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Abstract

We provide a quantum path integral definition of an ’t Hooft loop oper-
ator, which inserts a point-like monopole in a four-dimensional gauge the-
ory. We explicitly compute the expectation value of the circular ’t Hooft
operators in N = 4 super Yang–Mills with arbitrary gauge group G up
to next to leading order in perturbation theory. We also compute in
the strong coupling expansion the expectation value of the circular Wil-
son loop operators. The result of the computation of an ’t Hooft loop
operator in the weak coupling expansion exactly reproduces the strong
coupling result of the conjectured dual Wilson loop operator under the
action of S-duality. This paper demonstrates — for the first time —
that correlation functions in N = 4 super Yang–Mills admit the action
of S-duality.
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1 Introduction

Electric–magnetic duality, also known as S-duality [1–3], is a remarkable
conjectured equivalence relating N = 4 super Yang–Mills at weak coupling
to N = 4 super Yang–Mills at strong coupling. Heuristically, this equiva-
lence arises via a change of variables in the path integral, which identifies
the two descriptions. This kind of duality transformation can be explic-
itly performed in certain statistical mechanics models such as the Ising
model [4] as well as in electromagnetism, where electric fields are replaced by
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magnetic fields. S-duality in N = 4 super Yang–Mills conjecturally extends
the electric–magnetic duality transformation in electromagnetism [5,6] to a
full-fledged interacting quantum field theory.

S-duality conjectures that N = 4 super Yang–Mills with gauge group G
and coupling constant τ is equivalent to N = 4 super Yang–Mills with dual
gauge group LG [7] and coupling constant Lτ . The coupling constants of the
two theories are related by

Lτ = − 1
ngτ

,

where

τ =
θ

2π
+

4πi
g2 , Lτ =

Lθ

2π
+

4πi
(Lg)2

and ng = 1, 2 or 3 depending1 on the choice of gauge group G. S-duality also
acts on all gauge invariant operators of the theory and defines an operator
isomorphism between the two theories

O ←→ LO.

Even though this map is rather poorly understood, progress in recent years
has resulted in conjectures relating a large class of supersymmetric operators
supported on various submanifolds in spacetime.

Since S-duality interchanges electric and magnetic charges, it exchanges a
Wilson operator [8] with an ’t Hooft operator [9]. These operators insert an
electrically charged source and a magnetically charged source, respectively.
Whereas a Wilson operator in the theory with gauge group G is labeled by a
representation R of G, an ’t Hooft operator is labeled [10] by a representation
LR of the dual group LG, and will be denoted by W (R), T (LR), respectively.
Therefore, it is conjectured that under S-duality [10]

T (LR) ←→ W (LR).

Explicit conjectures have also been made for the action of S-duality on chiral
primary operators [11–13], surface operators [14,15] and domain walls [16,17]
in N = 4 super Yang–Mills.

The S-duality conjecture goes beyond the mapping of operators. It also
predicts that the correlation functions of gauge invariant operators — which

1Here ng = 1 for simply laced algebras; ng = 2 for so(2N + 1), sp(N) and f4; and ng = 3
for g2.
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span the set of observables in N = 4 super Yang–Mills — are related in the
two theories by

〈∏
i

Oi

〉
G,τ

=
〈∏

i

LOi

〉
LG,Lτ

.

This aspect of the S-duality conjecture is a particularly challenging one to
exhibit, as proving it necessarily requires understanding correlation func-
tions at strong coupling, where no universal methods of computation are
readily available.

In this paper we exhibit – for the first time – that the correlation function
of dual operators are mapped into each other under the action of S-duality.
We show that the weak coupling computation of the circular ’t Hooft opera-
tor T (LR) in N = 4 super Yang–Mills with gauge group G exactly reproduces
the strong coupling computation of the expectation value of the circular
Wilson operator W (LR) in N = 4 super Yang–Mills with gauge group LG.
We explicitly show that the prediction of S-duality

〈T (LR)〉G,τ = 〈W (LR)〉LG,Lτ (1.1)

holds to next to leading order in the coupling constant expansion, which is
weak for the ’t Hooft operator and strong for the dual Wilson operator.

Our computations verify in a quantitative manner the main prediction of
S-duality for this class of observables. These results go beyond the previ-
ous tests of S-duality, which involve quantities for which the semiclassical
approximation is exact or the theory is topologically twisted. Such tests
include comparing the BPS spectra of particles [18] and operators [10–17],
the effective action [19] in the Coulomb branch, and the partition function
of the theory [20]. We note that the Wilson and ’t Hooft operators that we
consider in this paper are different than the corresponding operators consid-
ered by Kapustin and Witten [21] in the topologically twisted N = 4 super
Yang–Mills theory relevant for the gauge theory approach to the geometric
Langlands program. The Wilson and ’t Hooft operators considered in that
theory are for arbitrary curves and have trivial expectation values.

Exhibiting S-duality for Wilson and ’t Hooft operators first requires defin-
ing and computing the expectation value of an ’t Hooft operator in N = 4
super Yang–Mills. In Section 2 we provide a quantum definition of an
’t Hooft operator in four-dimensional gauge theory. It is defined in terms of
a path integral where we integrate over all fields which have a prescribed sin-
gularity near the operator. Properly defining the ’t Hooft operator T (LR)
requires both renormalizing the operator as well as completely specifying
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the measure of integration in the path integral. The classical singularity
that we quantize is that of a singular monopole, which is characterized [10]
by the highest weight B of the representation LR under which the ’t Hooft
operator T (LR) transforms. Demanding that the path integral definition
of the ’t Hooft operator T (LR) is gauge invariant requires integrating over
the G-orbit of the classical singularity, which depends on B, and results in
the inclusion of the measure of the adjoint orbit of B in the path integral
measure. This quantum prescription applies to the computation of a general
’t Hooft operator in an arbitrary gauge theory. We explicitly compute the
expectation value of the circular ’t Hooft operator T (LR) in N = 4 super
Yang–Mills with arbitrary gauge group G up to one loop order. Given the
path integral definition we provide, the computation of the expectation value
of the ’t Hooft operator T (LR) can be extended to higher orders in pertur-
bation theory by summing over the connected vacuum diagrams generated
by the path integral.

In Section 3 we compute at strong coupling the expectation value of the
circular Wilson loop operator W (R) in N = 4 super Yang–Mills with arbi-
trary gauge group G. It was conjectured in [22, 23] that the expectation
value of the circular Wilson loop with U(N) gauge group can be computed
using a Gaussian matrix model, thereby reducing the complexity of the path
integral of a four-dimensional field theory to a matrix integral. This result,
extended to an arbitrary gauge group G, has been proven by Pestun [24],
who, using localization techniques, has shown that the path integral over the
four-dimensional fields reduces to an integral over a zero mode, which cor-
responds to the variable of integration in the matrix model integral. We use
this result to evaluate the Wilson loop expectation value at strong coupling
by performing the strong coupling expansion of the corresponding matrix
integral.

In Section 4 we use the results of our computations of the ’t Hooft opera-
tor at weak coupling and of the dual Wilson operator at strong coupling and
explicitly show that these correlators transform precisely as conjectured by
S-duality, and indeed verify equation (1.1). In Section 5 we argue that the
subleading exponential corrections that appear in the Wilson loop compu-
tation can also be understood from the perturbative computation of the ’t
Hooft operator around extra saddle points. These saddle points arise due to
the physics of monopole screening, whereby the charge of an ’t Hooft opera-
tor is reduced/screened when a regular monopole configuration approaches
the operator. Inclusion of these saddle points in the computation of the ’t
Hooft operator exactly reproduces the strong coupling result for the Wilson
loop operator. Section 6 contains a summary and discussion of our results
and future lines of inquiry. We have relegated to the appendices the details
of some of our computations.
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2 ’t Hooft loop expectation value

In this section we provide a quantum path integral definition of an ’t Hooft
operator in four-dimensional gauge theory, and explicitly compute the
expectation value of the circular ’t Hooft loop operator in N = 4 super Yang–
Mills up to one loop order. We begin by introducing basic facts regarding
the classical field configuration produced by an ’t Hooft operator and then
proceed to its quantization.

’t Hooft originally defined [9] these operators by specifying a singular
gauge transformation around an arbitrary curve that links the loop on which
the ’t Hooft operator is supported.2 Therefore, in a gauge theory with
gauge group G, these operators are labeled by π1(G), which measures the
topological magnetic flux created by the operator.

Kapustin [10] — motivated by S-duality in N = 4 super Yang–Mills —
has further refined ’t Hooft’s original characterization of magnetic operators
and has shown that ’t Hooft operators3 in a gauge theory with gauge group
G are labeled by a representation LR of the dual group LG. Since π1(G) �
Z(LG), where Z(LG) is the center of LG, the topological magnetic flux
created by an operator labeled by a representation LR is given by the charge
Z(LG) ⊂ LG of the representation LR of LG.4 Kapustin’s classification is
much finer, as there are (infinitely) many different operators for a given
topological flux in π1(G).

Physically, an ’t Hooft loop operator is an operator that inserts a probe
point-like monopole whose worldline forms the loop in spacetime on which
the ’t Hooft operator is supported. The representation LR of LG which labels
the operator characterizes the magnetic charge of the monopole [7]. This
description parallels the more familiar discussion of a Wilson loop operator,
which inserts a point-like electric charge, and is therefore labeled by a repre-
sentation R of G. Unlike a Wilson operator, which can be described by the
insertion of an operator made out of the fields appearing in the Lagrangian,
an ’t Hooft operator is defined by specifying a singularity along the loop
for the microscopic fields that we integrate over in the path integral, and is
therefore an example of a disorder operator [26].

The classical field configuration produced by an ’t Hooft loop operator
T (LR) supported on an arbitrary curve C ⊂ R

4 is obtained by specifying a
singularity for the fields near each point in the loop. Near each point in the

2For a space-like curve, such a singular gauge transformation creates a magnetic flux
tube along the loop. Thus an ’t Hooft/Wilson loop can be interpreted as the operator that
creates an infinitesimally thin magnetic/electric flux tube around the loop (see, e.g., [25]).

3We will name this broader class of operators also as ’t Hooft operators.
4This charge is the conjugacy class of the representation, i.e., the highest weight modulo

elements of the root lattice, which coincides with N -ality for SU(N).
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loop C, the local singularity is that associated to a straight line R, and the
singularities created by an ’t Hooft loop operator supported on a general
curve C can be constructed by patching together the local singularities for
the ’t Hooft operator supported on a straight line R. In a given theory,
an ’t Hooft operator creates a codimension three singularity for the fields
that appear in the classical action. The only restriction on the admissible
codimension three singularities created by an ’t Hooft operator is that they
solve the equations of motion of the theory in R

4 \ C.

In the rest of the paper we focus our attention on N = 4 super Yang–Mills
with gauge group G. The locally supersymmetric singularity created by an
’t Hooft operator T (LR) supported on a straight line R ⊂ R

4 and labeled by
a representation LR of LG is given by [10]

F =
B

2
vol(S2) + ig2θ

B

16π2
dt ∧ dr

r2 , φ =
B

2r

g2

4π
|τ |. (2.1)

The straight line R is spanned by the coordinate t, r is the distance from the
line and vol(S2) is the volume form on the two-sphere that surrounds the line
R. B ≡ BiHi ∈ t takes values in the Cartan subalgebra of the Lie algebra g

associated with the gauge group G. As shown in [7], the Dirac quantization
condition exp(2πiB) = idG implies that B can be identified with the highest
weight of the representation LR of the dual group LG, justifying the labeling
of ’t Hooft operators in terms of representations of the dual group [10]. The
’t Hooft operator creates a magnetic field through the S2 surrounding the
monopole, and when θ �= 0 it also generates an electric field, as the monopole
acquires electric charge via the Witten effect [27]. Unbroken supersymmetry
at a point in the loop requires that a scalar field φ ≡ nIφI in the N = 4 super
Yang–Mills multiplet (here (nI) is a unit vector in R

6) acquires a pole near
the loop with fixed residue.

We now consider ’t Hooft operators that preserve maximal supersymme-
try. Preservation of 16 supercharges everywhere in the loop C requires that
the ’t Hooft loop is supported on two possible curves — C = R or C = S1 —
which are related by a global conformal transformation. The symmetry
preserved by the straight and circular ’t Hooft operators is OSp(4∗|4) ⊂
PSU(2, 2|4).5 The bosonic subgroup is SO(4∗) × USp(4), where SO(4∗) �
SU(1, 1) × SU(2) is the subgroup of the four-dimensional conformal group
SU(2, 2) preserving the curve R or S1 ⊂ R

4 and USp(4) � SO(5) ⊂ SU(4)
is left unbroken by the choice of the scalar field which develops a pole near
the loop.

5This is the supergroup for a maximally supersymmetric ’t Hooft loop in R
1,3. Super-

symmetric ’t Hooft loops exist on both R
1,3 and R

4. The corresponding symmetry group
for the dual Wilson loop was exhibited in [28].
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We are now ready to proceed with the quantum definition of the ’t Hooft
operator. The ’t Hooft loop expectation value is specified by a path integral
where one integrates over all fields which have the prescribed singularity
(2.1) along the loop. In order to give a complete definition of the operator,
the precise measure of integration needs to be determined. Before proceeding
with the study of the measure, we first analyze the leading semiclassical
result for the ’t Hooft loop expectation value.

2.1 Semiclassical ’t Hooft loop

The semiclassical evaluation of the path integral requires expanding the
N = 4 super Yang–Mills path integral around the monopole singularity

A = A0 + Â,
φI = φI

0 + φ̂I ,

where (A0, φ
I
0) is the classical singularity (2.1) corresponding to an ’t Hooft

operator T (LR) and (Â, φ̂I) are the non-singular quantum fluctuations that
we must integrate over in the path integral.

The N = 4 super Yang–Mills action can be obtained by dimensional
reduction of the ten-dimensional N = 1 super Yang–Mills with the inclu-
sion of the topological term6

S =
1
g2

∫
d4x

√
htr

[
1
2
FMNFMN + iψ̄ΓMDMψ

]
− i

θ

8π2

∫
tr(F ∧ F ), (2.2)

where tr( , ) is the invariant metric on the Lie algebra g associated with the
gauge group G and (AM , ψ) are the ten-dimensional gauge field and gaugino,
respectively. The metric on the Lie algebra is normalized so that the short
coroots of g have length squared equal to two. In this normalization the
topological term equals iθ for the minimal instanton, θ has period 2π and
the complexified coupling constant is given by

τ =
θ

2π
+

4πi
g2 .

In terms of the four-dimensional fields in the N = 4 super Yang–Mills multi-
plet AM = (Aμ, φI), where μ = 0, . . . , 3 and I = 4, . . . 9, the non-topological

6Here and throughout it is understood that derivatives with respect to M = 4, 5, . . . , 9
are trivial.
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part of the action reads7

1
g2

∫
d4x

√
htr

[
1
2
FμνFμν + DμφIDμφI +

1
2
[φI , φJ ]2 + iψ̄ΓμDμψ + ψ̄ΓI [φI , ψ]

]
.

In the leading semiclassical approximation the expectation value of the
’t Hooft operator T (LR) is given by

〈T (LR)〉G,τ � exp
(
−S(0)

)
, (2.3)

where S(0) is the N = 4 super Yang–Mills action (2.2) evaluated on the
classical singularity (2.1) created by the ’t Hooft operator T (LR). In the
leading semiclassical approximation the quantum fluctuations (Â, φ̂I) are
neglected.

In order to analyze the ’t Hooft operators T (LR) supported on C = R and
S1 it is instructive to consider N = 4 super Yang–Mills in AdS2 × S2 instead
of R

4. As already mentioned, these operators preserve an SU(1, 1) × SU(2)
subgroup of the four-dimensional conformal group, and in AdS2 × S2 these
symmetries are manifest, since they act as isometries, while in R

4 they act as
conformal symmetries. We can go between R

4 and AdS2 × S2 by performing
a Weyl transformation

ds2
R4 = Ω2ds2

AdS2×S2 ,

which is a classical symmetry of N = 4 super Yang–Mills. When considering
the ’t Hooft operator supported on C = R the metric on AdS2 is the upper
half-plane metric while when the operator is supported on C = S1 the metric
on AdS2 is the metric on the Poincaré disk (see Appendix A for the explicit
Weyl transformations). For both choices of curve C, the ’t Hooft operator
is supported at the conformal boundary of AdS2 × S2, which is C = R for
the upper half-plane metric and C = S1 for the metric on the Poincaré disk.

Insertion of an ’t Hooft loop operator T (LR) at the conformal boundary
of AdS2 × S2 creates the following field configuration:

F =
B

2
vol(S2) + ig2θ

B

16π2 vol(AdS2), φ =
B

2
g2

4π
|τ |. (2.4)

Since the S2 is non-contractible and the scalar field is homogeneous in
AdS2 × S2, the field configuration created by the ’t Hooft operator T (LR)
in AdS2 × S2 is non-singular.

7This expression is valid on an arbitrary curved background with metric h as long as
we add to the action the conformal coupling of the scalars

√
hR tr(φIφI)/6.
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We can now calculate the expectation value of the ’t Hooft operator T (LR)
by evaluating the N = 4 super Yang–Mills action (2.2) in AdS2 × S2 on
the field configuration in equation (2.4) produced by the ’t Hooft operator
T (LR). In the action, h refers to the metric in AdS2 × S2.8 Since the scalar
field is homogeneous, the on-shell N = 4 super Yang–Mills action is given by

S(0) =
1
g2

∫
tr(F0 ∧ ∗F0)−i

θ

8π2

∫
tr(F0 ∧ F0)=tr(B2)

g2|τ |2
16π

Vol(AdS2).
(2.5)

The on-shell action is divergent, being proportional to the volume of AdS2.
This result is as expected, since the on-shell action measures the energy of
an infinitely heavy point-like magnetic monopole.

In quantum field theory, the observables that are finite are the correla-
tion functions of renormalized operators. Therefore, we must appropriately
renormalize the ’t Hooft operator T (LR), which we do as follows. We first
parametrize the metric near the boundary of AdS2 using the Fefferman–
Graham gauge

ds2
AdS2

=
dZ2

Z2 +
dX2

Z2 (g0(X) + Z2g2(X) + · · · ).

In this coordinate system the boundary is at Z = 0, and X parametrizes R

or S1 for the upper half-plane metric and Poincaré disk metric, respectively.9

In order to define the renormalized ’t Hooft operator we introduce a cutoff
near the location of the operator, which is inserted at the boundary of
AdS2 × S2.10 This defines a three-dimensional hypersurface Σ located at
Z = ε. The renormalized ’t Hooft operator is constructed by adding to the
N = 4 super Yang–Mills action (2.2) covariant counterterms supported on
the hypersurface Σ

S −→ S + Sct.

The explicit form of the covariant counterterms we use to define the renor-
malized ’t Hooft operator are the boundary terms11

Sct = − 1
g2

∫
Σ

tr[F |Σ ∧ �3F |Σ − f ∧ �3f ], (2.6)

8Since the scalar curvature on AdS2 × S2 vanishes, the conformal coupling vanishes.
9Z = 2e−ρ, X = ψ for the Poincaré disk, and Z = l, X = t for the upper half-plane (see

equations (A.2) and (A.7) in Appendix A).
10The definition of the ’t Hooft operator as the partition function of N = 4 super Yang–

Mills on AdS2 × S2 is reminiscent of Sen’s definition of the quantum entropy function
[29–32] as the string theory path integral on AdS2, which encodes the macroscopic degen-
eracy of states of extremal black holes.

11The boundary terms for surface operators [14] (see also [15]) were constructed in [33].
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where F |Σ is the restriction of F to the hypersurface Σ, f is a one-form
obtained by contracting F with the unit normal vector to Σ and �3 is the
Hodge star operation on the three-dimensional hypersurface.

Taking into account the bulk action (2.5) and the boundary terms (2.6) in
the semiclassical evaluation of the expectation value of the circular ’t Hooft
operator T (LR) we obtain that12

〈T (LR)〉G,τ = exp
(

tr(B2)
8

g2|τ |2
)

. (2.7)

When the ’t Hooft loop is supported on C = R the expectation value is
trivial, a result that follows from supersymmetry.

Exactly the same results for the semiclassical expectation value of the
’t Hooft operator T (LR) are obtained when we consider the theory on R

4.
Everything we have done can be translated into the R

4 language by per-
forming a Weyl transformation.13 We emphasize that we have presented
the analysis on AdS2 × S2 purely as a matter of convenience. We also note
that our result for the expectation value applies to a general ’t Hooft loop
in any gauge theory where the matter fields are not excited by the operator
or where adjoint matter fields have scale invariant singularities. We now
proceed to the study of the quantum definition of the operator.

2.2 Quantum ’t Hooft loop

The ’t Hooft loop operator T (LR) is defined by integrating in the path
integral over all fields which have a prescribed singularity near the loop.
In order to evaluate the expectation value of the ’t Hooft operator in the
quantum theory, we must explicitly specify the measure of integration in the
path integral.

The path integral for the ’t Hooft operator T (LR) is performed by expand-
ing the fields around the singularity

A = A0 + Â,

φI = φI
0 + φ̂I ,

12The net effect of the boundary terms is to renormalize the volume of AdS2. For the
metric on the upper half-plane the renormalized volume vanishes while the renormalized
volume in the Poincaré disk is −2π, a well-known result from studies of Wilson loops in
the AdS/CFT correspondence.

13The Weyl transformation from AdS2 × S2 to R
4 introduces a boundary term for the

action in R
4 proportional to tr(φIφI).
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where (A0, φ
I
0) is the classical singularity corresponding to a ’t Hooft loop

T (LR) (2.1) and (Â, φ̂I) are the non-singular quantum fluctuations that we
must integrate over in the path integral. In order to define the path integral
and eliminate the gauge redundancies, we must specify a gauge fixing proce-
dure. We quantize the theory in the background field gauge, where (A0, φ

I
0)

is the background about which the path integral is expanded. The gauge
fixing condition we consider is the dimensional reduction to four dimensions
of the covariant background field gauge fixing condition in 10-dimensional
super Yang–Mills. It is given by

DM
0 ÂM = 0,

where

DM
0 = ∂M − i[AM

0 , · ].

In terms of the fields in N = 4 super Yang–Mills multiplet the gauge fixing
condition takes the form

Dμ
0 Âμ − i[φI

0, φ̂
I ] = 0.

The gauge fixing procedure requires introducing Faddeev–Popov ghosts in
the path integral as well as the addition of the following gauge fixing term
and ghost action to the N = 4 super Yang–Mills action

Sgf =
1
g2

∫
d4x

√
h tr

[
DM

0 ÂMDN
0 ÂN − c̄DM

0 DMc
]
, (2.8)

which in terms of four-dimensional fields reads

Sgf =
1
g2

∫
d4x

√
h tr

[(
Dμ

0 Âμ − i[φI
0, φ̂

I ]
)2

− c̄Dμ
0 Dμc + c̄[φI

0, [φ̂
I , c]]

]
.

From the gauge fixed path integral and by expanding around the background
created by the ’t Hooft operator T (LR), Feynman rules can be extracted
and the expectation value of T (LR) can be computed to any desired order
in perturbation theory. It is given by the sum over all connected vacuum
diagrams.

The definition given thus far for the ’t Hooft operator T (LR) is, however,
not gauge invariant. The singularity produced by the operator T (LR)

F =
B

2
vol(S2) + ig2θ

B

16π2
dt ∧ dr

r2 φ =
B

2r

g2

4π
|τ |,
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breaks the G-invariance of the N = 4 super Yang–Mills action to invariance
under a stability subgroup H ⊂ G. The choice of B ∈ t, which characterizes
the strength of the singularity, determines the unbroken gauge group H.
This is generated by the generators T ⊂ g for which

[B, T ] = 0. (2.9)

In order to have a path integral definition of the ’t Hooft operator T (LR)
which is gauge invariant, we must integrate over all the G-orbits of B ∈ t

along the loop. This integration, which we include in our definition of the
path integral, restores G-invariance. The integral we must perform is over
the adjoint orbit of B

O(B) ≡ {Bg = gBg−1, g ∈ G}, (2.10)

which is diffeomorphic to the coset space G/H. The integration over the
adjoint orbit of B is reminiscent of the integration over collective coordinates
around a soliton in quantum field theory. In the context of quantization of
the ’t Hooft operator, integration over O(B) follows from demanding that
the path integral is gauge invariant. In the computation of a general ’t Hooft
operator in an arbitrary gauge theory we must also include this measure
factor.

Having an explicit definition of the quantum ’t Hooft operator T (LR) we
now proceed to calculate the expectation value of T (LR) to one loop order.
Integrating out the quantum fluctuations to one loop requires expanding the
complete gauge fixed N = 4 super Yang–Mills action obtained by combining
(2.2) and (2.8) to quadratic order in the fluctuations. The quadratic action
is given by the dimensional reduction to four dimensions of

S(2) =
1
g2

∫
d4x

√
h tr

[
ÂM (−δMND2

0+2iFMN
0 )ÂN + iψ̄ΓMD0Mψ − c̄D2

0c
]
,

where we are packaging the N = 4 super Yang–Mills fields into ten-
dimensional fields. Therefore, up to one loop order the expectation value of
the circular ’t Hooft loop operator T (LR) is given by14

〈T (LR)〉G,τ = exp
(

tr(B2)
8

g2|τ |2
)

[detf (iΓMD0M )]1/4 detg(−D2
0)

[detb(−δMND2
0 + 2iFMN

0 )]1/2

×
∫

dμO(B). (2.11)

14In Lorentzian signature the fermions are Majorana–Weyl. In Euclidean signature,
the fermions are chiral and complex, but ψ and ψ̄ are not independent, resulting in the
exponent of 1/4 for the fermionic determinant.
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The first factor arises, as we have seen in (2.7), from the renormalized
on-shell action evaluated on the classical singularity produced by T (LR),
the second one from integrating out the fluctuations of the bosons, fermions
and ghost fields, and

∫
dμO(B) is the integration over the adjoint orbit of B

required by gauge invariance.

In Appendix B we show that the one loop determinants all cancel among
themselves. The reason behind this cancellation is that the background for
an ’t Hooft loop operator (2.4) is invariant under half of the supersymmetries
of the theory. Moreover, the background is self-dual if we package the three
components of the gauge field and the scalar field φ sourced by the loop as
a four component gauge field.15 The cancellation of the determinants is
then quite analogous to the cancellation of the corresponding determinants
of N = 4 super Yang–Mills around an instanton background.

We now have to construct the metric on the adjoint orbit of B, O(B).16

This is obtained by computing

tr(dB2
g),

where g ∈ G. This yields

tr(dB2
g) = tr([B, g−1dg]2). (2.12)

We write the Lie algebra g in the Cartan basis {Hi, Eα}. The generators Hi

span the Cartan subalgebra t ⊂ g and Eα are ladder operators associated to
roots α of the Lie algebra g. We can decompose the Maurer–Cartan form
of the group G in terms of the generators of g

g−1dg = i

(∑
i

dξiHi +
∑
α

dξαEα

)
. (2.13)

In order to explicitly determine the physical metric in O(B) we must specify
the overall normalization. We fix the normalization of the metric from the
quadratic form defined by the on-shell action (2.7) of the ’t Hooft operator.
Therefore, by evaluating (2.12) the physical metric on the adjoint orbit of
B is given by

ds2
O(B) =

g2|τ |2
4

∑
α>0

α(B) �=0

α(B)2 2 tr(EαE−α)|dξα|2,

15This is the familiar statement that the monopole equations arise by dimensional
reduction to one lower dimension from the self-duality equations, where the scalar field in
the monopole equations arises from the fourth component of the gauge field.

16While O(B) is diffeomorphic to G/H, their metrics as a submanifold and as a quotient
are different.
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where the sum is over all the positive roots α that do not annihilate B, and
we have used that [X, Eα] = α(X)Eα for any X ∈ t. This implies that17

∫
dμO(B) =

(
g2|τ |2

8π

)dim(G/H)/2

Vol(G/H)
∏
α>0

α(B) �=0

α(B)2, (2.14)

since ∑
α>0

α(B) �=0

2 tr (EαE−α) |dξα|2 = ds2
G/H .

The complete one loop result for the expectation value of a circular
’t Hooft operator T (LR) in N = 4 super Yang–Mills with arbitrary gauge
group G is then

〈T (LR)〉G,τ = exp
(

tr(B2)
8

g2|τ |2
)(

g2|τ |2
8π

)dim(G/H)/2

Vol(G/H)

×
∏
α>0

α(B) �=0

α(B)2, (2.15)

where we recall that B is identified with the highest weight Lw of the rep-
resentation LR of LG, which labels the operator.

Since we have given a complete definition of the path integral measure
and have an explicit gauge fixed action, the expectation value of the ’t
Hooft operator T (LR) can now be computed to any desired higher order
in perturbation theory. It is given by the sum over all connected vacuum
graphs around the singularity created by T (LR).

2.2.1 Examples

The discussion thus far has been very general, applying to an arbitrary
circular ’t Hooft operator T (LR) in N = 4 super Yang–Mills with gauge
group G. Such an operator is labeled by a representation LR of LG. In
order to make the discussion a bit less abstract, here we present the relevant
formulas for various elementary gauge groups.

• G = SU(2) and SO(3): ’t Hooft operators in this theory are labeled
by a highest weight of the dual group, which are LG = SO(3) and

17As usual in path integrals, a factor of 1/
√

2π multiplies each integration variable dξα,
which guarantees that the path integral for the Gaussian model is normalized to 1.
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LG = SU(2), respectively. A highest weight of SO(3) can be labeled in
terms of a spin j ∈ Z

+ while for SU(2) j ∈ (1/2)Z+. For an ’t Hooft
operator with j �= 0, the broken symmetry near the loop is H = U(1)
(for j = 0, we just get the identity operator). In this case

〈T (j)〉G,τ = exp
(

j2

4
g2|τ |2

)
j2g2|τ |2. (2.16)

• G = U(N): ’t Hooft operators in this theory are labeled by a highest
weight of the dual group, which is also LG = U(N). A highest weight
of U(N) can be labeled by a set of integers Lw = [m1, m2, . . . , mN ]
with m1 ≥ m2 ≥ · · · ≥ mN .18 The corresponding data characterizing
the monopole singularity (2.1) is given by

B =

⎛
⎜⎜⎜⎝

m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 . . . mN

⎞
⎟⎟⎟⎠ ∈ t � u(1)N .

Let us now consider various representations of U(N):
◦ Lw = [k, 0, . . . , 0]: This corresponds to the rank-k symmetric repre-

sentation. The stability group in this case is H = U(1) × U(N − 1)
and

〈T ([k, 0, . . . , 0])〉G,τ = exp
(

k2

8
g2|τ |2

)(
g2|τ |2k2

4

)N−1 1
(N − 1)!

,

(2.17)

where we have used that Vol(U(N)) = (2π)N(N+1)/2/
∏N−1

n=1 n! [34].

◦ Lw = [
k times︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0]. This corresponds to the rank-k antisymmetric

representation. The stability group in this case is H = U(k) × U(N −
k) and

〈T ([1, . . . , 1, 0, . . . , 0])〉G,τ

= exp
(

k

8
g2|τ |2

)(
g2|τ |2

4

)k(N−k) ∏k−1
n=1 n!∏k

n=1(N − n)!
. (2.18)

18A highest weight of U(N) with mN ≥ 0 is in one-to-one correspondence with a Young
diagram containing ml boxes in the lth row.
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• Lw = [m1, m2, . . . , mN ] with m1 > m2 · · · > mN : The stability group
in this case is H = U(1)N and

〈T ([m1, m2, . . . , mN ])〉G,τ = exp
(∑

i m
2
i

8
g2|τ |2

)(
g2|τ |2

4

)N(N−1)/2

× 1∏N−1
n=1 n!

∏
i<j

(mi − mj)2. (2.19)

3 Wilson loop expectation value

The aim of this section is to compute the expectation value of the circular
Wilson loop in N = 4 super Yang–Mills at strong coupling. The ultimate
goal is to show that our result (2.15) for the expectation value of the cir-
cular ’t Hooft operator at weak coupling maps in the dual theory to the
expectation value of the Wilson loop at strong coupling, thereby exhibiting
S-duality in N = 4 super Yang–Mills for correlation functions.

The supersymmetric circular Wilson loop in N = 4 super Yang–Mills with
gauge group G is labeled by a representation R of G. It is given by [35,36]

W (R) ≡ TrRP exp
∮

(iA + φ),

where φ ≡ φInI and (nI) is a unit vector in R
6.

A remarkable property of the supersymmetric circular Wilson loop W (R)
is that its expectation value can be computed in terms of a matrix model,
thereby reducing the complexity of the path integral of a four-dimensional
field theory to a matrix integral. This result was first conjectured in [22,23],
and was based on computations of the Wilson loop in perturbation theory.
This remarkable result has been proven in an elegant paper by Pestun [24],
who, using localization techniques, has shown that the path integral over
the four-dimensional fields reduces to an integral over a zero mode, which
corresponds to the variable of integration in the matrix model integral.

The expectation value of the supersymmetric circular Wilson loop W (R)
transforming in a representation R of G is given by the matrix integral
[22–24]

〈W (R)〉G,τ =
1
Z

∫
g

[dM ] exp
(

− 2
g2 tr(M2)

)
TrReM . (3.1)
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M is an element in the Lie algebra g corresponding to G and Z is the matrix
model model partition function. As in the previous section, tr( , ) is the
invariant metric on the Lie algebra g, and is normalized so that the length-
squared of the short coroots is two. This normalization fixes the measure
[dM ], which is the volume element on the Lie algebra g. The normalization
factor is

Z =
∫
g

[dM ] exp
(

− 2
g2 tr(M2)

)
=
(

πg2

2

)dim(G)/2

. (3.2)

We now “gauge fix” and reduce the integral over g to integration over
the Cartan subalgebra t. Any M ∈ g is conjugate to an element X in the
maximal torus T of G, and the Lie algebra g decomposes into orbits of the
G-action, with the generic orbit being diffeomorphic to G/T . In formulas

∀M ∈ g, ∃X ∈ T, g ∈ G/T : M = gXg−1,

and the metric in g is given by

tr(dM2) = tr(dX2) + tr[X, g−1dg]2.

Using the decomposition of the Maurer–Cartan form of G in (2.13) we
find that

tr(dM2) = tr(dX2) +
∑
α>0

α(X) �=0

α(X)22 tr (EαE−α) |dξα|2,

where α are the roots of g.

Generically, there is more than one X in the maximal torus T associated
with a given M ∈ g, but these are related to each other by the action of
the Weyl group W of g. Correspondingly, the orbits of the G-action are
parametrized by X ∈ T up to the action of W. Therefore, integration over
the orbit yields
∫
g

[dM ]e− 2
g2 tr(M2)TrReM =

Vol(G/T )
|W|

∫
t

[dX]Δ(X)2e− 2
g2 〈X,X〉TrReX , (3.3)

where

Δ(X)2 =
∏
α

|α(X)| =
∏
α>0

α(X)2,

and 〈 , 〉 is the metric on the Cartan subalgebra t. The factor of Δ(X)2

plays the role of the Vandermonde determinant in Hermitian matrix models.
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It is convenient to write the insertion of the group character in (3.3) as
the sum over all the weights v ∈ Ω(R) in the representation R

TrR eX =
∑

v∈Ω(R)

n(v) ev(X),

where n(v) is the multiplicity of the weight v and Ω(R) is the set of all
weights in the representation R. By completing squares in the exponential,
we obtain

〈W (R)〉G,τ=
Vol(G/T )

|W|Z
∑

v∈Ω(R)

n(v)e
g2

8 〈v,v〉

×
∫
t

[dX]e− 2
g2 〈X,X〉 ∏

α>0

(
α(X) +

g2

4
〈α, v〉

)2

. (3.4)

For each weight v ∈ Ω(R), we obtain the expectation value of a polynomial
in the X’s, which can be evaluated using Wick contractions, yielding a
polynomial in the coupling constant g.

Since we are interested in understanding the action of S-duality on our
perturbative computation of the ’t Hooft operator (2.15), we need to solve
the matrix model for the Wilson loop at strong coupling. The large g behav-
ior of the Wilson loop (3.4) is controlled by the exponential prefactor. At
large g, the leading contribution arises from the terms in the sum over
weights involving the longest weights in the representation R. It is for these
weights that the length of the weight — given by 〈v, v〉 — is maximal.

The longest weights v ∈ Ω(R) are related to the highest weight19 in the
representation R — which we denote by w — by the action of the Weyl
group W. However, there is an invariant subgroup H ⊂ G that leaves that
highest weight w invariant, and the Weyl group of H — which we denote
by W(H) — acts trivially on w.

The strong coupling limit of the circular Wilson loop operator is thus
given by

〈W (R)〉G,τ =
Vol(G/T )
|W(H)|Z e

g2

8 〈w,w〉
∫
t

[dX]e− 2
g2 〈X,X〉 ∏

α>0

(
α(X) +

g2

4
〈α, w〉

)2

.

The leading contribution at strong coupling is obtained by factoring out
〈α, w〉 from the integral for the roots α in the Lie algebra g for which

19The highest weight appears with multiplicity one in the set Ω(R) of all possible
weights in the representation, as otherwise the representation would be reducible.
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〈α, w〉 �= 0. This yields

〈W (R)〉G,τ =
Vol(G/T )
|W(H)|Z e

g2

8 〈w,w〉
( ∏

α>0,〈α,w〉�=0

g2

4
〈α, w〉

)2

×
∫
t

[dX]e− 2
g2 〈X,X〉 ∏

α>0
〈α,w〉=0

α(X)2. (3.5)

We can now perform the integral over the Cartan subalgebra elements
X, which is proportional to the inverse of Vol(H/T ) (see Appendix C for
details). The expectation value of the circular Wilson loop W (R) in N = 4
super Yang–Mills at strong coupling is then given by

〈W (R)〉G,τ = exp
(

〈w, w〉
8

g2
)(

g2

8π

)dim(G/H)/2

Vol(G/H)
∏

α>0,〈α,w〉�=0

〈α, w〉2,

(3.6)
where w is the highest weight of the representation R of G.20

4 S-duality for loop operators

N = 4 super Yang–Mills with gauge group G is conjectured to have a sym-
metry group Γ ⊂ SL(2, R), which acts on all the gauge invariant operators
in the theory as well as on the complexified coupling constant

τ =
θ

2π
+

4πi
g2 ,

on which it acts by fractional linear transformations

τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2, R).

The symmetry group Γ has two generators, usually denoted by T and S. T
generates the classical symmetry

T : τ → τ + 1,

which follows by inspecting the N = 4 super Yang–Mills path integral. S
conjecturally generates a quantum symmetry which exchanges the gauge

20We evaluate (3.6) for some sample representations and gauge groups in Appendix D.
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group G with the dual group LG and inverts the coupling constant

S : τ → − 1
ngτ

, (4.1)

where ng is the ratio |long root|2/|short root|2 for g (see footnote 1). When
the Lie algebra is simply laced Γ = SL(2, Z).

In N = 4 super Yang–Mills with gauge group G, a Wilson operator is
labeled by a representation R of G while an ’t Hooft operator is labeled by
a representation LR of the dual group LG. Under the action of S-duality
a Wilson operator in the theory with gauge group G maps to an ’t Hooft
operator in the theory with the dual group LG and vice versa

G LG
W (R) ←→ T (R)
T (LR) ←→ W (LR)

Non-trivial evidence for S-duality was presented by Kapustin [10], where it
was shown that given a Wilson operator in the theory with gauge group G
that one can construct the classical singularity of an ’t Hooft operator for the
theory with dual gauge group LG with precisely the same quantum numbers
as the original Wilson operator. The S-duality conjecture further predicts
that the correlation functions of dual operators are the same. In particular,
S-duality predicts that the expectation value of an ’t Hooft operator gets
mapped to the expectation value of a Wilson operator in the dual theory

〈T (LR)〉G,τ = 〈W (LR)〉LG,Lτ . (4.2)

We now use our computation of the semiclassical ’t Hooft operator expec-
tation value, and of the expectation value of the Wilson operator strong
coupling to exhibit that correlation functions in N = 4 super Yang–Mills
transform precisely as predicted by S-duality. We recall that up to one loop
order, the expectation value of a circular ’t Hooft loop operator in N = 4
super Yang–Mills with gauge group G is given by (2.15)

〈T (LR)〉G,τ = exp
(

tr(B2)
8

g2|τ |2
)(

g2|τ |2
8π

)dim(G/H)/2

× Vol(G/H)
∏
α>0

α(B) �=0

α(B)2, (4.3)

where B is the highest weight of the representation LR of LG. The dual
operator is a circular Wilson loop in N = 4 super Yang–Mills with gauge
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group LG, whose expectation value at strong coupling is given by21

〈W (LR)〉LG,Lτ = exp
(

〈Lw, Lw〉
8

Lg2
)(

Lg2

8π

)dim(LG/LH)/2

× Vol(LG/LH)
∏

Lα>0
〈Lα,Lw〉�=0

〈Lα, Lw〉2, (4.4)

where Lw is the highest weight of the representation LR of LG.

In order to study the prediction of S-duality for these correlators, we first
note that the action of S-duality on the coupling constant (4.1) implies that

(Lg)2 = ng g
2|τ |2. (4.5)

We should also pay attention to the difference between tr(B2) and 〈Lw, Lw〉
when comparing the correlators, since they are constructed in terms of the
metric defined on t and Lt∗, respectively. These metrics are in turn induced
from the metrics on g and Lg. In our computations, we have normalized the
Lie algebra metrics that appear in the Lagrangians so that short coroots
have length-squared equal to two, or equivalently long roots have length-
squared equal to two. However, roots in G are identified with coroots of the
dual group LG, so a long root in G is identified with a long coroot in LG.
It follows that when we identify t with Lt∗, the metric on t is ng times the
metric on Lt∗. Therefore, the norms of B and Lw are related by22

tr(B2) = ng〈Lw, Lw〉. (4.6)

Finally, we can relate Vol(G/H) and Vol(LG/LH) (see Appendix C):

Vol(G/H)
∏
α>0

α(B) �=0

α(B)2 = n
dim(G/H)/2
g Vol(LG/LH)

∏
Lα>0

〈Lα,Lw〉�=0

〈Lα, Lw〉2.(4.7)

Inserting equations (4.5–4.7) into the formula for the expectation value of
the Wilson loop at strong coupling (4.4), we find precisely the same result
we obtained for the expectation value of the ’t Hooft operator (4.3) in the
dual theory.

21Note that in Section 3 we calculated the Wilson loop for gauge group G, while here
we need the result for gauge group LG. This explains the appearance of the dual group,
dual coupling and so on.

22 More precisely, the isomorphism ϕ : Lt∗ → t satisfies B = ϕ(Lw), 〈ϕ(Lw), ϕ(Lw)〉 =
ng〈Lw, Lw〉.
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To summarize, we have shown up to the order we have computed that
the expectation value of a Wilson operator is exchanged under S-duality
with the expectation value of an ’t Hooft operator, thus exhibiting that
these correlation functions in N = 4 super Yang–Mills transform precisely
as predicted by the S-duality conjecture.

5 Saddle points from monopole screening

In the computation of the expectation value of the circular Wilson loop
operator W (LR) in N = 4 super Yang–Mills with gauge group LG, we have
represented23 the insertion of the group character in the matrix integral in
terms of the sum over all weights Lv ∈ Ω(LR) in the representation LR of LG

TrLReX =
∑

Lv∈Ω(LR)

n(Lv)e
Lv(X),

where n(Lv) is the multiplicity of the weight Lv and Ω(LR) is the set of all
weights in the representation LR.

We have noted that the leading contribution at strong coupling Lg � 1
arises from the longest weights, those with maximal norm 〈Lv, Lv〉. These in
turn are obtained from the highest weight of the representation Lw ∈ Ω(LR)
by the action of the Weyl group.

It is instructive to also consider the effect of the non-longest weights in the
representation Lv ∈ Ω(LR) to the expectation value of the Wilson loop. The
leading contribution of a non-longest weight Lv ∈ Ω(LR) at strong coupling
is proportional to

exp
(

〈Lv, Lv〉
8

Lg2
)(

Lg2

8π

) 1
2 dim(LG/LH(Lv))

Vol(LG/LH(Lv))

×
∏

Lα>0
〈Lα,Lv〉�=0

〈Lα, Lv〉2, (5.1)

where LH(Lv) is the subgroup of LG that leaves the weight Lv invariant. In
the strong coupling limit, this contribution is exponentially suppressed with

23Note that we are considering a Wilson loop in the theory with gauge group LG,
which explains the appearance of the dual representation, dual coupling and so on when
compared to Section 3.
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respect to the contribution from the longest weights, which is proportional
to exp[〈Lw, Lw〉Lg2/8] � exp[〈Lv, Lv〉Lg2/8].

S-duality predicts that these subleading contributions to the Wilson loop
at strong coupling should also arise in the semiclassical computation of the
expectation value of the ’t Hooft operator. We argue that these sublead-
ing exponentials appear in the ’t Hooft loop correlator via the physics of
monopole screening.

The physics of screening of an ’t Hooft operator by a regular monopole
is S-dual to the more familiar screening of an electric source by dynamical
gluons. The non-abelian charge inserted by a Wilson loop in a representation
LR of LG can be screened by gluons, which also carry non-abelian charge
and are constantly appearing and disappearing from the vacuum due to
quantum fluctuations. The gluons are, however, uncharged under the center
Z(LG) ⊂ LG. Therefore, the quantum number that cannot be screened is
the charge of the representation LR of the Wilson loop under Z(LG). On
the other hand, since π1(G) � Z(LG), the quantum number associated with
the S-dual ’t Hooft operator T (LR) that cannot be screened by regular
monopoles is an element of π1(G), which is precisely the topological charge
carried by an ’t Hooft operator [9].

In the path integral definition of a t ’Hooft loop T (LR) we have quantized
the singularity produced by T (LR) in the background field gauge. The sin-
gularity determining the field configuration near the loop is specified by the
highest weight Lw, which gets identified with B. The norm of B — tr(B2) —
determines the strength of the singularity. The subleading exponentials pre-
dicted by S-duality arise from boundaries of the region of integration in
field space where the singularity produced by the ’t Hooft operator T (LR) is
weaker, and is controlled by a non-longest weight Lv of the representation
LR. The necessity to include the less singular configurations was noticed
in [21], where the phenomenon was dubbed “monopole bubbling.” This
weaker singularity arises physically from the physics of monopole screen-
ing, whereby a regular ’t Hooft-Polyakov monopole approaches a singular
monopole (an ’t Hooft operator), and screens the charge of the ’t Hooft
operator.

The charges of regular ’t Hooft-Polyakov monopoles are spanned by the
simple coroots of the Lie algebra g, which generate the coroot lattice. When
we bring a regular monopole — labeled by a coroot — near an ’t Hooft
operator T (LR), the charge of the ’t Hooft operator is screened. The result-
ing effective charge is obtained by the action of lowering operator associated
with the coroot labeling the regular monopole on the highest weight Lw that
characterizes the singularity of the ’t Hooft operator T (LR). The action of
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the ladder operators associated with the regular monopoles on the highest
weight Lw generates all the weights in the representation LR [21].

This was explicitly realized in [37] by constructing a classical solution to
the equations of motion that contains a regular monopole in the presence
of a singular monopole in the cases G = SU(2) and G = SO(3). When the
gauge group is G = SU(2), the dual group is LG = SO(3), and the minimal
’t Hooft operator T (1) carries spin one with respect to LG = SO(3). In
the spin one representation a state with vanishing weight can be obtained
from the highest weight state by applying the lowering operator. This can
be translated into the language of monopole screening by noting that T (1)
can be completely screened by an ’t Hooft–Polyakov monopole. Indeed the
singularity in the solution disappears when the regular monopole approaches
the ’t Hooft operator. If on the other hand G = SO(3), the minimal ’t
Hooft operator T (1/2) carries spin one-half with respect to LG = SU(2).
The spin one-half representation has no state with vanishing weight and so
the ’t Hooft operator cannot be screened. In the solution, the size of the
regular monopole remains finite as it approaches the singularity, and the
strength of the singularity remains intact/unscreened.

The subleading saddle points corresponding to the non-longest weights
in the representation should then be included in the path integral and can
be computed in the same manner as we have done in Section 2. Instead of
quantizing the singularity of the ’t Hooft operator T (LR) associated with the
highest weight of LR, we quantize the singularity produced by the weaker
singularities that appear at the boundaries of the region of integration of
field space, which are labeled by the weights of LR. These saddle points
are then in one-to-one correspondence with the subleading contributions to
the expectation value of the Wilson loop in (5.1), and reproduce the Wilson
loop result including the prefactor.

6 Discussion

We conclude by summarizing our results and describing several interest-
ing lines of inquiry stemming from this work. First we have defined the
renormalized ’t Hooft operator in terms of a path integral quantized in the
background field gauge around a certain codimension three singularity cre-
ated by the operator. We have shown that an important ingredient that
goes into the definition of the operator is the measure of integration in the
path integral, which is dictated by gauge invariance, and which requires inte-
grating over the adjoint orbit of the classical singularity produced by the ’t
Hooft operator. This measure factor should be included in the computation
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of a general ’t Hooft operator in an arbitrary gauge theory. We have then
explicitly computed the expectation value of the circular ’t Hooft loop oper-
ator in N = 4 super Yang–Mills up to one loop order. Computations to
higher orders in perturbation theory can now be carried out by summing
over all connected vacuum diagrams generated by the path integral.

By solving for the expectation value of the S-dual Wilson operator at
strong coupling we have been able to exhibit that correlation functions
in N = 4 super Yang–Mills transform properly under S-duality. We have
shown that the perturbative result for the expectation value of the ’t Hooft
operator up to one loop order exactly reproduces the strong coupling expan-
sion of the S-dual Wilson loop in the dual theory. Unlike most of the previ-
ous studies of S-duality, the matching goes beyond comparing “topological”
features like the spectra, quantum numbers and so on, but it rather tests
the quantum dynamics underlying S-duality.24

We have also argued that the subleading exponential corrections to the
expectation value of the Wilson loop at strong coupling can be identified with
the weaker singularities that appear near an ’t Hooft loop due to monopole
screening. It would be interesting to understand in more detail the con-
tribution from these subleading saddle points. In this respect, it would be
illuminating to try to evaluate the path integral for the circular ’t Hooft loop
using localization techniques, extending to monopole operators the work by
Pestun [24] for Wilson loops. We expect that the subleading saddle points
arise in this context as solutions to the localization equations. Furthermore,
S-duality predicts that the expectation value of the circular ’t Hooft oper-
ator in N = 4 super Yang–Mills is also described by a matrix model (see
equation (3.4)), so it would be desirable to give a direct derivation of this
matrix model from the ’t Hooft loop path integral.

A worthwhile future direction is to extend our computation for the ’t
Hooft loop expectation value to other gauge theories, in particular to finite
N = 2 theories. An interesting class of N = 2 superconformal field theories
are those that cannot be obtained by quotienting N = 4 super Yang–Mills,
such as N = 2 SU(N) super Yang–Mills coupled to 2N fundamental hyper-
multiplets [40,41], which are conjectured to be invariant under an S-duality
group Γ ⊂ SL(2, Z) [40,42] and to exhibit rich duality relations at strong cou-
pling [43]. N = 2 orbifolds [44] of N = 4 super Yang–Mills are also of inter-
est, and Wilson and ’t Hooft operators in these theories are relevant probes
for the very rich S-duality groups in these theories, where for instance, the

24Note that our test of S-duality is purely in field theory. The tests that are based on
AdS/CFT and the identification of S-dualities in N = 4 super Yang–Mills and type IIB
superstring theory include [23,38,39].
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S-duality group of the Ân−1 quiver gauge theory is conjectured to be the
mapping class group of a torus with n punctures [45]. Very recently, similar
duality relations were conjectured for a larger class of N = 2 conformal the-
ories with more than one gauge group [46]. Moreover gravity duals of such
N = 2 theories have been proposed [47]. Computing correlators of ’t Hooft
operators and Wilson operators provide a useful framework to explore the
conjectured S-duality maps as well as the holographic correspondences.

It is also of interest to go beyond the computation of the expectation
value, and determine whether the perturbative correlators of ’t Hooft oper-
ators with local operators get mapped to the corresponding strong coupling
correlators of the S-dual operators in the S-dual theory [48], by general-
izing the large N results in [39] to finite rank. One can also extend the
computations in the present paper to correlators of disorder operators in
three-dimensional N = 6 superconformal Chern–Simons theories [49], such
as monopole operators [50, 51] and vortex loop operators [52]. Another
rich class of operators that deserve further study are the mixed Wilson-
’t Hooft loop operators in N = 4 super Yang–Mills [10]. These operators
insert dyonic probe particles and have interesting conjectured transforma-
tion properties under S-duality [10]. Giving a quantum definition of these
operators and studying their correlation functions opens a novel arena in
which to probe the quantum dynamics underlying S-duality.

Wilson and ’t Hooft operators exhibit the area law in the confining and
Higgs phases respectively, and are order parameters for these phases. Is there
a similar interpretation for the tree-level result (2.7), which applies to the
’t Hooft loop of any gauge theory in the (Abelian or non-Abelian) Coulomb
phase? A notable feature is its dependence on the theta angle θ. Therefore it
can be used to distinguish phases of a theory that have different values of θ.
Precisely, such phases for gauge theories with U(1) gauge group have been
discussed recently in the condensed matter literature. The orbital motion of
electrons has been shown to generate non-zero θ [53]. The so-called Z2 topo-
logical insulators in 3 + 1 dimensions are particularly interesting examples,
where time reversal symmetry sets θ = π [54, 55]. Thus the expectation
value (2.7) distinguishes the topologically non-trivial phase at θ = π from
the vacuum at θ = 0.25

Explicitly showing that the vacuum expectation value of ’t Hooft operators
are exchanged under duality with the correlation function of Wilson operators

25For a Wilson–’t Hooft operator WTm,n carrying electric and magnetic charges (m, n),
the expectation value in the θ = 0 and π phases are, respectively,

〈WTm,n〉θ=0 =exp
(

g2

8
m2 +

2π2

g2 n2
)

, and 〈WTm,n〉θ=π =exp
(

g2

8

(
m +

n

2

)2
+

2π2

g2 n2
)

.
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is a step in the right direction towards the goal of finding the electric–
magnetic duality transformation that relates the two dual descriptions. In
the past, there have been attempts to formulate Yang–Mills theories directly
in terms of gauge invariant variables, i.e., Wilson variables. In this formula-
tion of the theory, the non-perturbative information of the theory is encoded
in the loop equation, which describes the dynamics of Wilson loop operators
in loop space. Constructing the loop equation for the ’t Hooft loop variables
and studying how it maps to the Wilson loop equation, may provide a non-
perturbative framework in which to study the transformation between gauge
invariant electric and magnetic variables that underlie S-duality in N = 4
super Yang–Mills.
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Appendix A Weyl transforms between metrics

In this appendix we discuss the two Weyl transformations relating R
4 and

AdS2 × S2, which we have used in Section 2. The first transformation is
relevant for the circular ’t Hooft loop computation, and the second one for
the straight line.
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Let us parametrize R
4 using two sets of polar coordinates so that

ds2
R4 = dl2 + l2dψ2 + dL2 + L2dφ2. (A.1)

These coordinates are relevant for a circular loop, which we take to be
located at l = a and L = 0. By making the following change of coordinates

Ω2 =
(l2 + L2 − a2)2 + 4a2L2

4a2 =
a2

(cosh ρ − cos θ)2
,

l = Ω sinh ρ, L = Ω sin θ, (A.2)

we find that the metric becomes

ds2
R4 = Ω2(ds2

AdS2
+ dθ2 + sin2 θ dφ2), (A.3)

where

ds2
AdS2

= dρ2 + sinh2 ρdψ2 (A.4)

is the metric on the AdS2 Poincaré disk in global coordinates. Thus R
4

is conformal to AdS2 × S2. Note that the loop, which was located at l =
a, L = 0 in R

4, gets mapped to the conformal boundary of the Poincaré
disk.

The metric for R
4 can also be written as

ds2
R4 = dt2 + dr2 + r2dΩ2

2, (A.5)

where dΩ2
2 is the S2 metric. We place the straight line at r = 0. In this case

the Weyl transformation to AdS2 × S2 produces the hyperbolic metric on
the upper half-plane

ds2
R4 = r2(ds′2

AdS2
+ dΩ2

2), (A.6)

where

ds′2
AdS2

=
dt2 + dr2

r2 (A.7)

is the AdS2 metric in Poincaré coordinates.
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Appendix B Cancellation of non-zero modes

In this appendix, we show the cancellation of the one loop determinants
in (2.11). This will be first done for the straight line and θ = 0 using self-
duality of the background, and then we will generalize it to non-zero θ and
the circular loop.

Let us package the four-dimensional bosonic fields into the 10-dimensional
gauge field in the order

(AM ) ≡ (A1, . . . , A3, φ
1, . . . , φ6, A0), M = 1, 2, . . . , 10. (B.1)

Without loss of generality we can take φ = φ1 = A4 in (2.4). Then the
non-zero components of the 10-dimensional background field strength are
given by

Fij =
B

2r3 εijkx
k, F4i =

B

2r3 xi, i, j = 1, 2, 3. (B.2)

If we let the index μ take values μ = 1, . . . , 4, the four-dimensional
field strength Fμν is anti-self-dual. To exploit this, we represent the 10-
dimensional gamma matrices in terms of four- and six-dimensional ones as

Γμ = γμ ⊗ 1, Γm = γ ⊗ γm, (m = 5, 6, . . . , 10) (B.3)

and further decompose γμ as

γμ =
(

0 σμ

σ̄μ 0

)
, σμσ̄ν + σν σ̄μ = 2δμν (B.4)

using σ4 = i = −σ̄4, σj = σ̄j .

We begin with the fermionic determinant in (2.11), where it is raised to the
power 1/4 = 1/2 × 1/2 because the fermion ψ satisfies the 10-dimensional
Weyl and Majorana conditions (see footnote 14). It is convenient to compute
the square (we omit the subscript 0 hereafter)

(iΓMDM )2 = −D2132 +
i
2
ΓMNFMN

=

(
−D212 +

i
2
σμνFμν

−D212

)
⊗ 18, (B.5)

where we defined σμν ≡ (σμσ̄ν − σν σ̄μ)/2 and used the anti-self-duality of
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Fμν . Thus the fermionic contribution is
[
detf

(
iΓMDM

)]1/4
=
[
det ′(iΓMDM )2

]1/8

= det ′
(

−D212 +
i
2
σμνFμν

)
det ′(−D2)2, (B.6)

where the prime indicates the omission of zero modes.

For the bosons, we have

[
detb

(
−δMND2 + 2iFMN)]−1/2

= det ′(−D2)−3 det ′(−D2δμν + 2iFμν)−1/2.
(B.7)

Observe that

−D2δμν + 2iFμν =
1
2
σ̄ α̇α

μ

(
−D212 +

i
2
σρσFρσ

)
β

α δ β̇
α̇ σνββ̇ . (B.8)

By treating (α̇α) and (ββ̇) as single indices taking four values, we can regard
σ̄ α̇α

μ and σνββ̇ as 4 × 4 matrices. Then we see that

det ′(−D2δμν + 2iFμν) = det ′
(

−D212 +
i
2
σμνFμν

)2

. (B.9)

Thus the bosonic contribution can be written as
[
detb

(
−δMND2 + 2iFMN

)]−1/2

= det ′(−D2)−3 det ′
(

−D2 +
i
2
σμνFμν

)−1

. (B.10)

Finally, the ghost contribution is simply given by

detg(−D2) = det ′(−D2). (B.11)

We see that the three contributions (B.6), (B.10) and (B.11) cancel out in
(2.11):

[
detf

(
iΓMDM

)]1/4 detg

(
−D2

)
[detb (−δMND2 + 2iFMN )]1/2 = 1. (B.12)

When the theta angle is turned on, the background fields change to

F0i = ig2θ
B

16π2
xi

r3 , Fij =
B

2r3 εijkx
k, F4i =

B

2r3 xi

(
1 +

g4θ2

64π4

)1/2

(B.13)



1972 JAUME GOMIS ET AL.

with other components of FMN vanishing. If we rotate the gauge field and
Gamma matrices into

(
A′

0
A′

4

)
≡ R(θ)

(
A0
A4

)
,

(
Γ′0

Γ′4

)
≡ R(θ)

(
Γ0

Γ4

)
(B.14)

by a complex orthogonal matrix

R(θ) =

⎛
⎜⎜⎜⎝

(
1 +

g4θ2

64π4

)1/2

−i
g2θ

8π2

i
g2θ

8π2

(
1 +

g4θ2

64π4

)1/2

⎞
⎟⎟⎟⎠ , (B.15)

with A′
M = AM , Γ′M = ΓM for other M , the corresponding field strength

F ′
μν remains anti-self-dual, and we have the relation

ΓMNFMN = Γ′μνF ′
μν . (B.16)

Thus the proof for the cancellation of non-zero modes still goes through for
the straight line. Relation (B.16) also implies that the background remains
BPS for θ �= 0.

These arguments for the line can be mapped to the circular loop formally
by a conformal transformation and by using different gauge fixing terms
that are generated by the transformation. Since such cancellation does not
depend on the gauge fixing procedure, the non-zero modes are also cancelled
for the circular loop.

Appendix C Volumes of groups and coset spaces

To relate the integral in (3.5) to Vol(H/T ), let us consider the special case
when w = 0. The Wilson loop expectation value is then unity. By substi-
tuting (3.2) and w = 0 in (3.5), we obtain

1 =
(

2
πg2

)dim(G)/2 Vol(G/T )
|W|

∫
t

[dX]e− 2
g2 〈X,X〉 ∏

α>0

α(X)2 . (C.1)

This formula is very general and can be applied to the case when G is
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replaced by H, the stability group of the highest weight w, and is given by

1 =
(

2
πg2

)dim(H)/2 Vol(H/T )
|W(H)|

∫
t

[dX]e− 2
g2 〈X,X〉 ∏

α>0
〈α,w〉=0

α(X)2. (C.2)

We can use (C.2) to eliminate the integral in (3.5) in favor of Vol(H/T ).
Though (C.1) and (C.2) are sufficient for our purposes, we note that such
integrals have been explicitly evaluated in [34] in terms of the exponents of
the Lie algebras.

Let us now derive relation (4.7). First consider setting (g2, w) to (2, B).
By taking the ratio of (C.1) and (C.2), we obtain

Vol(G/H) = πdim(G/H)/2 |W|
|W(H)|

∫
t
[dX]e−〈X,X〉 ∏

α>0,α(B)=0 α(X)2∫
t
[dX]e−〈X,X〉 ∏

α>0 α(X)2
. (C.3)

Next by setting (g2, G, H, W,W(H), . . .) to (2/ng,
LG, LH, W(LG),

W(LH), . . .), we derive by the same procedure

Vol(LG/LH) =
(

π

ng

)dim(LG/LH)/2 |W(LG)|
|W(LH)|

×
∫

Lt
[dLX]e−ng〈LX,LX〉 ∏

Lα>0, 〈Lw,Lα〉=0
Lα(LX)2∫

Lt
[dLX]e−ng〈LX,LX〉 ∏

Lα>0
Lα(LX)2

. (C.4)

Under the isomorphisms between t, t∗, Lt and Lt∗, we can identify (LX, Lα)
with (X, α). This involves rescaling of the metric (see footnote 22) 〈LX, LX〉=
〈X, X〉/ng and the relation

Lα(LX) =
2α(X)

ng〈α, α〉 . (C.5)

Noting that dim LG = dimG, dim LH = dimH, W � W(LG),W(LH) �
W(H), we can put (C.4) into the form

Vol(LG/LH) = (πng)dim(G/H)/2 |W|
|W(H)|

( ∏
α>0

α(B) �=0

〈α, α〉
2

)2

×
∫
t
[dX]e−〈X,X〉 ∏

α>0,α(B)=0 α(X)2∫
t
[dX]e−〈X,X〉 ∏

α>0 α(X)2
. (C.6)

By cancelling the ratios of integrals in (C.3) and (C.6), and using the relation
〈Lα, Lw〉 = 2α(B)/〈α, α〉ng, we finally obtain (4.7).
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Appendix D Examples of Wilson loop expectation values

To illustrate the formula (3.6) for the Wilson loop and compare it with the
corresponding formula (2.15) for the ’t Hooft loop, let us give some examples.

• G = SU(2) and SO(3). Irreducible representations are labeled by the
spin j. According to the formula (3.6) the expectation value at large
g2 is

〈W (j)〉G,τ = exp
(

j2

4
g2
)

j2g2. (D.1)

• G = U(N). A highest weight w = [m1, . . . , mN ] satisfies m1 ≥ · · · ≥
mN .
◦ w = [k, 0, . . . , 0]. For the rank-k symmetric representation

〈W ([k, 0, . . . , 0])〉G,τ = exp
(

k2

8
g2
)(

k2g2

4

)N−1 1
(N − 1)!

. (D.2)

◦ w = [1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0]. The rank-k antisymmetric representation

gives

〈W ([1, . . . , 1, 0, . . . , 0])〉G,τ

= exp
(

k

8
g2
)(

g2

4

)k(N−k) ∏k−1
n=1 n!∏k

n=1(N − n)!
. (D.3)

◦ w = [m1, m2, . . . , mN ] with m1 > m2 · · · > mN . For such a repre-
sentation

〈W ([m1, m2, . . . , mN ])〉G,τ

= exp
(∑

i m
2
i

8
g2
)(

g2

4

)N(N−1)
2

∏
i<j(mi − mj)2∏N−1

n=1 n!
. (D.4)

Results (D.1) to (D.4) agree with (2.16) to (2.19) via the S-duality map
g2 → Lg2 = g2|τ |2.

D.1 The method of orthogonal polynomials

In Section 3 we have derived an expression for the expectation value of a
Wilson loop W (R) at strong coupling (3.6) that is valid for an arbitrary
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gauge group G. For illustration purposes, we present here an alternative
derivation of 〈W (R)〉 for the case G = U(N) obtained with the method of
orthogonal polynomials.

As we saw in Section 3, the Wilson loop W (R) can be written as a sum
over weights of the representation R. At large g, the terms that dominate
are the ones corresponding to the weights obtained from the highest weight
w by the action of the Weyl group. For U(N), the highest weight can
be labeled as w = (m1, . . . , mN ), where the integers mi are ordered: m1 ≥
m2 ≥ · · · ≥ mN . We introduce integers NI (I = 1, . . . , M) such that w =
(m1, · · · , mN ) contains M distinct integers, with the Ith one appearing NI

times. One can rotate the matrix M in (3.1) to a diagonal configuration
with eigenvalues {xi} at the cost of introducing a Vandermonde determinant
Δ2 =

∏
i<j(xi − xj)2 in the integration measure. This determinant can be

rewritten in terms of polynomials that are orthogonal with respect to the
Gaussian measure, so that the integral to compute becomes

〈W (R)〉 � 1∏M
I=1 NI !

∫ ( N∏
i=1

dxi

)
det({Pj−1(xi)})2 e−

∑
i x2

i e
g√
2

∑
i mixi.

These polynomials are normalized Hermite polynomials: Pn(x) ≡ Hn(x)/√
2nn!

√
π [23]. Completing the squares in the exponentials one readily finds

〈W (R)〉 � 1∏M
I=1 NI !

e
g2

8

∑
i m2

i

×
∫ ( N∏

i=1

dxi

)
det({Pj−1(xi)})2e−

∑
i

(
xi−mi

g

2
√

2

)2

. (D.5)

To obtain the polynomial corrections to the exponential behavior, we need

I(k)
ij ≡

∫ ∞

−∞
dx e−

(
x−k g

2
√

2

)2

Pi(x)Pj(x).

For this, it is useful to use the contour integral representation of the Hermite
polynomials

Hn(x) =
n!
2πi

∮
C
dt

e−t2+2tx

tn+1 ,
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where C encircles the origin counterclockwise. We find

I(k)
ij =

1√
i!j!

(
k g

2

)i+j min(i,j)∑
�=0

�!
(

i
�

)(
j
�

)(
2

k g

)2�

,

which can be expressed in terms of a confluent hypergeometric function of
the second kind U(a, b, z) as

I(k)
ij =

(−1)i

√
i!j!

(
k g

2

)j−i

U

(
−i, 1 − i + j,−k2g2

4

)
. (D.6)

By applying this to (D.5), we arrive to

〈W (R)〉 � (−1)
N(N−1)

2∏M
I=1 NI !

e
g2

8

∑
i m2

i∏N−1
n=0 n!

∑
σ,σ′∈SN

sign(σ) sign(σ′)

×
N−1∏
i=0

m
σ′(i)−σ(i)
i+1 U

(
−σ(i), 1 − σ(i) + σ′(i),−

m2
i+1g

2

4

)
,

(D.7)

where σ and σ′ permute {0, 1, . . . , N − 1}.

We can now specialize (D.7) to the representations of G = U(N) that we
have considered above, see equations (D.2) to (D.4).

◦ w = [k, 0, . . . , 0]. For the rank-k symmetric representation, we need to
use the following limits of the confluent hypergeometric function

lim
x→0

xj−i U(−i, 1 − i + j,−x2) = (−1)i i!δij , (D.8)

i.e., I(0)
ij = δij, and

lim
x→∞

U(−i, 1 − i + j,−x) = (−1)i xi. (D.9)

We get

〈W (R)〉 � e
g2

8 k2

(N − 1)!
∏N−1

n=0 n!

∑
σ,σ′∈SN

sign(σ)sign(σ′)
(g

2

)2σ(0)

× kσ′(0)+σ(0)
N−1∏
i=1

σ(i)!δσ(i)σ′(i).
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Since we are interested in the highest power of g we must select σ(0) =
N − 1. The product over the Kronecker deltas imposes that σ = σ′,
whereas the product over the factorials gives

∏N−2
n=0 n!. By summing

over (N − 1)! permutations, we have

〈W (R)〉 � 1
(N − 1)!

e
g2

8 k2
(g

2

)2(N−1)
k2(N−1) .

This is what we found in (D.2).
◦ w = [1, . . . , 1︸ ︷︷ ︸

k times

, 0, . . . , 0]. To compute the rank-k antisymmetric repre-

sentation we use again the limit (D.8) but, because of the degeneracy
of the non-zero mi’s, we need in this case the full expression (D.6)
for the confluent hypergeometric function, since some of the leading
polynomial corrections cancel for combinatorial reasons. We find

〈W (R)〉 � e
g2

8 k

k!(N − k)!
∏N−1

n=0 n!

×
∑

σ,σ′∈SN

sign(σ) sign(σ′)

⎛
⎝N−1∏

j=k

σ(j)! δσ(j)σ′(j)

⎞
⎠

×

⎛
⎝k−1∏

i=0

σ(i)! σ′(i)!
min(σ(i),σ′(i))∑

�=0

1
�!(σ(i) − �)!(σ′(i) − �)!

(
g2

4

)σ(i)−�
⎞
⎠.

To obtain the leading order in the coupling constant we require
{σ(0), . . . , σ(k − 1)} = {N − k, . . . , N − 1}, from which it also follows
{σ(k), . . . , σ(N − 1)} = {0, . . . , N − k − 1} and, because of the Kro-
necker deltas, {σ′(0), . . . , σ′(k − 1)} = {N − k, . . . , N − 1} and
{σ′(k), . . . , σ′(N − 1)} = {0, . . . , N − k − 1}. The power of the cou-
pling constant g2/4, without considering the subleading contributions
coming from the sums over �’s, is then given by

∑N−1
n=N−k = k(2N −

k − 1)/2. Because of the degeneracy of the mi’s there are cancella-
tions though and this power is reduced of

∑k−1
n=0 n = k(k − 1)/2 to

give (g2/4)k(N−k). Selecting only the terms in the sums over �’s that
produce this power and performing the sums over k! and (N − k)!
permutations, one finally finds the same result as (D.3).

◦ w = [m1, m2, · · · , mN ] with m1 > m2 · · · > mN . In this case we simply
expand the hypergeometric functions for large g using (D.9). It is easy
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to see that (D.7) becomes

〈W (R)〉 � e
g2

8

∑
i m2

i∏N−1
n=0 n!

(g

2

)N(N−1)

×
∑

σ,σ′∈SN

sign(σ) sign(σ′)
N−1∏
i=0

m
σ(i)+σ′(i)
i+1

=
e

g2

8

∑
i m2

i∏N−1
n=0 n!

(g

2

)N(N−1) N∏
i<j=1

(mi − mj)2,

in agreement with (D.4).
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