mutually commuting,

[Hr,Hs] = 0, [Hr, H̄s] = 0, [H̄r, H̄s] = 0. (4.10)

It is therefore natural to look for joint eigenfunctions of the Gaudin Hamil-
tonians in the space of wave-functions Ψ(x1, x̄1, . . . , xn, x̄n) which satisfy the
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conditions

n∑
r=1

J a
r Ψ = 0,

n∑
r=1

J̄ a
r Ψ = 0, (4.11)

for a = −, 0,+. It will be convenient for us to observe that the solutions of
this problem are in one-to-one correspondence to the solutions of the slightly
simplified problem which is found in the limit when zn →∞, xn →∞. The
simplified problem can be defined directly by dropping the terms with s = n
from the expression (4.8) for the Hamiltonians Hr, r = 1, . . . , n− 1. The
eigenvalue equations for the resulting Hamiltonians are supplemented by
the equations

∑n−1
r=1 J a

r Ψ = δa,0jn and
∑n−1

r=1 J̄ a
r Ψ = δa,0jn for a = −, 0. The

equivalence of the two problems is seen by expressing the solutions to (4.11)
in terms of functions ψ that depend only on the cross-ratios formed out of
the variables z1, . . . , zn and x1, . . . , xn. The same functions can be used to
express the solutions of the simplified problem.

4.3.2 Eigenvalue problems?

It is not trivial to define a reasonable eigenvalue problem in the case of the
Gaudin model. In order to illustrate the point, let us consider the SL(2,R)-
Gaudin model, in which case the variables xr are assumed to be real. Let
us look at the simplest case n = 4 in some detail. In this case one may
reduce the dependence on x1, . . . , x4 to the cross-ratio x. There is only a
single operator H to consider, which reduces to a second-order differential
operator D(2)

x in x of the form

D(2)
x =

D(2)
21

z
+
D(2)

32

1− z , (4.12)

with D(2)
21 and D(2)

32 being second-order differential operators that do not
depend on z. One natural quantization problem to consider would be to
assume z ∈ R, and to look for a measure dν(x) making D(2)

x self-adjoint in
L2(R, dν(x)). The problem is that the definition of self-adjoint extensions
of D(2)

x may require careful choice of boundary conditions at the singular
points of D(2)

x . In this regard, let us note that D(2)
x has regular singular

points at x = 0, z, 1,∞, respectively, as follows from

D(2)
x = x(x− 1)(x− z) ∂

2

∂x2
+ · · · , (4.13)

up to terms with less derivatives with respect to x. Of particular interest is
the singularity at x = z. We will return to this point later.
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4.4 Quantum SOV

It is known that the quantization of the the separated variables and the
quantization of the Hitchin Hamiltonians are equivalent even on the quan-
tum level [64], as we shall now briefly recall. We will use the simplified
formulation obtained by sending zn →∞, xn →∞ in the following, as was
introduced at the end of Section 4.3.1.

The first step is to diagonalize J− by means of the Fourier transformation

Ψ̃(μ1, . . . , μn−1) =
1

πn−1

∫
d2x1 . . .

∫
d2xn−1

×
n−1∏
r=1

|μr|2jr+2eμrxr−μ̄rx̄rΨ(x1, . . . , xn−1). (4.14)

The generators Ja
r are mapped to the differential operators Da

r ,

D−
r = μr, D0

r = μr∂μr , D+
r = μr∂

2
μr
− jr(jr + 1)

μr
, (4.15)

so that the Gaudin Hamiltonians get represented by

Hr ≡
∑
s �=r

Drs

zr − zs
, Drs := ηaa′Da

rD
a′
s , (4.16)

and their complex conjugates. Let us then define variables to y1, . . . , yn−3, u
related to the variables μ1, . . . , μn−1 via

n−1∑
i=1

μi

t− zi
= u

∏n−3
j=1 (t− yj)∏n−1
i=1 (t− zi)

. (4.17)

Note that the constraints (4.11) imply
∑n−1

r=1 μr = 0.

It was shown by Sklyanin [64] that the system of eigenvalue equations
HrΨ = ErΨ is transformed by the change of variables μ1, . . . , μn−1 → y1, . . . ,
yn−3, u into the set of equations

(∂2
yk

+ t(yk))χ(yk) = 0, t(y) ≡ −
n−1∑
r=1

(
jr(jr + 1)
(yk − zr)2

− Er

yk − zr

)
. (4.18)

The dependence with respect to the variables yk has completely separated.
Solutions to the Gaudin-eigenvalue equations HrΨ = ErΨ can therefore be
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constructed from solutions χk(yk) of (4.18) by means of the ansatz

Ψ =
n−3∏
k=1

χk(yk; q). (4.19)

Note, in particular that Baxter equations (4.18) reproduce (4.1) if δr =
O(ε−2) so that t(y) = ε−2ϑ(y).

4.5 Quantization from single-valuedness

In the case of the complex quantization as discussed above, one may find
strong constraints on the eigenvalues already from the condition of single-
valuedness.

Sklyanin’s observation allows us to write Ψ as a linear combination of solu-
tions to the Fuchsian differential equations (4.18), which have the
factorized form

Ψ(y1, ȳ1, . . . , yn−3, ȳn−3) =
n−3∏
a=1

χ(ya, ȳa). (4.20)

We want to impose the condition of single-valuedness. Let us focus on the
dependence of Ψ w.r.t. some y ∈ {y1, . . . , yn−3}. χ(y, ȳ) can be represented
as a linear combination of the linearly independent solutions to the equation
(∂2

y + t(y))χi = 0 and its complex-conjugate counterpart in the form,

χ(y, ȳ) ≡ χ(y, ȳ|z1 . . . zn−1) = (χ̄1(ȳ), χ̄2(ȳ)) ·K ·
(
χ1(y)
χ2(y)

)
, (4.21)

where K is a 2× 2 matrix which is constrained by the condition of single-
valuedness,

M †
r ·K ·Mr = K for all r = 1, . . . , n. (4.22)

This is a highly overdetermined system of equations for the matrix K, which
can not be satisfied for arbitrary monodromy matrices Mr.

We claim that it is necessary and sufficient that the representation of
the fundamental group π1(Σ) which is generated by the matrices Mr is
conjugate to a discrete subgroup of SU(1, 1) ⊂ SL(2,C). We may then use
K = diag(1,−1) to solve (4.22).

Given a single-valued solution χ(y, ȳ) of (∂2
y + t(y))χ = 0 and the complex

conjugate equation we may construct the metric e2ϕdydȳ where e−ϕ = χ.
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This metric has negative constant curvature since ϕ = − logχ satisfies the
Liouville equation ∂∂̄ϕ = e2ϕ. The uniformization theorem ensures existence
of such a metric, which implies existence of a solution to the problem to
find a single-valued solution to (∂2

y + t(y))χi = 0 and its complex-conjugate
counterpart.

We conclude that there exists a distinguished “state” |q 〉 in the SL(2,C)
Gaudin model corresponding to the metric of negative constant curvature
on Cg,n.

5 The Liouville theory

Liouville theory is a field theory with conformal symmetry generated by the
energy-momentum tensor with central charge c that will be parameterized
in terms of a parameter b as

c = 1 + 6Q2, Q := b+ b−1. (5.1)

It is characterized by the correlation functions of n primary fields e2αrφ(zr,z̄r)

denoted as
〈〈
e2αnφ(zn,z̄n) · · · e2α1φ(z1,z̄1)

〉〉
Cq
. (5.2)

Cq is a family of Riemann surfaces parameterized by a collection q =
(q1, . . . , q3g−3+n) of complex-analytic local coordinates for the moduli space
Mg,n of Riemann surfaces. The conformal dimension Δr of the primary field
e2αrφ(zr,z̄r) is given as Δr ≡ Δαr := αr(Q− αr). The correlation functions
(5.2) can be represented in a holomorphically factorized form

〈〈
e2αnφ(zn,z̄n) · · · e2α1φ(z1,z̄1)

〉〉
Cq

=
∫
dμ(p)|Fσ

α,Cq
(p)|2. (5.3)

The conformal blocks Fσ
α,Cq

(q) are objects that are defined from the repre-
sentation theory of the Virasoro algebra, as will be recalled in the following
two subsections.

5.1 Virasoro conformal blocks

5.1.1 Definition of the conformal blocks

Let Virc be the Virasoro algebra with generators Ln, n ∈ Z, and relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0. (5.4)
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For the given set of highest weight representations Vr, r = 1, . . . , n of Virc

with highest weights Δr, and Riemann surface C with n marked points at
positions z1, . . . , zn one defines the conformal blocks as linear functionals
FC : V[n] ≡ ⊗n

r=1Vr → C that satisfy the invariance property

FC(T [χ] · v) = 0 ∀v ∈ R[n], ∀χ ∈ Vout, (5.5)

where Vout is the Lie algebra of meromorphic differential operators on C
with poles only at z1, . . . , zn. The action of T [χ] on ⊗n

r=1Rr → C is defined
by taking the Laurent expansions of χ at the points z1, . . . zn, w.r.t. local
coordinates tr which vanish at zr,

χ(tr) =
∑
k∈Z

χ
(r)
k tk+1

r ∂tr ∈ C((tr))∂tr , (5.6)

to which we may associate the operator

T [χ] =
n∑

r=1

id⊗ . . .⊗ L[χ(r)]
(r−th)

⊗ . . .⊗ id, L[χ(r)] :=
∑
k∈Z

Lkχ
(r)
k ∈ Virc.

(5.7)

It can be shown that the central extension vanishes on the image of the Lie
algebra Vout in

⊕n
r=1 Virc, making the definition consistent. The defining

invariance condition (5.5) has generically many solutions. We will denote
the vector space of conformal blocks associated to the Riemann surface C
with representations Vr associated to the marked points zr, r = 1, . . . , n by
CB(V[n], C).

Physicists may be more familiar with conformal blocks as expectation
values of chiral vertex operators associated to the representations Vr. State-
operator correspondence associates a chiral vertex operator Φ(vr|zr) to each
vector vr in Vr. The chiral vertex operators associated to highest weight
vectors er in Vr are called primary fields, all other chiral vertex operators
Φ(vr|zr) descendants. The functionals FC represent the expectation values
of a product of chiral vertex operators as

FC(vn ⊗ · · · ⊗ v1) =

〈
n∏

r=1

Φ(vr|zr)
〉

G

. (5.8)

The subscript G indicates the parameters for the different ways to compose
the chiral vertex operators, as will be made more explicit below. The defining
invariance property (5.5) is a consequence of the Virasoro Ward identities
that

〈∏n
r=1 Φ(vr|zr)

〉
G

is required to satisfy. We shall often use the notation
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on the right-hand side of (5.8), as it may be more appealing to the intuition
of physicists.

5.1.2 Propagation of vacua

The vacuum representation V0 which corresponds to Δr = 0 plays a distin-
guished role. If Φ0(v0|z0) is the vertex operator associated to the vacuum
representation, we have

Φ0(e0|z0) = id, Φ0(L−2e0|z0) = T (z0), (5.9)

where T (z) is the energy-momentum tensor. It can be shown that the
spaces of conformal blocks with and without insertions of the vacuum rep-
resentation are canonically isomorphic. The isomorphism between CB(V0 ⊗
V[n], Cg,n+1) and CB(V[n], Cg,n) is simply given by evaluation at the vacuum
vector e0 ∈ V0

F ′
Cg,n+1

(e0 ⊗ vn ⊗ · · · ⊗ v1) ≡ FCg,n(vn ⊗ · · · ⊗ v1), (5.10)

as is also obvious from (5.9). This fact is often referred to as the “propaga-
tion of vacua”.

5.1.3 Deformations of the complex structure of X

A key point that needs to be understood about spaces of conformal blocks is
the dependence on the complex structure of C. There is a canonical way to
represent infinitesimal variations of the complex structure on the spaces of
conformal blocks. By combining the definition of conformal blocks with the
so-called “Virasoro uniformization” of the moduli space Mg,n of complex
structures on C = Cg,n one may construct a representation of infinitesimal
motions on Mg,n on the space of conformal blocks.

The “Virasoro uniformization” of the moduli space Mg,n may be formu-
lated as the statement that the tangent space TMg,n to Mg,n at C can be
identified with the double quotient

TMg,n = Γ(C \ {x1, . . . , xn},ΘC)

∖
n⊕

k=1

C((tk))∂k

/
n⊕

k=1

C[[tk]]∂k, (5.11)

where Γ(C \ {x1, . . . , xn},ΘC) is the set of vector fields that are holomorphic
on C \ {x1, . . . , xn}, while C((tk)) and C[[tk]] are formal Laurent and Taylor
series respectively.
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Let us then consider FC(T [η] · v) with T [η] being defined in (5.7) in the
case that η is an arbitrary element of

⊕n
k=1 C((tk))∂k and Lrvk = 0 for all

r > 0 and k = 1, . . . , n. The defining invariance property (5.5) together with
Lrvk = 0 allow us to define

δϑFC(v) = FC(T [ηϑ] · v), (5.12)

where δϑ is the derivative corresponding to a tangent vector ϑ ∈ TMg,n

and ηϑ is any element of
⊕n

k=1 C((tk))∂k, which represents ϑ via (5.11).
Generalizing these observations one is led to the conclusion that derivatives
w.r.t. to the moduli parameters of Mg,n are (projectively) represented on
the space of conformal blocks, the central extension coming from the central
extension of the Virasoro algebra (5.4).

In the case of g = 0, and vr being equal to the highest weight vector er of
Vr for r = 1, . . . , n, formula (5.12) is closely related to the familiar formula

〈T (x)Φn(zn) . . .Φ1(z1)〉 =
n∑

i=1

(
Δαi

(x− zi)2
+

1
x− zi

∂

∂zi

)
〈Φn(zn) . . .Φ1(z1)〉,

(5.13)
where we have abbreviated the primary fields Φ(er|zr) as Φr(zr).

5.1.4 Conformal blocks versus D-modules

It may be worth noting the two possible ways to read (5.12). Having defined
the action of the Virasoro algebra on V[n], (5.12) tells us how the ring of holo-
morphic differential operators on Mg,n acts on the spaces of the conformal
blocks. This makes the spaces of conformal blocks a (twisted) D-module
over Mg,n.

On the other hand, given any holomorphic function F defined in an open
subset U ⊂Mg,n one may use (5.12) recursively in order to construct the
values of F(v) on arbitrary vectors v ∈ V[n]. The Virasoro uniformization
(5.11) of TMg,n describes the local structure of Mg,n in terms of the Lie
algebra C((t))∂t of infinitesimal diffeomophisms of the circle, and (5.12) can
be read as a description of the space of local holomorphic sections of a
projective line-bundle over Mg,n in terms of the representation theory of
the central extension of C((tk))∂k.

5.2 Gluing construction of conformal blocks

5.2.1 Gluing two boundary components

Let C be a (possibly disconnected) Riemann surface with marked points
and choices of coordinates around the marked points. We can construct
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a new Riemann surface C ′ by picking two marked points z0 and z′0 with
non-intersecting annuli A and A′ embedded in coordinate neighborhoods
around the two points, choosing a bi-holomorphic mapping I : A→ A′, and
by identifying the points that are mapped to each other under I, see e.g., [78]
for more details.

Let us in particular consider a Riemann surface C21 that was obtained
by gluing two surfaces C2 and C1 with n2 + 1 and n1 + 1 boundary com-
ponents, respectively. Given an integer n, let sets I1 and I2 be such that
I1 ∪ I2 = {1, . . . , n}. Let us consider conformal blocks FCi ∈ CB(V [ni]

i , Ci)
where V [n2]

2 = (⊗r∈I2Vr)⊗ V0 and V [n1]
1 = V0 ⊗ (⊗r∈I1Vr) with the same rep-

resentation V0 assigned to z0,1 and z0,2, respectively. Let 〈 ., . 〉V0 be the
invariant bilinear form on V0. For given v2 ∈ ⊗r∈I2Vr let Wv2 be the linear
form on V0 defined by

Wv2(w) := FC2(v2 ⊗ w), ∀w ∈ V0, (5.14)

and let C1(q) be the family of linear operators V [n1]
1 → V0 defined as

C1(q) · v1 :=
∑

e∈B(V0)

qL0e FC1(ě⊗ v1), (5.15)

where we have used the notation B(V0) for a basis of the representation V0

and ě for the dual of an element e of B(V0) defined by 〈 ě, e′ 〉V0 = δe,e′ . We
may then consider the expression

FC21(v2 ⊗ v1) := Wv2(C1(q) · v1). (5.16)

We have thereby defined a new conformal block associated to the glued sur-
face C21, see [78] for more discussion. The insertion of the operator qL0 plays
the role of a regularization. It is not a priori clear that the linear form Wv2 is
defined on infinite linear combinations such as C1(q) · v1. Assuming |q| < 1,
the factor qL0 will produce an suppression of the contributions with large
L0-eigenvalue, which renders the infinite series produced by the definitions
(5.16) and (5.15) convergent.

5.2.2 Gluing from pairs of pants

One can produce any Riemann surface C by gluing pairs of pants. The
different ways to obtain C in this way are labeled by cut systems C, a
collection of mutually non-intersecting simple closed curves on C. Using
the gluing construction recursively leads to the definition of a family of
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conformal blocks denoted

Fσ
β,Cq

(p) ≡
〈
e2αnφ(zr) · · · e2α1(z1)

〉
Cq ,G

(5.17)

depending on the following set of data:

• σ is a marking: A pants decomposition defined by a cut system Cσ
together with three-valent graphs on the pairs of pants glued together
to form a connected graph Γσ on C.
• q is an assignments q : γ �→ qγ ∈ U, defined for all curves γ ∈ Cσ. qγ

are the gluing parameters qγ entering the gluing construction from
three-punctured spheres. They parameterize the complex structure of
the family Cq of Riemann surfaces obtained in the gluing construction.
• p is an assignment p : γ �→ pγ ∈ R, defined for all curves γ ∈ Cσ. The

parameters pγ determine the Virasoro representations VΔγ to be used
in the gluing construction of the conformal blocks from pairs of
pants via

Δγ =
Q2

4
+
p2

γ

�2
. (5.18)

• β = (β1, . . . , βn) is taken to parameterize the external representations
V1, . . . ,Vn via

αr =
βr

�
. (5.19)

The pair of data (σ, p) is condensed into the “gluing data” G in (5.17). While
cut systems can be used to label boundary components in ∂Mg,n, one may
parameterize boundary components ∂σTg,n of the Teichmüller space Tg,n

with the help of markings σ. Using the markings allows one to properly
take care of the multi-valuedness of the conformal blocks onMg,n [78].

The conformal blocks Fσ
β,Cq

(p) are entire analytic with respect to the
variables βr, meromorphic in the variables pγ , γ ∈ Cσ with poles at the
zeros of the Kac determinant, and the dependence on the gluing parameters
q can be analytically continued over Tg,n [74, 78]. When the dependence on
β is not important we will abbreviate Fσ

q (p) := Fσ
β,Cq

(p).

5.2.3 Change of pants decomposition

It turns out that the conformal blocks Fσ1
q1

(p) constructed by the gluing
construction in a neighborhood of the asymptotic region of T (C) that is
determined by σ1 have an analytic continuation (Aσ2

σ1
F)σ1

q2
(p) to the asymp-

totic region of T (C) determined by a second marking σ2. A fact [74,75,78]3

3A full proof of the statements made here does not appear in the literature yet. It can,
however, be assembled from building blocks that are published. By using the groupoid of
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of foundational importance for the subject is that the analytically continued
conformal blocks (Aσ2

σ1
F)σ1

q2
(p) can be represented as a linear combination of

the conformal blocks Fσ2
q2

(p), which takes the form

(Aσ2
σ1
F)σ1

q2
(p) =

∫
dμ(p′) Vσ2σ1(p|p′)Fσ2

q2
(p′). (5.20)

The changes from one pants decomposition to another generate the modular
groupoid ( [50], see also [78] for non-rational cases). Having a representation
of the modular groupoid via (5.20) makes the space of conformal blocks a
representation of the mapping class group via

(Am.σ
σ F)σ

q (p) =
∫
dμ(p′) Vm.σ,σ(p, p′)Fσ

q (p′), (5.21)

where m.σ is the image of the marking σ under m ∈ MCG(C).

To each marking σ one may associate a Hilbert space Hσ �
L2((R+)3g−3+n, dμ) of complex valued functions ψσ(p) on the space of assign-
ments p : γ �→ pγ ∈ R, γ ∈ Cσ that are square-integrable w.r.t. μ. The scalar
product is defined by means of the same measure μ that appears in the holo-
morphic factorization of the full correlation functions (5.3),

‖ψ‖2 =
∫
dμ(p)|ψσ(p)|2. (5.22)

The integral operators defined in (5.20) and (5.21) are unitary w.r.t. this
scalar product, which is equivalent to crossing symmetry and modular invari-
ance of the physical correlation functions constructed from the conformal
blocks as in (5.3) [74, 78].

5.3 Degenerate fields as probes

5.3.1 Insertion of degenerate fields

An interesting way to probe the conformal blocks [2,11] is to consider inser-
tions of degenerate fields like

〈On,l〉Ĝ ≡
〈
e2αnφ(zn) · · · e2α1φ(z1)e−

1
b
φ(yl) · · · e− 1

b
φ(y1)

〉
Ĝ
. (5.23)

changes of the markings it is sufficient to verify the claim for the cases g = 0, n = 4 and
g = 1, n = 1, respectively. For g = 0, n = 4 this was done in [74], see also [76]. The case
of g = 1, n = 1 was recently reduced to the case g = 0, n = 4 in [33].
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The conformal blocks satisfy the null vector decoupling equations

DBPZ
yk
· 〈On,l〉 = 0, ∀k = 1, . . . , l, (5.24)

with differential operators DBPZ
yk

being for g = 0 given as

DBPZ
yk

= b2
∂2

∂y2
k

+
n∑

r=1

(
Δr

(yk − zr)2
+

1
yk − zr

∂

∂zr

)

−
l∑

k′=1
k′ �=k

(
3b−2 + 2

4(yk − yk′)2
− 1
yk − yk′

∂

∂yk′

)
.

Let us abbreviate the notation for the space of conformal blocks on Cg,n to
CB(Cg,n) and let CB′(Cg,n+l) be the space of conformal blocks on Cg,n+l

with l vertex operators e−
1
b
φ assigned to the extra punctures y1, . . . , yl,

respectively. It follows from (5.24) that the three point conformal blocks
〈e− 1

b
φ(z3)e2α2φ(z2)e2α1φ(z1)〉 can only be non-zero if Δα2 = Δα1∓1/2b, which is

symbolically expressed in the fusion rules

[e−
1
b
φ] [e2αφ] ∼ [e(2α−1/b)φ] + [e(2α+1/b)φ]. (5.25)

This implies that CB′(Cg,n+l) is isomorphic to CB(Cg,n)⊗ (C2)⊗l as a
vector space.

5.3.2 Quantum loop operators

The key observation to be made is that for l = 2 there is a canonical
embedding

ıg,n : CB(Cg,n) ↪→ CB′(Cg,n+2), (5.26)

coming from the fact that the fusion of the two degenerate fields V−1/2b

contains the vacuum representation, and that insertions of the vacuum rep-
resentation do no alter the space of conformal blocks (propagation of vacua).
It follows from the existence of the embedding (5.26) that the mapping class
group action on CB′(Cg,n+2) can be projected onto CB(Cg,n). The mapping
class group MCG(Cg,n+2) contains in particular the monodromies generated
by moving the insertion point of one of the vertex operators e−

1
b
φ along a

closed curve γ on Cg,n. The projection of the action of these elements on
CB′(Cg,n+2) down to CB(Cg,n) defines operators on CB(Cg,n). Let us denote
the operator associated to a generator γ of the fundamental group π1(Cg,n)
by Lγ . We will call Lγ a quantum loop operator.



QUANTIZATION OF THE HITCHIN MODULI SPACES 511

The conformal blocks Fσ
q (p) defined above generate a basis for CB(Cg,n).

This basis is such the operators Lγ associated to the curves γ ∈ Cσ in the
cut system corresponding to σ are represented diagonally,

Lγ · Fσ
q (p) = 2 cosh(2πpγ/ε1)Fσ

q (p). (5.27)

This means that the operators Lγ can be used to “measure” the intermediate
representation that has been used in the construction of conformal blocks
by summing over complete sets of vectors from given representations. The
parameterization in terms of the data σ and p is therefore equivalent to a
parameterization in terms of the eigenvalues of the quantum loop operators
Lγ , γ ∈ Cσ.

5.4 Parameterizing conformal blocks with degenerate fields

In order to get a parameterization for the space of solutions to (5.24),
we shall consider representations for the Riemann surface Cg,n+l which
are obtained as follows. Let us call a marked point special if it will be
the insertion point of a degenerate field, non-special otherwise. We may
then consider representations for Cg,n+l obtained by gluing surfaces Tν , ν =
1, . . . , 2g − 2 + n, of genus zero with lν special marked points and exactly
three non-special ones. For each surface Tν we may then pick a pants decom-
position which is such that each pair of pants contains at most one special
marked point. We may therefore view the markings σ̂ on Cg,n+l that have
pants decomposition of this type as certain refinements of a marking σ on
the surface Cg,n obtained from Cg,n+l by “forgetting” the insertion points of
the degenerate fields. We will in the following restrict attention to markings
of this type.

Conformal blocks can then be defined by the gluing construction. This
defines solutions to (5.24) denoted as

F σ̂
q,y(p, δ) :=

〈
e2αnφ(zn) · · · e2α1φ(z1)e−

1
b
φ(yl) · · · e− 1

b
φ(y1)

〉
Cq,y,Ĝ

. (5.28)

These conformal blocks are parameterized by the data p and q associated
to the underlying marking σ on Cg,n in the same way as explained in Sec-
tion 5.2.2, together with the following additional data

• δ is a map which assigns a sign δk to each of the special marked points
yk, which determines the change of representation label according to
the fusion rules (5.25). Noting that p determines the choice of repre-
sentations associated to the non-special marked points of Tν it is easy
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to see that this allows one to determine all representations involved in
the gluing construction unambigously.
• y is the collection of gluing parameters involved in the gluing construc-

tion of Tν from three-punctured spheres.

In the notation on the left-hand side of (5.28), we have displayed the gluing
data Ĝ = (σ̂, p, δ) more explicitly.

The conformal blocks (5.28) form a complete set of solutions to equa-
tions (5.24) in the sense that the solutions associated to a given marking
σ̂1 can be analytically continued to the boundary component ∂σ̂2Tg,n+l of
the Teichmüller space Tg,n+l which is associated to any other marking σ̂2,
and that the analytically continued solutions associated to σ̂1 can be repre-
sented as a linear combination of the solutions representable as power series
in gluing parameters in a neighborhood of ∂σ̂2Tg,n+l.

5.5 Quantum Hitchin system from the semiclassical limit of
Liouville theory

5.5.1 Eigenfunctions of Hitchin’s Hamiltonians from classical
conformal blocks

Let us now consider the limit ε2 → 0 of the conformal blocks (5.23), keeping
ε1 finite in the case g = 0. This means that �→ 0 while b→∞. The sum
over k′ in the expression for DBPZ

y becomes subleading in this limit. To
leading order we can factorize the solutions 〈On,l 〉Ĝ to (5.24) in the form

〈
On,l

〉
Ĝ

= exp(−b2W(q))
l∏

k=1

χk(yk; q), (5.29)

where χk(y) ≡ χk(y; q) are solutions to equation

(∂2
y + t(y))χk(y) = 0, t(y) =

n∑
r=1

(
δr

(y − zr)2
+

Hr

y − zr

)
, (5.30)

with δr = limb→∞ b−2Δr, and

Hr = − ∂

∂zr
W(q). (5.31)

In (5.29) and (5.31), we are using the notation q for the collection of vari-
ables (z1, . . . , zn), which determine the complex structure of the underlying
Riemann surface C0,n = P

1 \ {z1, . . . , zn}.
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On the right-hand side of (5.29), we may for l = n− 3 and zn →∞ recog-
nize an eigenfunction of the Gaudin Hamiltonians as explained in Section 4.4.
It does not satisfy the quantization conditions as discussed in Section 4.5,
in general.

Considering the limit b→∞ of the basis elements Fσ
q (p) we are led to

the conclusion that the following limit exists:

Wσ
q (l) ≡ − lim

b→∞
b−2 logFσ

q (p) (5.32)

where the parameters l = (l1, . . . , ln−3) and p = (p1, . . . , pn−3) are related
via

lr =
pr

4πε2
. (5.33)

and that the monodromy group of the oper (∂2
y + t(y))χ(y) = 0,

t(y) =
n∑

r=1

(
δr

(y − zr)2
+
Hr(l, q)
y − zr

)
, Hr(l, q) = − ∂

∂zr
Wσ

q (l) (5.34)

satisfies (3.19). Let us note in particular that the parameterization of the
conformal blocks in terms of eigenvalues of quantum loop operators intro-
duced in Section 5.3 turns into the parameterization of the opers in terms
of the traces of their monodromies introduced in (3.19).

5.5.2 Semiclassical limit of the full correlation functions

Let us now consider the classical limit b→∞ of full correlation functions
(5.2). We may assume that the measure dμ(p), which appears in the holo-
morphically factorized representation (5.3) is just the usual Lebesque
measure, dμ(p) =

∏n−3
r=1 dpr. This is related to the more conventional rep-

resentation in which dμ(p) is constructed from the product of three-point
functions by a change of normalization for the conformal blocks, see e.g., [1]
for explicit formulae. The leading behavior of the integrand in (5.3) is
e−2b2Re(Wσ

q (l)), as follows from (5.32). The integral in the holomorphically
factorized representation (5.3) of the full correlation functions will therefore
be dominated by a saddle point ps = (p1,s . . . pn−3,s),

〈O 〉 ∼ e−b2SL(q), SL(q) = 2Re(Wσ
q (ls)), (5.35)

with l and p related via (5.33), and the value ls = ls(q, q̄) at the saddle point
is determined by

∂

∂lr
Re(Wσ

q (l))
∣∣∣∣
l=ls

= 0. (5.36)

More explicit analysis of the case n = 4 can be found in [80].
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5.5.3 Single-valued Gaudin eigenfunctions from Liouville
correlation functions

Let us now consider the semiclassical limit of full correlation functions con-
taining n− 3 insertions of degenerate fields e−bφ(yk,ȳk). By the same argu-
ments as used before we find that

〈〈
n∏

r=1

e2αnφ(zr,z̄r)
n−3∏
k=1

e−bφ(yk,ȳk)

〉〉
∼ e−b2SL(q)

n−3∏
k=1

χr(yk, ȳk), (5.37)

where SL(q) was introduced in (5.35). On the right-hand side of (5.37), we
recognize [59] the solutions (4.20) to the eigenvalue equations for the Gaudin
model in the SOV representation. They are automatically single-valued both
with respect to the variables yk and q as the correlation function on the left-
hand side of (5.37) has this property. We see that the distinguished state
|q 〉 of the Gaudin model introduced in Section 4.5 is reproduced in the
semiclassical limit of a Liouville correlation function.

5.5.4 Yang’s potential from classical conformal blocks?

Recall that the space of all differential operators of the form ∂2
y + t(y)

parameterizes via the quantum SOV the commutative algebra of differential
operators on BunG generated by Hr − Er. This space can be viewed as a
“deformation” Bε of the base B of the Hitchin fibration. Within Bε we want
to identify isolated points representing the quantized eigenvalues with the
help of a function W on Bε called Yang’s potential. We are now going to
point out that our discussion of the relation between the semiclassical limit
of the Liouville correlation functions and the complex quantization of the
Hitchin system above suggests that the classical Liouville conformal blocks
are natural candidates for the Yang’s potentials associated to the complex
quantization of the Hitchin system as discussed in Section 4.

For the case g = 0, C0,n = P
1 \ {z1, . . . , zn} under consideration, let l =

(l1, . . . , ln−3) be the coordinates for the space of opers introduced in (3.19)
above. Our discussion of the semiclassical limit of the complex quantization
of the Hitchin system in 4.2 implies that to leading order in ε we may
identify the Yang’s functionW(l) with the prepotential F(a), where l and a
are related via (3.44). The standard relation aD

s = ∂asF(a) then allows us to
reformulate the Bohr–Sommerfeld quantization conditions (4.6) to leading
order in ε in terms of W(l). This suggests that the exact quantization
conditions could likewise be formulated in terms of a potential W(l), and
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that they should include the conditions

∂

∂lr
Re(W(l))

∣∣∣∣
l=l(k)

= πεkr, for r = 1, . . . , n− 3, (5.38)

where k = (k1, . . . , kn−3) is a given vector of integers.

In our above discussion, we had observed that the quantization condition
in the case of the distinguished state |q 〉 can be formulated as the saddle-
point condition (5.36). This invites us to identify

W(l) ≡ Wσ
q (p), (5.39)

with l and p related by (5.33). The saddle-point condition (5.36) would
then correspond to the special case k = (0, . . . , 0) of (5.38). It remains to
be seen if other single-valued eigenstates of the Gaudin–Hamiltonians can
be characterized in terms of the conditions (5.38).

5.5.5 Characterization of Yang’s potential in terms of opers

At the end of Section 3.5, we had definedHr(l, q) as the accessory parameters
which give the oper a monodromy characterized by the parameters l. It
follows from (5.39) and (5.34) that W(l) ≡ W(l, q) satisfies the equations

Hr(l, q) = − ∂

∂zr
W(l, q). (5.40)

Equations (5.40) define W(l, q) up to addition of q-independent functions
of l.4

The formulation of the quantization conditions in terms of the Yang’s
potential via (5.38) will only work for a suitable choice of the l-dependence
in W(l, q). Such a choice is implied in the identification (5.39) with the
classical conformal blocks. The freedom to add q-independent functions of
the variables l is via (5.39) related to the freedom to multiply the conformal
blocks Fσ

q (p) by functions of the parameters p. The latter freedom is fixed if
one requires, as has been done above, that the single-valued correlation func-
tions (5.2) are constructed from the conformal blocks by an expression of the
form (5.3) with measure dμ(p) being the standard Lebesque measure. This
amounts to absorbing the three-point functions into the conformal blocks.
We see that the correct choice of the q-independent functions of the variables
l in the definition ofW(l, q) is ultimately determined by the single-valuedness

4This corrects an inaccurate statement in a previous version of this paper that has been
pointed out by S. Shatashvili.
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of the Liouville correlation functions (5.2) which determines the measure
dμ(p), as discussed e.g., in [78]. Explicit formulae can easily be found with
the help of [80]. This single-valuedness is directly related to the single-
valuedness of the eigenfunctions of the Gaudin–Hamiltonians via (5.37).

The two different formulations of the quantization conditions — from
single-valuedness of the wave-functions on the one hand, and in terms of
W(l, q) on the other hand — are unified in the condition of single-valuedness
of the Liouville correlation functions appearing on the left-hand side of (5.37)
above. These relations fit into a Langlands-duality scheme similar to our
diagram (1.9) above, in which the single-valued Gaudin eigenvectors would
appear in the upper right box, and the points on Bε determined from W
should be placed into the upper left box.

5.5.6 Quantization conditions in real quantization?

In Section 4.2, we had also considered the quantization of a real slice in
the phase space in the semiclassical limit. It is suggestive to observe that
both in the real and complex quantization schemes discussed in Section 4.2
it is the same function (the prepotential), which appears in the formula-
tion of the leading semiclassical quantization conditions. This suggests that
the quantization conditions in real quantization can be formulated as the
equations

∂

∂lr
W(l, q)

∣∣∣∣
l=l(k)

= 2πεkr, for r = 1, . . . , n− 3, (5.41)

where k = (k1, . . . , kn−3). The critical point(s) of W(l(k), q) give the eigen-
values Er of the Hitchin Hamiltonians via

Er = Hr(l(k), q). (5.42)

As partially discussed in Section 4 we will need further investigations to
properly define the eigenvalue problem in the real quantization and to check
if it can be reformulated in the form (5.41).

5.5.7 Further remarks

The identification of Yang’s potential with the semiclassical limit of confor-
mal blocks can also be arrived at by combining the discussion of [53] with the
observations of [1]. It is proposed in [53] that the Yang’s potential is obtained
from Nekrasov’s partition function Z(a, ε1, ε2; q) in the limit ε2 → 0. One of
the main observations made in [1] is the coincidence of the Nekrasov par-
tition functions for the theories of interest with Liouville conformal blocks.
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This holds in particular in the case of the N = 2∗-theory discussed in [53]
for which the Nekrasov partition function coincides according to [1,15] with
the Liouville conformal blocks on the one-punctured torus.

The observations discussed above appear to be deeply related to the recent
work of Nekrasov and Shatashvili [54].

5.6 Degenerate fields as heavy sources

We shall now consider more general Liouville conformal blocks of the form

〈On,m,l 〉 ≡
〈

n∏
s=1

e2αsφ(zs)
m∏

r=1

e−bφ(wr)
l∏

k=1

e−
1
b
φ(yk)

〉

Ĝ

. (5.43)

The conformal blocks (5.28) satisfy the null vector decoupling equations

DBPZ
yq
· 〈On,m,l 〉 = 0, D̃BPZ

wr
· 〈On,m,l 〉 = 0, (5.44)

where for g = 0

DBPZ
yk

= b2
∂2

∂y2
+

n∑
s=1

(
Δs

(yk − zs)2
+

1
yk − zs

∂

∂zs

)

−
m∑

r=1

(
3b2 + 2

4(yk − wr)2
− 1
yk − wr

∂

∂wr

)

−
l∑

k′=1
k′ �=k

(
3b−2 + 2

4(yk − yk′)2
− 1
yk − yk′

∂

∂yk′

)
, (5.45)

D̃BPZ
wr

=
1
b2

∂2

∂w2
r

+
n∑

s=1

(
Δr

(wr − zs)2
+

1
wr − zs

∂

∂zs

)

−
l∑

k=1

(
3b−2 + 2

4(wr − yk)2
− 1
wr − yk

∂

∂yk

)

−
m∑

r′=1
r′ �=r

(
3b2 + 2

4(wr − wr′)2
− 1
wr − wr′

∂

∂wr

)
. (5.46)

Equations (5.44) imply the fusion rules

[V−b/2] · [Vα] = [Vα−b/2] + [Vα−b/2]. (5.47)
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Bases for the space of conformal blocks of the type (5.43) can be parame-
terized in a similar way as described in Section 5.4.

As above in Section 5.3 we may now consider the insertions of the degen-
erate fields e−

1
b
φ(yq) as probes. The key observation to be made is that the

monodromy of e−
1
b
φ(y) around any of the degenerate fields e−bφ(wk) is minus

the identity matrix, therefore projectively trivial. This can easily be veri-
fied with the help of the well-known expressions for the fusion and braiding
matrices of the degenerate field e−

1
b
φ(y) as recollected e.g., in [11, Appendix

B]. The procedure explained in Section 5.3 can therefore be used to con-
struct an operator Lγ acting on the space of conformal blocks (5.43) for each
generator γ of the fundamental group π1(Cg,n). This operator is insensitive
to the insertions of e−bφ(wk), and “measures” via a formula analogous to
(5.27) the intermediate dimensions p used in the gluing construction of the
conformal blocks only.

5.7 Isomonodromic deformations from the semiclassical limit of
Liouville theory

Let us now consider the limit ε2 → 0 keeping ε1 fixed, which corresponds to
�→ 0 and b→∞. Analyzing the differential equations satisfied by 〈On,m,l 〉
in this limit we find that

(i) the following limits exist

W σ̂
q,w(p, δ) ≡ lim

b→∞
b−2 log〈On,m 〉Ĝ, (5.48)

Ψ(y) ≡ lim
b→∞

[〈On,m 〉σ̂]−1〈On,m,l 〉Ĝ, (5.49)

(ii) Ψ(y) factorizes as

Ψ(y) =
l∏

k=1

χk(yk), (5.50)

where χk(yk) satisfy an equation of the form (∂2
y + t(y))χk(y) = 0 with

t(y) =
n∑

s=1

(
δs

(y − zs)2
+

Hs

y − zs

)
−

m∑
r=1

(
3

4(y − wr)2
− κr

y − wr

)
, (5.51)

(iii) the residues Hs and κk are constrained by the relations (3.24).
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(iv) the residues Hs = Hs(p, δ|q, w) and κr = κr(p, δ|q, w) of t(y) intro-
duced in (5.51) are related to W σ̂

β (p, δ|q, w) as

Es = − ∂

∂zs
W σ̂

q,w(p, δ), κr = − ∂

∂wr
W σ̂

q,w(p, δ). (5.52)

In the case m = n− 3 we may note that equations (3.24) coincide with equa-
tions (3.16) and that (5.52) are the the relations defining the isomonodromic
tau-function.

6 Liouville theory as a quantum theory of the space of local
systems

6.1 Overview

The results of the previous sections have demonstrated that Liouville theory
has many relations to the moduli spaces of local systems — it deforms key
geometrical structures of these moduli spaces. We now want to show that
the main features of Liouville theory can be understood in terms of the
quantization of real slices in MH.

It is very important that the structure of MH � Hom(π1(C),PSL(2,C))
as a complex algebraic variety has a natural deformation that is realized
within the quantization of its real slices. The ring O of regular functions on
Hom(π1(C),PSL(2,C)) is generated from the traces of holonomies tr(ρ(γ)).
It is natural that the algebra Ob of quantized observables should be gener-
ated from the quantum operators Hγ associated to the classical observables
tr(ρ(γ)). A natural integrable structure is obtained by choosing a maximal
set of non-intersecting closed curves γr, r = 1, . . . , 3g − 3 + n. The corre-
sponding observables Lr ≡ Lγr commute, [Lr, Ls] = 0 for all r, s = 1, . . . , 3g −
3 + n, so that the subalgebra I ⊂ Ob generated by the Lr represents the inte-
grable structure of the quantum theory of Hom(π1(C),PSL(2,C)).

However, non-compactness of the moduli spaces LocPSL(2,C)(C) implies
that the elements of the algebra Ob can not be realized by bounded opera-
tors on a Hilbert space H. It is therefore important to consider the maximal
common domain of definition for the elements of Ob within H = H(Cg,n).
This defines a natural analog SOb

of the Schwartz-space of smooth, rapidly
decreasing functions on the real line. The common eigenstates of the Hamil-
tonians Lr are elements of the Hermitian dual S†Ob

of SOb
. Let us denote by

〈 p| the element of S†Ob
which satisfies

〈 p|Lr = 2 cosh(2πbpr/ε1)〈 p|, ∀r = 1, . . . , 3g − 3 + n. (6.1)
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The spectrum of the operators Lr is exhausted by considering pr ∈ R
+.

It will be important for us to note that the eigenstates 〈 p| can be mero-
morphically continued to arbitrary complex values of p, in the sense that
ψ(p) = 〈 p|ψ 〉 can be meromorphically continued w.r.t. p for all ψ ∈ SOb

.
The wave-functions ψ(p) give a concrete representation for the elements
of SOb

.

The action of Ob on the space SOb
can be represented as the action of a

ring of finite difference operators on the wave-functions ψ(p). This furnishes
a concrete realization of the quantization of the ring of regular functions on
Hom(π1(C),PSL(2,C)) as a non-commutative ring of difference operators
acting on SOb

.

The conformal blocks of Liouville theory are found to be wave-functions
of certain states |C 〉 associated to the Riemann surface C. The confor-
mal blocks Fσ

q (p), for example, are nothing but the wave-functions 〈 p|Cq 〉
of states |Cq 〉 associated to a family of surfaces Cq with complex struc-
ture parameterized by q = (q1, . . . , q3g−3+n) in the representation introduced
above. Using this dictionary it is possible to see that the Liouville loop
operators Lγ introduced in Section 5.3 are mapped precisely to the differ-
ence operators which represent the Hamiltonians Lγ on the wave-functions
ψ(p). Parameterizing conformal blocks in terms of the eigenvalues of the
Liouville loop operators corresponds to labeling the eigenstates 〈 p| by their
eigenvalues, (6.1).

The Liouville correlation functions (5.2) represent the norm squared
of |Cq 〉,

〈Cq|Cq 〉 =
〈〈
e2αnφ(zn,z̄n) · · · e2α1φ(z1,z̄1)

〉〉
Cq
, (6.2)

and the holomorphic factorization (5.3) is the representation of the scalar
product on H in the representation where the operators Lr, r = 1, . . . , 3g −
3 + n are diagonal.

6.2 Fock–Goncharov coordinates

Let τ be a triangulation of the surface C such that all vertices coincide
with marked points on C. An edge e of τ separates two triangles defining
a quadrilateral Qe with corners being the marked points P1, . . . , P4. For a
given local system (E ,∇′), let us choose four sections si, i = 1, 2, 3, 4 that
are holomorphic in Qe, obey the condition

∇′si =
(
∂

∂y
+M(y)

)
si = 0, (6.3)
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and are eigenvectors of the monodromy around Pi. Out of the sections si

form [18,24,30]

X τ
e :=

(s1 ∧ s2)(s3 ∧ s4)
(s2 ∧ s3)(s4 ∧ s1)

, (6.4)

where all sections are evaluated at a common point P ∈ Qe. It is not hard
to see that X τ

e does not depend on the choice of P .

The Poisson structure is particularly simple in terms of these coordinates,

{X τ
e ,X τ

e′} = 〈 e, e′ 〉 X τ
e′ X τ

e , (6.5)

where 〈 e, e′ 〉 is the number of faces e and e′ have in common, counted with
a sign.

A real slice Hom(π1(C),PSL(2,R)) in Hom(π1(C),PSL(2,C)) can be
defined by the conditions X ∗

e = Xe. Recall that the real slice Hom(π1(C),
PSL(2,R)) decomposes into different connected components, and that one
of these components is canonically isomorphic to the Teichmüller space of
deformations of C. This component is characterized by the property that
the functions Xe are all positive.

6.3 Holonomy variables

Assume given a path �γ on the fat graph homotopic to a simple closed curve
γ on Cg,n. Let the edges be labelled ei, i = 1, . . . , r according to the order
in which they appear on �γ , and define σi to be 1 if the path turns left at
the vertex that connects edges ei and ei+1, and to be equal to −1 otherwise.
Consider the following matrix,

Xγ = VσrE(zer) · · ·Vσ1E(ze1), (6.6)

where ze = logXe, and the matrices E(z) and V are defined respectively by

E(z) =
(

0 +e+
z
2

−e− z
2 0

)
, V =

(
1 1
−1 0

)
. (6.7)

Taking the trace of Xγ one gets the hyperbolic length of the closed geodesic
isotopic to γ via [21]

Lγ ≡ 2 cosh
(

1
2
lγ

)
= |tr(Xγ)|. (6.8)
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We may observe that the classical expression for Lγ ≡ 2 cosh 1
2 lγ as given

by formula 6.8 is a linear combination of monomials in the variables u±1
e ≡

e±
ze
2 of a very particular form,

Lγ =
∑
ν∈F

Cτ,γ(ν)
∏
e

uνe
e (6.9)

where the summation is taken over a finite set F of vectors ν ∈ Z
3g−3+2n

with components νe. The coefficients Cτ,γ(ν) are positive integers.

It is proven in [19, Theorem 12.3] that the products of traces of mon-
odromies of finite laminations form a basis for the vector spaces of regular
functions on Hom(π1(C),PSL(2,C)). These objects are therefore natural
generators for the algebra O of observables of interest.

6.4 Quantization of the Teichmüller component

The simplicity of the Poisson brackets (6.5) makes part of the quantization
quite simple. To each edge e of a triangulation of a Riemann surface Cg,n

associate a quantum operator ze corresponding to the classical phase space
function ze = logXe. Canonical quantization of the Poisson brackets (6.5)
yields an algebra Aτ with generators ze and relations

[ze, ze′ ] = 2πib2〈 e, e′ 〉. (6.10)

The algebra Aτ has a center with generators ca, a = 1, . . . , n defined by ca =∑
e∈Ea

ze, where Ea is the set of edges in the triangulation that emanates
from the ath boundary component. The representations of Aτ that we are
going to consider will therefore be such that the generators ca are represented
as the operators of multiplication by real positive numbers la/2. Geometri-
cally one may interpret la as the geodesic length of the ath boundary compo-
nent [21]. The vector l = (l1, . . . , ln) of lengths of the boundary components
will figure as a label of the representation of the algebra Aτ .

Recall furthermore that the variables Xe are positive for the Teichmüller
component. The scalar product of the quantum theory should realize the
phase space functions ze = logXe as self-adjoint operators ze, z†e = ze. By
choosing a maximal set of commuting generators for the algebra Aτ one
may naturally define a Schrödinger type representation of the algebra Aτ in
terms of multiplication and differentiation operators. It is realized on the
Hilbert space Hτ � L2(R3g−3+n).

Less trivial is the fact that one can define on Hτ a projective unitary
representation of the mapping class group MCG(Cg,n). It is generated



QUANTIZATION OF THE HITCHIN MODULI SPACES 523

by unitary operators Wτ (m) : Hτ → Hτ , m ∈ MCG(Cg,n) constructed in
[7, 41,77].

The resulting quantum theory does not depend on the underlying trian-
gulation in an essential way. This follows from the existence of a family of
unitary operators Uτ2,τ1 that satisfy

U−1
τ2τ1 ·Wτ1(m) · U−1

τ2τ1 = Wτ2(m). (6.11)

The operators Uτ2,τ1 describe the change of representation when passing from
the quantum theory associated to triangulation τ1 to the one associated to
τ2 [7, 20, 41,77]. They allow us to identify Hτ2 � Hτ1 =: H(Cg,n).

6.5 Quantizing regular functions on Hom(π1(C), PSL(2, C))

6.5.1 Quantizing traces of holonomies

In order to define a set of generators for the quantized algebra Ob of observ-
ables one needs to define the length operators Lτ,γ associated to simple closed
curves γ. The operators Lτ,γ should be representable as Laurent polynomi-
als in the variables ue = e±

1
2
ze with positive coefficients that reproduce the

expressions (6.9) in the classical limit. It is important to ensure that the def-
inition of the operators Lτ,γ is independent of the triangulation in the sense
that

U−1
τ2τ1 · Lτ1,γ · U−1

τ2τ1 = Lτ2,γ ,

where Uτ2τ1 is the unitary operator relating the representation associated
to triangulation τ1 to the one associated to τ2. This ensures that the col-
lection of length operators Lτ,γ associated to the different triangulations τ
ultimately defines an operator Lγ that is independent of the triangulation.
A general construction of length operators which fulfills this requirement
was given in [77]. This construction coincides with the earlier constructions
in [7, 8] whenever both can be applied.

6.5.2 The length representation

It can be shown that the length operators associated to non-intersecting
simple closed curves commute with each other. This together with the self-
adjointness of the length operators allows one to introduce bases of eigen-
functions for the length operators.



524 J. TESCHNER

One gets one such basis for each marking σ of Cg,n. A key result for the
connection between quantum Liouville and quantum Teichmüller theory is
that for each marking σ there exists a basis for Hg,n ≡ H(Cg,n) spanned
by σ〈l|, l = (l1, . . . , l3g−3+n) which obeys the factorization rules of confor-
mal field theory [77]. This means in particular that for any pair σ2, σ1

of markings one can always decompose the unitary transformation Vσ2σ1

which relates the representation corresponding to marking σ1 to the one
corresponding to σ2 as a product of operators which represent the elemen-
tary fusion, braiding and modular transformation moves introduced in [50].
The unitary transformation Vσ2σ1 can be represented as an integral operator
of the form

ψσ2(l2) =
∫
dμ(l1) Vσ2σ1(l2, l1)ψσ1(l1). (6.12)

The explicit expressions for the kernel Vσ2σ1(l2, l1) are known for the cases
where σ2 and σ1 differ by one of the elementary moves.

With the help of (6.12) we may describe the unitary operators repre-
senting the action of the mapping class group as integral operators of the
form

ψσ(l2) =
∫
dμ(l1) Vm.σ,σ(l2, l1)ψσ(l1), (6.13)

where m.σ is the image of the marking σ under m ∈ MCG(C), and we
are taking advantage of the fact that the length representations for Hg,n

associated to markings σ and m.σ are canonically isomorphic.

6.6 Kähler quantization of the Teichmüller component

6.6.1 Quantization of local observables

In analogy to the coherent state representation of quantum mechanics it is
natural to consider a quantization scheme in which states are represented
by holomorphic multi-valued wave-functions5

Ψ(q) = 〈 q|Ψ 〉, q = (q1, . . . , q3g−3+n), (6.14)

in which the operators qr corresponding to the observables qr introduced
in Section 3 are represented as multiplication operators, and the operators
Hr associated to the conjugate “momenta” Hr should be represented by the
differential operators b2∂qr in such a representation,

qrΨ(q) = qrΨ(q), HrΨ(q) = b2
∂

∂qr
Ψ(q). (6.15)

5More precisely sections of a projective line bundle on Tg,n.
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The state 〈 q| introduced in (6.14) is thereby identified as an analog of
a coherent state (eigenstate of the “creation operators” qi) in quantum
mechanics.

Formulae (6.15) turn the space of holomorphic wave-functions obtained
in the Kähler quantization of the Teichmüller spaces into a module over
the ring of holomorphic differential operators on Tg,n. Let P be the projec-
tive connection ∂2

y + t(y), and let the difference P − PS w.r.t. a reference
projective connection PS be expanded as

t(y)− tS(y) =
3g−3+n∑

r=1

ϑr(y)Hr.

We may then represent the corresponding quantum operator obtained in the
Kähler quantization of the Teichmüller spaces as

T(y)− b−2tS(y) =
3g−3+n∑

r=1

ϑr(y)
∂

∂qr
. (6.16)

The operator T(y) may be called the “quantum energy-momentum tensor”.
For g = 0 we will find the following operator as the counterpart of the clas-
sical energy-momentum tensor b−2tϕ,

T(y) =
n−1∑
r=1

(
Δr

(y − zr)2
+

1
y − zr

∂

∂zr

)
, (6.17)

where, as before, zn−1 = 1 and zn−2 = 0. We have introduced the quantum
conformal dimensions Δr which are related to the δr by δr = b2Δr +O(b2).
This should be compared with the Virasoro Ward identities (5.13). Com-
parison of (6.17) and (5.13) indicates that the D-module structure onM0,n

produced by the the Kähler quantization of T0,n can be identified with the
D-module structure on the space of Virasoro conformal blocks.

6.6.2 Relation between length representation and Kähler
quantization

The relation between length representation and the Kähler quantization is
described by means of the wave functions

Ψσ
l (q) ≡ 〈 q | l 〉σ. (6.18)

The following characterization of these matrix elements was obtained in [76]:

Ψσ
l (q) = Fσ

q (p), (6.19)
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where Fσ
q (p) is the Liouville conformal block associated to a marking σ with

fixed intermediate dimensions given by the parameters pγ , γ ∈ Cσ. These
parameters are related to the lengths ca of the boundary components and to
the lengths lγ around the curves defining the pants decomposition respec-
tively as

βs =
Q

2
+ i

cs
4πε1

, pγ =
lγ

4πε1
, (6.20)

where s = 1, . . . , n and γ ∈ Cσ.

Let me quickly recall the argument which leads to the identification (6.19).
It is based on the observation that the wave-function Ψσ

l (q) ≡ 〈 q | l 〉 can be
characterized as the unique solution of the following Riemann–Hilbert-type
problem:

• The mapping class group element m acts on the wave-functions Ψ(z)
in the Kähler quantization in the natural way as a deck transforma-
tion. This means if Um is the operator representing an element m of
the mapping class group, we should have (UmΨ)(z) ≡ Ψ(m.z), with
Ψ(m.z) being the analytic continuation of Ψ(z) along the path associ-
ated to m. We may, on the other hand, describe the action of Um on
Ψσ

l (z) by means of (6.13). The consistency of these two descriptions
implies that the monodromy action Ψσ

l2
(m.z) can be represented as

Ψσ
l2(m.z) =

∫
dμ(l1) Vm.σ,σ(l2, l1) Ψσ

l1(z).

• The asymptotic behavior of Ψσ
l (z) can be determined by quantizing

the classical relation

qγHγ ∼
(
lγ
4π

)2

− 1
4
,

which is valid to leading order in the limit lγ → 0 if qγ is the gluing
parameter that vanishes when lγ → 0, and Hγ is the corresponding
accessory parameter. We refer to [76] for more details and references.

This defines a Riemann–Hilbert-type problem that characterizes the left-
hand side of (6.19) uniquely. It remains to show that the right-hand side
of (6.19) is a solution to this Riemann–Hilbert problem. This was done
in [74,75].
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6.7 Intermediate summary

It may be helpful to summarize the main arguments in a schematic form.
On the one hand, we have seen that the Kähler quantization, which can be
understood as the quantization of the holomorphic infinitesimal structure of
Tg,n, produces the action of the the ring of holomorphic differential operators
on Tg,n realized on the wave-functions of the quantum Teichmüller theory,
in other words

Quantization of local
observables like Hr

→
Ward identities /
D-module structure

The complex structure used here is the one from the Teichmüller theory.
The canonical quantization of Hom(π1(C),PSL(2,R))0, on the other hand,
yields

Quantization of global
observables like Lγ

→
Representation of the algebra
Ob of quantum loop operators

The realization of the algebra Ob deforms the structure of the ring O of
algebraic functions on Hom(π1(C),PSL(2,C)) in a natural way. The quan-
tization of the global observables represents a quantization of Hom(π1(C),
PSL(2,C)) in complex structure J with symplectic form ΩJ .

Different representations for the resulting Hilbert space are obtained by
diagonalizing different maximal subsets of commuting loop operators. Such
subsets are in correspondence with pants decompositions. The resulting
representation of the groupoid of changes of pants decompostion (more pre-
cisely markings) induces canonically a representation of the mapping class
group via (6.13).

Classically, there is a natural isomorphism between Hom(π1(C),
PSL(2,R))0 and the Teichmüller space T (C). Compatibility of canonical
quantization of Hom(π1(C),PSL(2,R))0 and Kähler quantization of Tg,n

then defines a Riemann–Hilbert-type problem as discussed in Section 6.6.2.
The Virasoro conformal blocks are the unique solution of this Riemann–
Hilbert-type problem.
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6.8 Quantization of the isomonodromic deformation problem

6.8.1 Quantization of the local observables

Let us return to the example of the Garnier system discussed in Section 3.6.
The phase space in question can be identified with Hom(π1(C0,n),PSL(2,C))
via the monodromy map for the differential operator ∂2

y + t(y). It will be
useful to start by considering the cases 0 < d < n− 3 first. We may then
parameterize t(y) in terms of H1, . . . , Hn−3−d and κ1, . . . , κd, and the corre-
sponding conjugate coordinates z1, . . . , zn−3+d, w1, . . . , wd. The remaining
variables Hn−2−d, . . . , Hn−3 are determined by the constraints (3.16), and
everything depends on the parameters zn−2−d, . . . , zn−3.

Contemplating a possible Kähler quantization of the Hitchin moduli space
defined by the complex structure J and the symplectic structure �1, we are
lead to propose a quantization scheme in which states are represented by
holomorphic multi-valued wave-functions

Ψ(w, z) = 〈w, z |Ψ 〉, w = (w1, . . . , wd), z = (z1, . . . , zn−3−d), (6.21)

such that the operators wr corresponding to the classical observables wr are
represented as multiplication operators, and the operators kr associated to
the momenta κr should be represented by the differential operators b2∂wr in
such a representation,

wrΨ(w, z) = wrΨ(w, z), krΨ(w, z) = b2
∂

∂wr
Ψ(w, z). (6.22)

The quantum operators zs and Hs representing zs and Hs, respectively,
should likewise be represented as

zsΨ(w, z) = zsΨ(w, z), HsΨ(w, z) = b2
∂

∂zs
Ψ(w, z), (6.23)

for s = 1, . . . , n− 3− d. The constraints (3.16) are quantized as

n∑
s=1

(
b2Δs

(wr − zs)2
+

1
wr − zs

Hs

)

+ b4
∂2

∂w2
r

+
d∑

r′=1
r′ �=r

(
b2

1
wr − wr′

∂

∂wr′
− 3 + 2b2

4(wr − wr′)2

)
= 0, (6.24)

for r = 1, . . . , d. These equations reproduce equations (3.16) or equiva-
lently (3.24) in the limit b→∞. The quantum correction proportional to
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b2 was introduced in the numerator of the last terms to ensure commuta-
tivity of the operators in (6.24). Equations (6.24) define the Hamiltonians
Hn−2−d, . . . ,Hn−3 as functions of the remaining variables.

The wave-functions will depend on zn−2−d, . . . , zn−3 as parameters. We
propose that this dependence should be expressed by equations of the form

b2
∂

∂zr
Ψ(w, z) = HrΨ(w, z), (6.25)

with Hn−2−d, . . . ,Hn−3 defined by (6.24). Indeed, let us note that we could
equally well have chosen other subsets of {H1, . . . , Hn} and {z1, . . . , zn}
as independent sets of conjugate variables. The consistency with (6.23)
requires (6.25).

The system of equations (6.24) is then equivalent to the equations

⎡
⎢⎢⎣

n∑
s=1

(
Δr

(wr − zs)2
+

1
wr − zs

∂

∂zs

)
+ b2

∂2

∂w2
r

−
d∑

r′=1
r′ �=r

(
3 + 2b2

4b2(wr − wr′)2
− 1
wr − wr′

∂

∂wr′

)
⎤
⎥⎥⎦Ψ(w, z) = 0, (6.26)

which are equivalent to the null vector decoupling equations satisfied by the
Liouville conformal blocks (5.43).

In the case d = n− 3 we may regard the second-order differential opera-
tors Hr as natural quantization of the Hamiltonian functions of the Garnier
system. The differential equations (6.25) represent the change of the wave-
function under the change of representation induced by a change of the
underlying complex structure, analogous to the way the KZ equations were
derived by Hitchin in [35]. We will see later that equations (6.25) are indeed
essentially equivalent to the KZ equations in the SL(2) WZNW model.

6.8.2 Quantization of the global observables

In the maximal case d = n− 3, it seems natural to identify the space of states
with the space spanned by a complete set of solutions to equations (6.23).
We have previously seen in Section 5.4 how to identify a set of solutions to
(6.23) that is complete in the sense that changes of the pants decomposition
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are realized by linear transformations from one set of solutions to another.
The conformal blocks Fσ

q,w(p, δ) generate a set of solutions which has simple
asymptotic behavior in the boundary component of T0,n corresponding to
the marking σ. The analytic continuation of Fσ1

q,w(p, δ) into the boundary
component of T0,n corresponding to the marking σ2 can be represented as a
linear combination of the solutions Fσ2

q,w(p, δ).

There is a natural Hermitian form on this space of solutions that is
invariant under the action of the mapping class (braid) group, given by the
Liouville-correlation functions in a similar way as in (6.2). At the moment
it is not clear to the author if this Hermitian form is positive definite for
d > 0. For d = 0 it certainly is.

As in Section 5.3 one can define quantum loop operators acting on the
space of states defined above. These are realized as difference operators.
In the classical limit b→∞ we get a distinguished point in the real slice
in Hom(π1(C0,n),PSL(2,C)) defined by the extremum of the absolute value
squared of Fσ

q,w(p, δ). This point lies in the component of Hom(π1(C0,n),
PSL(2,R)) labeled by the integer d. The quantum theory described above
can therefore be interpreted as a quantization of this component of
Hom(π1(C0,n),PSL(2,R)).

We arrive at a very natural interpretation of the parameterization of the
wave-functions in terms of their asymptotic behavior at the boundaries of
M0,n. The “interactions” between degrees of freedom in the isomonodromic
deformation system go to zero near the boundaries ofM0,n. One may there-
fore classify the elements of a basis for the space of states in terms of the
asymptotics of the eigenvalues of the quantized Hamiltonians. The represen-
tation of the space of states in terms of asymptotic eigenvalues coincides with
the representation for the space of conformal blocks in terms of the eigenval-
ues of the quantum loop operators. The operators representing the transition
from one pants decomposition to another are thereby interpreted as analogs
of scattering operators relating “In”- and “Out”-representations of the space
of states.

7 Geometric Langlands correspondence and conformal field
theory

In this section, we will try to explain some of the relevant features of the
conformal field theory approach to the geometric Langlands correspondence
initiated by Beilinson, Drinfeld, Feigin and Frenkel to physicists, following
mostly the review [24].
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7.1 Geometric Langlands correspondence and quantization of the
Hitchin system

The correspondence between opers and the Hitchin eigenvalue equations
is part of the geometric Langlands correspondence, for the case at hand
schematically

Lg− opers −→ D −modules on BunG (7.1)

The D-modules on BunG in question are in the case of g = 0 generated
by the differential operators Dr = Hr − Er. For the case n = 0, Beilinson
and Drinfeld construct 3g − 3 differential operators Hr, r = 1, . . . , 3g − 3 on
the line bundle K

1
2 on BunG, which are mutually commuting and have the

Hitchin Hamiltonians as their leading symbols.

7.2 Conformal blocks for the current algebra

7.2.1 Definition of the conformal blocks

Let ĝ = ŝl2,k be the central extension of the loop algebra of sl2 with level k.
The generators of ĝ will be denoted Ja

n, n ∈ Z, a = −, 0,+, the relations are

[ J0
n, J

0
m ] =

k

2
nδn+m,0,

[ J0
n, J

±
m ] = ±J±

n+m,
[ J+

n , J
−
m ] = 2J0

n+m + knδn+m,0. (7.2)

For representations Rr, r = 1, . . . , n of ĝ and Riemann surface C with n
marked points at positions z1, . . . , zn, one defines the conformal blocks as lin-
ear functionals G : R[n] ≡ ⊗n

r=1Rr → C that satisfy the invariance
property

G(η · v) = 0 ∀v ∈ R[n], ∀η ∈ gout, (7.3)

where gout is the Lie algebra of g-valued meromorphic functions on C with
poles only at z1, . . . , zn. The action of η on ⊗n

r=1Vr → C is defined by taking
the Laurent expansions of η at the points z1, . . . zn, w.r.t. local coordinates
tr,

η(t) =
∑
k∈Z

dim(g)∑
a=1

tkrJ
a ηa

r,k ∈ g⊗ C((tr)), (7.4)
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to which we may associate the element

J [ηr] :=
∑
k∈Z

dim(g)∑
a=1

Ja
k η

a
r,k ∈ ĝk, (7.5)

Denoting by Jr[ηr] the operator which acts on R[n] non-trivially only on the
rth tensor factor of R[n], where the action is given by J [ηr], we finally get
η =

∑n
r=1 Jr[ηr]. It can be shown that the central extension vanishes on the

image of the Lie algebra gout in
⊕n

r=1 ĝk, making the definition consistent.

7.2.2 Twisted conformal blocks

In order to obtain differential equations for the conformal blocks from the
conformal Ward identities one possible solution is to modify the definition
(7.3) by twisting gout by an element E of BunG, which means to use (7.3)
with gout replaced by

gEout = Γ(C \ {z1, . . . , zn}, gE), gE = E ×
G

g. (7.6)

The space of linear functionals that satisfy the invariance conditions in (7.3)
with η ∈ gEout will be denoted CB(R[n], C, E).

Concerning the dependence on the choice of E one can a priori only say
that one has defined the conformal blocks as a sheaf over BunG. This
means that locally over BunG we assign to each bundle E the vector space
CB(R[n], C, E), but the spaces assigned to “neighboring” bundles E and E ′
do not need to have the same dimension. The key observation to be made
here is that the twisting of conformal blocks by elements of BunG offers a
canonical way to define an action of the differential operators on BunG on
the sheaf of conformal blocks. In mathematical language this is expressed as
the statement that the space of conformal blocks becomes a D-module. In
physicists terms this can e.g., be expressed more concretely as follows. Let
us consider conformal blocks with n+ 1 marked points z0, . . . , zn, where the
vacuum representation is assigned to the marked point z0. Then for each
differential operator Dη on BunG there exists an element J [η] ∈ ĝk such that

Dη ·
〈

Φ0(v0|z0)
n∏

r=1

Φr(vr|zr)
〉E

Cg,n+1

=

〈
Φ0(Jηv0|z0)

n∏
r=1

Φr(vr|zr)
〉E

Cg,n+1

.

(7.7)

The point is that (7.7) is to be read as the definition of the action of the
differential operator Dη on the conformal blocks. The construction of the dif-
ferential operators Dη in (7.7) is non-trivial in general. In the mathematical
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literature there is a construction named “localization functor” which pro-
duces the corresponding sheafs of twisted6 differential operators on BunG

under rather general conditions.

In general it is not possible to exponentiate the infinitesimal action of of
the affine Lie algebra ĝ given by (7.7) to a projective representation of the
corresponding loop group. This means that in general one cannot define a
parallel transport that would allow one to regard the locally defined spaces
of conformal blocks as a vector bundle over BunG. For the cases of interest,
however, it will turn out that the Lie algebra action (7.7) can be exponen-
tiated at least locally, away from a certain divisor of singularities in BunG.

7.2.3 More concrete representation of twisted conformal blocks

In the cases where the Lie algebra action on the vacuum representation R0

exponentiates to a projective representation of the corresponding loop group,
one may represent the relation between twisted and untwisted conformal
blocks more concretely e.g., for n = 1

〈
Φ0(v0|z0)

〉E
Cg,1

=
〈
Φ0

(
eJ [η]v0|z0

)〉
Cg,1

, (7.8)

where J [η] =
∑

n

∑
a J

a
nη

a
n. eJ [η] is an operator, which represents an element

of the (centrally extended) loop group on V0. eJ [η] can be factorized as
eJ [η] = NeJ [η<]Gin, where Gine0 = e0 and N ∈ C. Note that BunG can be
represented as double quotient,

BunG � Gout \G((t0)) / G[[t0]], (7.9)

where Gout is the group of algebraic maps Cg,n\ {z0} → G, and t0 is a local
coordinate around z0 vanishing there. The representation (7.9) follows from
the fact that any G-bundle can be trivialized on the complement of a disc
D0 cut out of the surface C. This means that the transition function can
be represented by means of an element of the loop group assigned to the
boundary of the disc D0. The double quotient representation (7.9) implies a
similar representation for the tangent space TEBunG as gout \ g((z0))/g[[z0]].
We may therefore represent tangent vectors from TEBunG in terms of deriva-
tives w.r.t. the parameters ηa

n introduced in (7.8), which explains how (7.7)
comes about.

6That means roughly “taking care of the central extension”.
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If all representations Rr, r = 1, . . . , n are integrable one may similarly
introduce the twisting via

〈
n∏

r=1

Φr(vr|zr)
〉E

Cg,n

=

〈
n∏

r=1

Φr(eJ [ηr]vr|zr)
〉

Cg,n

. (7.10)

In this case one should replace (7.9) by

BunG � Gout \
n∏

r=1

G((tr)) /
n∏

r=1

G[[tr]], (7.11)

where tr are local coordinates around the points zr. The representation
(7.11) comes from the existence of a trivialization of the bundle E on the
complement of the union

⋃n
r=1 Dr of small discs around the points zr.

7.2.4 Conformal blocks versus functions on subsets of BunG

It will also be important for our aims that the twisting allows us to express
the values of the conformal blocks GE on arbitrary vectors v ∈ R[n] in terms
of derivatives on BunG. This means that for each v ∈ R[n] there exists a
differential operator DE(v) on BunG such that

GE(v) = DE(v)GE(e[n]), (7.12)

where e[n] = en ⊗ · · · ⊗ e1 is the product of highest weight vectors.

Given a holomorphic bundle E , a neighborhood U of E in BunG and a holo-
morphic function G on U we may turn (7.12) around and use it to define a
conformal block. This means that large classes of conformal blocks actually
come from (locally defined) functions on BunG. The point is that the dou-
ble quotient representation (7.9) of BunG identifies this space as a locally
symmetric space of the loop group, with infinitesimal structure given by the
loop algebra g⊗ C((t)). The relation (7.12) describes how a holomorphic
function G can be described in terms of this infinitesimal symmetry.

This suggests that one can use conformal blocks as a basis for the space
of holomorphic “functions”, or rather sections of bundles, on BunG. One
could thereby put conformal field theory in analogy to the harmonic analysis
on locally symmetric spaces. The issue raised by this point of view is the
possibility to extend these structures globally over BunG or some compact-
ification thereof, possibly allowing “controllable” singular behavior at some
divisors.
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7.3 Realization of the geometric Langlands correspondence from
conformal field theory

The representation theory of ĝk at the critical level k = −2 has remarkable
features. The universal enveloping algebra Ucrit(ŝl2) ≡ U(ŝl2)/(k + 2) has a
large center generated by the modes tn of the rescaled energy-momentum
tensor

t(y) = − 1
k + 2

T (y) =
∑
n∈Z

tny
−n−2. (7.13)

This means that there exist representations πt in which all the generalized
Casimir elements tn are realized as multiples of the identity. The generating
function t(y) =

∑
n∈Z

tny
−n−2 can be used to parameterize such representa-

tions.

One may then attempt to construct the conformal blocks with insertions
from this class of representations,

〈
n∏

r=1

Φr,tr(vr|zr)
〉
, (7.14)

where Φr,tr is the vertex operator associated to a representation πtr with
fixed choice of a generating function tr(y). The key point to observe about
such conformal blocks is that they can be non-vanishing if, and only if,
the generating functions tr(y) are the Laurent expansions near the marked
points zr of an oper ∂2

y + t(y) which is globally defined on the surface C.

The correspondence between this oper ∂2
y + t(y) and the space of confor-

mal blocks associated to C and the choice of a collection of representations
assigned to the marked points zr,

Lg− opers −→ conformal blocks of ĝcrit (7.15)

is the origin of the geometric Langlands correspondence in the approach of
Beilinson and Drinfeld. It remains to remember that spaces of conformal
blocks canonically represent D-modules to arrive at (7.1). The differential
equations following from (7.7) include in particular the eigenvalue equations
for the quantized Hitchin Hamiltonians. For g = 0 one finds that the eigen-
values Er are given given by the residues of the oper ∂2

y + t(y) at zr.

7.3.1 Hecke action

There is a class of natural operations on the D-modules on BunG called
Hecke functors. We refer to [24] for more discussion of the Hecke functors
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and their realization on spaces of conformal blocks at the critical level. For
the moment let us only remark that in the cases where the D-modules are
produced by the conformal blocks of ĝk at the critical level k = −2 one may
describe the Hecke functors as the modification of the conformal blocks by
the insertion of certain representations with rather special properties. We
will later (in Section 8.5) discuss natural analogs of the Hecke functors on
the spaces of conformal blocks for ĝk at the non-critical level.

Restricting to g = sl2 for simplicity, the representations in question are
labeled by half-integers j and denoted Wj . As representations of the affine
algebra ĝcrit these representations are just the vacuum representation R0,
but they come equipped with a 2j + 1-dimensional “multiplicity”-space Vj

which is a module for the Lie algebra sl2,

Wj � R0 ⊗ Vj . (7.16)

The Lie algebra sl2 that Vj is a module of has no direct relation with the
sl2-subalgebra of the affine algebra ŝl2,k that we started from. It is identi-
fied as sl2-representation by its categorical properties, in particular by its
behavior under taking tensor products. In the case that one is considering
a general affine algebra ĝcrit one finds similarly

Wλ � R0 ⊗ Vλ. (7.17)

with Vλ being a module of the Langlands dual Lie algebra Lg to g.

One may then consider conformal blocks with the representations Wj

inserted, 〈
Ξj(v|y)

n∏
r=1

Φr(vr|zr)
〉

E

. (7.18)

The special properties of the representations Wj imply that the spaces of
conformal blocks with and without insertion of Wj are related as

CBE(Wj ⊗R[n]) � Vj ⊗ CBE(R[n]). (7.19)

The crucial Hecke eigenvalue property of the geometric Langlands corre-
spondence can loosely speaking be described as the statement that under a
variation of the insertion point y of Wj the local isomorphisms (7.19) glue
together to generate a local system E. If CB(R[n], C, E , P ) is the space of
conformal blocks associated to a given oper P = ∂2

y + t(y) one gets the local
system corresponding to the monodromy representation of ∂2

y + t(y). The
local system E associated to the oper ∂2

y + t(y) therefore plays a role anal-
ogous to an eigenvalue. This is roughly what is called the Hecke eigenvalue
property in the context of the geometric Langlands correspondence.
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8 Quantum geometric Langlands correspondence

8.1 The KZ equations

In the case of non-critical level k �= −2 we can use the Sugawara construction
to realize the generators Ln, n ∈ Z of the Virasoro algebra within the univer-
sal enveloping algebra U(ĝk). Recall that the Virasoro algebra uniformizes
infinitesimally the moduli spaceMg,n of Riemann surfaces in a way that is
similar to the way the current algebra uniformizes BunG, as expressed in
(5.11) above. In the same way as described in Section 7.2 for the case of the
current algebra one may use (5.11) in order to define a (twisted) action of
the differential operators onMg,n on the spaces of conformal blocks.

The fact that the Virasoro generators Ln can be expressed as bilinear
expressions in the generators Ja

n implies relations between the differential
operators representing the action of vector fields onMg,n and BunG, respec-
tively, which take the form of the KZB equations, schematically

(k + 2)
∂

∂zr
Φ(x|z) = Hr Φ(x|z). (8.1)

These equations allow us to “parallel transport” conformal blocks overMg,n.
Any given solution to equations (8.1) in open subsets of BunG ×Mg,n

defines a conformal block according to our discussion in Section 7.2. We
will see, however, that equations (8.1) have for fixed point in Mg,n regular
singularities in BunG. This is related to the fact that the action of ĝk on the
spaces of conformal blocks defined in (7.7) does not exponentiate to a group
action in general. However, away from the singularities of equation (8.1)
it is certainly possible to integrate equations (8.1) in order to extend local
solutions to solutions defined on some covering space of BunG ×Mg,n \ S,
where S is a certain divisor of singularities.

8.2 Conformal blocks for genus zero

8.2.1 Twisting parameters in genus zero

We will discuss conformal blocks for the SL(2)-WZNW model in g = 0
denoted as

G(x|z) ≡
〈
Φjn(xn|zn) · · ·Φj1(x1|z1)

〉
. (8.2)
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The parameters xr represent a non-minimal twisting of the conformal blocks
as in (7.10). In the cases where the representation Rr has a highest weight
vector er we may introduce the dependence on the variables xr via Φjr(xr|zr)
≡ Φjr(exrJ−

0 er|zr). The parameters xr represent the choice of parabolic
structures near the marked points zr. As vector bundles on a surface of
genus zero are always trivial, we can take the coordinates xr to parameter-
ize an open dense subset of BunG(C0,n). The current algebra Ward identities
now take the familiar form

〈
Ja(t) Φjn(xn|zn) . . .Φj1(x1|z1)

〉
=

n∑
r=1

J a
r

t− zr
〈
Φjn(xn|zn) . . .Φj1(x1|z1)

〉
,

(8.3)

where J a
r are the differential operators defined in (4.7). The conformal

blocks (8.2) satisfy the KZ equations (8.1) with differential operators Hr

being explicitly given in (4.8).

8.2.2 More general classes of representations

So far we had assumed that the representations Rr of the current algebra
are all of highest weight type. It is worth noting that the formalism easily
allows one to cover representations of principal or complementary series
type, too. Let, for example, Rr be a representation of ŝl2,k induced from
a principal series representation of SL(2,R). We may assume that the zero
mode sub-algebra sl2 ⊂ ŝl2,k generated by the Ja

0 is realized on functions
f(xr) ∈ Sr by the differential operators J a

r defined in (4.7), with Sr being
the Schwartz space of smooth functions on R with rapid decay. The dual
space of distributions S†r contains the delta-distributions δx with support
at x. In this case, we should identify Φj(x|z) with Φj(δx|z), with Φj(v|z)
being the vertex operator associated to a vector v ∈ R†

j , where R†
j is the

Hermitian dual of Rj .

Correlation functions as considered in (8.2) above are then to be under-
stood as distributions on a Schwartz space of functions in n variables
x1, . . . , xn. The type of representation one wants to consider will determine
the precise space of solutions of the KZ equations that may be relevant for
physical applications. It may, in general, contain distributional solutions
supported on subspaces of BunG(C).

8.2.3 Singularities

In the case g = 0 it is possible to analyze the singularities of the differential
equations (8.1) which prevent one to extend a local solution unambigously
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over BunG(C0,n) in detail. In the case n = 4, for example, one may recall
the singularity at x = z found in Section 4.3.1. This is the simplest example
of a phenomenon that has also been discussed in the context of the geo-
metric Langlands correspondence, where it figures under the name of the
“global nilpotent cone”, see [24, Section 9.5] for a discussion and further
references. The global nilpotent cone is the locus in BunG(C) where all
Hitchin Hamiltonians can vanish. Noting that the leading symbol of the
differential operators Hr in the KZ equations coincides with the Hitchin–
Hamiltonians [35], we are led to identify the singularity at x = z exhibited
in (4.13) with the global nilpotent cone in the example g = 0, n = 4.

8.2.4 The Whittaker model

By means of (formal) Fourier transformation μj+1
∫
dxr e

μrxr one can pass
to a representation in which the current J−(t) is represented diagonally,

〈
J−(t) Φ̃jn(μn|zn) . . . Φ̃j1(μ1|z1)

〉
=

n∑
r=1

μr

t− zr
〈
Φ̃jn(μn|zn) . . . Φ̃j1(μ1|z1)

〉
.

(8.4)
This representation will be called the Whittaker model.

The precise definition of the Fourier-transformation is delicate since the
dependence of the conformal blocks on the variable xr is multivalued in
general. One would need to choose an appropriate branch. We plan to
discuss this important issue in more detail elsewhere.

This sublety does not affect the relation between the differential equa-
tions characterizing the conformal blocks in the two representations. The
conformal blocks must in particular satisfy the KZ equations (8.1) with
differential operators Hr represented via (4.16) and (4.15). The subtleties
coming from additional singularities in the dependence on the variables xr

will have counterparts in this representation as well. However, as will be
explained below, there will now be a neat way to handle these singularities
in this representation.

8.2.5 Gluing construction

We are interested in the class of solutions that are properly factorizable in
the sense that they have power series representations in terms of the gluing
parameters defined by a pants decomposition of the surface Cg,n. We will
in the following construct sets of properly factorizable solutions that are
complete in a suitable sense. It is possible to construct such solutions by
means of a gluing construction which is analogous to the one discussed in
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Section 5.2 for the Virasoro algebra. However, in order to get sufficiently
large families of solutions, one also needs to consider representations of prin-
cipal series type, as discussed in a related case in [73]. We plan to discuss
this important point in more detail elsewhere.

8.3 Solutions to the KZ equations from solutions to null vector
decoupling equations

In what follows we will describe a construction of a sufficiently large set
of factorizable solutions to the KZ-equations (8.1) from the solutions to
the BPZ-equations (5.24). In order to formulate it, we shall again take
advantage of the fact that projective invariance allows us to reconstruct
the conformal blocks introduced in (8.2) from their limits when zn →∞,
xn →∞. The Fourier-transformation with respect to the remaining n− 1
variables x1, . . . , xn−1 will be denoted as G̃(μ|z), μ = (μ1, . . . , μn−1), z =
(z1, . . . , zn−1) in the following. The main claim is that the ansatz

G̃(μ|z) = u δ

(
n−1∑
i=1

μi

)
Θn(y|z)F(y|z), (8.5)

yields a solution to the KZ-equations (8.1) from any given solution F(y|z)
to the BPZ-equations (5.24). The function Θn(y|z) that appears here is
defined as

Θn(y|z) =
∏

r<s≤n−1

z
1

2b2
rs

∏
k<l≤n−3

y
1

2b2

kl

n−1∏
r=1

n−3∏
k=1

(zr − yk)
− 1

2b2 . (8.6)

The claim will hold provided that the respective variables are related as
follows:

(1) The variables μ1, . . . , μn−1 are related to y1, . . . , yn−3, u via

n−1∑
r=1

μr

t− zr
= u

∏n−3
k=1(t− yk)∏n−1
r=1 (t− zr)

. (8.7)

In particular, since
∑n−1

r=1 μr = 0, we have u =
∑n−1

r=1 μrzr.
(2) The Liouville parameter b is identified with the H+

3 parameter b2 =
−(k + 2)−1.
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(3) The Liouville momenta are given by

αr ≡ α(jr) := b(jr + 1) +
1
2b
. (8.8)

The fact that (8.5) solves the KZ equations (8.1) is a simple generalization
of Sklyanin’s observation described in Section 4.4 [59,66].

Remark 8.1. Comparing with [59] one should note that the formulae in
this paper yield the formulae above in the limit zn →∞ and xn →∞. It is
interesting to note that the resulting formulae look very similar except that
we have only n− 3 variables yk here rather than n− 2 in [59]. In order to
understand the relation between the two representations note that the solu-
tions constructed in [59] automatically satisfy the constraints of invariance
under the global SL(2). This follows indirectly from the proof of the main
result in [59]. To see how this works one may start by considering the case
n = 3. In this case, one may note that the condition

∑n−1
r=1 D+

r G̃(μ|z) = 0
is a second-order differential equation on the variables μr, which is true as
a consequence of the fact that the corresponding Liouville conformal block
satisfies a BPZ null vector decoupling equation. The case of arbitrary n can
be reduced to n = 3 by means of the factorization argument used in [59].

This being understood, we will in the following mostly use the formulation
of reference [59]. The relevant formulae are obtained from the formulae
above by the replacement n→ n+ 1.

8.3.1 Bases for the space of conformal blocks from the gluing
construction

We may then define a family of ŝl2,k-conformal blocks by means of the
formula
〈
Φjn(μn|zn) . . .Φj1(μ1|z1)

〉
Ĝ

= δ

(
n∑

i=1

μi

)
uΘn(y|z)

〈
e2αnφ(zn) · · · e2α1φ(z1) e−

1
b
φ(yn−2) · · · e− 1

b
φ(y1)

〉
Ĝ
,

(8.9)

where the conformal blocks on the right-hand side have been defined in
Section 5.4.

We are looking for properly factorizable solutions i.e., solutions that have
a simple behavior at the boundary component of Teichmüller space cor-
responding to a chosen marking σ. Consider e.g., a degeneration where
z2 − z1 = O(ε) with ε→ 0. Considering formula (8.7) for values of t such
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that t− z1 = O(ε), we may note that the left-hand side is of order O(ε−1),
whereas the right-hand side would be of orderO(ε−2) unless there is an index
j such that yj − z1 = O(ε). Considering a degeneration of P

1 \ {z1, . . . , zn}
into pairs of pants connected by thin tubes we would similarly find that
each pair of pants will contain exactly one of the insertion points yj of the
degenerate fields e−

1
b
φ(yj) in (8.9). Specializing the parameterization of the

solutions to the BPZ-equations introduced in Section 5.4 accordingly allows
us to get a parameterization for a complete set of solutions to the KZ equa-
tions (8.1).

8.3.2 Critical level limit

We want to explain how formula (8.5) reproduces the geometric Langlands
correspondence in the limit b2 →∞ corresponding to k → −2. We may, on
the one hand, note that in the limit k → −2 we may solve the KZ equations
in the form

G̃(μ|z) ∼ exp(−b2S(z))Ψ(μ|z)(1 +O(b−2)) (8.10)

provided that Ψ(x|z) is a solution to the Gaudin eigenvalue equations HrΨ =
ErΨ with Er given in terms of S(z) by Er = −∂zrS(z). The system of these
eigenvalue equations represents the D-module on the right-hand side of (7.1).

Considering the right-hand side of (8.5), on the other hand, we may use
the discussion of the semiclassical limit of Liouville conformal blocks in
Section 5.5. It shows how the opers on the right-hand side of (7.1) are
reproduced.

8.4 Modular duality

8.4.1 A dual WZNW model from Liouville theory

An interesting consequence pointed out in [27] of the duality of Liouville
theory under b→ b−1 is that one can build a second, dual WZNW model
from Liouville theory by replacing (8.9) by

〈
Φ̃jn(μn|zn) . . . Φ̃j1(μ1|z1)

〉dual

G

= δ

(
n∑

i=1

μi

)
u Θ̃n(y|z)

〈
e2αnφ(zn) · · · e2α1φ(z1) e−bφ(yn−2) · · · e−bφ(y1)

〉
G
,

(8.11)
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where Θ̃n is obtained from the definition (8.6) by replacing b→ 1/b on the
left-hand side, and the parameters jr are related to the αr via

αr = b−1(jr + 1) +
b

2
. (8.12)

The conformal blocks Ǧ(μ, z) ≡ 〈Φjn(μn|zn) . . .Φj1(μ1|z1)〉dual
G

on the left-
hand side satisfy KZ equations of the form

(ǩ + 2)
∂

∂qr
Ǧ(μ, z) = Hr Ǧ(μ, z), (8.13)

which are the KZ equations for the SL(2)-WZNW model with level ǩ related
to k via

ǩ + 2 =
1

k + 2
= −b2. (8.14)

The limit b→∞ corresponds to the classical limit of the dual SL(2)-WZNW
model.

8.4.2 Local systems from the classical limit of WZNW conformal
blocks

Let us consider the classical limit where k →∞ corresponding to b→ 0 in
the WZNW model. Let us consider, in particular, conformal blocks like

G(x, u|y, z) :=
〈
Φ+

(2,1)(x|y) Φjn(un|zn) . . .Φj1(u1|z1)
〉

G
. (8.15)

The null vector decoupling equation for the degenerate field Φ+
(2,1)(x|y) is

simply
∂2

x Φ+
(2,1)(x|y) = 0, (8.16)

which means that Φ+
(2,1)(x|y) transforms in the 2D representation of sl2. Let

G(x, u|y, z) = G+(u, y, z) + xG−(u, y, z), and let G = (G+,G−)t. The system
of KZ equations satisfied by the conformal blocks (8.15) can the be written
in the form

− 1
b2

∂

∂y
G(u, y, z) =

n∑
r=1

ηaa′
σaJ a′

r

y − zr
G(u, y, z),

− 1
b2

∂

∂zr
G(u, y, z) =

n∑
s=1
s �=r

ηaa′
J a

r J a′
s

zr − zs
G(u, y, z) + ηaa′

J a
r σ

a′

zr − y
G(u, y, z),

(8.17)

with σa being the matrices representing sl2 in the 2D representation, and
J a

r being the differential operators introduced in (4.7). Let us assume that
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jr = O(ε−1
1 ), which implies that J a

r = O(ε−1
1 ), where ε1 = �b. Note that this

corresponds to αr = O(b−1) in terms of the Liouville parameters. We can
assume that in the limit where b→ 0, �→ 0 with ε2 = �/b fixed

Ia
r := lim

ε2→0
ε1
J a

r G±(u, y, z)
G±(u, y, z)

, (8.18)

is independent of y and the choice of component, and define

I(y) :=
n∑

r=1

ηaa′σaIa′
r

y − zr
. (8.19)

The first equation in (8.17) then implies that the vector S(y) ≡ S(y|u, z),

S(y) :=
G(u, y, z)
F (u, z)

, (8.20)

where F (u, z) := 〈Φjn(un|zn) . . .Φj1(u1|z1)〉 satisfies the equation

(ε2∂y + I(y))S(y) = 0. (8.21)

I(y), by definition, depends on z. However, the monodromy of the degen-
erate field Φ+

(2,1)(x|y) inserted in (8.15) is completely defined in terms of
gluing parameters G. It follows that the monodromy of the ε2-connection
ε2∂y + I(y) stays unchanged under variations of z. That is the dual way the
isomonodromic deformation problem is recovered from the classical limit of
Liouville theory which is related to the observations [32, 58] identifying the
KZ equations as a formal quantization of the isomonodromic deformation
problem.

8.5 Insertions of degenerate fields as quantum Hecke functors

Consideration of the relation between Liouville theory and the WZNW-
model in cases where the representations Rj of ŝl2,k contain null vectors will
reveal important further aspects of the relation with the geometric Lang-
lands correspondence. Recall that the Verma modules Vj,k of the affine
algebra ŝl2,k become degenerate whenever the representation of the zero
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mode subalgebra sl2 has Casimir eigenvalue j(j + 1) with j = jε
(k,l), where

j+(k,l) =
k − 1

2
+
l − 1
2b2

, j−(k,l) = −k + 1
2
− l

2b2
(8.22)

with m,n = 1, 2, . . . . In the following, we are going to explain how the
representations with j = j−(1,1) = k

2 and j = j+(1,2) = 1/2b2 are related to the
so-called Hecke functors.

8.5.1 Bundle modifications in conformal field theory

In Section 7.2 we have described how to assign spaces CB(R[n], Cg,n, E) of
conformal blocks to a Riemann surface Cg,n, a collection of representations
R1, . . . ,Rn assigned to the marked points z1, . . . , zn of Cg,n and a holomor-
phic G-bundle E on Cg,n. We now want to discuss how modifications of the
bundle lead to modifications of CB(R[n], Cg,n, E). Modifications of the bun-
dle E can be described e.g., by cutting out a small disc D0 around a point
z0 ∈ Cg,n and taking an element g0 of the loop group LG associated to the
boundary of D0 as the new transition function between D0 and the rest of
Cg,n.

Our discussion in Section 7.2 suggests a simple realization of such bundle
modifications in conformal field theory: Use the propagation of vacua to rep-
resent a conformal block G ∈ CB(R[n], Cg,n, E) by means of Ĝ ∈ CB(R[n+1],
Cg,n+1, E ′) with an insertion of the vacuum e0 at the point z0, and then
replace e0 by a “twisted vacuum vector” ẽ0, which is a vacuum vector w.r.t.
the generators J̃a

n obtained from the Ja
n by acting with the automorphism

of ŝl2,k induced by the element g0 of the loop group, which represents the
transition function between D0 and the rest of Cg,n. We are thereby lead to
define the modified conformal blocks G′ as

G′(v[n]) = Ĝ(v[n] ⊗ ẽ0). (8.23)

If, for example, the automorphism is represented as J̃a
n = ĝ0 J

a
n ĝ

−1
0 with ĝ0

being an element of the central extension of the loop group corresponding
to the Lie algebra ŝl2,k, and if the vacuum representation exponentiates to
a representation of this Lie group, we recover the description of the twisting
of conformal blocks given in Section 7.2.

8.5.2 Hecke modifications

In order to get more interesting bundle modifications we need to consider
a slightly more general setup. Instead of considering transition functions
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taking values in SL(2) let us consider transition function with values in
GL(2). Let us in particular consider transition functions of the form

g0 =
(

1 0
0 t

)(
1 u0

0 1

)
, (8.24)

where t is a local coordinate inside of D0 vanishing at z0. Bundle modifica-
tions of this form are called Hecke modifications. The determinant of the
modified bundle vanishes at z0.

On an ε2-connection, conjugation by the element h =
(

1 0
0 t

)
induces the

improper gauge transformation

ε2 ∂t + Ĩ := t−
1
2h · (ε2∂t + I) · h−1t

1
2 = ε2 ∂t +

(
I0 + ε2

2t
1
t I

+

tI− −I0 − ε2
2t

)
.

(8.25)
The factors t±

1
2 were inserted to restore the SL(2)-form of the ε2-connection.

In terms of the modes defined by Ĩa(t) =
∑

n t
−n−1Ĩa

n and Ia(t) =∑
n t

−n−1Ia
n this is equivalent to

I±n → Ĩ±n := I±n∓1, I0
n → Ĩ0

n := I0
n +

ε2
2
δn,0. (8.26)

There is an essentially unique counterpart of this transformation called spec-
tral flow for the centrally extended Lie algebra ŝl2,k,

J±
n → J̃±

n ≡ J±
n∓1, J0

n → J̃0
n ≡ J0

n −
k

2
δn,0. (8.27)

The spectral flow (8.27) reduces to (8.26) in the classical limit k →∞ as
considered in Section 8.4.2. The Hecke-modified conformal blocks can then
be represented in terms of ordinary conformal blocks which have at the point
z0 a vector ẽ0 with the modified vacuum property

J̃±
n ẽ0 = J±

n∓1 ẽ0 = 0, J̃0
n ẽ0 = J0

n ẽ0 = 0, n ≥ 0. (8.28)

There is no vector ẽ0 with such properties in the vacuum representation,
but there is a distinguished representation Rk/2 of ŝl2,k which has a highest
weight vector ẽ0 := ek/2 that satisfies (8.28). The representation is obtained
as the quotient of the Verma module Vk/2,k by the submodule generated by
the null-vector J+

−1 ek/2 at level 1.

Inserting the representation Rk/2 at z0 is in the vertex operator notation

represented by inserting the vertex operator Φ
k
2 (u0|z0). It depends on the

extra variable u0 which parameterizes a choice of a parabolic subgroup at z0.
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In order to eliminate this dependence and in order to strengthen analogies
with the definitions of the Hecke operators in other circumstances (see e.g.,
[23] for a discussion) let us consider

Ξ(w) := Ξ(0|w), Ξ(u|w) := (I k
2
Φ

k
2 )(u|w), (8.29)

where Ij is the sl2-intertwining operator

(IjΦj)(u|w) = −2j + 1
π

∫
du′ |u− u′|−2j−2Φj(u′|w). (8.30)

It is worth noting that the vertex operator Ξ(u|w) transforms under the
sl2-subalgebra as a representation with j′ = −1− k

2 = 1/2b2 = j+(1,2), which
vanishes at the critical level. In this case, the definition of Ξ(w) simplifies
to

Ξ(w) ≡
∫
dx Φ

k
2 (x|w) ≡ Φ̃

k
2 (0|w). (8.31)

The representation corresponding to the operator Ξ(w) will become a mul-
tiple of the vacuum representation at the critical level, as is necessary to
make contact with the discussion in Section 7.3.

8.5.3 GL(2)-twisted conformal blocks

An SL(2)-bundle E can be represented in many ways by means of a GL(2)-
bundle Ê with fixed determinant O(D), where D is an effective divisor of
degree d. Let w1, . . . , wd be the points of the divisor D, and let D1, . . . ,Dd

be small discs around the points w1, . . . , wd, respectively. If E is represented
by the transition functions gk at ∂Dk, k = 1, . . . , d, we may represent Ê by
the transition functions ĝk defined by

ĝk = gk

(
1 0
0 tk

)(
1 uk

0 1

)
. (8.32)

We are lead to consider a natural family of generalizations of the space of
conformal blocks CB(R[n], Cg,n, E), which will be denoted CB[d](R[n], Cg,n, Ê).
It is defined as the space of linear functionals G on R[n], which can be repre-
sented in terms of conformal blocks G′ ∈ CB(R[n+d], Cg,n+d, Ê) of the form

G(v[n]) = G′
(
v[n] ⊗ ẽ⊗d

0

)
. (8.33)

It seems reasonable to regard the elements of CB[d](R[n], Cg,n, Ê) as natural
generalizations of the twisted conformal blocks if the twisting by elements E
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of BunSL(2)(C) is generalized to twisting by elements Ê of BunO(D)
SL(2)(C), which

are SL(2)-bundles represented by GL(2)-bundles Ê with det(Ê) � O(D).

Of particular interest will also be the conformal blocks that are obtained
by inserting the vertex operators Ξ(w), like

〈〈
Φjn(xn|zn) · · ·Φj1(x1|z1)

〉〉
:=

〈
Ξ(w1) · · ·Ξ(wd)Φjn(xn|zn) · · ·Φj1(x1|z1)

〉
(8.34)

These linear functionals can of course not be canonically identified with
the conformal blocks 〈Φjn(xn|zn) · · ·Φj1(x1|z1)〉 for non-critical level, but
the fact that Ξ(w) becomes proportional to the vacuum for k = −2 will
imply that they become proportional to the conformal blocks 〈Φjn(xn|zn) · · ·
Φj1(x1|z1)〉 at the critical level, as will be shown below.

8.5.4 Representation of Hecke modifications in terms of Liouville
conformal blocks

Let us consider conformal blocks for the SL(2)-WZNW model with d inser-
tions of Φ

k
2 (u|w)

Φ(u, x|w, z) ≡
〈
Φ

k
2 (u1|w1) · · ·Φ

k
2 (ud|wd) Φjn(xn|zn) · · ·Φj1(x1|z1)

〉
.

(8.35)

After Fourier transformation to the μ-representation we get

Φ̃(ν, μ|w, z) ≡
〈
Φ̃

k
2 (ν1|w1) · · · Φ̃

k
2 (νd|wd) Φ̃jn(μn|zn) · · · Φ̃j1(μ1|z1)

〉
. (8.36)

Note that in the case j = k/2 the formula (8.8) gives α(k/2) = Q. The
Virasoro representation with α = Q has conformal weight zero, it therefore
corresponds to the vacuum representation. The transformed conformal block
(8.36) may therefore be represented in terms of Liouville conformal blocks
as

〈
d∏

r=1

Φ̃
k
2 (νr|wr)

n∏
s=1

Φ̃js(μs|zs)
〉

G

= δ

(
n∑

s=1

μs +
d∑

r=1

νr

)
uΘn+d(y|z)

〈
n∏

s=1

e2αsφ(zs)
n+d−2∏

k=1

e−
1
b
φ(yk)

〉

G

,

(8.37)
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where u =
∑n

i=1 μszs +
∑d

r=1 νrwr and

n∑
s=1

μs

t− zs
+

d∑
r=1

νr

t− wr
= u

∏n+d−2
j=1 (t− yj)∏n

s=1(t− zs)
∏d

r=1(t− wr)
. (8.38)

We see that an additional insertion of Φ
k
2 (ν|w) produces an extra degenerate

field e−
1
b
φ(y), but without producing any other insertion as would be the

case for Φj(u|w) with j �= k/2. It follows in particular from the fusion rules
(5.25) that the spaces of conformal blocks with and without an insertion of
Φ

k
2 (ν|w) are related as

CB(Rk/2 ⊗R[n]) � C
2 ⊗ CB(R[n]). (8.39)

The isomorphism (8.39) is not canonical. A useful way to describe it uses the
markings introduced in Section 5.4. We will get something more canonical
in the case of the Hecke functors at the critical level.

In the case where d is even one may on the one hand use the fact that
the vacuum representation appears in the fusion rules [e−

1
b
φ] [e−

1
b
φ] ∼ [1] +

[e−
2
b
φ]. Subspaces of the space of conformal blocks of the form (8.35) are

therefore naturally isomorphic to the original space of conformal blocks with
d = 0. We may, on the other hand, regard the conformal blocks with d

insertions of fields Φ
k
2 (uk|wk) as conformal blocks associated to a bundle

Ê obtained from an original bundle E by means of d Hecke modifications.
These facts can be used to represent at least a part of the dependence of the
conformal blocks on the twisting bundle in terms of the variables (u1, . . . , ud)
and (w1, . . . , wd) introduced in (8.35).

8.5.5 Representation of Hecke vertex operators in terms of
Liouville conformal blocks

In order to describe conformal blocks with Hecke vertex operators Ξ(w) it
suffices to set νr = 0 for r = 1, . . . , d in (8.37), as follows from (8.31). Note
that setting νr = 0 in (8.38) means that the expression on the right-hand
side does not have a pole at t = zr, which is only possible if one of the
variables ya coincides with zr so that the apparent pole on the right-hand
side is canceled. Noting that Θn+d simplifies to Θn in this case we arrive at
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the formula

〈
d∏

k=1

Ξ(wk)
n∏

s=1

Φ̃js(μs|zs)
〉

G

= δ

(
n∑

s=1

μs

)
uΘn(y|z)

〈
n∏

s=1

e2αsφ(zs)
n−2∏
r=1

e−
1
b
φ(yr)

d∏
k=1

e−
1
b
φ(wk)

〉

G

,

(8.40)

where u =
∑n

i=1 μszs and

n∑
s=1

μs

t− zs
= u

∏n−2
r=1 (t− yr)∏n
s=1(t− zs)

. (8.41)

This means that inserting Ξ(y) into an SL(2)-WZNW conformal blocks sim-
ply maps to the insertion of an extra degenerate field e−

1
b
φ(y) on the Liouville

side.

We had previously noted that the sl2 representation under which the ver-
tex operator Ξ(w) transforms is proportional to the vacuum representation.
This can not be the full story since insertion of Ξ(y) modifies the space of
conformal blocks as described by (8.39). However, from the discussion of
the semiclassical limit of Liouville conformal blocks in Section 5.5 it follows
that the insertions of Ξ(wk) will factor out in this limit, which leads to the
formula

〈
d∏

k=1

Ξ(wk)
n∏

s=1

Φjs(xs|zs)
〉

G

=
d∏

k=1

χk(wk)

〈
n∏

s=1

Φjs(xs|zs),
〉

G

(8.42)

where χk(wk) are solutions to the differential equation (∂2
w + t(w))χk = 0.

Which of the two linearly independent solution of the second-order differen-
tial equation one gets, depends on the choice of intermediate representation
in the gluing construction of the relevant Liouville conformal blocks. This
phenomenon is closely related to the Hecke eigenvalue property in the geo-
metric Langlands correspondence as discussed in Section 7.3.

8.5.6 Quantum local systems

Monodromies of an extra insertion Ξ(y) define operators on the space of con-
formal blocks as follows. Elements of the fundamental group π1(Cg,n+d−2)
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are canonically identified with edge paths on the graph Γσ̂. Moving e−
1
b
φ(y)

along a cycle γ representing a generator of the fundamental group corre-
sponds to moving on a path on the marking graph Γσ̂ described as a sequence
of edges such that consecutive edges are connected at vertices. There is a
standard way described in [2, 11] to associate to this edge path a composi-
tion of the elementary fusion and braiding moves [50]. Having returned to
the point we started from, one may use the isomorphism (8.39) to define
a two-by-two matrix Mγ of operators acting on the space conformal blocks
with n+ d− 2 fields inserted. It is easy to see that the change of the choices
involved in the definition of Mγ will change Mγ by conjugation with a possi-
bly operator-valued matrix. Considering the operators Mγ associated to the
generators γ of the fundamental group up to conjugation therefore defines
a representation of the fundamental group by operator-valued matrices Mγ

whose matrix elements are operators acting on the space of conformal blocks.
Considering cycles γ, which are homotopic to the curves defining the pants
decomposition corresponding to the marking σ̂ one finds operator-valued
matrices that act diagonally. Taking the trace of Mγ defines operators on
CB(R[n], Cg,n, E) that up to a phase factor are identical to the operators on
CB(R[n], Cg,n, E) defined by the construction described in Section 5.3. We
have a correspondence

Eigenvalues of
Mγ , γ ∈ Cσ

−→
Elements of a

basis for CB(R[n], C, E)
(8.43)

We will call the operator-valued matrices Mγ quantum monodromies, and
the representation of the fundamental group generated by the monodromies
of the extra insertion Ξ(y) a quantum local system. Parameterizing the
space of conformal blocks by means of quantum local systems may be seen
as a natural quantum analog of the geometric Langlands correspondence.

8.5.7 Critical level limit

Note that the operator-valued matrices Mγ will turn into the matrices ρ(γ)
representing the monodromy of the corresponding oper. We see that the
quantum local systems turn into the classical local systems representing the
opers. The representation Rk/2 gets identified with the representation W 1

2

representing the elementary Hecke functor on spaces of conformal blocks
at the critical level according to the discussion in Section 7.3.1. Note fur-
thermore that the eigenvalues of Mγ are parameterized by the variables pr,
which in the limit b→∞ get identified via (5.33) with the coordinates lr for
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the space Opsl2(Cg,n) of opers. We conclude that the correspondence (8.43)
reduces to the geometric Langlands correspondence (7.1) in this limit. This
is part of our motivation for calling (8.43) the quantum geometric Langlands
correspondence.

8.5.8 Quantum Drinfeld–Sokolov reduction

Let us finally point out that the insertion of the fields Φ
k
2 (u|w) representing

the Hecke modifications not only allows us to raise the number of degener-
ate fields e−

b
2
φ(y) in the Liouville-representation, it also allows us to lower

this number. In order to see how this works, let us consider conformal
blocks like

〈
Φ̃j(μ|w)Φ̃jn(μn|zn) . . . Φ̃j1(μ1|z1)

〉
G

= δ

(
μ+

n∑
i=1

μi

)
un+1 Θn+1(y|z)

×
〈
e2αφ(w) e2αnφ(zn) · · · e2α1φ(z1) e−

1
b
φ(yn−2) · · · e− 1

b
φ(y0)

〉
G,

(8.44)

where un+1 =
∑n

r=1 μrzr + μw and

μ

t− w +
n∑

r=1

μr

t− zr
= u

∏n−2
k=0(t− yk)

(t− w)
∏n

r=1(t− zr)
. (8.45)

In the limit μ→ 0 we find from (8.45) that one of the yr, in the following
taken to be y0 must approach w to cancel the pole at t = w of the right-hand
side. It follows that the limit μ→ 0 can be analyzed using the Liouville OPE:

e−
1
b
φ(y0)e2αφ(w) ∼ (y0 − w)b−1αe(2α−b−1)φ(w)(1 +O(y0 − w))

+ C(α)(y0 − w)b−1(Q−α)e(2α+b−1)φ(w)(1 +O(y0 − w)). (8.46)

In this way, it is straightforward to check that (8.46) implies that

Φ̃j(μ|w) ∼
μ→0

μj+1Φj
+(w)(1 +O(μ)) + μ−jΦj

−(w)(1 +O(μ)). (8.47)

The vertex operator Φj
−(w) is proportional to limx→∞ x−2jΦj(x|w), as is

simplest seen by noting that both are annihilated by J−
0 bearing in mind
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the representations (4.7) and (4.15). It has the lowest weight property
J−(y)Φj

−(w) = regular.

In the case j = k/2 one has α = 0. This implies that the term proportional
to μ−j in (8.47) would be absent unless one of the yr, r = 1, . . . , n happens
to be at w. This is equivalent to the constraint

J−(w) ≡
n∑

r=1

μr

w − zr
= 0. (8.48)

We conclude that conformal blocks like
〈
Φ

k
2
−(w) Φ̃jn(μn|zn) . . . Φ̃j1(μ1|z1)

〉
can be defined as distributions with support given by (8.48). In the resulting
representation by Liouville conformal blocks we will now find instead of
e2αφ(w) one of the degenerate fields e−

1
b
φ(yr) with yr = w in (8.46). In this

case, the second term in (8.46) will be proportional to the identity field.
This leads to a representation of the form

〈
Φ

k
2
−(w)

n∏
r=1

Φ̃jr(μr|zr)
〉

G

= δ

(
n∑

i=1

μi

)
δ

(
n∑

r=1

μr

w − zr

)
un Θn(y|z)

〈
n∏

r=1

e2αrφ(zr)
n−3∏
k=1

e−
1
b
φ(yk)

〉

G,

where un =
∑n

r=1 μrzr and

n∑
r=1

μr

t− zr
= u(t− w)

∏n−3
k=1(t− yk)∏n
r=1(t− zr)

. (8.49)

The result is related to earlier work [16, 48] on the spectral flow in the
SL(2)-WZNW model, and in particular to the description proposed in [60]
for correlation functions in the SL(2)-WZNW model with winding num-
ber violation. The most important lesson for our purposes is the fact that
the insertion of Φ̃

k
2 (0|w) represents imposing the constraint (8.48) which is

equivalent to J−(w) = 0. Imposing this constraint effectively removes one of
the degenerate fields e−

1
b
φ(yk) from the representation in terms of Liouville

conformal blocks. The conformal blocks with maximal number of inser-
tions of Φ̃

k
2 (0|w) are proportional to the Liouville conformal blocks without

degenerate fields.
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8.6 Generalization of the geometric Langlands correspondence —
from opers to more general local systems

It was proposed by Beilinson and Drinfeld (see [24, Section 9.6] for a discus-
sion) to view the correspondence above as special case of a correspondence

LG− local systems −→ D −modules on BunG (8.50)

In order to realize an example for this generalized version of the geomet-
ric Langlands correspondence, let us consider instead of (8.9) the following
family of conformal blocks:〈

n∏
s=1

Φjs(xs|zs)
m∏

r=1

Φ+
(2,2)(ur|wr)

〉

G

, (8.51)

where Φ+
(2,2) is the field corresponding to the degenerate representation cor-

responding to j = j+(2,2) = 1
2(1 + b−2).

8.6.1 Critical level limit of KZ equations

In the critical level limit b→∞, we may note that

j+(2,2) =
1
2
(1 + b−2)→ 1

2
. (8.52)

This implies that the null vector decoupling equation for the degenerate field
Φ+

(2,2)(x|w) simplifies in the critical level limit to

∂2
x Φ+

(2,2)(x|w) = 0. (8.53)

Representing the 2D space of solutions of (8.53) as C
2 allows us to rep-

resent the conformal blocks (8.51) in terms of a vector-valued function
G(z, w|x) ∈ (C2)⊗m as explained in Section 8.4. In the critical level limit,
the KZ equations produce the pair of eigenvalue equations

HsG = EsG, krG = κrG, (8.54)

where

Hs =
∑
s′ �=s

J a
s J a′

s′

zs − zs′
ηaa′ +

∑
r

J a
s σ

a′
r

zs − wr
ηaa′ ,

kr =
∑

s

σa
sJ a′

r

wr − zs
ηaa′ +

∑
r′ �=r

σa
rσ

a′
r′

wr − wr′
ηaa′ , (8.55)
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with σa
r being the 2× 2-matrices, which represent the action of sl2 on the

rth tensor factor in (C2)⊗m. The system of differential equations (8.55) will
represent the D-module to appear on the right-hand side of (8.50).

8.6.2 Classical limit of corresponding Liouville conformal blocks

Let us, on the other hand, analyze the conformal blocks (8.51) in the
μ-representation obtained by Fourier-transformation over the variables xs

and ur, 〈
n∏

s=1

Φ̃js(μs|zs)
m∏

r=1

Φ̃+
(2,2)(νr|wr)

〉

Ĝ

= δ

(
n∑

s=1

μs +
m∑

r=1

νr

)
uΘn+m(y|z)

×
〈

n∏
s=1

e2αsφ(zs)
m∏

r=1

e−bφ(wr)
n+m−2∏

q=1

e−
1
b
φ(yq)

〉

Ĝ

, (8.56)

where u =
∑n

i=1 μszs +
∑m

r=1 νrwr and

n∑
s=1

μs

t− zs
+

m∑
r=1

νr

t− wr
= u

∏n+m−2
j=1 (t− yj)∏n

s=1(t− zs)
∏m

r=1(t− wr)
. (8.57)

The null vector decoupling equation (8.53) becomes μ2Φ̃+
(2,2)(μ|w) = 0 after

the Fourier-transformation to the μ-representation. The conformal blocks
(8.56) must therefore be distributions supported at νr = 0. Formula (8.57)
implies that m of the variables yq, here taken as yn−1, . . . , yn+m−2, must
equal one of w1, . . . , wm, respectively. The expectation values of the remain-
ing fields e−

1
b
φ(yq) factor out in this limit, producing a factor

∏n−2
q=1 χq(yq),

with functions χq(y) that satisfy (∂2
y + t(y))χq(y) = 0 with t(y) of the form

t(y) =
n∑

s=1

(
δs

(y − zs)2
+
Es(p, z)
y − zs

)
−

m∑
r=1

(
3

4(y − wr)2
− κr(p, z)

y − zr

)
. (8.58)

The local system associated to this differential equation will appear on the
left-hand side of (8.50).

8.6.3 The correspondence

We arrive at another interesting example for the geometric Langlands cor-
respondence as the correspondence between the local systems correspond-
ing to the differential equation (∂2

y + t(y))χq(y) = 0 with t(y) of the form
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(8.58) and the system of differential equations on BunG(C0,n). Note that for
m = n− 3 the number of parameters in t(y) coincides with the dimension
of LocPSL(2,C)(C0,n).

This example exemplifies the abstract construction sketched in [24, Sec-
tion 9.6]. It was noted there that the generalization beyond the case of opers
requires introduction of additional parameters, which here are represented
by the variables wr. It was conjectured in this reference that the resulting
system of differential equations is in a suitable sense independent of the
choices of wr. In this regard, we may observe that the dependence on wr is
controlled by the relation with Liouville semiclassical blocks in the following
way: the function

W
Ĝ
(z, w) = lim

b→∞
b−2 log

〈
n∏

s=1

e2αsφ(zs)
m∏

r=1

e−bφ(wr)

〉

Ĝ

(8.59)

is a potential for Es = Es(p, δ|z, w) and κr = κr(p, δ|z, w) in the sense that

Es = − ∂

∂zs
W

Ĝ
(z, w), κr = − ∂

∂wr
W

Ĝ
(z, w). (8.60)

The knowledge ofW
Ĝ

in principle allows us to compute how the parameters
κr in the differential equations (8.54) have to be varied if one modifies the
positions wr of the additional singularities, keeping the local system fixed.

9 Concluding remarks

9.1 Relation with gauge theory

We believe that the results of this paper can help understanding the relation
between gauge theory and Liouville theory suggested in [55] more precisely.
They may thereby contribute to uncovering the deeper reasons for the cor-
respondence between instanton partition functions and Liouville conformal
blocks proposed in [1].

In this regard, let us note that the gauge theory set-up considered in [55]
produces a Hilbert space Hε1ε2 of open strings which has a representation
in terms of holomorphic sections of a line bundle on the space of opers.
Locally these sections should be representable as holomorphic functions of
the accessory parameters. There is no natural structure of non-commutative
algebra on this space coming from quantization of a symplectic form on
the space of opers. There are, however, two commuting actions on Hε1ε2 of
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quantized algebras of functions on LocSL(2)(C). The deformation parameters
can naturally be identified with ε1 and ε2, respectively. This is what strongly
suggests that the Hilbert space of open strings produced by gauge theory
can be identified with the space of Liouville conformal blocks [55].

The discussion in Section 3.8 suggests that the space of holomorphic sec-
tions of the line bundle produced by the gauge-theory setup of [55] should be
seen as a sort of “momentum-representation” which is dual to the Kähler-
quantization of Teichmüller space discussed here, in the sense that one
works in a representation in which the conjugate momenta (the accessory
parameters) of the Teichmüller moduli are diagonalized. Although such a
quantization scheme remains to be developed in detail, we hope that these
observations may help to clarify the relation between the Hilbert space of
open strings coming from gauge theory and the space of conformal blocks
in Liouville theory.

In any case, in order to understand the conjecture of [1] along such lines
one should ultimately work in a third representation, which is the represen-
tation in which the a maximal set of commuting global observables (length
operators) is diagonal. As pointed out in [11], one would thereby naturally
explain the form that the gauge theory loop operator expectation values
take according to [56], as discussed and generalized in [2, 11].

It is furthermore intriguing to note [6] that the conformal Ward iden-
tities have a counterpart in the context of the gauge-theoretical instanton
counting: Variations of gauge coupling constants are described by means of
insertions of tr(φ2). This observation should be compared to the fact that
the Hamiltonians Hr obtained from the Higgs field θ via (2.3) and (2.4) end
up being the generators of infinitesimal variations of the moduli of C in our
approach.

9.2 Generalization to higher rank

Of obvious interest is the generalization of this picture when sl2 is replaced
by a Lie algebras g of higher rank. We may anticipate the following picture.

The natural higher rank analogs of the Liouville theory are the confor-
mal Toda theories denoted Todak(g). The conformal symmetry of Liouville
theory is extended to symmetry under the W-algebra Wk(g). Let us also
consider the Toda theory Todaǩ(

Lg) where Lg is the Langlands dual Lie
algebra Lg with a Cartan matrix that is transpose of the Cartan matrix of
g, while ǩ is related to k via

(k + h∨)r∨ = (ǩ + ȟ∨)−1. (9.1)
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r∨ is the lacing number of g, the maximal number of edges connecting two
nodes of the Dynkin diagram, and h∨ is the dual Coxeter number. It was
proven in [18] that the W-algebras Wǩ(

Lg) and Wk(g) are isomorphic,

Wk(g) �Wǩ(
Lg). (9.2)

It follows that the Toda theories Todak(g) and Todaǩ(
Lg) are dual to each

other in the sense that the conformal blocks in the two theories coincide.
This naturally suggests the conjecture [78] that there exist modular functors
associated to Todak(g) and Todaǩ(

Lg), respectively, which are dual to each
other if the levels are related by (9.1).

Let us now assume that there is a way to construct the conformal blocks in
WZNWk(g) from those of Todak(g), generalizing what was described above
for the case g = sl2. As in the g = sl2-case discussed in this paper, we could
then construct the conformal blocks of two different WZNW models from
those of Wk(g), schematically

WZNWǩ(
Lg) ←− Todab(g) −→ WZNWk(g)

(9.3)

For each of the WZNW models there are two different limits one may con-
sider, leading to diagrams such as

G-Hitchin system
(A)ε2

↗ ↖ (B)ε1
g-Isomonodromic g-Beilinson-

deformations Drinfeld system
(C)ε1

↖ ↗ (D)ε2
G-WZNW-model

(9.4)

and on the other hand

LG-Hitchin system
(A)ε1

↗ ↖ (B)ε2
Lg-Isomonodromic Lg-Beilinson–

deformations Drinfeld system
(C)ε2

↖ ↗ (D)ε1
LG-WZNW-model

(9.5)
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This would again lead to two possible ways to describe the same limit in the
conformal Toda theory Todab(g). Extrapolating from case g = sl2 we would
expect that a good part of the geometric Langlands correspondence can be
understood in this way.

In the sl2-case we had discussed the relations between the sl2-Toda (Liou-
ville) theory and the quantization of the Teichmüller spaces. It seems worth
pointing out that higher rank analogs of the quantum Teichmüller spaces
have been defined in [20]. A relation between modular duality and Lang-
lands duality that fits perfectly into the picture proposed above was pointed
out in [20]. Proving the modular functor conjecture [20] for the higher quan-
tized Teichmüller theories would be an important step towards the higher
rank generalization of the quantum geometric Langlands correspondence.
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