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Abstract

We explicitly construct the C∗-algebras arising in the formalism of
Topological T-duality due to Mathai and Rosenberg from string-theoretic
data in several key examples. We construct a continuous-trace algebra
with an action of R

d unique up to exterior equivalence from the data
of a smooth T

d-equivariant gerbe on a trivial bundle X = W × T
d. We

argue that the “non-commutative T-duals” of Mathai and Rosenberg [7]
should be identified with the non-geometric backgrounds well known in
string theory. We also argue that the C∗-algebra A �α|

Zd
Z

d should be
identified with the T-folds of Hull [1] and Belov et al. [2] which geometrize
these backgrounds.

We identify the charge group of D-branes on T-fold backgrounds in the
C∗-algebraic formalism of Topological T-duality. We also study D-branes
on T-fold backgrounds. We show that the K-theory bundles of [13] give
a natural description of these objects.
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1 Introduction

It has been known for a some time that string theories may be defined
on backgrounds which are not conventional geometries (see [1–4, 9] and
references therein). We briefly review the construction of such backgrounds
here following [1]. Some of these non-geometric backgrounds may be con-
structed by considering “parametrized families” of string theories with the
target space of each string theory being a familiar space1 such as T

d or the
ALE spaces.

String theories with target a d-dimensional torus possess a “large” sym-
metry group (isomorphic to O(d, d, Z)) of which the “geometric” subgroup
GL(d, Z) ⊂ O(d, d, Z) is generated by large diffeomorphisms of T

d while the
rest are generated by T-dualities combined with shifts of the Kalb–Ramond
field.

Now consider families of string theories parametrized by a space W , i.e.
for each point of W we consider a string theory with target T

d. It is clear that
after moving around any topologically non-trivial loop in W , the theory must
return to itself up to a symmetry, i.e., we have a monodromy. The continuous
part of the symmetry may be gauged away and hence the monodromy will
take values in the large symmetry group of the theory on the T

d fiber. If
every monodromy lies in the geometric subgroup of the symmetry group
then the parametrized family of theories is actually equivalent to a certain
limit of string theory with target a T

d-bundle over W with structure group
the geometric group.

If the monodromy does not lie in the geometric subgroup; however, we
cannot view the parametrized family as being defined by a theory on a
geometric target spacetime. In this case it has been argued that the target
is (roughly speaking) a T

d fibration over W in which the fibers are “glued
together using T-dualities”. Such a space is not a geometry in the ordinary
sense of the term and has been termed a “T-fold” [1,2] or a “monodrofold”
[3, 4].

Some T-folds arise as T-duals of ordinary geometries, and hence string
theory is certainly well defined on them, even as a quantum theory. Con-
versely, Hull has shown that string theory on a general T-fold background
may be defined as a theory with a sigma-model-like action with target a
geometric background together with a set of constraints. He has argued

1We only consider T
d as a target space here.
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that this action may be quantized to obtain the full quantum theory associ-
ated with the T-fold [1]. This background is a (possibly non-principal) T

2d

fibration over W referred to in [2] as the “correspondence space”.

We give a brief outline of the basic theory of T-folds here closely following
[11], Section 2. We consider a T

2d fibration over W . The formalism of
[1,11] introduces a new indefinite metric field LIJ(Y ) on this fibration. The
physical spacetime is defined by choosing for each y ∈ Y, a T

d ⊆ T
2d which

is null with respect to L. This defines a T
d fibration over W . To be precise2

we introduce projectors Πi
I , Π̃iI i = 1, . . . , n, such that the matrix

Π =
(

Πi
I

Π̃iI

)
, i = 1, . . . , n

defines a choice of coordinates on each T
2d fiber in which L has the form

(
0 1
1 0

)

then, LIJΠi
IΠ

j
J = LIJ Π̃iIΠ̃jJ = 0. Let (σ0, σ1) be the coordinates on the

worldsheet, X
I , I = 1, . . . , 2d, be coordinates on the T

2d fiber and Y A, A =
1, . . . , n, coordinates on the base W of the fibration. If we let X = ΠX and
X̃ = Π̃X then X, Y are the coordinates on the physical spacetime and X̃, Y
are the coordinates on the T-dual spacetime.

The T-fold action is then

L = −1
2
HIJ(Y )ηαβ∂αX

I∂βX
J − ηαβIIA(Y )∂αX

I∂βY A + LN (Y ). (1.1)

Here X
I and Y A are worldsheet fields taking values in the base and fiber

of the fibration over W . Also, H is a family of metrics on the T
2d fiber

parametrized by the base W, and I is a “connection” for the T
2d fibration

over W (see [1, 11] for details). Also, LN is the action for the fields with
target the base W . We have the explicit form

H =
(

Hij Hi
j

Hi
j Hij

)
=

(
Gij − BikG

klBlj BikG
kj

−GikBkj Gij

)
, (1.2)

where G is the metric on the T
2d fibers and B is the restriction of the B field

to the T
2d fibers (that is, we only consider the components of the metric and

the B field along the X coordinates).

2See [11, Section 2.1].
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The metric G and B field on the physical spacetime may be obtained
from the above data (equation (4.9) of [1]) as

Gij = ΠiIΠjJHIJ ,

BijG
jk = Π̃I

i Π
kJHIJ . (1.3)

Note that these are exactly the entries in the second column of the matrix
(equation (1.2) above) for H. It is clear that if we interchange Π and Π̃, we
will obtain the first column of H above, which is exactly the T-dual metric
and B field and would be associated to the T-dual spacetime.

Thus the data of a T-fold (namely the metric H and the fixed choice of
projections Π, Π̃) determine two T

d fibrations over W, each with their own
metric and B field, one corresponding to the physical spacetime and the
other to one of its T-duals. Exactly which T-dual is chosen is a matter of
convention and decided by the form of the metric L. In the conventions
of [11], the T-fold is constructed from the original spacetime and the one
obtained by T-dualizing along all of the T-orbits simultaneously. When both
the original spacetime and the T-dual exist as geometric backgrounds, the
T-fold is the fiber product of these two spacetimes, it is the “correspondence
space” (see below). On it, there is only the tensor field H which, as discussed
above, contains the original metric and B field. However, T-folds continue
to exist as geometric spaces even when the original space or its full T-dual
is non-geometric. An explicit example of this is the full T-dual T

3 viewed
as a trivial T

2-bundle over T with H-flux which we will discuss in detail in
Section 4 below.

Now non-geometric backgrounds have also been seen in the C∗-algebraic
formalism of Topological T-duality of [7]. In this paper we study the rela-
tionship of these two formalisms to each other. (See [9] for another view-
point on this issue.) In what follows, we use the term “T-fold” to refer to
the geometrization of the non-geometric T-dual, i.e., to the (possibly non-
principal) T

2d fibration over W referred to as the “correspondence space”
in [2]. This is the same as the correspondence space of [6–8] (see below).

We now outline the two formalisms that we will study in the following
sections: In the formalism of Topological T-duality of [7], we begin with
a C∗-dynamical system (A, α, Rd) such that the spectrum of A denoted
by Â is a principal T

d-bundle p : X → W and the R
d-action on A induces

the given T
d-action on X = Â. Here Â is supposed to be a model for the

topological type of a target space with a T
d-isometry. The cohomology

class of the H-flux on the target space is modelled by the Dixmier–Douady



TOPOLOGICAL T-DUALITY AND T-FOLDS 1523

class of A. The topological T-dual of A is [7] the C∗-dynamical system
(A �α R̂

d, α̂, R̂d). To each such C∗-dynamical system, there is associated
a function f : W → T

d(d−1)/2 termed the Mackey obstruction map3 of the
system. When this map is nullhomotopic (we say “there are no Mackey
obstructions”) the spectrum X# of this C∗-algebra is again a principal circle
bundle q : X# → W termed the T-dual bundle. The authors of [7] also
show that in this case there is a “correspondence space” homeomorphic to
the fibered product X×W X# (the spectrum of A �α|

Zd
Z

d) such that the
following diagram of spaces commutes:

X ×W X#

r
������������

s

������������

X

p
������������� X#

q

�������������

W

(1.4)

Here, X, X# and X ×W X# are principal T
d-bundles over W with specified

integral three-cohomology classes representing the H-flux, and all the maps
are bundle projections. In addition, the pullbacks of the H-fluxes along r, s
agree. If there are Mackey obstructions, however, the T-dual is in general
a non-commutative space and the above diagram of spaces does not exist.
However, there is a similar diagram of C∗-algebras with the correspondence
space replaced by the C∗-algebra A �α|

Zd
Z

d. We will argue in Section 2
below that this algebra is a natural analog of the T-folds of Hull when the
T-dual is nongeometric.

The formalism of [2] considers a smooth principal T
d-bundle p : X → W

(representing the target space) together with a smooth T
d-equivariant gerbe

with connection on X (this is the conventional model for the H-flux). The
T

d-equivariance is needed in order to satisfy the conditions for gauging the
sigma model on the target space (see [1, 2]). The authors define a certain
obstruction cocycle mIJ

αβ which defines a class in H1(W, Zm), m = d(d − 1)/2
with I, J = 1, . . . , d, such that the T-dual is geometric if and only if this class
is zero. In this case, as shown in [2], we may define a smooth correspondence
space, which gives a commutative diamond of spaces exactly as in equa-
tion (1.4). If some mIJ

αβ define non-zero cohomology classes in H1(W, Zm),
a geometric T-dual does not exist. In this case, the correspondence space
of [2] is a geometric space but it is a non-principal T

2d-bundle over W .

3See Section 2 below.
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If we denote this correspondence space by C here, we have a “diagram”

C

��

s

����
��

��
��

X

p ���
��

��
��

� T-fold

��
W

(1.5)

Here the dotted arrows are purely indicative, no quotient is implied.

Now the formalism of [2] is defined in the category of smooth manifolds,
whereas the formalism of [7] is in a category of C∗-algebras. A connection
between these two seemingly different formalisms is of interest. Note that we
do obtain the same correspondence space in both formalisms when, in one
case, the Mackey obstruction vanishes and in the other, when all the mIJ

are zero. It is natural to conjecture that the two obstructions are related.
We will show below that this is indeed the case. We will also construct the
continuous-trace algebra associated with certain types of H-flux on trivial
torus bundles over a base W directly from the string theoretic data of [2].
In particular, we argue that the “non-commutative T-duals” discussed in
[7] should then be viewed as topological approximations to the T-folds of
Hull. We relate D-branes on the correspondence space to the formalism of
Topological T-duality in Section 3 below. We also compare our findings to
the string-theoretic calculations in [11].

2 A Topological approximation of H-flux

In this section, we compare the formalisms of Mathai and Rosenberg [6, 7]
to the string theoretic T-dual studied by Belov et al. [2]. Note that the
C∗-algebraic formalism is only concerned with the topological aspects of
T-duality, and hence a certain loss of information is to be expected on
passing to it from string theory.

We will see that the reason why the C∗-algebraic formulation of Topolog-
ical T-duality agrees with string theory is due to the structure of the H-flux
in string theory. It is well known that the H-flux in string theory is required
to satisfy the WZW condition namely

LtH = 0 ,
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where t is a tangent vector field on X which is associated to the torus action
on X. As shown in [1, 2, 10] this forces the H-flux to have the structure

H =
1
6

p∗HIJK
0 ∧ ΘI ∧ ΘJ ∧ ΘK +

1
2

p∗HIJ
1 ∧ ΘI ∧ ΘJ + p∗HI

2 ∧ ΘI + p∗H3 ,

where ΘI , I = 1, . . . d, are the components of the connection form on X and
Hk ∈ Ωk(W ) (we use the notation of [1] here, see equations (1.1), and (1.2) of
that paper). We will see below that in several interesting cases this structure
enables us to construct the C∗-algebraic T-dual.

In [1], the authors consider a smooth T
d-equivariant gerbe with connection

on X. In the case when the T-dual is non-geometric, they show that the
gerbe connection naturally gives a T

2d-bundle over W with structure group
GL(2d, Z). They identify this with the correspondence space.

Hull [1, Theorem 2.2] obtains an integral one-cocycle mαβ ∈ H1(W, ∧2
Z

d)
from a gerbe connection on X. We will show below that the homotopy class
of the Mackey obstruction map f : W → T

d(d−1)/2 of [7,13] can be identified
with the cohomology class of this cocycle.

As noted in [1], the class mαβ vanishes iff the T-dual is geometric and
then the correspondence space is the fibered product of the original space
and the T-dual. In the C∗-algebraic formalism, the spectrum of T is exactly
this fiber product when the Mackey obstruction vanishes. Hence it seems
natural to conjecture that mαβ is related to the Mackey obstruction.

Below, we will explicitly construct the Mackey obstruction map from the
data of a smooth equivariant gerbe and show that its homotopy class is
exactly mαβ . A heuristic argument for identifying the two is as follows:
In [1], it is shown that the component of the H-flux with two “legs” along the
torus fiber and one leg along the base determines classes4 mIJ

αβ ∈ H1(W, Z).
Since mIJ is skew-symmetric in I, J there will be as many such classes as
the number of elements in the basis of ∧2

Z
d determined by I. These give

an element of H1(W, ∧2
Z

d).

In particular if aIJ is a vector-valued differential form representing mαβ ,
the component of the H-flux associated to mαβ is aIJ ∧ ΘI ∧ ΘJ , where
ΘI is the connection form on X. If we could construct a continuous-trace
algebra A having Dixmier–Douady invariant [H] together with an R

d-action
α covering the T

d-action on X thus determining a C∗-dynamical system
[A, α] on X, then we would expect,5 mαβ to be the cocycle representing

4Hull [1] after equation (2.20).
5In the notation of [7, Theorem 2.3].



1526 PETER BOUWKNEGT AND ASHWIN S. PANDE

p!(H), i.e., mαβ = p! ◦ F ([A, α]). However, by the commutativity of the
diagram in Theorem 2.3 of that paper, p! ◦ F = h ◦ M and hence mαβ would
be the cohomology class representing the Mackey obstruction as well.

We now show that we can obtain the Mackey obstruction map itself from
the string-theory calculation. We fix a basepoint w0 in W and the basepoint
(1, . . . , 1) in T

d(d−1)/2.

Theorem 2.1. Given a T
d-equivariant gerbe with connection on a smooth

principal T
d-bundle p : X → W

(1) If we fix the gauge of the gerbe connection on X, there exists a smooth
map f : W → T

d(d−1)/2 constructed from the gerbe connection. The
map is natural under pullback of gerbes.

(2) Under a gauge transformation of the gerbe connection, this map is
multiplied by a phase γ, i.e., f → eiγf .

(3) This defines a unique based map (W, w0) → (Td(d−1)/2, (1, . . . , 1)) such
that the homotopy class of f in [W, Td(d−1)/2] is p!([H]). There is a
geometric T-dual if and only if f is nullhomotopic.

Proof. We use the notation of [2] throughout this proof. We implicitly
assume the results stated therein. Let Uα be a good cover of W . Let
Xα = Uα × T

d be a cover of X.

(1) From [2, equation (2.4)], we see that the curvature form of the gerbe
connection on X is

H =
1
6

p∗HIJK
0 ΘI ∧ ΘJ ∧ ΘK +

1
2

p∗HIJ
1 ΘI ∧ ΘJ + p∗HI

2ΘI + p∗H3,

where Hk are k-forms on W and ΘI , I = 1, . . . , d, are the coordinates
on the T

d fiber. Note that the H-flux is a fixed three-form and as such
does not change under gauge transformations. Hence, neither do the
Hk. We take H0 = 0 as we are working in the context of the paper of
Belov et al. [2]. This implies that H1 is a closed form on W . In each
patch Xα, the gerbe connection Bα (whose curvature is H above) may
be written as

Bα = B2α + BI
1α ∧ ΘI +

1
2

BIJ
0α ∧ ΘI ∧ ΘJ , (2.1)

where Bkα are k-forms on Xα. The equivariance condition that is
required for the sigma model to be well-defined6 L( ∂

∂θI
)Bα = 0 implies

6See [2].
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that L( ∂
∂θI

)Bkα = 0, k = 0, . . . , 3. Hence, L( ∂
∂θI

)B0α = 0 and so
∂B0α/∂θI = 0. Hence, B0α only depends on the coordinates of W
and not on the θI . Thus, B0α is a well-defined function on Uα ⊆ W .

We also have BIJ
0α − BIJ

0β = mIJ
αβ , (see Theorem 2.2 of [2]), that is,

mαβ is an obstruction to B0α being a global function on W . Note that
mIJ

αβ is the cocyle representing the Mackey obstruction as discussed
above. Define f IJ = exp(2πiBIJ

0α), 0 ≤ I < J ≤ d; it is clear that this
construction is natural since, under pullback of gerbes, by definition,
B will map naturally. The map f is smooth since BIJ

0α is smooth by
definition.

(2) Note that from the relation BIJ
0α − BIJ

0β = mIJ
αβ , one might think that

it would be possible to add a constant to each of the BIJ
0α without

affecting H.
As we now show this procedure is a gerby gauge transformation of

B. Given a gerbe on X the gauge transformations are generated by
a global line bundle q : K → X with a connection ∇ such that under
a gauge transformation Bα → Bα + Ωα where Ωα is the restriction of
the curvature form Ω of ∇ to Xα. Now, Ωα may be written as

Ωα =
1
2

ΩIJ
0αΘI ∧ ΘJ + ΩI

1αΘI + Ω2α

where dΩα = 0 since Ω is the curvature of a line bundle. This implies
that dΩIJ

0α = 0. Hence the ΩIJ
0α are the restriction of a constant real-

valued function on X to Xα. Let the value of this function be γ. Then,
f IJ → f IJ exp(iγ) under a gerby gauge transformation.

(3) We choose the basepoint7 (1, . . . , 1) in T
d(d−1)/2 and require that the

value of f at w0 should be the identity (1, . . . , 1) of the Lie group
T

d(d−1)/2. This fixes f uniquely.
For G a group, let G be the sheaf of G-valued functions on W . Then

we have a short exact sequence of sheaves 0 → Z
m → R

m → T
m → 0.

The first few terms in the associated long exact sequence in sheaf
cohomology of W are

C(W, Zm) → C(W, Rm) → C(W, Tm)
β→ H1(W, Zm),

where β is the connecting map. In the special case m = 1, and W =
S1, β is the map which sends a function to its winding number and
hence may be identified with the map h of [7]. If we set m = d(d −
1)/2 we see that f IJ defines an element of C(W, Tm) and its image
under β is precisely mIJ

αβ . In particular, β is the map that sends
a function with values in T

d(d−1)/2 to the set of homotopy classes

7This is not unusual, for example, in [13, Lemmas 6.5 and 6.6] the Mackey obstruction
map is also required to be based.
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[W → T
d(d−1)/2] ∼= H1(W, Zm). Thus the homotopy class of f is mαβ

which is the cohomology class of H1 = p!(H). If f IJ is nullhomotopic,
then mαβ is a coboundary and by Corollary 2.1 of [2] we see that
the T-dual is a principal torus bundle. The converse is also true by
Corollary 2.3 of that reference. �

Thus, we see from the above that the map f has exactly the behavior
that the Mackey obstruction map should have (see the proof of Theorem 3.1
of [7]). In general the Mackey obstruction is only a continuous map. How-
ever, note that the above construction will always yield a smooth map. Thus,
we suspect that the above construction is not reversible, there is a loss of
information when passing from string theory to the formalism of Topological
T-duality.

If we could naturally associate a continuous-trace algebra A with spec-
trum X together with a R

d-action α to the data of a smooth equivariant
gerbe on X, then f would be the Mackey obstruction of [A, α]. However,
the construction of such a pair directly from the gerbe is difficult in general.

We now restrict ourselves to the case when X is a trivial torus bundle
since this case is well understood. We use the work of Echterhoff et al. [13]
to compare the results of [1] with C∗-algebraic topological T-duality. We
further require that H0 = H3 = 0.

When X = W × T
d and f is not nullhomotopic, the C∗-algebraic formal-

ism of Topological T-duality (see [7, 13]) obtains a non-commutative prin-
cipal T

d-bundle8 as the T-dual. We argue below that when mαβ is not a
coboundary, the smooth gerbe formalism of Belov et al. [2] determines such
a bundle:

Theorem 2.2. Suppose X = W × T
d and suppose we are given the data of

a smooth T
d-equivariant gerbe on X in the sense of [2] with H0 = H3 = 0.

Let K denote the C∗-algebra of compact operators on an infinite-dimensional
separable Hilbert space.

(1) The above data determines a Z
d-action θ on C0(W, K), where K is the

set of compact operators on a separable Hilbert space.
(2) If we require that T-duals in the C∗-algebraic formalism and the smooth

equivariant gerbe formalism determine the same principal T
d-bundle

when H1 = 0, then this Z
d-action is determined uniquely.

8Note that in [13], f may be nullhomotopic. Thus, their non-commutative bundles
include ordinary principal torus bundles as a subset. This fact will be implicitly used
below.



TOPOLOGICAL T-DUALITY AND T-FOLDS 1529

(3) The canonical Z
d-action on C0(W, K) determines a unique C∗-dyna-

mical system (A, α) such that Â = X. The Dixmier–Douady invariant
of A equals the cohomology class of H. The cohomology class of the
Mackey obstruction of (A, α) is equal to the class of the cocycle mαβ

of [2].
(4) The canonical Z

d-action on C0(W, K) determines a unique non-comm-
utative principal torus bundle over W . This bundle is isomorphic to
the C∗-algebraic T-dual A �α R

d.

Proof. Since we have a trivial bundle the gerbe curvature form may be writ-
ten as

H =
1
2
HIJ

1 dθI ∧ dθJ + HI
2dθI ,

where H1 is a closed, integral form on W and θI , I = 1, . . . , d, are coordinates
on T

d.

(1) This is a consequence of Theorem 2.3 of [13]: The exterior equivalence
classes of Z

d-actions on C0(W, K) are parametrized by a group EZd(W ).
An element β of this group is determined by two data:
• A Mackey obstruction map f : W → T

d(d−1)/2.
• An isomorphism class of a principal T

d bundle q : Y → W , i.e., an
element of H2(W, Zd).

By Theorem 2.1 above, we already have the map f . The principal
bundle q may also be obtained from the equivariant gerbe data: By
Theorem 2.2 of [2], the component B1α (see equation (2.1) above) of
the gerbe connection Bα satisfies equation (2.17b) of [2]

B1α − B1β = dh̃I
αβ + mIJ

αβAβJ ,

where h̃I
αβ are real-valued functions on W satisfying the cocycle iden-

tity9 h̃I
αβ + h̃I

βγ + h̃I
γα = 0. Let gI

αβ = exp(2πih̃I
αβ). The gI

αβ satisfy
the cocycle condition

gI
αβgI

βγgI
γα = 1

on three-fold intersections Xαβγ and hence define an element10 of
H1(W, Td). Hence they determine an isomorphism class of a principal
T

d-bundle over W . Now the pair[f IJ , gI
αβ ] determine a Z

d-action θ
on C0(W, K).

9Note that since X is a trivial bundle, its transition functions λαβJ , J = 1, . . . , d, may
be taken to be zero in Theorem 2.2 of [2].

10Here T
d is the sheaf of T

d-valued functions on W and the cohomology group is the
sheaf cohomology.
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(2) We need to show that the choice of h̃αβ is canonical. After all, it is
conceivable that one could construct other cocycles on W which might
give a completely different Z

d-action on C0(W, K). However, the choice
of h̃αβ is forced on us by the following argument: Belov et al. show
that11 when mαβ is a trivial cocycle, the h̃αβ determine the isomor-
phism class of the T-dual principal torus bundle. We therefore require
that if f constructed in Theorem 2.1 is nullhomotopic, the T-dual non-
commutative principal T

d-bundle obtained above should reduce to a
principal T

d-bundle (possibly with H-flux) whose characteristic class
should agree with that of the T-dual obtained from Belov et al. [2].

It is a well-known result that when f = 0, i.e., β has no Mackey
obstructions, the crossed product C0(W, K) �β Z

d is actually a con-
tinuous-trace algebra on an ordinary principal T

d-bundle. In the
C∗-algebraic formalism of Topological T-duality, the algebra
C0(W, K) �β Z

d is strongly Morita equivalent to the C∗-algebraic12 T-
dual A �α R

d Thus, the choice of the cocycle h above is canonical, as it
is the only one which makes Y agree with the geometric T-dual in [2].

(3) Let A = IndR
d

Zd (C0(W, K), θ) and α the induced R
d-action on A. This

determines a C∗-dynamical system (A, α) with spectrum X unique up
to exterior equivalence. The Dixmier–Douady class of A is equal to
the class of H in integral cohomology by construction. By the proof of
Theorem 2.1 above, the homotopy class of f is equal to the cohomology
class mαβ calculated from the data of a T

d-equivariant gerbe on X.
(4) The canonical Z

d-action on C0(W, K) determines a non-commutative
principal T

d-bundle over W namely, C0(W, K) �θ Z
d. This is strongly

Morita equivalent to the C∗-algebraic T-dual A �α R
d by Proposi-

tion 3.4 of [5]. Since both algebras are stable, they are actually iso-
morphic. �

Thus, we have constructed the C∗-algebraic T-dual13 from the string-
theoretic data on X. It is thus natural to view the non-commutative T-duals
of Mathai and Rosenberg [7] as being topological approximations to the
T-folds of Hull [1].

When the T-dual is geometric we may identify the correspondence space
with the spectrum of T ∼= A �α|

Zd
Z

d. In light of the above theorem, it is
natural to preserve this identification when the T-dual is non-geometric.

11Corollary 2.1 of [2].
12This is by Proposition 3.4 of Raeburn and Rosenberg [5] with G = R

d and H = Z
d.

13The space that we describe as “the T-dual” above is the one obtained by applying
the T-duality transformation along the all d of the S1-orbits of X. It is one of the possible
set of T-duals of the space X. The T-dual that we obtain is encoded in the choice of the
action α above.



TOPOLOGICAL T-DUALITY AND T-FOLDS 1531

Thus, we claim that T is the C∗-algebra naturally associated to the
T-folds of Hull. It would be interesting to construct this algebra directly
from the data of the correspondence space obtained by Belov et al. [2] when
the T-dual is non-geometric.

3 D-Branes on the correspondence space

In this section we make a few remarks on D-branes on T-folds and their
connection with the formalism of Topological T-duality. We follow [11] for
the theory of D-branes on Hull’s T-folds.

We would like to determine the charge group of the D-branes in this
background. To do this we consider the simplest case first, namely the case
when there are no Mackey obstructions so both spaces are geometric. In
this case, we have a commutative “diamond”

X ×W X#

r
������������

s

������������

X

p
������������� X#

q

�������������

W

(3.1)

(Note that the projection operators Π and 1 − Π discussed by Hull [2] are
obtained from the maps r and s restricted to each local coordinate patch.)
From [2, Section 7], we see that in this situation, a D-brane on the cor-
respondence space should give D-branes on X and X#. Now due to the
maps r, s an element of the twisted K-homology of the correspondence space
KH̃

∗ (X ×W X#), will give rise to elements of KH
∗ (X) and KH#

∗ (X#), which
are D-branes on X and X# (see for example [12]). Hence D-branes on
the T-fold should be given by the elements of KH

∗ (X ×W X#). Thus their
charges should be given by the twisted K-theory of the correspondence space
K∗

H(X ×W X#) which, in this case, is isomorphic to the operator-algebraic
K-theory of T . We conjecture that even when Mackey obstructions are
present and the spectrum of T is not a fibered product of two spaces, this
identification continues to hold. Thus, we conjecture that the charge group
of D-branes on a T-fold should always be the K-theory of T . We now
determine the K-theory of T :

Theorem 3.1. Let B be a stable C∗-algebra with spectrum W . Let θ be a
Z

d-action on B. Consider the (stable) induced algebra A = IndR
d

Zd (B, θ). Let
the R

d-action on A be denoted α and define T = A �α Z
d.
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(1) We have that

K0(T ) ∼= K1(T ) ∼= K0(A)d ⊕ K1(A)d .

(2) There is a natural automorphism φi : Ki(T ) → Ki(T ), i = 0, 1, induced
by the Connes–Thom isomorphism

Proof.

(1) We consider A as possessing a natural Z
d action (denoted α as well)

obtained by restricting the R
d action to the Z

d subgroup. Consider
D = IndR

d

Zd (A). Let the R
d action on D be denoted φ. We know that

D �φ R
d is strongly Morita equivalent to A �α Z

d by Theorem 2.2 of
[5]. Hence, by the Connes–Thom isomorphism theorem, it is enough to
calculate K∗(D). Now D was formed by applying the induced algebra
construction to the restriction of the R

d action on IndR
d

Zd (B, θ) to Z
d ⊆

R
d. Thus, the induced algebra construction collapses and D ∼= A ⊗

C(Td). Hence, by the Künneth theorem K∗(D) ∼= K0(A)d ⊕ K1(A)d.
(2) The existence of the natural automorphism φi follows since we may

repeat the above construction with A �α R
d instead of A, note that

there is an isomorphism A �α Z
d ∼= (A �α R

d) �α̂ Z
d and apply the

Thom isomorphism theorem.

�

Note that the above proof is true for any induced algebra IndR
d

Zd (C0(W, K)).
Such algebras include those with non-commutative geometries as T-duals.
Thus, by our conjecture above, the charge group of D-branes on T will
always be K0(A)d ⊕ K1(A)d. It would be interesting to interpret this charge
group physically but a more detailed14 study of D-branes on T-fold back-
grounds is needed. Still, we feel that the above argument is natural enough
to serve a preliminary step towards such studies.

In the above theorem we could have begun with A �α R
d instead of A

and then the K-groups would be expressed in terms of the K-theory of
the crossed product. It would be interesting to find an expression for the
K-theory of T which does not depend on the arbitrary choice of either A or
A �α R

d.

Note that in the above theorem we could have replaced A with a smooth
subalgebra A∞ ⊆ A and still obtained the same K-theory (by the Karoubi

14It is not clear, for example, whether D-branes on T-folds would carry Chan–Paton
bundles on their worldvolumes.
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Density Theorem). In particular we could have taken the smooth subalge-
bra of smooth sections of the K-bundle over Â which corresponds to A. It
might be interesting to try to define a smooth structure on A (in the sense
of Connes) using the smooth structure of the gerbe on X. However, as cur-
rently defined, A is only sensitive to topological but not smooth information.

We recall that T-folds are obtained as geometrizations of parametrized
families of string theories on T

d. Each T
d fiber is the background for an

exactly solvable string theory which could have D-brane excitations. Now
consider families of these D-branes one in each fiber parametrized by cycles
in the base W . These would be obvious candidates for D-branes on T-folds.
Such D-branes would wrap lifts of cycles on the base W to the correspon-
dence space and also wrap the torus fiber. We note that in [11] such config-
urations have been studied from the string-theoretic point of view in back-
grounds which are geometrizations of T-folds, i.e., in the correspondence
space C of [2]. We would like to determine the analog of these types of
D-brane configurations in the formalism of Topological T-Duality.

It is well known that the charge group of D-branes on a space X is the
topological K-theory of X. The D-brane configuration described above
would correspond to sections of a bundle of K-theory groups over W in
the sense of [13].

The authors of [13] study C∗-bundles: Roughly speaking, these are
C∗-algebras whose elements are sections of bundles15 of C∗-algebras over
a base space W . For example, the algebras A, T and A �α R

d, discussed
above, are all C∗-bundles over W .

To a C∗-bundle A(W ) over a topological space W satisfying certain con-
ditions (see [14] for details), Echterhoff et al. [13] associates a bundle of
abelian groups: the fiber of this bundle over a point x ∈ W is the K-theory
of the fiber of A(W ) at that point. They also associate to this bundle a
monodromy map: If Aw is the fiber of A(W ) over w ∈ W , they define a
map π1(W ) → Aut(K∗(Aw)). In addition the authors of [13] show that the
K-theory group of A(W ) (for example, the charges of D-branes on T ) may
be obtained from a spectral sequence whose E2-term is a certain family of
groups calculated using sections of the K-theory bundle of A(W ). This con-
nection between parametrized families of D-branes and the K-theory of T
(which is the charge group of D-branes) is interesting.

Do such K-theory bundles exist for the C∗-algebra T of the correspon-
dence space? If so, continuous sections of the K-theory bundle of T would

15These bundles do not need to be locally trivial.



1534 PETER BOUWKNEGT AND ASHWIN S. PANDE

correspond to parametrized families of D-branes on the T-fold associated
to T . The following result holds for induced C∗-algebras A :

Theorem 3.2. Let B = C0(W, K) and let θ be a Z
d-action on B. Consider

the induced algebra A = IndR
d

Zd (B, θ). Let the R
d-action on A be denoted α

and define T = A �α Z
d.

(1) T is a C∗ fibration over W with fibers F ∼= C(Td,K) �α|
Zd

Z
d.

(2) It is a K fibration in the sense of Definition 4.1 of [13] and hence pos-
sesses a K-theory bundle and a monodromy map ρ : π1(W ) →
Aut(K∗(F)).

(3) When there is a geometric T-dual, the image of the monodromy map
lies in GL(2d, Z).

Proof.

(1) It is clear that T is a C0(W )-algebra: recall the crossed product of a
C0(W )-algebra by a spectrum fixing action of a group is also a C0(W )-
algebra. Now, T ∼= A#

�α#|
Zd

Z
d but A# which is, by definition,

A �α R
d is isomorphic to C0(W, K) �θ Z

d (since T is stable). Thus,
T is a C∗ fibration over W . Now T is by definition A �α Z

d. A is a
C∗-bundle over W with fibers C(Td,K). Since α|Zd is spectrum fixing,
the fibers of the fibration T are F ∼= C(Td,K) �α|

Zd
Z

d.
(2) By Lemma 8.4 of [13], A is a K fibration. Since T is the crossed

product of A by a spectrum-fixing Z
d-action, by Remark 2.3 Part (1)

of [14], T is a K fibration as well. The existence of a K-theory bundle
and a monodromy map follow from Proposition 4.2 of [13].

(3) In the geometric case (i.e., when the Mackey obstruction vanishes), the
fibers of T over the base are just C(T2d,K). Since Ki(C(T2d,K)) ∼=
Z

2d, i = 0, 1, the image of the monodromy map is Aut(Z2d) ∼= GL(2d, Z).

�

Since the K-theory groups of each fiber are discrete groups, if the
K-theory bundle is trivial, the sections would be constant. This would
correspond to choosing a D-brane configuration on W which restricts to the
same D-brane on each fiber. In general, if the bundle possesses a mon-
odromy, there could be non-constant sections. For example, we could pick a
D0-brane in every fiber and a T-dual D1-brane on applying the monodromy.
Since the brane worldvolume jumps discontinuously, such D-brane configu-
rations cannot exist when the background is geometric. However, they might
exist in non-geometric backgrounds. In fact, these configurations have been
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observed in several physical examples in [11] where they are termed “gener-
alized” D-branes. In [11], parametrized families of D-branes for which this
does not occur are termed “geometric” D-branes. The authors also consider
generalized D-branes which “return to themselves” only after (finitely) many
traversals of such loops.

What would be the analog of these in Topological T-duality? We suggest
the following construction: As shown in Proposition 4.2 of Ref. [13] there is
an action of π1(W ) on the K-theory bundle of the algebra T . We can define
geometric families of D-branes in the C∗-algebraic formalism as constant
sections of this bundle. Non-geometric families would then correspond to
non-constant sections. Recall that the worldvolume of a generalized D-brane
‘returns to itself” after a finite number of circuits of the cycle it wraps.
This implies that the monodromy of the associated section of the K-theory
bundle should be cyclic. That is, in the formalism of Topological T-duality
generalized D-branes16 would exist on T if at some point w in W , the
image of the monodromy map ρ : π1(W ) → Aut(K∗(Aw)) was a finite cyclic
subgroup of Aut(K∗(Aw)). Obviously, when the monodromy map is trivial,
all D-brane configurations are geometric.

4 Example: T
3 with non T-dualizable H-flux

In this section we study in detail the T-fold associated to a spacetime which
is a trivial T

2-bundle over T. First, we make some remarks on the T-fold
formalism applied to spacetimes which are trivial torus bundles over W .

Consider a space of the form T
d × W . Let yi, i = 1, . . . , n, be local coor-

dinates on W and θk, k = 1, . . . , d, be coordinates on the T
d fiber. Assume

that the metric on the space is the product metric of the flat metric on T
d

with the metric on W . The B field may then be written BIJ
0αdθI ∧ dθj + · · · .

Here, the dots denote terms in the B field containing one or zero dθI ’s. It is
clear that only B0 will enter the expression for H because only the B0 com-
ponent of the B field is supported completely on the torus fiber. The other
components have non-trivial support along the base W . Thus, the restric-
tion of the B field to the T

d fiber is locally BIJ
0α . If we examine the form

for H we see that, in the T-fold metric, the BIJ
0α appear along antidiagonal

blocks. As noted in Theorem 2.2 of [2], we have

BIJ
0α = BIJ

0β − mIJ
αβ .

16In the sense of [11].



1536 PETER BOUWKNEGT AND ASHWIN S. PANDE

Hence, a non-zero class mαβ causes the metric H to have non-trivial off-
diagonal components. We claim that it is the twisting of the T-fold by
these components of H that creates the monodromy in the total space of
the T-fold (as noted in [2]).

Pick a open cover of T consisting of two open sets, with U1 being the
complement of 0 and U2 the complement of its antipodal point. Let x be
the coordinate on the base T and y, z be the coordinates on the T

2 fiber.
We pick the flat metric on T

3 and an H-flux H = N dx ∧ dy ∧ dz. We pick
the B field B = Nx dy ∧ dz corresponding to this H-flux.

We recall that the connection forms on T
3 are the one-forms dy, dz. There-

fore, comparing with equation (2.1) above, we see that B0α = Nx. It is then
clear that on changing charts, we have that B01 = B02 − N . Now mαβ is
an integral two-cocycle on W and as such, is determined by specifying inte-
gers for each pairwise intersection Uαβ . With the given choice of charts, the
cocycle mαβ has value N on U1 ∩ U2. Note that changing the coordinate
functions on Uα will simply give a cohomologous cocycle. In addition, using
Theorem 2.1 in Section 2 above we see that the Mackey obstruction map is
exactly the map x → exp(2πiNx). This is the Mackey obstruction map con-
structed for an induced algebra with spectrum T

3 by Mathai and Rosenberg
in Proposition 4.1 of [7]. Note that the construction of [7] exists for any
continuous Mackey obstruction function. However, we will always obtain
a smooth function as a Mackey obstruction. The reason, as mentioned in
the introduction to Section 2, is that Topological T-duality is a topological
approximation (a continuous-trace algebra with a R

d action) of a smooth
T

d equivariant gerbe with connection.

Following [11, Section 2.3], let

(
Xi

X̃i

)
=

⎛
⎜⎜⎝

y
z
ỹ
z̃

⎞
⎟⎟⎠

be the coordinates on the corresponding T-fold. The metric H on the
T-fold is17

H =

⎛
⎜⎜⎝

1 + (Nx)2 0 0 Nx
0 1 + (Nx)2 −Nx 0
0 −Nx 1 0

Nx 0 0 1

⎞
⎟⎟⎠ . (4.1)

17See equation (2.20) of [11].



TOPOLOGICAL T-DUALITY AND T-FOLDS 1537

(Note that the metric is well defined even though the double T-dual is not a
geometric space. Note also that the metric and B field on the double T-dual
may be recovered from H as discussed in the introduction.)

A detailed analysis of D-branes on T-fold backgrounds has been done in
[11, Section 3.4]. A D-brane on such a background is specified by a projection
valued function ΠD on W (a “Dirichlet projector”) which picks out the
directions with Dirichlet boundary conditions on each T

2d fiber over W .
This also defines a Neumann projector ΠN = (1 − ΠD) on the T-fold which
determines the Neumann directions on each fiber. The D-brane boundary
conditions are determined by ΠD∂0X = 0. We can see that these determine
two sets of boundary conditions Π ΠD∂0X = 0 and Π̃ ΠD∂0X = 0. Recall
that the ΠX were coordinates on X and the Π̃X were coordinates on the
T-dual X#. It is clear that the two sets of boundary conditions above
determine parametrized families of D-branes on X and X#, respectively.
These may not actually be D-branes as the boundary conditions may possess
a non-trivial monodromy. However, one can check that whenever a D-brane
wrapping the T-fold of T

3-with H-flux is an allowed D-brane, the projections
of this brane to X and X# are also allowed D-branes.

We may use this phenomenon to justify the expression for Ki(T ) that we
have obtained in Theorem 3.1 above, at least for T

2 fibrations. Suppose A
satisfies the hypotheses of Theorem 3.1 above, then the spectrum of A is a
trivial T

2-bundle over W , and the K-theory of the associated T-fold is

Ki(T ) ∼= (K0(A))2 ⊕ (K1(A))2 .

Now, using the Thom isomorphism, this may be written as

Ki(T ) ∼= K0(A) ⊕ K0(A �α R
2) ⊕ K1(A) ⊕ K1(A �α R

2) .

We could interpret this as saying that a D-brane on T would determine
D-branes on A and A �α R

2 and further that the dimension of these
D-branes need not have the same parity as that of the D-brane on T . A
closer study of D-branes on T might give insight into the formula for Ki(T )
in the case d ≥ 2.

5 Conclusion

In this paper we have argued that the T-folds in string theory are naturally
related to the non-commutative T-duals of [7]: In a particular class of exam-
ples, the non-commutative T-duals of Ref. [7] may be naturally obtained
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from string theoretic data. It would be interesting to extend Theorem 2.2 to
the case when H3 �= 0. One would have to study exterior equivalence classes
of Z

d-actions on continuous trace algebras on W with non-zero Dixmier–
Douady invariant. It would also be interesting to extend the above theorem
to non-trivial principal torus bundles.

We suspect that it should be possible to obtain the C∗-algebra T from the
data defining the non-principal T

2d-bundle C which is the correspondence
space of [2].

We have also argued that D-branes on T-folds have an analogue in the
C∗-algebraic formalism. It would be interesting to pursue these analogies
further.
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