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Abstract

We define the sigma-model action for world-sheets with embedded
defect networks in the presence of a three-form field strength. We derive
the defect gluing condition for the sigma-model fields and their deriva-
tives, and use it to distinguish between conformal and topological defects.
As an example, we treat the WZW model with defects labelled by ele-
ments of the centre Z(G) of the target Lie group G; comparing the holo-
nomy for different defect networks gives rise to a 3-cocycle on Z(G).
Next, we describe the factorization properties of two-dimensional quan-
tum field theories in the presence of defects and compare the correlators
for different defect networks in the quantum WZW model. This, again,
results in a 3-cocycle on Z(G). We observe that the cocycles obtained in
the classical and in the quantum computation are cohomologous.
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1 Introduction

In this paper, we consider two-dimensional sigma models

S[X; γ] =
∫

Σ
dσ1 ∧ dσ2

√
det γ

(
γ−1)ab

Gμν(X)∂aX
μ∂bX

ν + Stop[X] (1.1)

for maps X from a world-sheet Σ with metric γ to a target space M with
metric G. The field variable X is allowed to be discontinuous across lines
on the world-sheet. We shall refer to such lines of discontinuity as defects.
The most familiar setting in which defects occur is provided by orbifold
models, where the field has to be periodic only up to the action of the group
of automorphisms of the target space. However, defect conditions much
more general than a jump of the field by a target-space automorphism are
possible. One of the main results of this paper is the formulation of the
topological term Stop[X] in the sigma-model action for world-sheets with
defects, and, in particular, for situations in which the defect lines meet to
form defect junctions. By varying the sigma-model action, we obtain the
gluing condition to be imposed on the embedding field X and its derivatives
at the defect. This allows us to analyze the world-sheet symmetries and, in
particular, to distinguish between conformal and topological defects.

Circular defect lines can be treated by thinking of them as boundary con-
ditions of a folded model [WA], but for defect junctions this is no longer
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possible. One can therefore expect that the study of defect junctions yields
interesting information that cannot be obtained through the analysis of
boundary conditions of the sigma model or some folded version thereof.
We illustrate this on the example of the WZW model.

The topological term Stop[X] of the sigma-model action can be understood
as the logarithm of a U(1)-valued holonomy associated to an embedding of
the world-sheet Σ in the target space M . The holonomy is computed in
terms of the gauge potential B of a 3-form field strength H on M . Typically,
the gauge potential cannot be defined globally and exists only patch-wise,
which then leads to additional 1-forms A and functions g on two- and three-
fold overlaps of these patches, respectively. These forms and functions enter
the formulation of the world-sheet holonomy [Al]. It was realized in [Ga1]
that the correct structure to capture the data composed of B, A and g on
the target space is a class in the third (real) Deligne hypercohomology,
which was subsequently identified in [Br,Mu,MSt] with a geometric object
called a gerbe with connection. In Section 2.1, we give a brief recollection
of the bits of the theory of gerbes that we shall need, and in Section 2.2,
we review the holonomy formula for world-sheets with empty boundary and
no defects. The notion of holonomy was generalized to world-sheets with
boundaries in [Ga2,Ka,CJM,GR1,Ga4]. The boundary gets mapped to a
D-brane which is a submanifold of the target space that supports a (global)
curvature 2-form and a gerbe-twisted gauge bundle. The latter is described
by a so-called gerbe module [CJM, GR1]. The holonomy in the presence
of circular defect lines was first formulated in [FSW]. In this case, the
defect circles get mapped to a submanifold Q ⊂ M × M , termed a bi-brane
in [FSW]. The bi-brane world-volume is equipped with a curvature 2-form
and a gerbe bimodule, hence the name. We review this construction and
the necessary background for gerbe bimodules in Sections 2.3 and 2.4.

In Sections 2.5 and 2.6, we extend the validity of the holonomy formula
further to allow for defect junctions. There is, again, a corresponding target-
space notion, which we call an inter-bi-brane. An inter-bi-brane consists of a
collection T =

⊔
n≥1 Tn of submanifolds Tn ⊂ M × M × · · · × M of n copies

of M , where n refers to the number of defect lines meeting at a junction.
Each Tn is equipped with a twisted scalar field.

It turns out to be convenient not to restrict Q and Tn to be submanifolds
of products of M , but, instead, to allow arbitrary manifolds endowed with
projections to M and Q. We shall use this point of view in Section 2.

Defects in sigma models have also been investigated in the quantized
theory. Most of the known results apply to the conformal régime, e.g.,
for free theories [Ba, Fu2, BB], for the WZW model [BG, AM, STs], or for
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rational conformal field theories in general [PZ, QS, Fr1, QRW]. The first
systematic treatment of CFT correlators with defect junctions appeared
in [Fr2]. Properties of defects were also studied in supersymmetric theories
(see [BRo,BJR] for recent results), and in classical and quantized integrable
models in 1 + 1 dimensions (see, e.g., [BSi,Co] and the references therein).

There are at least two reasons why one should look at defect junctions once
defect lines are allowed. The first reason is provided by the quantized sigma
model and the factorization properties of the path integral, as explained in
detail in Section 3.1. Consider, for example, the quantized sigma model
on a world-sheet such as the one in figure 1. By the factorization of the
path integral we mean that we can cut the world-sheet along any circle
and express the original amplitude as a sum over intermediate states. If
the circle along which we cut intersects the defect lines D1, D2, . . . , Dn then
the states we sum over live in a Hilbert space HD1D2...Dn of “twisted” field
configurations on the circle, cf., again, figure 1. That is, the field on the circle
can have discontinuities where the defect lines D1, D2, . . . , Dn intersect the
circle, and the allowed jumps in the value of the field are constrained by the
defect condition. If the quantized sigma model is conformal — for example,
if we are considering the WZW model — then there is a correspondence
between states and fields. This correspondence works by starting with a
boundary circle labelled by a state |φ〉 and taking the radius of the circle
to zero, using the scale transformations to transport |φ〉 from one radius to
another. What remains when the radius reaches zero is a field inserted at
the centre of the circle. If several defect lines end on the boundary circle
then the resulting field sits at a junction point of these defect lines. This is
illustrated in figure 2 and discussed again in Section 3.2.

Figure 1: When a sum over intermediate states is inserted on a circle that
intersects defect lines, the intermediate states lie in a twisted space of states.

Figure 2: States |φ〉 in a twisted space of states correspond to fields φ at
defect junctions via the state-field correspondence.
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The second reason to consider defect junctions is that they allow to extract
interesting data from the classical theory, which one may next compare to
the corresponding quantities in the quantized model. We illustrate this
on the example of jump defects in the WZW model for a compact simple
connected and simply connected Lie group G (with Lie algebra g). Let G be
the gerbe on G with the curvature given by the Cartan 3-form

H(g) =
1
3
trg
(
g−1 dg ∧ g−1 dg ∧ g−1 dg

)
, g ∈ G. (1.2)

We shall use the gerbe G�k for some integer k > 0, which is given by the
k-fold product of G with itself (cf. Section 2.1) and thus has curvature kH.
The jumps we allow are those by elements z of the centre Z(G) of G. The
corresponding defects have the property that they are topological in the sense
that the defect line can be moved on the world-sheet without modifying the
value of the action functional. This is described in more detail in Section 2.9.
There also exist topological defect junctions for these jump defects, which
can similarly be moved on the world-sheet without affecting the holonomy.
Consider the world-sheets ΣL and ΣR which contain the respective networks
ΓL and ΓR of defect lines. We take ΓL and ΓR to differ only in the subset
of the world-sheet shown in figure 3. In this figure, a defect line is labelled
by the element of Z(G) by which the field jumps. Let XL(ζ) be the sigma-
model field on ΣL, and XR(ζ) the corresponding field on ΣR. We choose
XL and XR such that they are equal outside of the shaded region of the
world-sheet shown in figure 3. In the shaded region, they are related as
XR(ζ) = y · XL(ζ). In this way, XR is uniquely determined by XL. Let us
denote by S[(Γ, X); γ] the action functional for a field X(ζ) and a defect
network Γ embedded in a world-sheet Σ with metric γ. One then finds that

exp
(
−S[(ΓL, XL); γ]

)
= ψG�k(x, y, z) · exp

(
−S[(ΓR, XR); γ]

)
(1.3)

Figure 3: The relevant part of the two world-sheets ΣL and ΣR used in the
definition of the 3-cocycle on Z(G). The field jumps by multiplication with
the indicated element of Z(G) when crossing the defect line. The values of
the field on ΣL and ΣR differ only in the shaded region.
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holds for a U(1)-valued function ψG�k(x, y, z) which is independent of the
choice of XL (this choice then fixes XR), and which is invariant under
deformations of the defect lines, provided that we do not move one vertex
past another. We treat this example in detail in Section 2, where we also
demonstrate that ψG�k is a 3-cocycle on Z(G) and defines a class [ψG�k ] in
H3(Z(G), U(1)), the third cohomology group of Z(G) with values in U(1)
(with trivial Z(G)-action). The configuration shown in figure 3 was studied
in [JK] from the point of view of interacting orbifold string theories. There,
figure 3 was used to show that the triviality of [ψG�k ] is necessary to have a
consistent interaction of closed strings in the orbifolded theory.

The comparison of (1.3) can also be carried out in the quantized WZW
model for the affine Lie algebra ĝk, where the integer k is the one determining
the gerbe G�k used above. This is done in Section 3, with the following
result. The topological defects of the quantum WZW model for the affine
Lie algebra ĝk which commute with the Kač–Moody currents are labelled by
irreducible integrable highest-weight representations λ of ĝk. One can assign
a representation λz to each element z ∈ Z(G). The representations λz are
precisely the simple currents of the WZW model (with the one exception
of ê(8)2, which has a simple current even though Z(E(8)) = {e}, see [Fu1]).
Comparing correlators on the world-sheets ΣL and ΣR in figure 3 gives

Corr(ΓL, ΣL) = ψĝk(x, y, z) · Corr(ΓR, ΣR) (1.4)

for a U(1)-valued function ψĝk(x, y, z) which is, again, a 3-cocycle on Z(G)
and which defines a cohomology class [ψĝk ] ∈ H3(Z(G), U(1)). We compute
ψĝk in Section 3.4.

The second main result of this paper is the observation that the cohomo-
logy classes obtained in the classical and quantum computations coincide,

[ψG�k ] = [ψĝk ]. (1.5)

In the classical theory, the class [ψG�k ] determines the obstruction to the
existence of a Z-equivariant gerbe, for Z ⊂ Z(G) a subgroup. The con-
dition [ψG�k |Z ] = 1 imposes selection rules on k. If the condition holds
Z-equivariant gerbes exist and can be used to define the sigma model on
the orbifold G/Z [FGK,GR1,GR2]. Similarly, in the quantum WZW model,
[ψĝk ] is the obstruction to the existence of a simple-current orbifold [SY1,
SY2,KS,FRS3]. Thus, one way to read (1.5) is that the classical obstruction
to the orbifolding of the sigma model is preserved by quantization.

A related way to interpret (1.5) is as follows: If a discrete symmetry
group S of a CFT is implemented by defects then this group automatically
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comes with the additional datum of a class [ψ] ∈ H3(S, U(1)) (this will be
explained in Section 3.3). The same is true for the classical sigma model.
Equation (1.5) states that, for the WZW model and for S = Z(G), the class
[ψ] in H3(S, U(1)) is not changed when quantizing the model.

That for a given subgroup Z ⊂ Z(G) the values of k for which [ψG�k |Z ] = 1
are precisely those for which [ψĝk |Z ] = 1 is already known from [GR1,GR2].
The novelty in (1.5) is the statement that the cohomology classes coincide
for all k, and on all of Z(G). Defect junctions thus give an explicit way to
extract a non-perturbative CFT datum — the fusing matrix (6j-symbols)
restricted to the simple-current sector — from a classical calculation with
gerbes.

The paper is organized as follows: We start in Section 2 by reviewing
the concept of the holonomy for world-sheets without defects and for those
with circular defects. Then we give our construction of the holonomy in the
presence of defect junctions and compute the 3-cocycle for the jump defects
in the classical WZW model. The formulation of the quantum field theory
in the presence of defect lines and the computation of the 3-cocycle in the
quantum theory are given in Section 3. Finally, the results of the classical
and quantum calculation are compared in Section 4.

2 Holonomy for world-sheets with defect networks

In this section, we give a prescription for the holonomy for a world-sheet with
an embedded network of defect lines. We begin by collecting the necessary
ingredients, starting with the definition of a gerbe in terms of its local data,
and proceed to describe and justify the proposed holonomy formula.

2.1 Gerbes in terms of local data

Let M be a smooth manifold and let OM = {OM
i | i ∈ I} be a good open

cover of M . Write the p-fold intersection of open sets as OM
i1i2...ip

=
⋂p

k=1 OM
ik

.
The qualifier “good” means that each non-empty OM

i1i2...ip
is contractible.

For p ≥ 0 and r ≥ 1, let Čp,r(OM ) be the set whose elements ω are col-
lections of smooth differential r-forms

ω = {ωi1...ip+1 ∈ Ωr
(
OM

i1...ip+1

)
| ik ∈ I s.t. OM

i1...ip+1
�= ∅}, (2.1)
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where ωi1...ip+1 is required to be antisymmetric in all indices. This is a Čech
p-cochain with values in the sheaf of differential r-forms on M , but we shall
not need this background in the present paper. Note that Čp,r(OM ) inherits
the structure of a vector space from Ωr(OM

i1...ip+1
). Below, we shall only use

that Ωr(OM
i1...ip+1

) is an abelian group, which will be written additively.

The sets Čp,0(OM ) are defined slightly differently. Namely, an element
ϕ of Čp,0(OM ) is a collection ϕi1...ip+1 , where each ϕi1...ip+1 ∈ U(1)OM

i1...ip+1

is a smooth U(1)-valued function on OM
i1...ip+1

that is antisymmetric in all
indices. The set Čp,0(OM ) inherits the structure of an abelian group from
U(1), which will be written multiplicatively.

In order to describe a gerbe and its gauge transformations, one uses the
first four components of a chain complex A•

M (OM ), given by (we drop OM

from the notation)

A0
M = Č0,0, A1

M = Č0,1 × Č1,0, A2
M = Č0,2 × Č1,1 × Č2,0,

A3
M = Č0,3 × Č1,2 × Č2,1 × Č3,0.

(2.2)

Thus, for example, an element of A1
M is a pair (Π, χ) where Π is a collection of

smooth 1-forms Πi on OM
i , and χ is a collection of smooth U(1)-valued func-

tions χij on the overlap OM
ij = OM

i ∩ OM
j , which is antisymmetric in its Čech

indices in the sense that χij(x) = χji(x)−1. We shall also write elements of
A1

M as (Πi, χij), and similarly for the other components of A•
M . Each Am

M
forms an abelian group under the addition of the component r-forms and
the multiplication of the U(1)-valued functions. For instance, the definition
of the sum of elements of A2

M reads

(Bi, Aij , gijk) + (B′
i, A

′
ij , g

′
ijk) = (Bi + B′

i, Aij + A′
ij , gijk · g′

ijk). (2.3)

The Deligne differential D(r) : Ar
M → Ar+1

M is given by

D(0)(fi) = (−i d log fi, f
−1
j · fi),

D(1)(Πi, χij) = (dΠi,−i d log χij + Πj − Πi, χ
−1
jk · χik · χ−1

ij ),

D(2)(Bi, Aij , gijk) = (dBi, dAij − Bj + Bi,−i d log gijk + Ajk

− Aik + Aij , g
−1
jkl · gikl · g−1

ijl · gijk),

(2.4)

where we follow the conventions of [GSW1]. One verifies that D(r+1) ◦
D(r) = 0. Below, we shall typically just write D instead of D(r).
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Mathematically, the appropriate description of A•
M is in terms of the

Čech—Deligne double complex and the resulting Deligne hypercohomology.1

We refer the reader to [Br] for a detailed exposition.

With these ingredients in hand, we can now define the notion of a gerbe
in terms of its local data. A gerbe with connection in terms of local data, or
a gerbe for short, on a smooth manifold M is a pair G = (OM , b) where OM

is a good open cover of M and b ∈ A2
M is such that

Db = (Hi, 0, 0, 1). (2.5)

The objects Hi are 3-forms on OM
i but it is not hard to see that they are, in

fact, restrictions of a globally defined closed 3-form H ∈ Ω3(M), called the
curvature of G.

Given two gerbes: G = (OM , b) and H = (OM , b′) defined with respect
to the same open cover of M , a stable isomorphism Φ : G → H in terms of
local data is an element Φ ∈ A1

M such that b′ = b + DΦ. Given a third gerbe
K = (OM , b′′) and a stable isomorphism Ψ : H → K, the composition Ψ ◦ Φ
is defined to be the stable isomorphism Ψ + Φ ∈ A1

M from G to K. Indeed,
b′′ = b′ + DΨ = b + DΦ + DΨ. The notion of a stable isomorphism can be
extended to gerbes over the same base M but with two different open covers
OM and ÕM by passing to a common refinement.

Physically, a stable isomorphism is a gauge transformation of the gerbe
data. Computations of observable quantities carried out with respect to
distinct but gauge-equivalent (i.e., stably isomorphic) gerbes should give
the same result. One distinguishing feature of gerbes is that the local data
of gauge transformations between two given gerbes can themselves be related
by another kind of a gauge transformation. This is captured by the notion
of a 2-morphism, which is defined as follows: Let G = (OM , b) and H =
(OM , b′) be gerbes over a manifold M , and let Φ : G → H and Ψ : G → H be
two stable isomorphisms. A 2-morphism ϕ : Φ =⇒ Ψ is an element of A0

M
such that

Φ + Dϕ = Ψ. (2.6)

1Strictly speaking, the definition of Deligne hypercohomology requires truncating the
de Rham complex. In our paper, we could equivalently work with the full Čech—de
Rham complex but since we want to adhere to the terminology of Deligne hypercohomol-

ogy, we choose to truncate the underlying differential complex to U(1)
M

1
i d log

−−−−→ Ω1(M) d−→
Ω2(M) d−→ Ω3(M), where the underlining indicates that we are dealing with the corre-
sponding sheaf.
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In terms of local data Φ = (Pi, Kij), Ψ = (P ′
i , K

′
ij) and ϕ = (fi), this means

that

Pi − i d log fi = P ′
i and Kij · fi · f−1

j = K ′
ij . (2.7)

The word “2-morphism” derives from the 2-categorial interpretation of
gerbes given in terms of local data, see [St,Wa1].

The presentation of the holonomy formulæ below requires some additional
constructions for gerbes, namely trivial gerbes, the product of gerbes and
pullback gerbes. Let us briefly review the local formulation of these notions.

• A trivial gerbe for a 2-form ω on M is the gerbe I(OM , ω) = (OM ,
(ωi, 0, 1)), where OM is a good open cover of M and ωi is the restriction
of ω to OM

i . The curvature 3-form of I(OM , ω) is exact, hence the
name “trivial”. We shall sometimes abbreviate the notation for the
trivial gerbe as I(OM , ω) ≡ I(ω).

• Given two gerbes: G = (OM , b) and H = (OM , b′) defined with respect
to the same good open cover of M , we take the product gerbe to be
G � H = (OM , b + b′). This is analogous to the tensor product of line
bundles, hence the product notation. The curvature of G � H is HG +
HH, where HG and HH are the curvatures of G and H, respectively.

• Let OM and ON be good open covers of manifolds M and N . In order
to define pullbacks of gerbes, stable isomorphisms and 2-morphisms, it
is not enough to specify a smooth map from M to N — we also need
to know how the Čech indices are related. To this end, we define a
Čech-extended map f̌ : M → N to be a pair (f, φ) where f : M → N
is a smooth map and φ is an index map, φ : IM → IN , such that
f(OM

i ) ⊂ ON
φ(i). Since φ need not exist, not every map f : M → N can

be turned into a Čech-extended map. Given another Čech-extended
map ǧ = (g, γ) : N → K, their composition is defined component-wise
as ǧ ◦ f̌ = (g ◦ f, γ ◦ φ).

• Let G = (ON , b) be a gerbe on N and let f̌ : M → N be a Čech-
extended map. The pullback gerbe is f̌∗G = (OM , b′) with b′ = (B′

i, A
′
ij ,

g′
ijk) = (f∗Bφ(i), f

∗Aφ(i)φ(j), gφ(i)φ(j)φ(k) ◦ f) ≡ f̌∗b. The pullback f̌∗C

for C = (ci1 , ci1i2 , . . . , ci1i2...ip+1) ∈ Ap
M is defined in the same way. To

unclutter the notation, we shall frequently use the shorthand

f∗ci1i2...im ≡ f∗cφ(i1)φ(i2)...φ(im). (2.8)

If f̌1 = (f, φ) and f̌2 = (f, φ̃) are two Čech-extended maps that differ
only in the choice of the index map, the resulting pullback gerbes
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are stably isomorphic. Indeed, one verifies that b̃′ = b′ + Dp for p =
(Πi, χij) = (f∗A

φ(i)˜φ(i), (gφ(i)φ(j)˜φ(j) · g−1
φ(i)˜φ(i)˜φ(j)

) ◦ f).

A more geometric description of gerbes is given by bundle gerbes, see [Mu,
MSt] and [St, Jh,Wa1,Wa2]. Their main advantage is that the choice of a
good open cover of M is replaced by the more flexible concept of a surjective
submersion π : Y → M , which proves particularly convenient in the WZW
setting, see [GR1, Me, GR2]. It deserves to be stressed that every bundle
gerbe is stably isomorphic to a bundle gerbe whose surjective submersion
comes from a good open cover of M , see [MSt]. The reason for us to use the
local description is that the formalism is easier to set up and that we find
the definition of the holonomy formula in terms of local data more intuitive.

2.1.1 The Lie-group example

As mentioned in the Introduction, the example that we consider in this paper
is the WZW model for a compact simple connected and simply connected
Lie group G at level k ∈ Z>0 (geometrically, the value of the level sets the
size of the group manifold). The Lie group comes equipped with the so-
called basic gerbe [GR1,Me], which we denote by G. It is the unique, up to
a stable isomorphism, gerbe with the curvature given by the Cartan 3-form

H(g) =
1
3

trg
(
g−1 dg ∧ g−1 dg ∧ g−1 dg

)
, g ∈ G, (2.9)

the latter being fixed by the requirement of the vanishing of the Weyl anom-
aly in the quantized sigma model. Note that the works [GR1,Me] use the
language of bundle gerbes; here, we have to decide once and for all on a
good open cover OG of G and on local gerbe data b = (Bi, Aij , gijk) such
that G = (OG, b). In fact, as we shall later want to consider translations by
elements of the centre Z(G) of G, we choose the good open cover OG to
be invariant under such translations in the sense that there exists an action
Z(G) × IG → IG : (z, i) �→ z.i such that

z
(
OG

i

)
= OG

z.i for all z ∈ Z(G), (2.10)

where z(OG
i ) = {z · g | g ∈ OG

i }. We can use this action to turn z into a
Čech-extended map from G to itself by setting

ž : G → G, ž = (g �→ z · g, i �→ z.i). (2.11)

Given a Z(G)-invariant cover of G, we obtain a natural definition of a left-
regular action of Z(G) on Ar

G, r ≥ 0 by the Čech-extended pullback

(z, ω) �→ ˇ(z−1
)∗

ω = z.ω (2.12)
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which we are going to encounter frequently in the sequel. Finally, for the
WZW model at level k, one uses the k-fold product G�k of the basic gerbe
with itself.

2.2 Surface holonomy in the absence of defects

Here, we review the definition of the surface holonomy in the absence of
defects [Al,Ga1]. In this case, the world-sheet is an oriented smooth com-
pact two-manifold Σ with empty boundary and the target space is a (not
necessarily connected) smooth manifold M with gerbe G.

Write the local data for G = (OM , b) as b = (Bi, Aij , gijk). Given a once
differentiable map2 X : Σ → M , the holonomy HolG(X) is an element of
U(1) defined by the following formula:

HolG(X) =
∏

t∈�(Σ)

{
exp
(
i
∫

t
B̂t

) ∏
e⊂t

[
exp
(
i
∫

e
Âte

)∏
v∈e

ĝtev(v)

]}
, (2.13)

whose ingredients we proceed to explain:

• �(Σ) is a triangulation of Σ which is subordinate to OM with respect
to X in the sense that for each triangle t ∈ �(Σ) there is an index
it ∈ I such that X(t) ⊂ OM

it
. This implies that also the image under

X of an edge e lies in one of the open sets of the good cover. For each
edge e and vertex v, we pick an assignment e �→ ie and v �→ iv such
that X(e) ⊂ OM

ie
and X(v) ∈ OM

iv
.

• B̂t = X∗Bit is the pullback of Bit to the triangle t along X. Here, X

is understood as a map from t to OM
it

. The 2-form B̂t is integrated
over t using the orientation of the world-sheet Σ.

• Âte = X∗Aitie is the pullback of Aitie to the edge e along X. Here, X

is understood as a map from e to OM
itie

. The 1-form Âte is integrated
over e, where the orientation of e is the one induced by the triangle t
via the inward-pointing normal. (For example, the orientation of the
edges of a triangle embedded in R

2 is counter-clockwise.)
• ĝtev = (X∗gitieiv)εtev , where X maps v to OM

itieiv
and εtev = ±1 is deter-

mined as follows: The edge e inherits an orientation from the triangle
t. If the vertex sits at the end of e with respect to this orientation
we set εtev = 1. Otherwise, εtev = −1. (For example, in the interval
[0, 1] ⊂ R with the standard orientation, the point 0 has ε = −1 and
the point 1 has ε = 1.)

2By this we mean a C1-function, i.e., a function that is once continuously differentiable.
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The reason why it is sufficient to require X to be once differentiable, rather
than smooth, is that the holonomy HolG(X) and the kinetic term in the
action only depend on the first derivatives of the map X. This will play a
role when discussing topological defects in Section 2.9 below.

The holonomy remains unchanged if we perform a gauge transformation
on the gerbe data, and the relation Db = (Hi, 0, 0, 1) ensures that the holo-
nomy is independent of the choice of triangulation. We shall return to these
points in Section 2.7.

2.3 Abelian bi-branes

In words, an abelian bi-brane of [FSW] is a submanifold Q of the product
M × M , together with a 2-form ω on Q such that the pullbacks of the gerbe
G by the canonical projections to the two factors in M × M differ only by
the trivial gerbe I(ω) when restricted to Q. Since we are working with local
data, some extra choices are involved, making the actual definition lengthier.
We shall also be slightly more general by not restricting ourselves to the case
that Q is a submanifold of M × M .

Let G = (OM , b) be a gerbe on M . An abelian G-bi-brane B in terms of
local data is a tuple

B =
(
Q, ω,OQ, ι̌1, ι̌2, Φ

)
, (2.14)

where

(B.i) Q is a smooth manifold;
(B.ii) ω is a smooth 2-form on Q, called the curvature of the G-bi-brane;
(B.iii) OQ = {OQ

i | i ∈ IQ} is a good open cover of Q;
(B.iv) ι̌1 = (ι1, φ1) and ι̌2 = (ι2, φ2) are Čech-extended maps from Q to M ;
(B.v) Φ : ι̌∗1G → ι̌∗2G � I(OQ, ω) is a stable isomorphism.

By (B.v), the two pullbacks of the gerbe G differ by a trivial gerbe on Q.
For the curvature of G, this implies ι∗1H − ι∗2H = dω. Thus, the difference
of the pullbacks of the curvature has to be exact on Q.

Let the local data for the gerbe and the stable isomorphism be given by
b = (Bi, Aij , gijk) ∈ A2

M and Φ = (Pi, Kij) ∈ A1
Q, respectively. The stable

isomorphism now gives the condition (recall the shorthand
notation (2.8))

ι̌∗1(Bi, Aij , gijk) + D(Pi, Kij) = ι̌∗2(Bi, Aij , gijk) + (ω, 0, 1). (2.15)
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There are a number of differences with respect to the original definition
in [FSW, Wa2] which we would like to point out and justify. Namely, in
[FSW,Wa2],

• a bi-brane is defined in terms of more general morphisms [Wa1] between
the pullback gerbes, not just stable isomorphisms. In a nutshell, the
data (2.14) can be understood as a gerbe-twisted line bundle over Q,
while in the case of a general bi-brane, one also allows gerbe-twisted
vector bundles of higher rank. In this paper, we shall restrict our
attention to the case of abelian bi-branes. This is done for simplicity.

• Q is taken to be a submanifold of M × M . This is recovered in the
present definition as a special case upon choosing ι̌1 and ι̌2 to be the
canonical projections onto the two factors. The reason why we use a
more general definition is that it will allow us to treat several bi-branes
using only one manifold Q, even if the worldvolumes of the individual
bi-branes would intersect as submanifolds in M × M .

• bi-branes between different target spaces M1 and M2 are allowed, in
which case Q is a submanifold of M1 × M2. This situation is covered by
our approach because we can take M to be the disjoint union M1 � M2
and choose ι̌1, ι̌2 : Q → M to be the projections for a submanifold Q ⊂
M1 × M2 ⊂ M × M .

Two simple examples illustrate the data describing a bi-brane: the trivial
G-bi-brane and D-branes (the latter were dubbed G-branes in the gerbe-
theoretic context of [Ga4]). The trivial G-bi-brane for the gerbe G over the
target space M is given by

Btriv =
(
M, 0,OM , ǐd, ǐd, idG

)
. (2.16)

This corresponds to the diagonal embedding of M into M × M with the
2-form ω set to zero. For a trivial G-bi-brane, the holonomy for the world-
sheet with an embedded defect network given below reduces to the form
(2.13).

In order to describe a D-brane in a target space N , one takes the manifold
M to be the disjoint union of N and a single point, M = N � {•}. Let D
be a submanifold of N with a 2-form field ω. Consider the bi-brane

Bbnd = (D, ω, OD, ι̌, •̌, Φ), (2.17)

where ι̌ = (ι, φ1) is just the embedding of D into N ⊂ M and •̌ = (•, φ2) is
the constant map D → {•}. For simplicity, we take the open cover OD of D
to be the intersection of the open sets in ON with D and assume that the
open sets in ON are small enough for the resulting cover OD to be good.
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Thus, φ1 = id in this case. The cover of {•} consists of one element, which
we also label •, and φ2 is the constant map IN → {•}. Condition (B.v) on
Φ and ω now reads Φ : G|D → I(ω), which is precisely the local data for a
D-brane as defined in [GR1,Ga4].

2.3.1 The Lie-group example (cont’d)

Continuing the Lie group example from Section 2.1, we now want to define
a G�k-bi-brane BZ(G) for jump defects. The underlying manifold is

QZ(G) = G × Z(G), (2.18)

and the 2-form ω on QZ(G) is zero. The open cover OQZ(G) is indexed by pairs

from IQZ(G) = IG × Z(G), and the corresponding open sets are OQZ(G)
i,x =

OG
i × {x}. The two Čech-extended maps ι̌1 = (ι1, φ1) and ι̌2 = (ι2, φ2) from

QZ(G) to G are given by the formulæ

ι1(g, x) = g, φ1(i, x) = i; ι2(g, x) = x−1 · g, φ2(i, x) = x−1.i. (2.19)

The pullback of G along the translation by x ∈ Z(G) yields a gerbe stably
isomorphic to G. This follows since the left-regular action of Z(G) induced
by the pullback as in (2.12) commutes with the Deligne differential D, and
translations by elements of Z(G) preserve the Cartan 3-form. This conclu-
sion also holds for all powers of G, and so one can find a set of 1-morphisms

AZ(G) =
{
Ax : G�k → x.G�k | x ∈ Z(G)

}
, (2.20)

cf. (2.12), constructed explicitly in [GR2, Section 3] in the framework of
bundle gerbes (the present notation conforms with the unified treatment laid
out in [GSW2, Sections 1 and 3]). The local data of Φ : ι̌∗1G�k → ι̌∗2G�k on
OQZ(G)

i,x is given by the local data of Ax on OG
i , where we use OG

i
∼= OQZ(G)

i,x .

The existence of the stable isomorphisms AZ(G) is ensured by the triviality
of the cohomology group H2(G, U(1)). To see how this comes about, let us
have a brief look at a general target space M with metric G and 3-form
field H. Let S be a finite subgroup of the isometry group of M which
also preserves H. Pick a good open cover OM of M which is invariant
under S in the sense that, for all x ∈ S, we have x(OM

i ) = OM
x.i for some

index x.i. This turns x into a Čech-extended map as in (2.11). Let G =
(OM , b) be a gerbe on M with curvature H. Clearly, the stable isomorphisms
Ax : G → x.G exist if and only if the orbit {x.G | x ∈ S} lies entirely within
one stable-isomorphism class. In terms of local data, Ax obey (δSb)x =
DAx, where (δSb)x = x.b − b (cf. Appendix A.1 for a basic reminder on
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the finite-group cohomology). We shall call the collection AS = {Ax | x ∈
S} such that (δSb)x = DAx an element-wise presentation of S on b. The
obstructions to the existence of an element-wise presentation are contained
in H

2(M) = kerD(2)/im D(1), the set of stable-isomorphism classes of gerbes
over M with curvature H = 0. Indeed, while D(δSb)x = (0, 0, 0, 1) holds true
in consequence of x∗H = H, that (δSb)x is a D-coboundary is guaranteed
only if H

2(M) consists of just one element. The latter cohomology group
satisfies H

2(M) ∼= H2(M, U(1)), see [Gj] and also [Jh, Section 2.2], and so
it trivializes for M = G a compact simple connected and simply connected
Lie group.

2.4 Holonomy for world-sheets with circular defect lines

We now turn to the holonomy formula for world-sheets with circular defect
lines, but without defect junctions. This is the situation treated in [FSW,
Wa2]. As in Section 2.2, we are given a manifold M with gerbe G, and, in
addition, we now have a G-bi-brane B with local data as in (2.14).

While the formulation of the holonomy itself does not require any further
structure, the conditions to be imposed on the sigma-model fields at the
defect do. The extra structure is a metric G on the target space M and a
metric γ on the world-sheet Σ, both of which are part of the sigma-model
data, entering explicitly the kinetic term in the action functional (1.1).

By a circle-field configuration on the world-sheet Σ we mean a pair (Λ, X),
where Λ is an oriented one-dimensional submanifold of Σ with empty bound-
ary, i.e., a collection of oriented circles in Σ, and

X : Σ → M � Q (2.21)

is a map from the world-sheet into the disjoint union of the target space M
and the G-bi-brane world-volume Q, with the following properties:

(L1) X maps Σ − Λ to M and is once differentiable on Σ − Λ. Furthermore,
it maps Λ to Q and is once differentiable on Λ.

(L2) Let p ∈ Λ and let U be a small neighbourhood of p. As Σ and Λ are
oriented, Λ splits U into two open sets U1 and U2. For example, if U is
the open unit disc in R

2 and Λ is the real line, both with the standard
orientation, then U1 is the upper open half-disc and U2 the lower open
half-disc. We demand that, for α = 1, 2, the restriction X|Uα has a
differentiable extension X|α : Uα → M to the closure Uα of Uα, such
that X|α(p) = ια(X(p)).
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(L3) With p, Uα and X|α as in (L2), let t̂ ∈ TpΣ be the unit vector tangent to
Λ in the direction given by the orientation of Λ, and let n̂α ∈ TpΣ, α =
1, 2 be the unit vectors normal to Λ and pointing, each, to the side of
Uα (so that, in particular, n̂1 = −n̂2). Then, for all v ∈ TX(p)Q, we
require that the constraint

GX|1(p)(ι1∗v, X|1∗n̂1) + GX|2(p)(ι2∗v, X|2∗n̂2) − i
2
ωX(p)(v, X∗t̂) = 0 (2.22)

be satisfied by the tangent (pushforward) maps X|α∗ : TUα → TM . A
derivation of the above defect constraint is presented in Appendix A.2.

Conditions (L2) and (L3) merit some comment. If Q is a submanifold of
M × M then (L2) just means that the maps to the left and to the right of
Λ have, each, a differentiable extension to Λ, and that Λ gets mapped to
Q ⊂ M × M under these two extensions. Condition (L2) is a straightforward
generalization of this requirement to the case when Q is not necessarily a
submanifold. Condition (L3) is new; it forms part of the dynamical data
of the sigma model, and is therefore not needed in [FSW]; it will play an
important role in the discussion of topological defect lines in Section 2.9
below. It constrains the variation of the derivatives of the embedding map
X across the defect in a manner dictated by the principle of least action
applied to the sigma-model action functional.

For instance, if B = Btriv is the trivial defect (2.16) then condition (L2)
enforces the equality X|1(p) = X(p) = X|2(p) for any p ∈ Λ. Thus, X is a
continuous map Σ → M , which — so far — is only required to be differen-
tiable on Σ − Λ and along Λ. Condition (2.22) now reads GX(p)(v, X|1∗n̂1) +
GX(p)(v, X|2∗n̂2) = 0 for all v ∈ TX(p)M . If we remember that X|1 is the dif-
ferentiable extension of X to the left of Λ, that X|2 is the differentiable
extension of X to the right of Λ, that n̂1 = −n̂2, and that G is a non-
degenerate pairing, we see that (2.22) forces the normal derivative to be
continuous across Λ.

As another example, consider the case in which B = Bbnd describes a
D-brane as in (2.17). Condition (L2) forces the neighbourhood of Λ in Σ
to its right to be mapped to {•} ⊂ M , while the neighbourhood of Λ in
Σ to its left is mapped to N such that the extension reads X|1 = X on Λ.
Since X|2 is constant, X|2∗ = 0, and so (2.22) becomes 2GX(p)(v, X∗n̂1) −
iωX(p)(v, X∗t̂) = 0 for all v ∈ TX(p)D. When written in terms of local coor-
dinates Xμ for M , with v = δXμ∂μ tangent to D, this yields

δXμ
(
Gμν(X)∂nXν − iωμν(X)∂tX

ν
)∣∣

Λ = 0, (2.23)
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where ∂t is the tangent derivative at the boundary Λ of Σ − X−1({•}),
∂n = γ(∂t,∂a)√

det γ
εab∂a is the (inward-)normal one, and ω = ωμν dXμ ∧ dXν with

ωμν antisymmetric in its indices. The above are just the standard mixed
Dirichlet–Neumann boundary conditions for a world-sheet with boundary Λ,
where the boundary gets mapped to the D-brane world-volume D endowed
with the global twisted-gauge invariant 2-form ω = Fi + Bi (Fi being the
“curvature” of the gerbe-twisted gauge field), see [Cl, Equation (3.3)].

One way to think of a configuration (Λ, X) is that it describes a string
moving in a possibly disconnected target space, where the string is allowed
to “tunnel” from one component into another by passing through Q.

From a category-theory perspective, M could be viewed as the set of
objects and Q as the set of arrows, with ι1 and ι2 designating the source
and the target of a given arrow, respectively. Unfortunately, we only know
how to formulate composition in very special cases, so the analogy stops here.

Note that, in our formulation, the entire Λ gets mapped to the same
G-bi-brane manifold Q. In this sense, every defect circle, i.e., every con-
nected component of Λ, carries the same defect condition. This may seem
a restriction, but it is really just a convenient way to absorb the possibility
of having different G-bi-branes for different defect circles into the map X.

More specifically, note, first of all, that Λ divides the world-sheet Σ into
connected components, which we shall call patches. The situation in which
different patches get mapped to different target spaces M1, M2, . . . is accom-
modated by taking M = M1 � M2 � . . .. Since X maps Σ − Λ to M , each
patch will sit entirely in one of the components Mk by the continuity of
X. Next, suppose that we have several G-bi-branes B1,B2, . . . on M , and
that we want to label each of the defect circles by one of the Bk. This
is accounted for by setting B = B1 � B2 � . . ., and choosing the map X|Λ
accordingly. Since X|Λ is continuous, the image of each defect circle has to
lie in one of the components Bk.

The holonomy for a circle-field configuration (Λ, X) is a modification of
(2.13) which includes an additional term associated to Λ,

Hol(Λ, X) = HolG(X) · HolB(X|Λ), (2.24)

where

HolB(X|Λ) =
∏

e∈�(Λ)

[
exp
(
i
∫

e
P̂e

) ∏
v∈e

K̂ev(v)

]
. (2.25)
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Above, HolG(X) is given by the same expression3 (2.13), together with a
prescription as to how to deal with the jumps of X across Λ, which we give
shortly. The novel term HolB(X|Λ) can be understood as the holonomy of
a gerbe-twisted line bundle over Λ, see [FSW, Wa2], and also [CJM, GR1,
Ga4] for the corresponding observation for boundary circles instead of defect
circles. In more detail, HolG(X) and HolB(X|Λ) are defined as follows:

• Let �(Σ) be a triangulation subordinate to (Λ, X) in the following
sense. For each triangle t ∈ �(Σ), there must exist an index it ∈ IM

such that the interior of t gets mapped to OM
it

. We require that Λ be
covered by edges of �(Σ), and we denote by �(Λ) the resulting one-
dimensional triangulation of Λ. For each edge e ∈ �(Λ), there must
be an index ie ∈ IQ such that X maps e to OQ

ie
. It is understood that

the assignments t �→ it and e �→ ie are made once and for all.
• For each edge e and each vertex v of �(Σ) which do not lie on Λ, we

fix indices ie ∈ IM and iv ∈ IM such that X maps e to OM
ie

and v to
OM

iv
. For vertices v that lie on Λ, we pick an assignment v �→ iv ∈ IQ.

As in Section 2.2, these maps are guaranteed to exist by the continuity
properties of X.

• In expression (2.13) for HolG(X), we still have B̂t = X∗Bit , Âte =
X∗Aitie and ĝtev = (X∗gitieiv)εtev . If one of the edges of t lies in Λ
then the pullbacks use the differentiable extension of X from the inte-
rior of t to all of t (which exists by condition (L2) on X). If e ⊂ Λ then
ie ∈ IQ, and it is understood that Aitie and gitieiv stand for Aitφ1(ie)
and gitφ1(ie)φ1(iv), respectively, if the orientation of e, as induced from
t, agrees with that of Λ, or for Aitφ2(ie) and gitφ2(ie)φ2(iv) otherwise, cf.
figure 4.

• P̂e = X∗Pie , where X is understood as a map from e ⊂ Λ to OQ
ie

. The
resulting 1-form on e is integrated using the orientation of Λ.

• K̂ev = (X∗Kieiv)−εev (note the minus sign), where X is understood
as a map from v ∈ Λ to OQ

ieiv
. The edge e inherits an orientation

from Λ. The sign convention reads: εev = +1 if, with respect to this
orientation, v sits at the end of e, and εev = −1 otherwise.

Again, the expression for the holonomy Hol(Λ, X) is basically dictated by
requiring invariance with respect to the choice of the triangulation, and with

3We emphasize that expression (2.13) loses its fundamental property — namely, the
invariance under changes of the world-sheet triangulation and gauge transformations —
in the presence of a defect network, and hence it now defines a collection of transport
operators for the transgression bundle of [Ga1] instead of surface holonomy. It is with this
understanding that we choose to denote it by the same symbol HolG(X) for the sake of
brevity. Analogous remarks apply to the defect-vertex corrections to the holonomy.
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Figure 4: When a triangle t shares an edge e with a defect line, the orien-
tation of the defect either agrees with that of ∂t or not. This decides which
pullback map to apply to the connection 1-forms Aij and the transition
functions gijk on M .

respect to gauge transformations of the gerbe. This is discussed at length
in Section 2.7.

For the trivial G-bi-brane B = Btriv, it is easy to check that HolB(X|Λ) =
1 so that the holonomy in the presence of defects (2.24) reduces to the
holonomy in the absence of defects (2.13).

In the case when the bi-brane describes a D-brane B = Bbnd, one can verify
that (2.24) reproduces the holonomy for world-sheets with boundary given
in [CJM,GR1,Ga4]. The world-sheet with boundary is obtained as follows:
Given a circle-field configuration (Λ, X) on Σ for the target M = N � {•}
with bi-brane Bbnd, some parts of the world-sheet will be mapped to {•}.
On these components of Σ, there are no degrees of freedom, and so both
the kinetic and the topological term of the action vanish. Hence, we may as
well remove these parts of the world-sheet, which yields a new world-sheet
Σ′ with Λ as its boundary.

2.4.1 The Lie-group example (cont’d)

Let us inspect what a circle-field configuration (Λ, X) for the G�k-bi-brane
BZ(G) with world-volume (2.18) looks like. Condition (L2) means that
whenever p ∈ Λ gets mapped to X(p) = (g, z) ∈ G × Z(G) then X|1(p) =
ι1(g, z) = g and X|2(p) = ι2(g, z) = z−1 · g. Thus,

lim
ζ↘p

X(ζ) = z · lim
ζ↗p

X(ζ), (2.26)

where by ζ ↘ p and ζ ↗ p we mean that ζ ∈ Σ approaches p in the neigh-
bourhood U1 and U2, respectively, so that, e.g., limζ↘p X(ζ) = X|1(p). Con-
dition (L3) now reads Gg(v, X|1∗n̂1) + Gz−1·g(z−1

∗ v, X|2∗n̂2) = 0 for all v ∈
TgG. Since the (Cartan–Killing) metric on G is G-invariant, this implies
X|1∗n̂1 + (z · X|2)∗n̂2 = 0. Together with X|1∗t̂ = (z · X|2)∗t̂, which follows
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from the identity X|1(p) = z · X|2(p) valid for all p ∈ Λ, this yields an equal-
ity of the tangent maps

X|1∗ = (z · X|2)∗ : TpΣ −→ TgG. (2.27)

In other words, also the first derivative of the field X has to jump in a con-
trolled manner across Λ. Altogether, we see that this G�k-bi-brane describes
jump defects with the value of the jump dictated by the value of the field
on the defect circle.

2.5 Abelian inter-bi-branes

The introduction of a target-space structure for defect junctions on the
world-sheet calls for the notion of a 2-morphism, as introduced in Sec-
tion 2.1, as well as for that of the dual of a stable isomorphism and the
dual of a G-bi-brane, which we now define.

Suppose that we are given a target space M with gerbes G and H, and
a stable isomorphism Φ = (Πi, χij) : G → H. We define the dual stable iso-
morphism Φ∨ : H → G by the local data (−Πi, χ

−1
ij ). We also introduce

2-morphisms (the death 2-morphisms)

dΦ : Φ∨ ◦ Φ =⇒ idG , (2.28)

with local data dΦ = (1). One may wonder why ever we should give a special
name to a 2-morphism with trivial data. The reason is that we have made
a specific choice for the dual morphisms here; other choices, differing by
2-isomorphisms (gauge transformations), are possible which would lead to
death 2-morphisms with non-trivial data. Furthermore, a generic dΦ cannot
be avoided in the framework of bundle gerbes [Wa2].

Let B be a G-bi-brane of the form (2.14). The G-bi-brane dual to B is
defined as

B∨ =
(
Q,−ω, OQ, ι̌2, ι̌1, Φ∨). (2.29)

Below, we shall often use the convenient notation B+ ≡ B and B− ≡ B∨,
and we shall refer to the data in B± by a superscript ( )±. One can check
that the holonomy (2.24) does not change if we simultaneously reverse the
orientation of Λ and replace B by B∨.
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A (G, B)-inter-bi-brane J for a gerbe G over a manifold M and a G-bi-
brane B is an infinite tuple

J = (Tn,OTn , ϕn, τn | n ∈ Z>0), (2.30)

where, for every n ∈ Z>0,

(I.i) Tn is a smooth manifold;
(I.ii) OTn = {OTn

i | i ∈ ITn} is a good open cover of Tn;
(I.iii) ϕn is a 2-morphism;
(I.iv) τn =

(
εk,k+1
n , π̌k,k+1

n | k = 1, 2, . . . , n
)

are collections of maps.

The detailed description of the infinite sequence (ϕn, τn | n ∈ Z>0), and of
the conditions which the data have to obey is somewhat lengthy but straight-
forward. First of all, each Tn carries the data needed to formulate the holo-
nomy for an n-fold junction of defect lines on the world-sheet. We allow the
possibility that Tn is the empty set. For example, if one wants to consider
world-sheets with three-valent defect vertices exclusively one could choose
Tn = ∅ for n �= 3. In what follows, we shall frequently refer to the manifold
T given by the disjoint union

T =
∞⊔

n=1

Tn, (2.31)

which we call the world-volume of the (G,B)-inter-bi-brane.

The maps εk,k+1
n in the definition of τn are continuous functions

εk,k+1
n : Tn → {+1,−1}, εn,n+1

n ≡ εn,1
n . (2.32)

They give a decomposition of Tn into up to 2n disconnected pieces (not all
combinations of the n signs ε1,2

n , ε2,3
n , . . . , εn,n+1

n need occur). This decompo-
sition of Tn will be needed to accommodate the different orientations with
which n edges can end on an n-valent defect vertex in the world-sheet. The
objects π̌k,k+1

n are Čech-extended maps

π̌k,k+1
n =

(
πk,k+1

n , ψk,k+1
n

)
: Tn → Q, π̌n,n+1

n ≡ π̌n,1
n , (2.33)

composed of smooth manifold maps πk,k+1
n : Tn → Q and the attendant

index maps ψk,k+1
n : ITn → IQ, subject to the condition

ι̌ε
k−1,k
n

2 ◦ π̌k−1,k
n = ι̌ε

k,k+1
n

1 ◦ π̌k,k+1
n for k = 1, 2, . . . , n, (2.34)
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in which the identifications ε0,1
n ≡ εn,1

n and π̌0,1
n ≡ π̌n,1

n are implicit. Here,
the manifold map from Tn to M appearing on the left-hand side is given by

p �→ ι
εk−1,k
n (p)

2 ◦ πk−1,k
n (p), and similarly for the right-hand side. Recall that

the notation ι±1 and ι±2 refers to the maps from the definition of the G-bi-
brane B+ = B and its dual B− = B∨. Put together with (B.iv), condition
(2.34) enables us to induce another family of Čech-extended maps

π̌k
n = ι̌ε

k,k+1
n

1 ◦ π̌k,k+1
n = (πk

n, ψk
n) : Tn → M (2.35)

from π̌k,k+1
n . Just as for G-bi-branes, we shall not — for the sake of trans-

parency — spell out ψk
n and ψk,k+1

n explicitly in formulæ involving pullbacks
from M or Q to Tn.

Using π̌k
n and π̌k,k+1

n , we can pull back data to Tn from M and Q, respec-
tively. Thus, in particular, we obtain a family of 2-forms on Tn,

ωk,k+1
n =

(
πk,k+1

n

)∗
ωεk,k+1

n . (2.36)

We demand the sum of all these 2-forms to vanish for each n ∈ Z>0,

n∑
k=1

ωk,k+1
n = 0. (2.37)

In the light of the invariance arguments to be presented in Section 2.7, we
could — more generally — have postulated the existence of 1-forms θn on
Tn such that the above sum is equal to dθn instead of being zero. However,
the analysis of the defect conditions for the fields of the underlying sigma
model, derived in Appendix A.2 through the application of the variational
principle, shows that only those parts of Tn can be probed by the sigma-
model field in which θn vanishes. Therefore, we may as well set θn = 0 for
all n ∈ Z>0 from the start.

In addition to the above, we also obtain, on each Tn, a family of gerbes
and stable isomorphisms

Gk
n =
(
π̌k

n

)∗G, Φk,k+1
n =

(
π̌k,k+1

n

)∗Φεk,k+1
n , (2.38)

where Φk,k+1
n is readily verified to be a stable isomorphism Gk

n → Gk+1
n �

I(ωk,k+1
n ). Here, we have used the identification Gn+1

n ≡ G1
n and abbreviated

I(ωk,k+1
n ) ≡ I(OTn , ωk,k+1

n ), and we shall adhere to these conventions below.
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Define the stable isomorphisms Ξn : G1
n → G1

n on each component Tn by the
cyclic composition of the stable isomorphisms Φk,k+1

n

Ξn : G1
n

Φ1,2
n−−→ G2

n � I
(
ω1,2

n

) Φ2,3
n �id

I(ω1,2
n )−−−−−−−−→ G3

n � I
(
ω2,3

n

)
� I
(
ω1,2

n

)
−→ · · ·

Φn,1
n �id

I(ωn−1,n
n )

�···�id
I(ω1,2

n )−−−−−−−−−−−−−−−−−−→ G1
n � I
(
ωn,1

n

)
� I
(
ωn−1,n

n

)
� · · · � I

(
ω1,2

n

)
≡ G1

n.
(2.39)

The last identity follows from the composition rule I(ω) � I(ω′) = I(ω + ω′),
cf. Section 2.1, and condition (2.37). We may finally introduce a 2-morphism
ϕn as

ϕn : Ξn =⇒ idG1
n
. (2.40)

This completes the description of the data of an abelian (G,B)-inter-bi-brane
and of the conditions it has to satisfy.

Upon rewriting (2.40) in terms of the relevant local data Φk,k+1
n = (P k,k+1

n,i ,

Kk,k+1
n,ij ) ∈ A1

Tn
and ϕn = (fn,i) ∈ A0

Tn
on OTn , we obtain the relation

n∑
k=1

(
P k,k+1

n,i , Kk,k+1
n,ij

)
+
(
−i d log fn,i, fn,i f

−1
n,j

)
= (0, 1). (2.41)

In the sequel, we shall often employ the composite 2-morphism ϕ = (fi) ∈
A0

T on the total world-volume T glued from the 2-morphisms ϕn as per

ϕ|Tn = ϕn. (2.42)

The simplest example of an inter-bi-brane is the trivial (G,B)-inter-bi-
brane Jtriv which is defined for the trivial G-bi-brane B = Btriv. In this case,
one takes Tn in the form of 2n copies of M , one for each possible set of values
of the maps εk,k+1

n . The projections π̌k,k+1
n all coincide with the identity map

on M . One then finds that Ξn is the identity stable isomorphism from G
to itself, and one chooses for ϕn the identity 2-morphism with local data
ϕn = (1).

2.5.1 The Lie-group example (cont’d)

We shall now tailor down the exposition of the various bi-brane and inter-
bi-brane structures associated with Z(G)-jump defects of the WZW model
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for G to the main task at hand which consists in obtaining the 3-cocycle of
(1.3). The minimal set of inter-bi-brane data is provided by the two sets

T3 = G × Z(G) × Z(G) × {±1}3, T4 = G × Z(G) × Z(G) × Z(G)× {±1}4,
(2.43)

describing three- and four-valent vertices, respectively. As the notation
clearly suggests, the sign maps (2.32) are fixed in the form

εk,k+1
3 (g, x, y, ε1,2, ε2,3, ε3,1) = εk,k+1,

εk,k+1
4 (g, x, y, z, ε1,2, ε2,3, ε3,4, ε4,1) = εk,k+1.

(2.44)

Since we shall only need for our purposes the distinguished connected compo-
nents T2+1 ≡ T3,++− and T3+1 ≡ T4,+++− of T3 and T4, we fix the
signs as

ε1,2
3 = +1 = ε2,3

3 , ε3,1
3 = −1, ε1,2

4 = +1 = ε2,3
4 = ε3,4

4 , ε4,1
4 = −1 (2.45)

for the remainder of the discussion. Below, we detail the remaining elements
of the description solely for T2+1, postponing the construction of T3+1 to
Section 2.8.

The good open cover of T2+1 is obtained in the same way as for the G�k-
bi-brane BZ(G) of (2.18), that is we choose the open sets OT2+1

i,x,y = OG
i ×

{(x, y)} with i ∈ IG and x, y ∈ Z(G) (and the redundant signs dropped
from the notation, which is also what we do below). The Čech-extended
maps π̌k,k+1

2+1 =
(
πk,k+1

3 , ψk,k+1
3

)∣∣
T2+1

for the edges then evaluate on points

(g, x, y) ∈ OT2+1
i,x,y as

π1,2
2+1(g, x, y) = (g, x), ψ1,2

2+1(i, x, y) = (i, x),

π2,3
2+1(g, x, y) = (x−1 · g, y), ψ2,3

2+1(i, x, y) = (x−1.i, y),

π3,1
2+1(g, x, y) = (g, x · y), ψ3,1

2+1(i, x, y) = (i, x · y).

(2.46)

These manifestly obey condition (2.34), for example ι2(π
1,2
2+1(g, x, y)) = x−1 ·

g = ι1(π
2,3
2+1(g, x, y)). The corresponding Čech-extended maps (2.35) for the

patches are

π1
2+1(g, x, y) = g, π2

2+1(g, x, y) = x−1 · g, π3
2+1(g, x, y) = (x · y)−1 · g,

(2.47)

and similarly for ψk
2+1.
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At this stage, we still have to fix the 2-morphisms ϕn from the collection
(2.30). We shall only describe those supported by the subspace T x,y

2+1 =
G × {(x, y)} ⊂ T2+1, which we identify with G. Using (2.47) we get the
three pullback gerbes on T x,y

2+1 defined in (2.38),

G1
2+1 =

(
π̌1

2+1
)∗G�k = G�k,

G2
2+1 =

(
π̌2

2+1
)∗G�k = x.G�k,

G3
2+1 =

(
π̌3

2+1
)∗G�k = (x · y).G�k,

(2.48)

as well as the pullback 1-morphisms

Φ1,2
2+1 =

(
π̌1,2

2+1
)∗Φ = Ax : G1

2+1 −→ G2
2+1,

Φ2,3
2+1 =

(
π̌2,3

2+1
)∗Φ = x.Ay : G2

2+1 −→ G3
2+1,

Φ3,1
2+1 =

(
π̌3,1

2+1
)∗Φ∨ = A∨

x·y : G3
2+1 −→ G1

2+1.

(2.49)

We next fix 2-morphisms

ϕ̃x,y : (x.Ay) ◦ Ax =⇒ Ax·y, (2.50)

where both sides are stable isomorphisms G�k → (x · y).G�k. These
2-morphisms can be read off from [GR2, Section 3] upon consulting [GSW2,
Sections 1 and 3] whose conventions have been adopted in our discussion.
Finally, we define the 2-morphism ϕ2+1 : Φ3,1

2+1 ◦ Φ2,3
2+1 ◦ Φ1,2

2+1 ⇒ idG1
2+1

on
T x,y

2+1 as

ϕ2+1 : A∨
x·y ◦ (x.Ay) ◦ Ax

idA∨
x·y

◦ϕ̃x,y

=======⇒ A∨
x·y ◦ Ax·y

dAx·y====⇒ idG�k . (2.51)

The composition of 2-morphisms represented by the superposition of the
corresponding double arrows is called ‘vertical’ in the 2-categorial language
and denoted with the symbol •, e.g., ϕ2+1 = dAx·y •

(
idA∨

x·y ◦ ϕ̃x,y

)
. We shall

use the composition symbol in the reminder of the paper in order to shorten
some formulæ.

The existence of the 2-morphisms ϕ̃x,y follows form the triviality of the
cohomology group H1(G, U(1)). In order to see this, let us look at a gen-
eral symmetry group S again, as we did at the end of Section 2.1. Suppose
that an element-wise presentation AS of S on b exists. In terms of local
data, the 2-morphisms ϕ̃x,y : (x.Ay) ◦ Ax =⇒ Ax·y have to solve −Dϕ̃x,y =
(δSA)x,y for all x, y ∈ S, where (δSA)x,y = x.Ay − Ax·y + Ax. We shall col-
lect the 2-morphisms into a set ϕ̃S = {ϕ̃x,y | x, y ∈ S} and call the pair
(AS , ϕ̃S) a homomorphic presentation of S on b. Assuming the existence
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of the element-wise presentation AS , the obstruction to the existence of a
homomorphic presentation is contained in H

1(M) = kerD(1)/im D(0), the
set of isomorphism classes of flat line bundles over M . Indeed, the equality
DδSA ≡ δSDA = δ2

Sb = (0, 0, 1) always holds due to δ2
S = 0, but the exis-

tence of ϕ̃S requires (δSA)x,y to lie in the image of D(0) for all x, y ∈ S. The
cohomology group H

1(M) satisfies H
1(M) ∼= H1(M, U(1)), see [Gj,Jh], and

so it trivializes for M = G a compact simple connected and simply connected
Lie group.

2.6 Holonomy for world-sheets with defect networks

After all the preparations, we can, at last, describe our construction of the
holonomy for world-sheets with defect networks.

A defect network Γ on a world-sheet Σ is an oriented graph embedded
in Σ, together with an ordering of the edges around each vertex. By this
we mean that the edges of Γ are oriented submanifolds of Σ, and that, for
each vertex of Γ, the edges emanating from this vertex have been labelled
in the counter-clockwise order as e1,2, e2,3, . . . , en,1. (Since the world-sheet
is oriented, this is equivalent to marking one of the edges attached to the
vertex.) We allow, in particular, circular edges that are not attached to any
vertex. The set of edges in Γ is denoted by EΓ, and the set of its vertices
by VΓ.

A network-field configuration on Σ for the target space M with the G-bi-
brane B and the (G,B)-inter-bi-brane J is a pair (Γ, X), where Γ is a defect
network and

X : Σ → M � Q � T (2.52)

is a map from the world-sheet into the disjoint union of the target space M ,
the G-bi-brane world-volume Q, and the (G,B)-inter-bi-brane world-volume
T , with the following properties:

(N1) X restricts to a once differentiable map Σ − Γ → M , and to a once
differentiable map Γ − VΓ → Q, and it maps VΓ to T . Furthermore,
we have X(v) ∈ Tnv for a vertex v ∈ VΓ of valence nv.

(N2) In a neighbourhood of a point p ∈ Γ − VΓ, the map X obeys conditions
(L1)–(L3) for a circle-field configuration from Section 2.4.

(N3) Let v ∈ VΓ be an nv-valent vertex and let ek,k+1 be an edge converging
at v. If the edge is oriented towards v we demand that εk,k+1

nv (X(v)) =
+1, and otherwise that εk,k+1

nv (X(v)) = −1.
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(N4) Let v and ek,k+1 be as in (N3). The map X sends ek,k+1 with its end-
points removed to Q. We demand that X have a differentiable exten-
sion Xk,k+1 : ek,k+1 → Q, and that Xk,k+1(v) = πk,k+1

nv (X(v)) hold.

Condition (N3) ensures that a vertex gets mapped to the correct compo-
nent of Tnv according to the orientation of the edges converging at v, and
condition (N4) restricts the jump of X at the vertex itself. There are two
implications of (N4) that we wish to emphasize.

First, let U ⊂ Σ be a small neighbourhood of a vertex v ∈ VΓ of valence nv.
The defect network Γ divides U into nv open sets U1, U2, . . . , Unv , labelled
counter-clockwise around v such that Uk sits between the edges ek−1,k and
ek,k+1. The map X sends Uk to M . Condition (N2) implies that it has
a differentiable extension to Uk − {v}, and condition (N4) ensures that,
in fact, X has a differentiable extension Xk : Uk → M , and that Xk(v) =
πk

nv
(X(v)).

Second, if B = Btriv is the trivial G-bi-brane and J = Jtriv is the trivial
(G,B)-inter-bi-brane then — as we have already seen in Section 2.4 — X
has a differentiable extension to all of Σ for Γ composed solely of circles. By
the same argument, one finds that, for a general defect network, X has a
differentiable extension to X − VΓ. However, by the previous remark, it has
a differentiable extension to Uk for each of the sectors Uk around a vertex
v. Thus, it is differentiable on all of Σ.

The holonomy for a network-field configuration (Γ, X) is a modification
of (2.25) which includes an additional U(1)-factor associated to the vertices
of Γ,

Hol(Γ, X) = HolG(X) · HolB(X|EΓ) · HolJ (X|VΓ), (2.53)

where

HolJ (X|VΓ) =
∏

v∈VΓ

f̂v(v). (2.54)

HolG(X) is given by the same expression (2.13) and HolB(X|EΓ) by the
expression (2.25), together with a prescription as to how to treat the vertices
of Γ. Here are the details:

• The expressions HolG(X) and HolB(X|EΓ) are evaluated with respect
to a triangulation �(Σ) subordinate to (Γ, X). Such a triangulation
is defined in the same way as the triangulation subordinate to (Λ, X)
from Section 2.4, with the additional requirement that VΓ is a subset



1166 INGO RUNKEL AND RAFA�L R. SUSZEK

of the set of the vertices of �(Σ), and that we have chosen, for each
vertex v ∈ VΓ, an index iv ∈ ITnv such that X(v) ∈ OTnv

iv
, where nv is

the valency of v.
• HolG(X) is computed as described below (2.24), except when a vertex

v of a triangle t lies in VΓ. Suppose that t lies between the defect edges
ek−1,k and ek,k+1. Then, in the U(1)-factor gitieiv , the index iv stands
for ψk

nv
(iv). If e is an edge of Γ then ie stands for φ1(ie) or φ2(ie),

depending on the relative orientation of e and ∂t, as explained below
(2.24).

• HolB(X|EΓ) is computed as described below (2.24), except when a
vertex v of an edge e lies in VΓ. Suppose that the edge e is the edge
ek,k+1 for the vertex v. Then

K̂ev =
(
X∗

k,k+1Kieψk,k+1
nv (iv)

)−εev , (2.55)

where the sign εev is as detailed below (2.24). The definition of P̂e =
X∗Pie is not affected.

• Finally, f̂v = X∗fiv , with fiv |X(v) = fnv ,iv at an nv-valent vertex v.

We shall discuss in the next section how Hol(Γ, X) is determined from the
requirement of its independence of the diverse choices made.

2.7 Holonomy formulæ from invariance analysis — a derivation

In the previous sections, we introduced a host of target-space structures
associated with the gerbe, and used them to postulate the sigma-model
action functional in the presence of defect networks embedded in the world-
sheet. At this stage, we could perform an a posteriori verification of the
invariance of the holonomy formulæ thus obtained under allowed changes of
the arbitrary choices made: the choice of representatives of local data of the
gerbe, those of the stable isomorphisms and 2-morphisms, as well as of the
Čech cover of the target space and of the world-sheet triangulation subor-
dinate to it. This was the route taken in [Al,Ga1] for world-sheets without
defects, in [GR1, Ga4] for world-sheet boundaries, and in [FSW, Wa2] for
circular defects, and it could readily be adapted to the study of defect junc-
tions. However, this would leave us with the question as to how canon-
ical our choices for the specific target-space structures — that of a bi-
brane and that of an inter-bi-brane — are. Therefore, we choose to take
essentially the reverse route in the present section in which we succes-
sively derive all components of the postulated description from some ele-
mentary invariance considerations. In so doing, we reveal certain twisted



GERBE-HOLONOMY FOR SURFACES 1167

gauge symmetries associated intrinsically with G-bi-branes and (G,B)-inter-
bi-branes.

Let us first look for a modification of the bulk holonomy formula (2.13)
necessary to accommodate the embedding of a collection Λ of non-intersec-
ting defect circles in the world-sheet Σ. To this end, we compare the value
HolpG(X) of the bulk holonomy attained on the gauge-transformed local
data

bp = b + Dp, p = (Πi, χij) ∈ A1
M (2.56)

of the bulk gerbe with that obtained for the original data b = (Bi, Aij , gijk),

HolpG(X) = HolG(X) ·
∏

e∈�(Λ)

[
exp
(

i
∫

e

(
Π̂1,e − Π̂2,e

))∏
v∈e

(
χ̂1,ev

)−1 · χ̂2,ev(v)
]
,

(2.57)

where, in the conventions of Section 2.4,

• the triangulation �(Λ) is induced by �(Σ);
• Π̂α,e = X∗

|αΠφα(ie), α = 1, 2, with the extensions X|α understood as
maps from e ⊂ Λ to OM

φα(ie);
• χ̂α,ev = X∗

|αχφα(ie)φα(iv), α = 1, 2, with X|α understood as maps from
v ∈ Λ to OM

φα(ie)φα(iv).

Thus, the variation is pushed to the defect Λ — the (gerbe-)gauge symme-
try remains unaffected by the presence of the defect away from it, and —
accordingly — we should seek a cancellation of the defect variation through
the introduction of degrees of freedom localized at the defect, with trans-
formation properties dictated by the gauge transformations of the pullback
gerbes on both patches welded by a particular defect circle. The defect
being one-dimensional, we are led to take as the local data for the defect
fields a Čech–Deligne cochain Φ = (Pi, Kij) ∈ A1

Q coupled to the defect as
in the expression HolB(X|Λ) of (2.25) and transforming as

(Pi, Kij) �→ (Pi, Kij) + ι̌∗2
(
Πi, χij

)
− ι̌∗1
(
Πi, χij

)
− D(Wi). (2.58)

Here, the second and third term on the right-hand side describe a twist
induced by the bulk transformation p, and the last one, written in terms
of a cochain η = (Wi) ∈ A0

Q, is an independent gauge transformation of Φ
allowed due to the emptiness of the boundary of Λ. The overall transforma-
tion displayed is that of a G-(bi-)twisted gauge field over Q.
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Having ensured the invariance of the corrected holonomy formula Hol
(Λ, X) of (2.24) under gauge transformations of the bulk data, we should
now demand that it be invariant under arbitrary changes of the (Λ, X)-
subordinate triangulation of Σ, which turns out to constrain the defect
data. The defining relation (2.5) of G protects the invariance of Hol(Λ, X)
under all changes which do not affect the edges and the vertices of �(Σ)
lying within the defect Λ, and so the remaining freedom of manœuvre con-
sists in shifting the vertices of �(Λ) (with the bulk edges converging at
them moved accordingly). In what follows, we consider a particularly sim-
ple example of the general move, which suffices for our purposes. Call e±

v

the edge of �(Λ) for which v is an endpoint with εe±
v v = ±1 and shift each

vertex v of the original triangulation �(Λ) along the defect line to a nearby
new location v′ ∈ Λ such that the segment [v, v′], starting at v and ending
at v′, has the same orientation as the defect line. Assume, furthermore,
that X([v, v′]) ⊂ OQ

i
e−
v

i
e+v

. The shifted vertices define altogether a new tri-

angulation �′(Λ) of the same defect, compatible with the new triangulation
�′(Σ) by construction. The only (potential) change in the assignment of
Čech indices to the elements of the triangulation comes from v′ �→ iv′ ∈ IQ

replacing the former v �→ iv ∈ IQ. Let us denote by Hol′(Λ, X) the holo-
nomy calculated for the new triangulation �′(Σ). After a short calculation,
one obtains the relation

Hol′(Λ, X) = Hol(Λ, X) ·
∏

v∈�(Λ)

×
[
exp
(

i
∫

[v,v′]
ω̂

(1)
e−
v e+

v

)
· ω̂

(0)
e−
v e+

v v′(v
′) ·
(
ω̂

(0)
e−
v e+

v v

)−1(v)
]
, (2.59)

where

• the 1-form in ω̂
(1)
e−
v e+

v
= X∗ω

(1)
i
e−
v

i
e+v

pulled back by X, understood as a

map from [v, v′] to OQ
i
e−
v

i
e+v

, is defined as

ω
(1)
ij = ι̌∗1Aij − ι̌∗2Aij + Pj − Pi − i d log Kij ∈ Ω1(OQ

ij

)
; (2.60)

• the U(1)-valued function in ω̂
(0)
e−
v e+

v v(′) = X∗ω
(0)
i
e−
v

i
e+v

i
v(′)

pulled back by

X, understood as a map from v± to OQ
i
e−
v

i
e+v

i
v(′)

, is defined as

ω
(0)
ijk = ι̌∗1gijk · ι̌∗2g

−1
ijk · K−1

jk · Kik · K−1
ij ∈ U(1)OQ

ijk
. (2.61)
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The requirement that the unphysical change of the triangulation be unob-
servable translates into the constraints

ω
(1)
ij = 0, ω

(0)
ijk = 1. (2.62)

The inspection of (2.60) and (2.61) reveals that ω
(1)
ij and ω

(0)
ijk are, in fact, the

lower-degree components of the Čech–Deligne 2-cochain Ω =
(
ω

(2)
i , ω

(1)
ij , ω

(0)
ijk

)
∈ A2

Q given by the formula

Ω = ι̌∗1b − ι̌∗2b + DΦ. (2.63)

We may now use the identity

D
(
ι̌∗1b − ι̌∗2b + DΦ

)
= (ι∗1H − ι∗2H, 0, 0, 1), (2.64)

following directly from (2.5), to rephrase the former requirement of invari-
ance as

ι̌∗1b − ι̌∗2b + DΦ = (ω, 0, 1), dω = ι∗1H − ι∗2H (2.65)

for a globally defined 2-form ω ∈ Ω2(Q), ω|OQ
i

≡ ω
(2)
i .

We have thus retrieved the structure of a 1-morphism of Section 2.3, with
the definition of the global 2-form ω included, from elementary invariance
considerations.

Now that we have identified the local degrees of freedom to be assigned
to the defect line, we may incorporate vertices of a generic defect network Γ
in our description. In analogy with the previous derivation, we take as the
starting point the defect line-corrected holonomy Hol(Λ, X), calculated for
Λ = EΓ, and study its variation under gauge transformations replacing the
gauge fields b and Φ with the new ones

{
bp = b + Dp, p = (Πi, χij) ∈ A1

M

Φp,η = Φ + ι̌∗2p − ι̌∗1p − Dη, η = (Wi) ∈ A0
Q

. (2.66)

Once again, the transformed holonomy, Holp,η(EΓ, X), differs from the orig-
inal one by terms evaluated at the newly introduced junction points exclu-
sively,

Holp,η(EΓ, X) = Hol(EΓ, X) ·
∏

v∈VΓ

nv∏
k=1

Ŵ k,k+1
nv ,v (v)−1,

Ŵ k,k+1
nv ,v =

(
X∗

k,k+1Wψk,k+1
nv (iv)

)εek,k+1v ,

(2.67)
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and it is there that we should localize the new degrees of freedom ϕn =
(fn,i) ∈ A0

Tn
. They are to be coupled to the defect as in the expression

HolJ (X|VΓ) of (2.53) and to undergo twisted gauge transformations

ϕn → ϕn +
n∑

k=1

ηk,k+1
n , (2.68)

with

ηk,k+1
n =

(
π̌k,k+1

n

)∗
ηεk,k+1

n . (2.69)

The Φ-twisted scalar fields ϕn enjoy no proper gauge freedom for purely
dimensional reasons. As we shall see in the next section, the admissible
choices of ϕn turn out to be very restricted.

The vertex-corrected formula for the holonomy is now invariant with
respect to arbitrary gauge transformations of the local data involved. What
remains to be ascertained at this stage is that it does not alter under
arbitrary changes of the world-sheet triangulation, taken together with the
attendant Čech labels. Just as in the case of a circle-field configuration, we
readily convince ourselves that the relevant changes are those which involve
the vertices of the defect network, and even in this latter case the ambiguity
is very restricted — the sole freedom that we have is in the choice of the
Čech labels assigned to the vertices. Under a change iv → i′v, the holonomy
picks up a phase. The transformed one, Hol′(Γ, X), reads

Hol′(Γ, X) = Hol(Γ, X) ·
∏

v∈VΓ

θ̂(0)
nv ,vv(v)−1, (2.70)

where the U(1)-valued function in θ̂
(0)
nv ,vv = X∗θ

(0)
nv ,ivi′v

pulled back by X∗,

understood as a map from the vertex v of valence nv to OTnv
ivi′v

, is given by

θ
(0)
n,ij = fn,i · f−1

n,j ·
n∏

k=1

Kk,k+1
n,ij ∈ U(1)OTn

ij
, (2.71)

with Kk,k+1
n,ij as defined above (2.41). We are led to impose the constraint

θ
(0)
n,ij = 1. (2.72)

The definition of the functions θ
(0)
n,ij identifies them, for every n ∈ Z>0, as the

0-degree component of the Čech–Deligne 1-cochain Θn =
(
θ
(1)
n,i , θ

(0)
n,ij

)
∈ A1

Tn
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defined as

Θn =
n∑

k=1

Φk,k+1
n + Dϕn (2.73)

and, accordingly, satisfying

DΘn =
n∑

k=1

(
ωk,k+1

n , 0, 1
)
, (2.74)

with ωk,k+1
n as in (2.36). The last identity, in conjunction with the require-

ment of invariance, produces the result

n∑
k=1

Φk,k+1
n + Dϕn = (θn, 1), dθn =

n∑
k=1

ωk,k+1
n (2.75)

for globally defined 1-forms θn ∈ Ω1(Tn), θn|OTn
i

≡ θ
(1)
n,i . The dynamical argu-

ments of Appendix A.2 ultimately fix the vertex data by imposing the con-
straint

θn = 0 (2.76)

for all n ∈ Z>0.

We have thus recovered the structure of a 2-morphism of Section 2.5 from
elementary invariance considerations.

2.8 Defect-vertex data via induction

The assignment of the holonomy Hol(Γ, X) to a given world-sheet with an
embedded defect network involves a number of choices for the coupled target-
space backgrounds (b, Φ, ϕ), reflecting the underlying twisted gauge symme-
try. Besides the unphysical choice of the gauge, cf. (2.66) and (2.68), there
is also the all-relevant choice of the gauge class which forms an integral part
of the definition of the sigma model.

The Φ-twisted scalar field ϕ of (2.42) has no proper gauge symmetry but
the possible choices of ϕ for b and Φ fixed are strongly constrained. To see
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this, note that any two such choices ϕ′ and ϕ must be related via

ϕ′ = ϕ + γ, γ = (ci) ∈ ker D(0) ⊂ A0
T (2.77)

by untwisted U(1)-valued scalars. Thus, the freedom in the choice of the
Φ-twisted scalar field is parameterized by (locally) constant phases,

dci = 0,
(
cj · c−1

i

)
|OT

ij
= 1, (2.78)

readily seen to compose the group

ker D(0) = U(1)|π0(T )|, (2.79)

for π0(T ) the set of connected components of T .

The restricted character of the set of admissible Φ-twisted scalar fields
motivates further investigation of special solutions to the defining equations
(2.40). In conformal field theory, we can generate four-valent defect vertices
(or n-valent vertices, for that matter) from three-valent ones as follows:
Recall that a defect vertex corresponds to a defect-field insertion in CFT
(cf. figure 2). Consider two three-valent defect fields joined by one common
defect line of a small length ε. Taking the limit ε → 0 and possibly com-
pensating for the resulting divergence leads to a four-valent defect field. It
turns out that we can mimic this procedure in the classical sigma model.

Recall from Section 2.5 that a (G,B)-inter-bi-brane is defined in terms of
a tower of component world-volumes T =

⊔∞
n=1 Tn, with a 2-morphism ϕn

on each Tn. Below, we propose a method to construct the ϕn with n > 3
from (T3,OT3 , ϕ3, τ3) and some extra data. For the sake of concreteness, we
shall restrict our discussion to the special case of vertices of valence n = 4
with three incoming edges and one outgoing edge.

The point of departure in our construction are the data (T2+1,OT2+1 ,
ϕ2+1, τ2+1) for the three-valent vertex with two incoming edges and one out-
going edge. It consists of the (G,B)-inter-bi-brane world-volume T3,++− ≡
T2+1, mapped to the G-bi-brane world-volume Q by each of the three Čech-
extended maps

π̌1,2
2+1, π̌

2,3
2+1, π̌

3,1
2+1 : T2+1 → Q (2.80)

satisfying the constraints

ι̌1 ◦ π̌2,3
2+1 = ι̌2 ◦ π̌1,2

2+1, ι̌1 ◦ π̌3,1
2+1 = ι̌1 ◦ π̌1,2

2+1, ι̌2 ◦ π̌3,1
2+1 = ι̌2 ◦ π̌2,3

2+1,
(2.81)
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and of a 2-morphism

ϕ2+1 :
(
Φ3,1

2+1 � id
I(ω1,2

2+1+ω2,3
2+1)

)
◦
(
Φ2,3

2+1 � id
I(ω1,2

2+1)

)
◦ Φ1,2

2+1 =⇒ idG1
2+1

,

(2.82)

defined for G1
2+1 =

(
ι̌1 ◦ π̌1,2

2+1
)∗G. The latter canonically induces another

2-morphism

ϕ̃2+1 :
(
Φ2,3

2+1 � id
I(ω1,2

2+1)

)
◦ Φ1,2

2+1 =⇒ Φ1,3
2+1, (2.83)

with Φ3,1
2+1 = (Φ1,3

2+1)
∨, giving a decomposition of ϕ2+1 of the form

ϕ2+1 = dΦ1,3
2+1

•
(
idΦ3,1

2+1�id ◦ ϕ̃2+1
)
. (2.84)

Next, we assume that we are given a manifold T3+1 ≡ T4,+++− together with
four Čech-extended maps

v̌I,J,K = (vI,J,K , νI,J,K) : T3+1 → T2+1, 1 ≤ I < J < K ≤ 4 (2.85)

subject to the conditions

π̌1,2
2+1 ◦ v̌1,3,4 = π̌3,1

2+1 ◦ v̌1,2,3, π̌2,3
2+1 ◦ v̌1,2,4 = π̌3,1

2+1 ◦ v̌2,3,4,

π̌1,2
2+1 ◦ v̌1,2,3 = π̌1,2

2+1 ◦ v̌1,2,4, π̌2,3
2+1 ◦ v̌1,2,3 = π̌1,2

2+1 ◦ v̌2,3,4,

π̌2,3
2+1 ◦ v̌1,3,4 = π̌2,3

2+1 ◦ v̌2,3,4, π̌3,1
2+1 ◦ v̌1,3,4 = π̌3,1

2+1 ◦ v̌1,2,4.

(2.86)

Their existence is the basis of our construction, and we shall provide exam-
ples of such maps presently. In order to understand the index structure, one
should have a look at figure 5. For example, the right-hand side of the last
equation in (2.86) can be understood as passing from the image of v ∈ ΣL|R
in T3+1 to the image of v ∈ ΣR in T2+1 (with adjacent patches 1, 2, 4), and
subsequently to that of the endpoint of the edge between patches 1 and 4
(the edge e3,1 with respect to the ordering for the vertex v ∈ ΣR). For the
left-hand side of that equation, one uses ΣL instead.

The maps v̌I,J,K are readily seen to induce the inter-bi-brane structure
T3+1 for the four-valent vertices. Indeed, first of all, they provide us with
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Figure 5: The four-valent defect vertex in ΣL|R obtained as a result of col-
lapsing a pair of three-valent vertices in two inequivalent ways, whereby the
two 2-morphisms ϕ̃L and ϕ̃R are induced at the vertex.

the data of τ3+1 as per

π̌1,2
3+1 = π̌1,2

2+1 ◦ v̌1,2,3, π̌2,3
3+1 = π̌2,3

2+1 ◦ v̌1,2,3,

π̌3,4
3+1 = π̌2,3

2+1 ◦ v̌1,3,4, π̌4,1
3+1 = π̌3,1

2+1 ◦ v̌1,3,4,
(2.87)

and hence also with the patch maps π̌k
3+1, k = 1, 2, 3, 4. The latter give

us the pullback gerbes Gk
3+1 =

(
π̌k

3+1
)∗G on T3+1. It is a simple exercise to

verify that conditions (2.86) in conjunction with (2.81) ensure that the maps
π̌k,k+1

3+1 : T3+1 → Q satisfy the constraints (2.34). We supplement the above
collection with the extra definitions

π̌1,3
3+1 ≡ π̌3,1

3+1 = π̌3,1
2+1 ◦ v̌1,2,3, π̌2,4

3+1 ≡ π̌4,2
3+1 = π̌2,3

2+1 ◦ v̌1,2,4, (2.88)

allowing us to write down all the pullback 1-morphisms

ΦI,J
3+1 =

(
π̌I,J

3+1
)∗Φ : GI

3+1 → GJ
3+1, I < J, (I, J) �= (1, 4),

Φ4,1
3+1 =

(
π̌4,1

3+1
)∗Φ =

(
Φ1,4

3+1
)∨ : G4

3+1 → G1
3+1.

(2.89)

We can use these to give the two different definitions of the defect-vertex
2-morphism

ϕL
3+1 = dΦ1,4

3+1
•
(
id ◦ ϕ̃1,3,4) •

(
id ◦ ϕ̃1,2,3),

ϕR
3+1 = dΦ1,4

3+1
•
(
id ◦ ϕ̃1,2,4) •

(
id ◦ (ϕ̃2,3,4 � idid

I(ω1,2
3+1)

) ◦ id
)
,

(2.90)

acting as

(
Φ4,1

3+1 � id
I(ω1,2

3+1+ω2,3
3+1+ω3,4

3+1)

)
◦
(
Φ3,4

3+1 � id
I(ω1,2

3+1+ω2,3
3+1)

)
◦
(
Φ2,3

3+1 � id
I(ω1,2

3+1)

)

◦ Φ1,2
3+1

ϕL,R
3+1===⇒ idG1

3+1
. (2.91)
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They are expressed in terms of the corresponding pullback 2-morphisms

ϕ̃I,J,K = v̌∗
I,J,Kϕ̃2+1 :

(
ΦJ,K

3+1 � id
I(ωI,J

3+1)

)
◦ ΦI,J

3+1 =⇒ ΦI,K
3+1, (2.92)

and the death 2-morphism dΦ1,4
3+1

. Clearly, the two definitions, ϕL
3+1 and

ϕR
3+1, correspond to the two inequivalent ways of clustering the incoming

defect-lines converging at a given four-valent defect vertex. It is worth
underlining that while each of the two definitions in (2.90) requires only
two of the four maps v̌I,J,K , the verification of the constraints (2.34) for the
induced maps π̌k,k+1

3+1 uses all four v̌I,J,K .

A generic example of an induced (G,B)-inter-bi-brane structure can be
obtained from the G-bi-brane world-volume Q ⊂ M × M and the (G,B)-
inter-bi-brane world-volumes Tn ⊂M ×M × · · · × M embedded as submani-
folds in the respective multiple direct products of the target space M with
itself, with πk,k+1

n : M(1) × M(2) × · · · × M(n) → M(k) × M(k+1) given by the
canonical projections (M(l) ≡ M, l = 1, 2, . . . , n). In this setting, given the
world-volume T2+1 ⊂ M × M × M of the (G,B)-inter-bi-brane, we choose
for the world-volume T3+1 ⊂ M × M × M × M the common intersection of
the preimages v−1

I,J,K(T2+1) of T2+1 under the canonical projections vI,J,K ≡
πI,J,K

3+1 : M(1) × M(2) × M(3) × M(4) → M(I) × M(J) × M(K). The conditions
(2.86) are trivially satisfied.

2.8.1 The Lie-group example (cont’d)

We now proceed to demonstrate how the data (T2+1,OT2+1 , ϕ2+1, τ2+1) for
three-valent vertices with signature (+1, +1,−1), introduced in Section 2.5,
can be used to induce the data (T3+1,OT3+1 , ϕ3+1, τ3+1) for four-valent ver-
tices with signature (+1, +1, +1,−1) in accord with the general scheme
discussed above. We start with the definition of the Čech-extended maps
v̌I,J,K : T3+1 → T2+1, which — for (g, x, y, z) ∈ OT3+1

i,x,y,z, written in the previ-
ously adopted shorthand notation with the redundant signs dropped — reads

v1,2,3(g, x, y, z) = (g, x, y), ν1,2,3(i, x, y, z) = (i, x, y),

v1,3,4(g, x, y, z) = (g, x · y, z), ν1,3,4(i, x, y, z) = (i, x · y, z),

v2,3,4(g, x, y, z) = (x−1 · g, y, z), ν2,3,4(i, x, y, z) = (x−1.i, y, z),

v1,2,4(g, x, y, z) = (g, x, y · z), ν1,2,4(i, x, y, z) = (i, x, y · z).

(2.93)

One readily verifies that v̌I,J,K obey condition (2.86), and so they can be
used to pull back the data (T2+1,OT2+1 , ϕ2+1, τ2+1) to T3+1. Thus, we induce
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the relevant Čech-extended maps π̌I,J
3+1 in the form

π1,2
3+1(g, x, y, z) = (g, x), π2,3

3+1(g, x, y, z) = (x−1 · g, y),

π3,4
3+1(g, x, y, z) = ((x · y)−1 · g, z), π4,1

3+1(g, x, y, z) = (g, x · y · z),

π3,1
3+1(g, x, y, z) = (g, x · y), π4,2

3+1(g, x, y, z) = (x−1 · g, y · z),

(2.94)

and similarly for ψI,J
3+1. These, in turn, give us the Čech-extended maps π̌k

3+1
for the patches

π1
3+1(g, x, y, z) = g, π2

3+1(g, x, y, z) = x−1 · g,

π3
3+1(g, x, y, z) = (x · y)−1 · g, π4

3+1(g, x, y, z) = (x · y · z)−1 · g,
(2.95)

and similarly for ψk
3+1. With the help of the induced maps, we then obtain

on T x,y,z
3+1 = G × {(x, y, z)} ⊂ T3+1 (again, identified with G) the pullback

gerbes

G1
3+1 = G�k, G2

3+1 = x.G�k,

G3
3+1 = (x · y).G�k, G4

3+1 = (x · y · z).G�k,
(2.96)

the pullback 1-morphisms

Φ1,2
3+1 = Ax, Φ2,3

3+1 = x.Ay, Φ3,4
3+1 = (x · y).Az, Φ4,1

3+1 = A∨
x·y·z,

Φ1,3
3+1 = Ax·y, Φ2,4

3+1 = x.Ay·z
(2.97)

and the pullback 2-morphisms

ϕ̃1,2,3 = ϕ̃x,y, ϕ̃1,3,4 = ϕ̃x·y,z, ϕ̃2,3,4 = x.ϕ̃y,z, ϕ̃1,2,4 = ϕ̃x,y·z, (2.98)

where we have used the action x.ϕ̃y,z ≡ ˇ(x−1
)∗

ϕ̃y,z of Z(G) given in (2.12).
Putting all the pieces together, we arrive at the two definitions of the
2-morphism on T3+1

ϕL
3+1
∣∣
T x,y,z
3+1

= dAx·y·z •
(
id ◦ ϕ̃x·y,z

)
•
(
id ◦ ϕ̃x,y

)
,

ϕR
3+1
∣∣
T x,y,z
3+1

= dAx·y·z •
(
id ◦ ϕ̃x,y·z

)
•
(
id ◦ x.ϕ̃y,z ◦ id

)
,

(2.99)

acting as

ϕL,R
3+1

∣∣
T x,y,z
3+1

: A∨
x·y·z ◦ (x · y).Az ◦ x.Ay ◦ Ax =⇒ idG�k (2.100)

and differing at most by a constant on each connected component T x,y,z
3+1 of

the world-volume T3+1 (recall that the Lie group G was assumed connected).
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We may now compare the two induced 2-morphisms ϕL
3+1 and ϕR

3+1 on
each T x,y,z

3+1 , identified with G itself, by applying (2.77) and (2.79) to the
setting under consideration. Let g ∈ OG

i be an arbitrary point in T x,y,z
3+1 , and

let
(
fL,R

i

)
∈ A0

T x,y,z
3+1

be the local data of ϕL,R
3+1

∣∣
T x,y,z
3+1

. We have the identity

fR
i (g) = ψ(x, y, z) · fL

i (g) (2.101)

for the U(1)-valued constant

ψ(x, y, z) =
[(

x−1)∗fx−1.i(y, z) ·
(
fi(x · y, z)

)−1

· fi(x, y · z) ·
(
fi(x, y)

)−1](g) (2.102)

written in terms of the local data of the 2-morphism ϕ̃x,y = (fi(x, y)) ∈
A0

T x,y,z
3+1

. By virtue of (2.77), the expression ψ(x, y, z) depends neither on

the specific point g ∈ G, nor on the attendant Čech index i ∈ IG. This
permitted us to drop both g and i when writing ψ(x, y, z) in (2.101) and
(2.102). We emphasize that only the particular combination ψ(x, y, z) of the
locally smooth functions fi(x, y) is constant on G — in general, none of the
component terms has this property.

Note that ψ(x, y, z) rewrites as

ψ(x, y, z) =
[(

δZ(G)fi

)
(x, y, z)

]
(g), (2.103)

where we consider the local data of the 2-morphisms ϕ̃x,y as elements of the
(left) Z(G)-module U(1)

T3+1
of (the sheaf of) locally smooth U(1)-valued

functions on T3+1. The centre Z(G) acts on U(1)
T3+1

by the Čech-extended
pullbacks

(x.f)i(y, z) =
(
x−1)∗fx−1.i(y, z). (2.104)

Despite the form of (2.103), the object (ψ(x, y, z) | x, y, z ∈ Z(G)), regarded
as a 3-cochain on Z(G) with values in the trivial Z(G)-module U(1), is
not a 3-coboundary — it is not in the image of δZ(G) : C2(Z(G), U(1)) →
C3(Z(G), U(1)). Being an element of the kernel of the Deligne differential
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D(0) on the connected Lie group G, it is, on the other hand, δZ(G)-closed,

(
δZ(G)ψ

)
(x, y, z, w) =

ψ(y, z, w) · ψ(x, y · z, w) · ψ(x, y, z)
ψ(x · y, z, w) · ψ(x, y, z · w)

≡

(
ˇ(x−1
)∗

ψ(y, z, w)
)

· ψ(x, y · z, w) · ψ(x, y, z)

ψ(x · y, z, w) · ψ(x, y, z · w)
=
[(

δ2
Z(G)fi

)
(x, y, z)

]
(g) = 1. (2.105)

Above, the passage to the second line exploits the stated independence of
ψ(x, y, z) of the choice of the argument and of the Čech index of the con-
stituent functions fi(x, y) by simply replacing the original expression with
the pullback

ˇ(x−1
)∗

ψ(y, z, w) =
(
(x · y)−1)∗f(x·y)−1.i(z, w) ·

((
x−1)∗fx−1.i(y · z, w)

)−1

·
(
x−1)∗fx−1.i(y, z · w) ·

((
x−1)∗fx−1.i(y, z)

)−1(g).
(2.106)

Thus, (ψ(x, y, z) | x, y, z ∈ Z(G)) is a U(1)-valued 3-cocycle on Z(G). As
shall become clear in the next section, it is the very associator 3-cocycle
that we have been after all along.

2.9 Conformal and topological defects

Having specified a sigma-model description (2.53) of the coupling of target-
space structures G, Φ and ϕ to a world-sheet Σ with an embedded defect
network Γ, we are now ready to discuss the local symmetries of the thus
established two-dimensional field theory. They descend from the local-
symmetry group of the sigma model without defects, which is the semidirect
product Diff(Σ) � Weyl(γ) of the group Diff(Σ) of orientation-preserving
diffeomorphisms σ �→ f(σ) of the world-sheet and the group Weyl(γ) of
Weyl rescalings γ(σ) �→ exp(2w(σ)) · γ(σ) of the world-sheet metric tensor
γ. Weyl rescalings remain a symmetry in the presence of defects as the
holonomy formula does not involve the world-sheet metric at all. As a con-
sequence, the energy-momentum tensor

T ab = − 1√
det γ

δS

δγab
(2.107)

is traceless. Let f : Σ → Σ be an orientation-preserving diffeomorphism.
Given a network-field configuration (Γ, X), we obtain a new network-field
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configuration (f(Γ), X ◦ f−1). Clearly, for S[(Γ, X); γ] = Skin[X, γ]+ log Hol
(Γ, X), we find

S[(Γ, X); γ] = S[(f(Γ), X ◦ f−1); (f−1)∗γ]. (2.108)

In this sense, the sigma model for the world-sheet with the defect network
possesses diffeomorphism invariance. In particular, we may fix a metric γ0
on Σ and take fc : Σ → Σ to be a conformal transformation. Due to the dif-
feomorphism invariance, and owing to the Weyl symmetry, the action obeys

S[(Γ, X); γ0] = S[(fc(Γ), X ◦ f−1
c ); γ0]. (2.109)

If fc maps the defect network Γ to itself, it is a symmetry of the model. The
defects we describe are therefore classically conformally invariant.

It is convenient to pass to local complex coordinates z = σ1 + iσ2 close to
a defect line, such that the defect line coincides with the real axis and such
that we can choose a gauge in which γ0 is the unital metric δabdσa ⊗ dσb. We
shall use the complex derivatives ∂ = 1

2(∂1 − i∂2) and ∂ = 1
2(∂1 + i∂2). The

holomorphic and anti-holomorphic components of the energy-momentum
tensor are then given by

T = GX(∂X, ∂X), T = GX(∂X, ∂X). (2.110)

Inserting the choice v = X∗t̂ in the defect condition (2.22) yields GX|1(p)

(∂1X|1, ∂2X|1) − GX|2(p)(∂1X|2, ∂2X|2) = 0, or, equivalently,

T1(p) − T 1(p) = T2(p) − T 2(p), (2.111)

where p is a point on the real axis and Tα, for α = 1, 2, stands for (2.110)
with X replaced by the extension X|α. Thus, the classical energy-momentum
tensor indeed obeys the defining equation of a conformal defect as given
in [OA].

Ultimately, we are interested in topological defects, i.e., defects which one
can move freely on the world-sheet. For simplicity, we restrict the following
discussion to circle-field configurations. Let (Λ, X) be a circle-field configu-
ration. If we deform the embedded defect circles from Λ to Λε then we need
to extend the map X to the domain swept during the deformation in order
to obtain a new circle-field configuration. We shall now describe how this
can be achieved.

Let U be a tubular neighbourhood of Λ. An extension of X on U is a
map X̂ : U → Q with the following properties. The defect circles Λ split U
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into U1 and U2. We demand

X̂ = X on Λ, ι1 ◦ X̂ = X on U1, ι2 ◦ X̂ = X on U2, (2.112)

as well as, for all p ∈ U and v ∈ T
̂X(p)Q,

ΔG
̂X(p)

(
v, X̂∗û2

)
= i

2ω
̂X(p)

(
v, X̂∗û1

)
, ΔG = ι∗1G − ι∗2G, (2.113)

where (û1, û2) form a right-handed orthonormal basis of TpΣ.

Consider a deformation Λε of a segment of the defect circles Λ as depicted
below:

(2.114)

If we are given a circle-field configuration (Λ, X) and an extension X̂ of X on
a neighbourhood U of Λ then we can define a new circle-field configuration
(Λε, Xε) by setting Xε = X̂ on Λε, and Xε = ι2 ◦ X̂ in the shaded region
Aε. Outside of Λ and Aε, we choose Xε = X. Conditions (2.112) and
(2.113) guarantee that (Λε, Xε) is, again, a valid network-field configuration.
In particular, it obeys the defect condition (2.22), which can be seen by
rewriting (2.113) in the form

G
ι1◦ ̂X(p)

(
ι1∗v,

(
ι1 ◦ X̂

)
∗û2
)

− G
ι2◦ ̂X(p)

(
ι2∗v,

(
ι2 ◦ X̂

)
∗û2
)

− i
2

ω
̂X(p)

(
v, X̂∗û1

)
= 0. (2.115)

In this way, an extension of X on U enables us to deform defect lines. We
shall now address the questions of the uniqueness of an extension and of
the behaviour of the sigma-model action under the replacement of (Λ, X)
by (Λε, Xε).

Suppose that (ι1, ι2) : Q → M × M is an immersion (i.e., the tangent map
is everywhere injective). This is, in particular, the case if Q is a submanifold
of M × M . Then, if an extension of X on U exists it is unique. To see this,
use the local coordinates introduced above, such that defect Λ lies on the
real line and such that their orientations agree. On the real line itself, X̂ is
fixed by X. Set êa = ∂/∂σa, a = 1, 2 and consider (2.115) for ûa = êa. For a
point p = (σ1, σ2) with σ2 > 0 (say), we have ι1 ◦ X̂ = X, and so (ι1 ◦ X̂)∗ê2
is fixed. The metric G

ι2◦ ̂X(p) is still non-degenerate when restricted to the
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image of ι2∗, hence condition (2.115) determines (ι2 ◦ X̂)∗ê2 uniquely in
terms of (ι1 ◦ X̂)∗ê2 and X̂∗ê1. Since (ι1, ι2) is an immersion, this — in
turn — determines X̂∗ê2. If it exists the solution to the resulting Cauchy
problem is unique.

We do not have much to say regarding the existence of an extension X̂.
We merely point out that an extension typically does not exist in the special
case of D-branes, as condition (2.113) would imply that the classical energy-
momentum tensor vanishes identically on the boundary (this follows from
(2.111) and (2.117) below), while for the jump defects treated in the Lie
group example, we shall see below that an extensions always exists.

Next, we compute the difference between the values of the action for the
original circle-field configuration (Λ, X) and its deformation (Λε, Xε) illus-
trated in (2.114). By a straightforward specialization of the calculation from
Appendix A.3, the change in the holonomy term of the action is given by the
integral of X̂∗ω over the shaded region Aε. Together with a computation of
the change in the kinetic term, this leads to

S[(Γε, Xε); γ0] − S[(Γ, X); γ0]

=
∫

Aε

dσ1 ∧ dσ2

( ∑
a=1,2

[
GX2(∂aX2, ∂aX2) − GX1(∂aX1, ∂aX1)

]

− iω
̂X
(∂1X̂, ∂2X̂)

)
, (2.116)

where we have abbreviated Xα = ια ◦ X̂, α = 1, 2. Let D1 be the left-hand
side of condition (2.115) for û1 = ê1, û2 = ê2, v = X̂∗ê2, and let D2 be the
same expression for the choice û1 = ê2, û2 = −ê1, v = X̂∗ê1. Then, D2 − D1
is equal to the integrand in (2.116), and hence the difference between the
values of the action vanishes. Thus, given a circle-field configuration for
which an extension exists, we can shift the position of the defect line without
modifying the value of the action. This is the hallmark of a topological
defect. Indeed, computing D1 + D2 results in the identity

T1(p) + T 1(p) = T2(p) + T 2(p) (2.117)

at a point p ∈ Λ. Together with (2.111), this implies that both T and T
are continuous across the defect line, which is the defining property of a
topological defect as given in [PZ].

If the defect under consideration is topological, the symmetry of the sigma
model on a world-sheet with defect circles Λ is enhanced to include conformal
transformations which do not obey f(Λ) = Λ. Indeed, if Λ′ = fε(Λ) and
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X ′ = X ◦ f−1
ε for an infinitesimal conformal transformation fε then — as

we saw at the beginning of the section — the action for (Λ, X) is the same
as that for (Λ′, X ′), and we know from the preceeding discussion that we
can move the defect Λ′ back to its original position Λ. In this manner, we
have produced a new field configuration (Λ, X ′) with the same value of the
action, where outside of a small neighbourhood of Λ, X ′ is related to X via
X ′ = X ◦ f−1

ε .

Consider a pair of network-field configurations (ΓL, XL) and (ΓR, XR)
with topological defect conditions at ΓL and ΓR, differing exclusively within
the region ΣL resp. ΣR of the world-sheet shown in the left — resp. right-
most drawing of figure 5. Since the defects are topological, we can take
the limits εL, εR → 0 without modifying the value of the action. Under
the assumption of the existence of suitable Čech-extended maps v̌I,J,K :
T3+1 → T2+1 with the properties detailed in Section 2.8, we may readily
compare the values attained by the exponentiated sigma-model action func-
tional exp(−S[(Γ, X); γ0]) on the two network-field configurations. After a
little thought, one finds that the value for (ΓL, XL) is equal to the value
that exp(−S[(Γ, X); γ0]) takes on the network-field configuration displayed
in the middle drawing of figure 5 in which the four-valent defect vertex
in ΣL|R is understood to carry the pullback data of the 2-morphism ϕL

3+1
defined in (2.90). By the same token, that for (ΓR, XR) is equal to the value
that exp(−S[(Γ, X); γ0]) takes on the network-field configuration from the
middle drawing but, this time, with the four-valent defect vertex taken to
carry the pullback data of the 2-morphism ϕR

3+1. Adducing the reasoning of
Section 2.8, we conclude that the two values are related by a phase as per

exp
(
−S
[
(ΓL, XL); γ0

])
= u(X(v)) · exp

(
−S
[
(ΓR, XR); γ0

])
, (2.118)

with the function

u = f2,3,4
iv

·
(
f1,3,4

iv

)−1 · f1,2,4
iv

·
(
f1,2,3

iv

)−1
, (2.119)

expressed in terms of the local data (f I,J,K
i ) ∈ A0

T3+1
of the induced

2-morphisms ϕ̃I,J,K . As argued before, u is constant on each connected
component of T3+1.

Thus, for classical topological defects with induced data on T3+1, the
operation of pulling one three-valent defect vertex past another changes the
exponentiated action by a phase determined by the underlying local data(
T3,OT3 , ϕ3, τ3

)
.

2.9.1 The Lie-group example (cont’d)
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It is easy to convince oneself that the jump defects introduced previously
satisfy the conditions listed in the preceding section and hence give us an
example of topological defects for the WZW model. Indeed, this is an imme-
diate consequence of the following facts: First of all, the extension is fixed as

(ι1, ι2) ◦ X̂|U1 = (X, z−1 · X), (ι1, ι2) ◦ X̂|U2 = (z · X, X) (2.120)

at the defect line associated with the jump of the embedding field by z ∈
Z(G). Secondly, the curvature ω of the G�k-bi-brane BZ(G) vanishes and the
Cartan–Killing metric on the Lie group is G-invariant so that ΔG

̂X(p) = 0
in (2.113). Let us now consider the pair of world-sheets with network-field
configurations (ΓL, XL) and (ΓR, XR) and jumps across the defect lines as
indicated in figure 3. Since the data of the

(
G�k,BZ(G)

)
-inter-bi-brane can be

induced from that for three-valent defect vertices, we derive — as a corollary
to the general statement (2.118)–(2.119), and using the explicit results for
the induced data

(
T3+1,OT3+1 , ϕL,R

3+1, τ3+1
)

from Section 2.8 — the compact
relation

exp
(
−S[(ΓL, XL); γ0]

)
= ψG�k(x, y, z) · exp

(
−S[(ΓR, XR); γ0]

)
(2.121)

advertised in the Introduction, in which we may now identify the associator
3-cocycle as the one given by (2.102). In the path-integral approach to the
quantization of the WZW model, an analogous statement could be inferred
for the correlators.

In fact, the 3-cocycle has already appeared in the literature, to wit, in
[GR1, GR2] in order to define Z-equivariant gerbes, and in [JK], where it
was employed in the path-integral quantization of the orbifold string theory.
Let us now elaborate on the former point.

Consider a symmetry group S as at the end of Section 2.5 and assume in
addition that M is connected. We call a homomorphic presentation (AS , ϕ̃S)
of S on b associative if the two 2-morphisms from ((x · y).Az) ◦ (x.Ay) ◦ Ax

to Ax·y·z constructed from ϕ̃S are equal, or, equivalently, if (δSϕ̃)x,y,z = 1
for all x, y, z ∈ S. Note that, because of (δSA)x,y = −Dϕ̃x,y, any two homo-
morphic presentations (AS , ϕ̃S) and (AS , ϕ̃′

S) (with the same underlying
element-wise presentation) are related by a 2-cochain4 v ∈ C2(S, U(1))
via ϕ̃x,y = v(x, y) · ϕ̃′

x,y. Thus, an associative homomorphic presentation
for a given element-wise presentation AS exists if and only if (δSϕ̃)x,y,z =
δSv(x, y, z) for some v ∈ C2(S, U(1)), where S acts by the Čech-extended
pullback on the local data of ϕ̃x,y, and trivially on v(x, y). Since DδSϕ̃ =

4If we had not assumed M connected then v would, instead, take values in
C2(S, U(1)|π0(M)|).
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−δ2
SA = (0, 1), we readily see how the cohomology class of ψ = δSϕ̃ deter-

mines the obstruction to associativity. Finally, an S-equivariant structure
on the gerbe G = (OM , b) is an associative homomorphic presentation of S
on b. It is a prerequisite of projecting the sigma model on M to the quotient
target space M/S (the orbifold) by dividing out the action of the symmetry
group S, see [GR1,GR2].

From the present point of view, the data needed to define a classical
orbifold consists of a topological bi-brane and an inter-bi-brane with world-
volume T = T3 � T4 which is associative in the sense that the two limits in
figure 5 agree. This quite beautifully matches the construction in [FRS1,
Fr2] of a general rational conformal field theory starting from the Cardy
case. There, one equally fixes a topological defect B and endows it with
an associative 3-valent vertex. In both cases, the orbifold amplitudes are
obtained by embedding sufficiently fine defect networks into the world-sheet.
In fact, for the CFT one can obtain all theories with a given chiral symmetry
in this way, including the exceptional modular invariants [FRS1].

The intermediate steps leading to the explicit form of ψG�k are rather
involved technically (in particular, the geometric description of the WZW
gerbe as a particular bundle gerbe of [Me] is used heavily), which is why we
only cite the result that can be read off from [GR2, Section 3] and [GSW2,
Section 2]. It is given by

ψG�k(x, y, z) = exp
(
−2πi k 〈τx−10, by,z〉

)
, x, y, z ∈ Z(G) (2.122)

for 〈·, ·〉 the standard scalar product on the Cartan subalgebra t ⊂ g (nor-
malized as in [GR2] and employed to identify t∗ with t), τx−10 ∈ t the simple
coweight of g determined, up to an irrelevant element of the coroot lattice,
by the condition5

x = exp
(
−2πi τx−10

)
, (2.123)

and by,z a particular 2-cocycle on Z(G) defined (modulo Q∨(g)) as follows:
Let us denote by αi the simple roots of g, by θ its highest root, and by
AW (g) its fundamental Weyl alcove,

AW (g) =
{
λ ∈ t

∣∣ 〈λ, θ〉 ≤ 1 ∧ 〈λ, αi〉 ≥ 0, i = 1, 2, . . . , rank g
}
.

(2.124)

5The condition realizes the isomorphism Z(G) ∼= P ∨(g)/Q∨(g), in which P ∨(g) and
Q∨(g) are the coweight lattice and the coroot lattice of g, respectively.
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The action of the centre Z(G) on the group G by multiplication maps conju-
gacy classes into conjugacy classes, and every conjugacy class C can be rep-
resented by a unique element τ ∈ AW (g) ⊂ t of the fundamental Weyl alcove
of g such that exp(2πi τ) ∈ C. Accordingly, the action of Z(G) induces an
affine map τ �→ x.τ of AW (g) to itself, determined by the relation

x · exp
(
2πi τ
)

= w−1
x · exp

(
2πi (x.τ)

)
· wx (2.125)

satisfied by a certain element wx of the normalizer N(T ) of the Cartan
subgroup T ⊂ G. In particular, τx−1.0 is the preimage of the weight τ = 0
under this action. The element wx is fixed only up to the multiplication
wx �→ t · wx by an arbitrary element t ∈ T , hence it is only the class [wx] ∈
N(T )/T of wx in the Weyl group N(T )/T of G that is determined uniquely.
The assignment x �→ [wx] is an injective homomorphism, however, wx itself
cannot — in general — be chosen to depend multiplicatively on x, that
is we cannot set wx·y equal to wx · wy for all x, y ∈ Z(G). Nevertheless,
the condition wx · wy · w−1

x·y ∈ T is always satisfied, which leads us to the
definition

wx · wy · w−1
x·y = exp

(
2πi bx,y

)
(2.126)

of the 2-cocycle bx,y, defined modulo Q∨(g). The action of Z(G) on AW (g)
and the elements τx−10, bx,y for all simple Lie groups with a non-trivial
centre were listed in [GR2, Section 4]. These data were subsequently used to
compute the 3-cocycles ψG�k , see also [GR1,GSW1] (we use the conventions
of [GSW1], in terms of which ux,y,z = ψG�k(x, y, z)).

3 World-sheets with defect networks in CFT

In “constructive” conformal field theory, one tries to determine the cor-
relation functions of the theory from their symmetries and from a set of
consistency relations known as sewing constraints [FS,Va,So]. For oriented
closed conformal field theories, this approach was given a mathematical
framework in [Se]. In this section, we describe its straightforward gener-
alization to surfaces with defect lines and outline the simplifications that
occur for topological defects. We shall show that if a discrete symmetry
group of a CFT is implemented by defects it gets equipped with an associ-
ator 3-cocycle.
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3.1 Sewing constraints for world-sheets with defects

From [Se], we know that a convenient way to encode the sewing constraints is
to use the language of functors. We shall describe a symmetric monoidal cat-
egory WD of “world-sheets with defect lines” and define a two-dimensional
euclidean quantum field theory in the presence of defect lines as a symmet-
ric monoidal functor from WD to TV , the symmetric monoidal category of
locally convex topological vector spaces (see, e.g., the foreword to [Se], and
Section 2 in [StT]).

An annulus with arcs O is a triple (r, σ, L) with the following constituents
(cf. figure 6):

(A.i) 0 < r < 1 is a real number. It defines the annulus Ar = {z ∈ C | r <
|z| < r−1}.

(A.ii) σ : Ar → R is a smooth function. It defines a metric in conformal
gauge on Ar via gij(x) = e2σ(x) δij .

(A.iii) L is a smooth oriented one-dimensional submanifold of Ar. If L has
n connected components then, for each concentric circle C ⊂ Ar, the
intersection C ∩ L is demanded to consist of n points.

Note that we obtain an ordering of the connected components of L upon
labelling them by 1, 2, . . . , n in the order in which they intersect the circle
|z| = 1 starting from the point z = 1.

Given an annulus with arcs O, by O+ we mean the subset {z ∈ C | 1 ≤
|z| < 1/r} endowed with the metric and the one-dimensional submanifold
inherited from O, and by O− we denote the analogous restriction to {z ∈
C | r < |z| ≤ 1}. By O(m) we mean an ordered list (O1, O2, . . . , Om) of a
finite number of annuli with arcs.

Figure 6: An annulus with arcs O = (r, σ, L). Indicated are the inner and
outer radius r and 1/r, the metric defined in terms of the function σ, and
the oriented submanifold L which describes the defect lines.
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A world-sheet with defect lines Σ from O(m) to O′
(n), to be denoted as

O(m)
Σ−→ O′

(n) in what follows, is a tuple (W, L, φin, φout), where (cf. figure 7):

(W.i) W is a smooth oriented two-dimensional manifold with riemannian
metric, possibly with a non-empty boundary.

(W.ii) L is a smooth oriented one-dimensional submanifold of W .
(W.iii) φin is a smooth injective isometry from the disjoint union O+

1 � O+
2 �

· · · � O+
m to W which preserves the orientation, the boundaries and

the one-dimensional submanifolds with their orientation.
(W.iv) φout is a smooth injective isometry from the disjoint union O′

1
− �

O′
2
− � · · · � O′

n
− to W with the same properties as in (W.iii).

We refer to the boundary components of W in the image of φin as in-going
and to those in the image of φout as out-going. A defect line is a connected
component of L. Note that φin induces a numbering of the in-going bound-
ary components by assigning the number k to the component which lies in
φin(O+

k ). Similarly, out-going boundary components are numbered by φout.

Given world-sheets O(k)
Σ1−→ O′

(l) and O′
(l)

Σ2−→ O′′
(m), we can obtain the

glued world-sheet Σ2 ◦ Σ1 by identifying the boundaries parameterized by
O′

(l). The fact that we work with annuli and arcs instead of just circles and
marked points ensures that the gluing results again in a smooth manifold
with a smooth metric, and a smooth submanifold.

Two world-sheets with defect lines are equivalent if there is a smooth
orientation-preserving isometry between them that is compatible with the

Figure 7: A world-sheet with defect lines from (O1, O2) to (O′
1). The shaded

regions of the annuli indicate the subsets O+
1 , O+

2 and O′
1
−. The maps φin

and φout are defined in the shaded regions and map the solid circle |z| = 1
to the boundary of the world-sheet.
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parameterizations φin/out and preserves the one-dimensional submanifolds
with their orientation.

We can now describe the category WD . The objects6 of WD are ordered
lists O(m). The morphisms from O(m) to O′

(n) are equivalence classes [Σ]
of world-sheets from O(m) to O′

(n), and, if m = n, all π ∈ Sm (the group
of permutations of m objects) for which Oi = O′

π(i), i = 1, 2, . . . , m. The
permutations account for the freedom to choose a different numbering of the
boundary components of a world-sheet Σ. The four possible compositions
are defined as follows:

O(k)
[Σ1]−→ O′

(l)
[Σ2]−→ O′′

(m) is the equivalence class of the glued world-sheet
[Σ2 ◦ Σ1];

O(k)
π−→ O′

(k)
[Σ2]−→ O′′

(m) is defined by precomposing the parameteriza-
tion φin with π;

O(k)
[Σ1]−→ O′

(l)
π−→ O′′

(l) is defined by precomposing the parameterization
φout with π−1;
O(k)

π1−→ O′
(k)

π2−→ O′′
(k) is the composition of permutations π2 ◦ π1.

Since we are using equivalence classes of world-sheets, the composition is
strictly associative. The identity morphism of O(m) is the identity permuta-
tion. The tensor product is the concatenation of lists on objects and disjoint
union on morphisms. Both will be written as �. The symmetry isomorphism
O(m) � O′

(n) → O′
(n) � O(m) is the obvious permutation π ∈ Sm+n.

Having said all this, we define a euclidean quantum field theory with defect
lines as a symmetric monoidal functor C : WD → TV , which depends con-
tinuously on the world-sheet metric and on the position of the defect lines.

Let us unpack this definition. To each annulus with arcs O, the func-
tor assigns a space of states C(O) = H(O). Since C is monoidal, we have
C(O(m)) = H(O1) ⊗ H(O2) ⊗ · · · ⊗ H(Om). The empty list O = () is the
tensor unit of WD , and, accordingly, we have C(O) = C, the tensor unit of
TV . Given a morphism [Σ] : O(m) → O′

(n), the functor provides a linear map

C(Σ) : H(O1) ⊗ H(O2) ⊗ · · · ⊗ H(Om)

−→ H(O′
1) ⊗ H(O′

2) ⊗ · · · ⊗ H(O′
n), (3.1)

6We should really define the objects to be germs of annuli with arcs because we can
always restrict an annulus O = (r, σ, L) to one with a smaller radius r′ < r, and this should
not affect the amplitude of the QFT. We have avoided this point to make the exposition
less technical.
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the amplitude for the world-sheet Σ. As the morphisms are equivalence
classes of world-sheets, equivalent world-sheets have to give the same ampli-
tude. That C is monoidal on morphisms implies that C(Σ � Σ′) = C(Σ) ⊗
C(Σ′), and the symmetry of C implies that changing the numbering of the
boundary components of Σ translates into the corresponding relabelling of
the arguments of the linear map C(Σ). The most non-trivial condition is
the compatibility with composition, which amounts to the insertion of a sum
over intermediate states in the path-integral language,

O(k)
[Σ1]−→ O′

(l)
[Σ2]−→ O′′

(m) =⇒ C(Σ2 ◦ Σ1) = C(Σ2) ◦ C(Σ1). (3.2)

In general, it will be very difficult to construct examples of such a sym-
metric monoidal functor C : WD → TV . However, for a special subclass of
defects in conformal field theories, the so-called topological defects, further
progress can be made. This is the topic of the next section.

3.2 Topological defects in conformal field theory

Let Σ = (W, L, φin, φout) and Σ′ = (W, L′, φin, φout) be two world-sheets which
differ only in the choice of defect lines. We say that Σ and Σ′ have homotopic
defect lines if L and L′ are homotopic (as oriented paths) via a homotopy
that is constant on the image of φin and on that of φout. We call the defects
in a 2d-QFT topological if C(Σ) = C(Σ′) whenever Σ and Σ′ have homotopic
defect lines.

Recall that a 2d-QFT is conformal if an amplitude C(Σ) changes only
by an overall factor upon applying a Weyl transformation γ(x) �→ γ′(x) =
Ω(x) · γ(x) to the metric (where Ω ≡ 1 on the image of φin and on that
of φout). The factor is computed in terms of the Liouville action and the
central charge, see, e.g., [Ga3] for more details.

For a 2d-CFT with topological defects, the functor C simplifies in two
significant ways. First, if O = (r, σ, L) then H(O) does not depend on r
or σ, and it depends on L only through the number n of points in the
intersection of L with the unit circle, and on n signs εk,k+1, k = 1, 2, . . . , n.
The sign εk,k+1 is +1 if the kth connected component of L is oriented from
the outside of the unit circle to the inside. Otherwise, εk,k+1 = −1. To
specify C on objects of WD , it is thus enough to give vector spaces

Hn,�ε, n ∈ Z≥0, �ε =
{
εk,k+1 ∈ {±1} | k = 1, . . . , n

}
. (3.3)
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Elements of Hn>0,�ε will be called twisted states, and those of Hn=0 untwisted
states, in conformity with the physical jargon.

To fix C on world-sheets, it is enough to give it on a set of fundamental
world-sheets from which all others can be obtained via gluing. As opposed
to the theory without defects, we now need an infinite set of fundamental
world-sheets. One possible choice is

(3.4)

In P (n, m, k; L), the integers n, m, k ∈ Z≥0 designate how many defect lines
end on each of the three boundary circles, and L is the corresponding set of
defect lines. The defect lines are not allowed to contain closed loops (these
are already generated by the AD

ii ).

In [So,Le], a generators-and-relations approach to closed and open/closed
conformal field theory is given. In both cases, a finite number of generators
and relations are sufficient. In the presence of defects, already the number of
amplitudes one needs to fix for the fundamental world-sheets (3.4) is infinite,
and a concrete set of sufficient sewing constraints has not been worked out
to date.

However, there exists an alternative approach to determine the functor
C : WD → TV for a conformal field theory with topological defect lines
[FRS1,Fr2]. This approach applies to rational conformal field theories and
uses an associated three-dimensional topological field theory. In the case of
the WZW model, this is just the three-dimensional Chern–Simons theory
[Wi,FKi]. In the TFT-approach, one makes a proposal for all C(Σ) simul-
taneously and then verifies that this, indeed, defines a symmetric monoidal
functor. (Admittedly, a complete proof of this statement along the lines
of [Fj] is not yet available.) The data that determine C are a rational
vertex-operator algebra V, a symmetric special Frobenius algebra A in the
category Rep(V) of representations of V, and an A-A-bimodule Q in Rep(V).
We refer to [Fr2] for details; we do not need this general approach in the
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present paper. However, let us point out that in the special case of V = C,
i.e., for a two-dimensional topological field theory with topological defect
lines, the resulting algebraic structure is very similar to that of a planar
algebra [Jo,KPS].

In order to prepare the subsequent discussion of symmetries implemented
by defects, we need to assume some further properties of C. These are
satisfied in the WZW model studied in Section 3.4.

Consider the world-sheet Ar
n,�ε given by an annulus of outer radius one

and inner radius r with n rays of defect lines, having orientations given by
a list �ε = (ε1,2, ε2,3, . . . , εn,1), e.g.,

(3.5)

We assume that the “propagator”

C(Ar
n,�ε) : Hn,�ε → Hn,�ε (3.6)

is invertible. If we are given an eigenvector φ of C(Ar
n,�ε) such that

C(Ar
n,�ε) φ = rΔφ φ, (3.7)

with Δφ the conformal weight of φ, we can define a field insertion φ to mean

(3.8)

The left-hand side shows a fragment of a world-sheet with the insertion,
and the right-hand side, in which we have drawn a world-sheet Σφ with
the corresponding hole marked by φ, means that the argument of the linear
operator C(Σφ) corresponding to the (marked) in-going boundary shown in
the figure is set to φ. The gluing properties of C imply that this definition is
independent of r. Even if not made explicit in the notation, a field insertion
by definition carries a local coordinate system since it corresponds to a small
parameterized hole.
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Denote by T, T ∈ H0 the holomorphic and anti-holomorphic components
of the energy-momentum tensor. We demand that topological defects com-
mute with T and T in the sense that

for φ = T or φ = T̄ .

(3.9)

This is, in fact, the original definition of topological defects [PZ] (the name
itself was introduced in [BG]). For the more general conformal defects,
treated, e.g., in [Ba,QRW,BB], condition (3.9) does not have to hold. The
topological defects in the WZW model we shall be interested in satisfying
property (3.9) also for the KaČ–Moody currents φ = Ja, J

a.

By virtue of (3.9), we have an action of Vir ⊕ Vir on each of the state
spaces Hn,�ε. We can, in particular, use the operators L0 and L0 to make
(3.6) explicit,

C(Ar
n,�ε) = rL0+L0 . (3.10)

We shall be interested in the subspace H
(0)
n,�ε of Hn,�ε consisting of the sl(2, C)-

invariant states,

H
(0)
n,�ε =

( ⋂
m=0,±1

kerLm

∣∣
Hn,�ε

)
∩
( ⋂

m=0,±1

kerLm

∣∣
Hn,�ε

)
. (3.11)

Since an element of H
(0)
n,�ε is annihilated by the generators of translations,

L−1 and L−1, an amplitude with an insertion of φ ∈ H
(0)
n,�ε is independent of

the insertion point, e.g., for φ ∈ H
(0)
3,+−− and φ′ ∈ H

(0)
4,−+++,

(3.12)
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Consider the following two world-sheets:

(3.13)

Let us abbreviate AD = H
(0)
2,−+. Define, for a, b ∈ AD,

1D = C(DD) 1, mD(a, b) = C(MD)(a ⊗ b). (3.14)

The notation C(DD) 1 refers to the fact that [DD] is a morphism from the
empty list to O(1), which the functor C takes to a linear map C(DD) : C →
H2,−+. We evaluate the map on 1 to get an element of H2,−+.

By (3.9), we have 1D ∈ AD and also mD(a, b) ∈ AD. Using the gluing
property and the fact that the elements of AD are sl(2, C)-invariant, one
verifies that 1D and mD turn AD into an associative unital algebra. That
is, for a, b, c ∈ AD, we have

mD(1D, a) = a = mD(a,1D), mD(a, mD(b, c)) = a = mD(mD(a, b), c).

(3.15)

The vector 1D can be understood as a twisted vacuum state, or as the iden-
tity field on the defect D. We also define the untwisted vacuum to be simply
the correlator of the unit disc without defect lines, evaluated on 1 ∈ C,

(3.16)

3.3 Symmetries implemented by defects

Topological defects can implement symmetries of the CFT. This leads to the
notion of “group-like defects” [Fr1,Fr2], where one has one such defect for
each element of the symmetry group. In the approach taken here, we would
only have a single type of the defect line, which in the language of [Fr2]
would be a superposition of all group-like defects.
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In the remainder of this section, we explain the notion of a symmetry that
is implemented by defects using the framework developed in the previous
two sections.

Let S be a finite group. We demand that the space AD = H
(0)
2,−+ has a

basis {pg | g ∈ S} such that

∑
g∈S

pg = 1D and mD(pg, ph) = δg,h pg. (3.17)

In the approach of [Fr2], pg can be understood as projectors onto the
individual group-like defects. Consider the annulus Ar

n,�ε with projectors
pg1 , pg2 , . . . , pgn inserted on the defect lines,

(3.18)

We define the linear maps

Pn,�ε(g1, g2, . . . , gn) = C(Ar
n,�ε(g1, g2, . . . , gn)) r−L0−L0 . (3.19)

One verifies, using the gluing properties and (3.17), that Pn,�ε(g1, g2, . . . , gn)
are independent of r and obey

Pn,�ε(g1, g2, . . . , gn)Pn,�ε(h1, h2, . . . , hn)

= δg1,h1 δg2,h2 · · · δgn,hn Pn,�ε(g1, g2, . . . , gn). (3.20)

We now impose the condition that a twisted state space contain an sl(2, C)-
invariant vacuum state only if the overall twist is trivial, and that the vac-
uum is unique in this case,

dim im
(
Pn,�ε(g1, g2, . . . , gn)

∣∣
H

(0)
n,�ε

)
=

{
1, if

∏n
i=1 gεi,i+1

i = e,

0, otherwise.
(3.21)

Choose non-zero vectors ϕg,h in the image of P3,−++(g · h, g, h) applied to
H

(0)
3,−++. Then, the sum

ϕ =
∑

g,h∈S

ϕg,h (3.22)



GERBE-HOLONOMY FOR SURFACES 1195

obeys the condition

P3,−++(g · h, g, h) ϕ = ϕg,h �= 0 (3.23)

for all g, h ∈ S. We shall use ϕ to label all three-valent junctions with two
incoming defect lines and one outgoing defect line. We demand that there
exist a vector ϕ ∈ H

(0)
3,+−− such that the following two non-degeneracy con-

ditions for the defect correlators are satisfied (only the third one involves ϕ)

(3.24)

for some values χ(g) ∈ C
×. This completes the list of properties that we

demand of a symmetry implemented by defects.

Let us now look at some consequences of these properties. First, we shall
demonstrate the identity

(3.25)

Both sides are in the image of P4,−++−(g, g, h, h), and the image is one-
dimensional, hence they are proportional. Gluing both sides into the larger
world-sheet

(3.26)

and applying (3.17) and (3.24), one obtains pg·h in both cases. The propor-
tionality constant is thus equal to one. This establishes (3.25). Along the
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same lines, one can verify the identity

(3.27)

Finally, consider the world-sheet

(3.28)

We define the linear map Dg : H0 → H0 as

Dg = C(Ar(g)) r−L0−L0 . (3.29)

This is, again, independent of r, and it follows from the gluing properties
and (3.25) that

Dg Dh = Dg·h, (3.30)

i.e., we obtain a representation of S on the untwisted state space H0. If
we apply that identity to 1 ∈ H0 we obtain χ(g) χ(h) = χ(g · h), i.e., χ is a
character of S.

The operators Dg implement S as a symmetry of the CFT on world-sheets

without defect lines. Let O(m)
Σ−→ O′

(n) be a world-sheet without defect lines
(i.e., the submanifold L is empty) but of arbitrary genus. Then,

(Dg)⊗n ◦ C(Σ) = χ(g)n−m C(Σ) ◦ (Dg)⊗m. (3.31)

This follows from repeated application of (3.27) by the same arguments as
those used in [Fr2, Section 3.1].
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Finally, the associator 3-cocycle on S is obtained as follows: The two
vectors

(3.32)

lie in the image of P4,−+++(g · h · k, g, h, k) and are therefore linearly depen-
dent. They are also both non-zero. To see this, embed each of (3.32) into a
‘mirrored’ picture, e.g.,

(3.33)

for vR, and then use (3.24) twice. Define a C
×-valued 3-cochain ψ on S via

vL = ψ(g, h, k) vR. (3.34)

The usual pentagon relation obtained from the two ways of relating

(3.35)

shows that δSψ = 1, i.e., ψ is a cocycle. Furthermore, modifying the choice
of vectors ϕg,h in (3.22) amounts to replacing ϕ by ϕ′ =

∑
g,h∈S λ(g, h) ϕg,h

for some 2-cochain λ ∈ C2(S, C×). The resulting change in ψ is ψ = ψ′ · δSλ.
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We can find7 a cocycle ψ′ cohomologous to ψ which is a normalized cochain
and takes values in U(1) ⊂ C

×.

Altogether, we see that an implementation of the symmetry group S by
defects provides a cohomology class

[ψ] ∈ H3(S, U(1)). (3.36)

3.4 3-cocycle from CFT description of the WZW model

The charge-conjugation modular invariant CFT constructed from the affine
Lie algebra ĝk is the WZW model for the compact simple connected and
simply connected Lie group G of g at level k. Let Og,k be the category
of direct sums of integrable highest-weight representations of ĝk. It is a
semi-simple abelian braided monoidal category (in fact, it is even modular).
The irreducible representations in Og,k are labelled by integrable dominant
weights λ ∈ P k

+(g) from the fundamental affine Weyl alcove

P k
+(g) =

{
λ ∈ P (g)

∣∣ 〈λ, θ〉 ≤ k ∧ 〈λ, αi〉 ≥ 0, i = 1, 2, . . . , rank g
}
.

(3.37)

We denote the corresponding representation by V̂λ.

We are interested in the simple-current sector of the model. To each
element in the centre Z(G) of G, one can assign a weight λz ∈ P k

+(g) such
that V̂λz is a simple current, see [SY2]. The weights λz for all ĝk are listed in
Section 4. The assignment z �→ λz is injective, and it gives all simple currents
except for the case of ê(8)2, already discussed in the Introduction. It is also
compatible with the group structure in the sense that for all z, w ∈ Z(G),

V̂λz ⊗ V̂λw
∼= V̂λz·w . (3.38)

The different possible topological defects in the WZW model for ĝk which
commute with the Kač–Moody currents are in a one-to-one correspondence

7The argument is as follows (see, e.g., [NSW, Chapter I], specifically exercises 4, 5 of
§2 and Proposition 1.6.1 of §6): Since C

× ∼= U(1) × R>0 as multiplicative groups, we have
Hn(S, C×) ∼= Hn(S, U(1)) × Hn(S, R>0). The isomorphism is provided by the decomposi-
tion ψ = ψθ ψr, where |ψθ| = 1 and ψr ∈ R>0. However, Hn(S, R>0) = 1 so that ψr = δSχ
for some χ. Thus, ψ is cohomologous to ψθ. Finally, every class in Hn(S, A) (for A an
abelian group) can be represented by a normalized cochain.
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with objects of Og,k [PZ,Fr2]. We choose the object

B =
⊕

z∈Z(G)

V̂λz . (3.39)

The 3-cocycle associated to the Z(G)-symmetry can be computed within
the TFT-approach. There, the CFT correlator is evaluated as the amplitude
of the three-dimensional Chern–Simons theory at level k with the gauge
group G, where the relevant three-manifold is a direct product Σ × I of the
world-sheet and an interval, and the defect lines get replaced by a Wilson
graph inside the three-manifold [Fr2]. For (3.34), one thus obtains

(3.40)

The Wilson lines are labelled by objects of Og,k, and the junction points
by non-zero morphisms Φg,h ∈ Hom(V̂λg ⊗ V̂λh

, V̂λg·h). The choice of the
morphisms Φg,h corresponds to the choice of the states ϕg,h in (3.22).

By the definition of the Chern–Simons theory, the objects ψgk(x, y, z) in
(3.40) are then entries of the fusing matrix (or 6j-symbols) of the category
Og,k restricted to the simple-current sector. The tensor product and the
braiding in the simple-current sector of Og,k can be described by abelian-
group cohomology [JS, Proposition 3.1] (cf. Appendix A.1 for a brief over-
view of some pertinent facts about abelian-group cohomology). In fact,
once we have chosen the basis Φg,h, we obtain an abelian 3-cocycle (ψ, Ω)
on Z(G) with values in U(1) (a Z(G)-module with the trivial Z(G)-action),
see [FRS3, Section 2]. The element ψ is an ordinary 3-cocycle on Z(G) with
values in U(1), and Ω is a 2-cochain on Z(G). Together, they satisfy the
hexagon condition, cf. (A.7). Furthermore, the diagonal elements of Ω are
determined by the conformal weights via (see, e.g., [FRS3, Section 2])

Ω(z, z) = exp
(
2πi h(λz)

)
, h(λz) =

〈λz, λz + 2ρ〉
2(k + g∨)

, (3.41)
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where ρ is the Weyl vector of g and g∨ is its dual Coxeter number. If one
chooses a different basis Φg,h the abelian 3-cocycle changes by a coboundary.
The basis-independent information describing the tensor product and the
braiding in the simple-current sector is therefore provided by a class [ψ, Ω] ∈
H3

ab(Z(G), U(1)).

Given an abelian 3-cocycle (ψ, Ω), we obtain the function qψ,Ω(z) = Ω(z, z)
on Z(G). It is proved in [EM,Ma] that qψ,Ω depends only on the class [ψ, Ω],
and that it determines this class uniquely, cf. (A.9). This fact, together with
(3.41), makes it feasible to compute a representative for the 3-cocycle ψgk
in (3.40), and therefore also in (3.34). We list the results in Table 1.

Table 1: The comparison data.

Algebra Ar = su(r + 1)

Centre Zr+1 = {e, z, z2, . . . , zr}, z = e−2πi Λ∨
r

Simple currents λzn = k Λr+1−n, n ∈ 1, r, h(λzn) =
k n (r + 1 − n)

2(r + 1)
Abelian ψ

̂su(r+1)k

(
zn, zn′

, zn′′)
= (−1)k r n (n′+n′′−[n′+n′′]r+1) / (r+1)

3-Cocycle Ω
̂su(r+1)k

(
zn, zn′)

= eπi k r n n′ / (r+1)

Algebra Br = spin(2r + 1)

Centre Z2 = {e, z}, z = e−2πi Λ∨
1

Simple current λz = k Λ1, h(λz) =
k
2

Abelian ψ
̂spin(2r+1)k

(
zn, zn′

, zn′′)
= 1

3-Cocycle Ω
̂spin(2r+1)k

(
zn, zn′)

= (−1)k n n′

Algebra Cr = sp(2r)

Centre Z2 = {e, z}, z = e−2πi Λ∨
r

Simple current λz = k Λr, h(λz) =
k r

4
Abelian ψ

̂sp(2r)k

(
zn, zn′

, zn′′)
= (−1)k r n n′ n′′

3-Cocycle Ω
̂sp(2r)k

(
zn, zn′)

= eπi k r n n′ / 2

Algebra D2s+1 = spin(4s + 2)

Centre Z4 = {e, z, z2, z3}, z = e−2πi Λ∨
2s+1

(Continued)
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Table 1: Continued.

Simple currents

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λz = k Λ2s, h(λz) =
k (2s + 1)

8

λz2 = k Λ1, h(λz2) =
k
2

λz3 = k Λ2s+1, h(λz3) =
k (2s + 1)

8
Abelian ψ

̂spin(4s+2)k

(
zn, zn′

, zn′′)
= (−1)k n (n′+n′′−[n′+n′′]4) / 4

3-Cocycle Ω
̂spin(4s+2)k

(
zn, zn′)

= eπi k (2s+1) n n′ / 4

Algebra D2s = spin(4s)

Centre Z2 × Z2 = {e, z1} × {e, z2},

z1 = e−2πi Λ∨
2s , z2 = e−2πi Λ∨

1

Simple currents

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λz1 = k Λ2s, h(λz1) =
k s

4

λz2 = k Λ1, h(λz2) =
k
2

λz1z2 = k Λ2s−1, h(λz1z2) =
k s

4
Abelian ψ

̂spin(4s)k

(
zn1
1 zn2

2 , z
n′

1
1 z

n′
2

2 , z
n′′

1
1 z

n′′
2

2
)

= (−1)k (s n1 n′
1 n′′

1+n1 n′
2 n′′

2+n2 n′
1 n′′

1 )

3-Cocycle Ω
̂spin(4s)k

(
zn1
1 zn2

2 , z
n′

1
1 z

n′
2

2
)

= eπi k (s n1 n′
1+2n2 n′

2+n1 n′
2+n2 n′

1) / 2

Algebra E6

Centre Z3 = {e, z, z2}, z = e−2πi Λ∨
5

Simple currents

⎧⎪⎨
⎪⎩

λz = k Λ1, h(λz) =
2k
3

λz2 = k Λ5, h(λz2) =
2k
3

Abelian ψ
̂e(6)k

(
zn, zn′

, zn′′)
= 1

3-Cocycle Ω
̂e(6)k

(
zn, zn′)

= e−2πi k n n′/3

Algebra E7

Centre Z2 = {e, z}, z = e−2πi Λ∨
1

Simple current λz = k Λ6, h(λz) =
3k
4

Abelian ψ
̂e(7)k

(
zn, zn′

, zn′′)
= (−1)k n n′ n′′

3-Cocycle Ω
̂e(7)k

(
zn, zn′)

= e−πi k n n′ / 2
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4 The classical 3-cocycle vs the quantum 3-cocycle

In this final section of our paper, we bring to completion the discussion
of the correspondence between the classical, i.e., gerbe-theoretic, and the
quantum, i.e., conformal-field-theoretic, description of world-sheets related
by an associator move of figure 3 in the setting of the WZW sigma model
on a compact simple connected and simply connected Lie group G. We do
so by demonstrating, through a case-by-case comparison, that the 3-cocycle
component ψĝk ∈ Z3(Z(G), U(1)) of a representative (ψĝk , Ωĝk) of the class
[ψĝk , Ωĝk ] ∈ H3

ab(Z(G), U(1)) fixed by (3.41) via the Eilenberg–MacLane map
(cf. Appendix A.1), coincides with the associator 3-cocycle ψG�k obtained
from the analysis of the variation of the action functional of the WZW model
under the associator move of the embedded defect network.

Here are the details of the comparison. The starting point is the computa-
tion of the diagonal components of the 2-cochain Ωĝk from (3.41), using the
data for λx given in table 1, and that for the metric on P (g) (the quadratic-
form matrix F ) taken, e.g., from [DMS, Chapter 13]. Having found Ωĝk(x, x)
for all x ∈ Z(G), we then proceed according to the type of Z(G) at hand,
to wit:

• The non-cyclic centre Z(G) = Z2 × Z2 of G = Spin(4s). In this case,
we simply solve the coupled pentagon and hexagon equations explic-
itly for ψ

̂spin(4s)k
, employing the definition (A.6) in the end (that is,

dividing out an appropriate trivial 3-cocycle from the general solu-
tion) in order to get the specific representative from table 1. The lat-
ter is precisely the gerbe-theoretic 3-cocycle u

z
n1
1 z

n2
2 ,z

n′
1

1 z
n′
2

2 ,z
n′′
1

1 z
n′′
2

2

for

G = Spin(4s) given in [GR2, Section 4].
• A cyclic centre of an even order, Z(G) = Z2s with generator z — this

covers the cases of SU(2r + 2) (with s = r + 1) and Spin(4r + 2) (with
s = 2), as well as Spin(2r + 1), Sp(2r) and E(7) (all three with s = 1).
We start by considering an auxiliary object, namely the CFT of the free
boson compactified on the circle of a rational radius squared, R2 = p

q ,
where p and q are two positive coprime integers (and where we use
units in which the self-dual radius is 1). At these radii, the free-
boson CFT has an enhanced chiral symmetry. The fusion ring of its
representations is given by Z2pq with generator ξ, and the relevant
abelian 3-cocycle is [BSc,Fu2]

ψFB(p,q)
(
ξn, ξn′

, ξn′′)
= (−1)n

n′+n′′−[n′+n′′]2pq
2pq ,

ΩFB(p,q)
(
ξn, ξn′)

= e
π i n n′

2pq , (4.1)
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where 0 ≤ [m]2pq < 2pq is the unique integer such that [m]2pq = m
mod 2pq. One can now check, for all the above-mentioned G, that
Ωĝk
(
zn, zn

)
obeys, for every n ∈ Z2s,

Ωĝk
(
zn, zn

)
= ΩFB(s,1)

(
ξn, ξn

)P (g,k)
, P (g, k) ∈ N, (4.2)

for an integer P (g, k) independent of n. At this stage, we may adduce
the theorem of Eilenberg and MacLane cited in Appendix A.1 to con-
clude that the entire abelian 3-cocycle of interest can be written as

(ψĝk , Ωĝk) =
((

ψFB(s,1)
)P (g,k)

,
(
ΩFB(s,1)

)P (g,k)
)
. (4.3)

We now readily verify that the 3-cocycle
(
ψFB(s,1)

)P (g,k) coincides, in
each of the cases of interest, with the corresponding gerbe-theoretic
3-cocycle from [GR2, Section 4].

• A cyclic centre of an odd order, Z(G) = Z2s+1 with generator z — this
accounts for the remaining cases of SU(2r + 1) (with s = r) and E(6)
(with s = 1). For each of these groups, we first check that the diagonal
components of Ωĝk obey the identity

Ωĝk
(
zn, zn

)Nn = 1, Nn =
LCM(2s + 1, n)

n
(4.4)

for LCM(2s + 1, n) the least common multiple of 2s + 1 and n. The
number Nn thus defined is exactly the order of the element zn of the
centre, and so we see that Ωĝk satisfies the assumptions of Lemma 2.17
of [FRS3], stated in Appendix A.1. Consequently, the abelian 3-cocycle
(ψĝk , Ωĝk) has a representative with ψĝk = 1, in accord with the gerbe-
theoretic result of [GR2, Section 4]. The corresponding 2-cochain Ωĝk
is then fixed by the hexagon equation to be a bihomomorphism, whence

Ωĝk
(
zn, zn′)

= Ωĝk
(
z, z
)n n′

, (4.5)

which is the form of the 2-cochain given in table 1.

We shall now list the relevant algebraic data and the representatives of
the abelian 3-cocycles obtained in the procedure detailed above. In so doing,
we use the symbol Λ(∨)

i to denote the ith fundamental (co)weight of g (we
follow the labelling conventions of [DMS]), and the shorthand notation [m]k
for the unique integer 0 ≤ [m]k < k such that [m]k = m mod k for k ∈ Z>0.
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Appendix A Appendix

A.1 Some background on group cohomology

In general, group cohomology is defined for a group S and an S-module A,
see, e.g., [NSW, Chapter I, §2]. We shall only need the case of a finite group
S and the S-module given either by A = U(1), understood as an S-module
with trivial S-action, or by A = Čp,r(O), understood as an S-module with
an S-action by pullback,

(g.ω)i1i2...ip+1 =
(
g−1)∗ωg−1.i1 g−1.i2 ... g−1.ip+1 , (A.1)

where we have assumed the cover O to be S-invariant as in (2.10).

An n-cochain on S is a function Sn → A, and the set of n-cochains is
denoted as Cn(S, A). The coboundary operator δ(n) is a map Cn(S, A) →
Cn+1(S, A) which obeys δ(n+1) ◦ δ(n) = 1. For n = 1, 2, 3, 4, it is given by
the formulæ

(δ(0)ψ(0))(a) = a.ψ(0) − ψ(0),

(δ(1)ψ(1))(a, b) = a.ψ(1)(b) − ψ(1)(a · b) + ψ(1)(a),

(δ(2)ψ(2))(a, b, c) = a.ψ(2)(b, c) − ψ(2)(a · b, c)

+ ψ(2)(a, b · c) − ψ(2)(a, b),

(δ(3)ψ(3))(a, b, c, d) = a.ψ(3)(b, c, d) − ψ(3)(a · b, c, d) + ψ(3)(a, b · c, d)

− ψ(3)(a, b, c · d) + ψ(3)(a, b, c)

(A.2)

in the additive notation (e.g., for A = Čp,r(O) with r > 0), and by the for-
mulæ

(δ(0)ψ(0))(a) =
a.ψ(0)

ψ(0)
,

(δ(1)ψ(1))(a, b) =
a.ψ(1)(b) ψ(1)(a)

ψ(1)(a · b)
,

(δ(2)ψ(2))(a, b, c) =
a.ψ(2)(b, c) ψ(2)(a, b · c)
ψ(2)(a · b, c) ψ(2)(a, b)

,

(δ(3)ψ(3))(a, b, c, d) =
a.ψ(3)(b, c, d) ψ(3)(a, b · c, d) ψ(3)(a, b, c)

ψ(3)(a · b, c, d) ψ(3)(a, b, c · d)

(A.3)

in the multiplicative notation (e.g., for A = U(1) or A = Čp,0(O)), all writ-
ten for ψ(n) ∈ Cn(S, A) and a, b, c, d ∈ S. The n-cocycles, the n-coboundaries
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and the nth cohomology group are denoted as

Zn(S, A) = ker δ(n), Bn(S, A) = im δ(n−1), Hn(S, A) =
Zn(S, A)
Bn(S, A)

,

(A.4)

respectively. We shall drop the subscript n from the coboundary operator
henceforth, and we shall write δS whenever we want to emphasize that it is
the coboundary operator for the cohomology of S.

For an abelian group S, one can introduce a different cohomology, namely
abelian-group cohomology [EM,Ma]. We shall only need the third abelian
cohomology group of S, with values in the trivial S-module U(1).

Abelian 2-cochains on S are just ordinary 2-cochains on the group,
C2

ab(S, U(1)) = C2(S, U(1)), and abelian 3-cochains are defined as

C3
ab(S, U(1)) =

{
(ψ, Ω) | ψ ∈ C3(S, U(1)), Ω ∈ C2(S, U(1))

}
. (A.5)

The set C3
ab(S, U(1)) is an abelian group under element-wise multiplication.

The coboundary operator δab,(2) : C2
ab(S, U(1)) → C3

ab(S, U(1)) is given by
the formula

δab,(2)ϕ =
(
δSϕ, (a, b) �→ ϕ(a, b)/ϕ(b, a)

)
. (A.6)

The set of abelian 3-coboundaries B3
ab(S, U(1)) is the image of δab,(2). An

element (ψ, Ω) ∈ C3
ab(S, U(1)) is an abelian 3-cocycle on S if the following

conditions are satisfied for all a, b, c, d ∈ S:

Pentagon : ψ(b, c, d) ψ(a, b · c, d) ψ(a, b, c)

= ψ(a · b, c, d) ψ(a, b, c · d),

Hexagon :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ(c, a, b) Ω(a · b, c) ψ(a, b, c)
= Ω(a, c) ψ(a, c, b) Ω(b, c)

ψ(b, c, a)−1 Ω(a, b · c) ψ(a, b, c)−1

= Ω(a, c) ψ(b, a, c)−1 Ω(a, b).

(A.7)

(In the notation used in [Ma], ψ(a, b, c) = f(a, b, c) and Ω(a, b) = d(a | b),
see [Ma, Equations (17)–(19)].) Note that the pentagon condition just says
that δSψ ≡ 1. The set of abelian 3-cocycles is denoted by Z3

ab(S, U(1)).
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The third abelian cohomology group of the abelian group S, with values
in the trivial S-module U(1) is defined as

H3
ab(S, U(1)) = Z3

ab(S, U(1))/B3
ab(S, U(1)). (A.8)

The set Q(S, U(1)) of quadratic forms on a group S, with values in U(1)
is composed of all elements q ∈ C1(S, U(1)) such that q(a) = q(a−1) and
δSq : S × S → U(1) is a bihomomorphism. The product of two quadratic
forms is again a quadratic form, as is the function q ≡ 1, and so Q(S, U(1))
is an abelian group. It is proved in [EM] (see [Ma, Theorem 3]) that the
map

EM : H3
ab(S, U(1)) → Q(S, U(1))

[ψ, Ω] �→ qψ,Ω(a) = Ω(a, a)
(A.9)

is an isomorphism of abelian groups. In particular, qψ,Ω depends only on
the class [ψ, Ω] of the abelian 3-cocycle (ψ, Ω). Using this isomorphism, it
was demonstrated in [FRS3, Lemma 2.17] that the class [ψ] ∈ H3(S, U(1))
of the 3-cocycle component of an abelian 3-cocycle (ψ, Ω) is trivial iff the
identity

Ω(a, a)Na = 1 (A.10)

holds for every element a ∈ S, with Na the order of a.

A.2 Field equations and defect conditions

In this Appendix, we perform a detailed derivation of the field equations
and defect conditions in a generic non-linear sigma model with a topological
term defined — as in Section 2.6 — on a world-sheet Σ with an embed-
ded defect network Γ. The defect conditions, which characterize the defect
in the very same manner as boundary conditions characterize a boundary
state, are always to be imposed on the fields of the model, both in the
classical régime (extremal field configurations) and in the quantum régime
(the definition of the path integral for a world-sheet with a defect net-
work on it).

Let us start by stating some conventions. We use the two-dimensional
Levi-Civita symbols εab and εab such that ε12 = 1 = ε12 and εab εcb = δ c

a . In
the component notation for differential forms, we use the following basis:

dyμ1 ∧ dyμ2 ∧ · · · ∧ dyμp =
∑
σ∈Sp

(−1)sgn(σ) dyμσ(1) ⊗ dyμσ(2) ⊗ · · · ⊗ dyμσ(p) .

(A.11)
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The standard ‘kinetic’ term written in terms of the intrinsic world-sheet
metric γ, the associated metric volume form volΣ,γ =

√
det γ dσ1 ∧ dσ2 (σa

are local coordinates on Σ) and the target-space metric G reads

Skin[X; γ] =
∫

Σ−Γ
GX(dX∧, �γ dX)

=
∫

Σ−Γ
volΣ,γ

(
γ−1)ab

Gμν(X) ∂aX
μ ∂bX

ν . (A.12)

The world-sheet metric defines, in particular, the Hodge operator �γ on
Ω•(Σ) as per

�γ1 = volΣ,γ , �γdσa =
√

det γ
(
γ−1)ab

εbc dσc, �γvolΣ,γ = 1. (A.13)

We have also used the notation dX = ∂aX
μ dσa ⊗ ∂μ ∈ T∗

σΣ ⊗ TX(σ)M ,
hence the familiar local form of Skin[X; γ]. The integral in (A.12) splits into
contributions from the patches into which the world-sheet is partitioned by
the embedded defect network Γ. Whenever a functional variation of the
integral produces a contribution from a component e of the boundary of
the patch, we should use in the integrand the appropriate local extension
X|α described in Section 2.4, with the choice of α ∈ {1, 2} depending on the
relative orientation of e and that of the defect line covering e.

The variation of (A.12) in the direction of X reads

δXSkin[X; γ] =
∫

Σ−Γ
volΣ,γ

(
γ−1)ab (2Gμν(X) ∂aδX

μ ∂bX
ν

+ δXλ∂λGμν(X) ∂aX
μ ∂bX

ν
)

= −2
∫

Σ−Γ
GX

(
δX, volΣ,γ Δ(2)X + ΓL-C(dX∧, �γ dX)

)

+ 2
∫

EΓ

(
GX|1(δX|1, �γdX|1) − GX|2(δX|2, �γdX|2)

)
,

(A.14)
where δX = δXμ ∂μ is the variation field, with the one-sided (local) exten-
sions δX|α to Uα. We have also used the notation

GX

(
δX, volΣ,γ Δ(2)X

)
= δXμ Gμν(X)

(
Δ(2)X

ν
)
volΣ,γ ,

GX

(
δX, ΓL-C(dX∧, �γ dX)

)
= δXμ Gμν(X)

{ ν
ρσ

}
(X) d Xρ ∧ �γdXσ,

(A.15)
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with

Δ(2) =
1√

det γ
∂a

(√
det γ

(
γ−1)ab

∂b

)
(A.16)

the world-sheet Laplacian, and

{ ν
ρσ

}
=

1
2
(
G−1)νλ (

∂ρGσλ + ∂σGρλ − ∂λGρσ

)
(A.17)

the Christoffel symbols of the target-space metric G. As usual, the boundary
term in (A.14) comes from integration by parts and the application of Stokes’
theorem. Its geometric interpretation becomes manifest upon introducing
a coordinate t ∈ R along an edge e ∈ EΓ of Γ, together with the attendant
normalized tangent vector field t̂ = 1√

γ(∂t,∂t)
∂t. It is then straightforward to

show that the two normalized vector fields n̂α, α = 1, 2 normal to that edge
which were described in Section 2.4 are given by n̂α = (−1)α (t̂� �γ dσa) ∂a,
and so the variation of the “kinetic” term rewrites as

δXSkin[X; γ] = −2
∫

Σ−Γ
GX

(
δX, volΣ Δ(2)X + ΓL-C(dX∧, �γ dX)

)

− 2
∫

EΓ

volEΓ,γ

(
GX|1

(
δX|1, X|1∗n̂1

)
+ GX|2

(
δX|2, X|2∗n̂2

))
,

(A.18)

where volEΓ,γ is the volume form for EΓ (locally given by
√

γ(∂t, ∂t) dt) and
X|α∗ : TUα → TM are the tangent maps for X|α.

Passing, next, to the topological term

Stop[X] =
∑

t∈�(Σ)

[
i
∫

t
B̂t +

∑
e⊂t

(
i
∫

e
Âte +

∑
v∈e

log ĝtev(v)

)]

+
∑

e∈�(EΓ)

(
i
∫

e
P̂e +

∑
v∈e

log K̂ev(v)

)

+
∑
v∈VΓ

log f̂v(v), (A.19)
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in which all triangulations have been correlated as discussed in Section 2.6,
we find

1
i
δXStop[X] =

∫
Σ−Γ

X∗(δX� H
)

+
∑

t∈�(Σ)

∑
e⊂t

[∫
e

X∗(δX� (Bit + dAitie)
)

+
∑
v∈e

εtev X∗(δX�
(
Aitie − i d log gitieiv

))
(v)
]

+
∑

e∈�(EΓ)

[∫
e

X∗(δX� dPie)

+
∑
v∈e

εev X∗(δX�
(
Pie + i d log Kieiv

))
(v)
]

− i
∑
v∈VΓ

X∗(δX� d log fiv

)
(v)

=
∫

Σ−Γ
X∗(δX� H

)
+
∑

t∈�(Σ)

∑
e⊂t

[∫
e

X∗(δX� Bie)

−
∑
v∈e

εtev X∗(δX� Aieiv

)
(v)
]

+
∑

e∈�(EΓ)

[∫
e

X∗(δX� dPie)

+
∑
v∈e

εev X∗(δX�
(
Pie + i d log Kieiv

))
(v)
]

− i
∑
v∈VΓ

X∗(δX� d log fiv

)
(v), (A.20)

where — so far — we have only used the defining relations of the local data of
the gerbe, cf. (2.5), alongside the trivial relation

∑
e⊂t

∑
v∈e εtev δX� Aitiv =

0. The first line integral in the above formula reduces to a contribution from
the embedded defect network, and so — upon recalling the indexing con-
ventions of Section 2.6 and the definition (2.15) of the G-bi-brane curvature
ω — we readily see that it combines with the other line integral as

∑
t∈�(Σ)

∑
e⊂t

∫
e

X∗(δX� Bie) +
∑

e∈�(EΓ)

∫
e

X∗(δX� dPie)
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=
∑

e∈�(EΓ)

∫
e

[
X∗

|1(δX|1� Bφ1(ie)) − X∗
|2(δX|2� Bφ2(ie)) + X∗(δX� dPie)

]

=
∑

e∈�(EΓ)

∫
e

X∗(δX� ωie) ≡
∫

EΓ

X∗(δX� ω), (A.21)

where we have used that

δX|α|EΓ = ια∗δX|EΓ , (A.22)

which holds by (L2).

Next, we turn to the vertex contributions. The one coming from the
internal vertices, v ∈ Σ − VΓ, is easily checked to vanish,

∑
e∈�(EΓ)

∑
v∈e−VΓ

εev X∗(δX�
(
Pie + i d log Kieiv

))
(v)

−
∑

t∈�(Σ)
e⊂t

∑
v∈e−VΓ

εtev X∗(δX� Aieiv

)
(v)

=
∑

e∈�(EΓ)

∑
v∈e−VΓ

εev

[
X∗

|2
(
δX|2� Aφ2(ie)φ2(iv)

)

− X∗
|1
(
δX|1� Aφ1(ie)φ1(iv)

)
+ X∗(δX�

(
Pie − Piv + i d log Kieiv

))]
(v) = 0, (A.23)

by virtue of (2.15) and (A.22). The one coming from the vertices of the
defect network, on the other hand, does not vanish identically. At a given
vertex v ∈ VΓ of, say, valence nv, it splits into a sum of terms sourced by the
defect lines converging at the vertex, completed with the vertex insertion of
the 2-morphism data. We shall first focus on the defect-line terms, further
separating the case of εk,k+1

nv = +1 from that of εk,k+1
nv = −1. In the former

case, we obtain

X∗
k+1
(
δXk+1� Aφ2(ie)ψk+1

nv (iv)

)
(v) − X∗

k

(
δXk� Aφ1(ie)ψk

nv
(iv)
)
(v)

+ X∗
k,k+1
(
δXk,k+1�

(
Pie + i d log K

ieψk,k+1
nv (iv)

))
(v)

= X∗
k+1
(
δXk+1� Aφ2(ie)ψk+1

nv (iv)

)
(v) − X∗

k

(
δXk� Aφ1(ie)ψk

nv
(iv)
)
(v)

+ X∗
k,k+1
(
δXk,k+1�

(
ι∗1Aφ1(ie)φ1◦ψk,k+1

nv (iv)

− ι∗2Aφ2(ie)φ2◦ψk,k+1
nv (iv) + P

ψk,k+1
nv (iv)

))
(v)

= X∗
k,k+1
(
δXk,k+1� P

ψk,k+1
nv (iv)

)
(v), (A.24)
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where we have used (2.15) and a counterpart of the consistency condition
(A.22) for the vertex

δXk|VΓ = ι
εk,k+1
nv

1∗ δXk,k+1|VΓ ,

ι
εk,k+1
nv

1∗ δXk,k+1|VΓ = ι
εk−1,k
nv

2∗ δXk−1,k|VΓ .
(A.25)

Similarly in the second case, the defect-line terms reduce as

X∗
k+1
(
δXk+1� Aφ1(ie)ψk+1

nv (iv)

)
(v) − X∗

k

(
δXk� Aφ2(ie)ψk

nv
(iv)
)
(v)

− X∗
k,k+1
(
δXk,k+1�

(
Pie + i d log K

ieψk,k+1
nv (iv)

))
(v)

= X∗
k+1
(
δXk+1� Aφ1(ie)ψk+1

nv (iv)

)
(v) − X∗

k

(
δXk� Aφ2(ie)ψk

nv
(iv)
)
(v)

− X∗
k,k+1
(
δXk,k+1�

(
ι∗1Aφ1(ie)φ1◦ψk,k+1

nv (iv)

− ι∗2Aφ2(ie)φ2◦ψk,k+1
nv (iv) + P

ψk,k+1
nv (iv)

))
(v)

= −X∗
k,k+1
(
δXk,k+1� P

ψk,k+1
nv (iv)

)
(v). (A.26)

Combining the two with the defect insertion and using the remaining con-
sistency condition

δXk,k+1|VΓ = πk,k+1
nv∗ δX (A.27)

for the vertex variations of the various maps involved yields

nv∑
k=1

εk,k+1
nv

X∗
k,k+1
(
δXk,k+1� P

ψk,k+1
nv (iv)

)
(v)

− i X∗(δX� d log fiv

)
(v) = X∗(δX� θnv)(v), (A.28)

cf. (2.75).

Thus, at the end of the day, we find the neat result

δXS[X; γ] = −2
∫

Σ−Γ

[
GX

(
δX, volΣ,γ Δ(2)X

+ ΓL-C(dX∧, �γ dX)
)

− i
2

X∗(δX� H)
]

− 2
∫

EΓ

volEΓ

[
GX|1

(
ι1∗δX, X|1∗n̂1

)

+ GX|2

(
ι2∗δX, X|2∗n̂2

)
− i

2
ω(δX, X∗t̂)

]

+ i
∑
v∈VΓ

X∗(δX� θnv)(v), (A.29)



1212 INGO RUNKEL AND RAFA�L R. SUSZEK

from which we read off the (dynamical) field equations

Δ(2)X
λ +
[{

λ
μν

}
(X)
(
γ−1)ab

− 3i
2
√

det γ

(
G−1)λρ(X) Hρμν(X) εab

]
∂aX

μ ∂bX
ν = 0, (A.30)

written in terms of the components of the curvature 3-form H = Hλμν dXλ ∧
dXμ ∧ dXν , which we take to be antisymmetric in their indices. The result-
ing defect gluing conditions are

GX|1

(
ι1∗δX, X|1∗n̂1

)
+ GX|2

(
ι2∗δX, X|2∗n̂2

)

− i
2

ω(δX, X∗t̂) = 0 at EΓ,

X∗(δX� θn) = 0 at VΓ.

(A.31)

The latter of the two defect conditions forces us to set

θn = 0, n ∈ Z>0 (A.32)

in the entire region of the (G,B)-inter-bi-brane world-volume accessible to
the string, and so it effectively eliminates θn from further analysis. This
leaves us with only the first of the defect gluing conditions as a non-trivial
constraint of the sigma-model dynamics.

A.3 A homotopy move of the vertex

Our aim is to derive the variation of the sigma-model action functional under
a homotopy move of the defect network within the world-sheet depicted in
figure A1. To this end, we demand that the initial network-field configura-
tion (Γ, X) (for the drawing on the left-hand side) admit — in a sense to
be specified below — an extension which determines the final network-field
configuration (Γ̃, X̃) (for the drawing on the right-hand side) and thereby
defines the homotopy move of the three-valent vertex of the embedded defect
network along the edge e3.

We begin our description of the extension by choosing, for the sake of sim-
plicity, a sufficiently fine triangulation of the world-sheet, so that the various
embedding maps Xk, Xk,k+1 associated with the vertex v1 (as discussed in
Section 2.6) are well defined in the entire region of the world-sheet shown
in the left-hand side of figure A1. Furthermore, we mark the defect edges
e4, e1 and e3 converging at v1 in the initial defect network Γ as e1,2, e2,3 and
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Figure A1: A homotopy move of a three-valent vertex of the defect network.

e3,1, respectively. Similarly, the defect edges e3, e2 and e5 converging at v2

in the final defect network Γ̃ are marked as e1,2, e2,3 and e3,1, respectively.
We may now define the extension of the map X for Γ to be a pair of maps

X̂e1 : t → Q, X̂v1 : e3 → T3 (A.33)

such that the following compatibility conditions are satisfied

X̂e1 |e1 = X2,3|e1 , ι2 ◦ X̂e1 = X3|t,
X̂v1 |v1 = X|v1 , π3,1

3 ◦ X̂v1 = X3,1|e3 , π2,3
3 ◦ X̂v1 = X̂e1 |e3 ,

(A.34)

alongside the gluing condition

G
ι1◦ ̂Xe1 (p)

(
ι1∗v,

(
ι1 ◦ X̂e1

)
∗û2
)

− G
ι2◦ ̂Xe1 (p)

(
ι2∗v,

(
ι2 ◦ X̂e1

)
∗û2
)

− i
2

ω
̂Xe1 (p)

(
v, X̂e1∗û1

)
= 0, (A.35)

to be satisfied at every p ∈ t for all v ∈ T
̂Xe1 (p)Q and for any right-handed

orthonormal basis
(
û1, û2

)
of TpΣ, and the gluing condition

GX1(q)
(
ι1∗v, X1∗n̂1

)
− G

ι1◦ ̂Xe1 (q)

(
ι2∗v,

(
ι1 ◦ X̂e1

)
∗n̂2
)

− i
2

ω
π1,2
3 ◦ ̂Xv1 (q)

(
v,
(
π1,2

3 ◦ X̂v1

)
∗t̂
)

= 0, (A.36)

to be satisfied at every q ∈ e3 for all v ∈ T
π1,2
3 ◦ ̂Xv1 (q)Q and for a triple of unit

vectors t̂, n̂1, n̂2 ∈ TqΣ such that t̂ is tangent to e3 and points from v1 to v2,
and n̂1 (resp. n̂2) is normal to e3 and points to the outside (resp. inside) of
t. The upper line in (A.34) in conjunction with the gluing condition (A.35)
identifies X̂e1 as an extension of X to t across e1 in the sense of Section
2.9. The bottom line in (A.34), on the other hand, is a straightforward
generalization of the there defined notion of an extension across a defect
line to the setting of figure A1, and (A.36) ensures that the defect gluing
condition for the defect edge marked as e1,2 holds to the left of the three-
valent defect vertex all along the way as the latter gets shifted from v1 to v2.
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Keeping track of all the Čech indices involved quickly becomes rather
cumbersome, and so we make certain simplifying assumptions which render
our demonstration more tractable without any loss of generality of the final
result. Thus, we presuppose that ι1 ◦ X̂e1 embeds t in the same open set
OM

i1
as the one into which the map X sends the adjacent triangles t1 and t2.

Analogously, we assume that all three triangles t, t3 and t4 are embedded
in the same set OM

i2
by the original map X. The map π1,2

3 ◦ X̂v1 is taken
to embed e3 in a single set OQ

i3
, just as X3,1 is taken to embed e3 ∪ e5 in

a single set OQ
i4

. Finally, the map X̂e1 sends the entire triangle t into OQ
i5

,
which is also where X sends e1, and the map X̂v1 takes the entire edge e3

into OT3
i6

. We have the obvious compatibility conditions for the index maps

i1 = φ1(i5), i2 = φ2(i5),

i3 = ψ1,2
3 (i6), i4 = ψ3,1

3 (i6), i5 = ψ2,3
3 (i6).

(A.37)

We may use X̂e1 and X̂v1 to construct a new network-field configuration
(Γ̃, X̃) for the drawing on the right-hand side of figure A1 starting from the
original one (Γ, X). This is achieved by setting

X̃|Σ−t = X|Σ−t, X̃|t−(e2∪e3) = ι1 ◦ X̂e1 |t−(e2∪e3),

X̃|e2−v2 = X̂e1 |e2−v2 , X̃|e3−v2 = π1,2
3 ◦ X̂v1 |e3−v2 ,

X̃|v2 = X̂v1 |v2 .

(A.38)

We are now ready to compare the value of the holonomy for (Γ̃, X̃) with that
attained on (Γ, X). Upon rewriting (2.53) in the simple setting described and
taking into account all the compatibility conditions listed, alongside (2.15)
and (2.41), we obtain

1
i

log
Hol (Γ̃, X̃)
Hol (Γ, X)

=
∫

t

((
ι1 ◦ X̂e1

)∗
Bi1 − X∗

3Bi2

)

+
∫

e2

X̂∗
e1

Pi5 −
∫

e1

X∗
2,3Pi5

+
∫

e3

((
π1,2

3 ◦ X̂v1

)∗
Pi3 − X∗

3,1Pi4

)

− i log fi6

(
X̂v1(v2)

)
+ i log fi6

(
X(v1)

)

≡
∫

t
X̂∗

e1

(
ι∗1Bφ1(i5) − ι∗2Bφ2(i5)

)
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+
∫

e2

X̂∗
e1

Pi5 −
∫

e1

X̂∗
e1

Pi5

+
∫

e3

X̂∗
v1

((
π1,2

3
)∗

P
ψ1,2

3 (i6) −
(
π3,1

3
)∗

P
ψ3,1

3 (i6)

)

− i log fi6

(
X̂v1(v2)

)
+ i log fi6

(
X̂v1(v1)

)

=
∫

t
X̂∗

e1
ω +
∫

e3

X̂∗
v1

((
π1,2

3
)∗

P
ψ1,2

3 (i6)

+
(
π2,3

3
)∗

P
ψ2,3

3 (i6) −
(
π3,1

3
)∗

P
ψ3,1

3 (i6)

)
− i log fi6

(
X̂v1(v2)

)
+ i log fi6

(
X̂v1(v1)

)

=
∫

t
X̂∗

e1
ω. (A.39)

A straightforward calculation of the difference of the kinetic terms of the
sigma-model action functional evaluated on the two network-field configu-
rations (Γ̃, X̃) and (Γ, X) completes the derivation, cf. (2.116). Thus, as
explained below (2.116), we see, using (A.35), that the action functional
remains invariant under the vertex move, S[(Γ̃, X̃); γ0] = S[(Γ, X); γ0].

Note, in particular, that upon fixing the trivial defect condition at e4
(whereby the relevant 2-morphism fi6 reduces to the trivial death 2-isomor-
phism), we recover a result on the change of the holonomy under a homotopy
move of the vertex-free segment of the defect network. It is unaffected by
the presence of the defect vertex due to the equality θn = 0, imposed on the
basis of the analysis of Appendix A.2.
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[Ga3] K. Gawȩdzki, Lectures on conformal field theory, Quantum

field theory program at IAS, Princeton, 1996 [www.math.ias.edu/
QFT/fall/NewGaw.ps].
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