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Abstract. In this paper, we propose a new robust tail index estimation procedure for
Pareto-type distributions in the framework of randomly censored samples, based on the
ideas of Kaplan-Meier integration using the huberized M-estimator of the tail index. We
derive their asymptotic results. We illustrate the performance and the robustness of this
estimator for small and large sample size in a simulation study.

Résumé. Dans cet article, nous proposons une nouvelle procédure de I’estimation robuste de
I’indice de la queue pour les distributions de type Pareto dans le cas d’échantillons censurés,
sur la base des idées de l'intgrale de Kaplan-Meier en utilisant le huberized M-estimateur
de l'indice de la queue. Nous dérivons leurs résultats asymptotiques. Nous illustrons dans
I’étude de la simulation la performance et la robustesse de cet estimateur pour un échantillon
de petite et grande taille.

Key words: Heavy-tailed distributions; Hill estimator; Random censorship; Regular varia-
tion; Robust estimation; Tail index.
AMS 2000 Mathematics Subject Classification : 62G07; 62G20.

1. Introduction

Let X, ..., X, be n copies of independent and identically distributed random variable (rv) X,
with common cumulative distribution function (cdf) F assumed to be heavy-tailed. In other
words, the distribution tail F := 1 — F is regularly varying, with index (—ca;), notation:
Fe RV (—a,)- That is

F (tx)

lim — =gz~ %, for any x > 0,
t—oo [ (t)
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where a7 > 0 is called shape parameter, tail index or extreme value index (EVI). It plays
a very crucial role in the analysis of extremes as it governs the thickness of the distribution
tails.

Suppose there exist a sequences of constants (a, > 0) and (b, € R) such that the prop-
erly centered and normed sample maxima converge in distribution, as n — oo, to a non-
degenerate limit distribution H, for all continuity points of H, i.e,

. Xpm — b
Jim P ("Zn" Sx) =H, (z), (1)
where Xi., < ... < X,,., are the order statistics pertaining to the sample (X7, ..., X,,). The
limit distribution H is necessarily of generalized extreme value type (Fisher and Tippett,
1928)
Ha(z) = &P~ (1+x/a)™ for a>0and (1+z/a)>0,
¢ exp (—exp(—z)) for a=0and xz € R.

If (1) is satisfied, then F' is said to belong to the maximum domain of attraction of H,,
denoted as F' € D(H,).

The estimation of oy has a great interest for a complete data by many authors and common
applications in a big variety of domains, as for example in economics, applied finance, insur-
ance, business, industry, traffic, telecommunications, sociology and geology, as one might see
the textbook Beirlant et al. (2007), Dekkers et al. (1989), Bacro and Brito (1995), Csérgd
and Viharos (1998) and references therein.

The most celebrated estimator of «; is that proposed by Hill (1975)

-1
A A 1 ¢
Oé{{ = Oé{{ (I{?) = (k; Z log (Xn—i+1,n) — log (Xn—k,n)> y
i=1

for k = k,, is an integer sequence satisfying
l1<k<n, k—oo andk/n—0 asn— oco. (2)

The asymptotic properties of &7 have been much studied. In the independent context, it is
well known that, under some regularity conditions, &j" is strongly consistent with asymptotic
normal distribution when properly normalized Haeusler and Teugels (1985). The consistency
of &¥ (k) was proved by Mason (1982) by only assuming the regular variation condition while
its asymptotic normality was established under a suitable extra assumption, known as the
second-order regular variation condition (see de Haan and Stadtmiiller, 1996 and de Haan
and Ferreira, 2006, page 117).

In many real applications, such as survival analysis, reliability theory or insurance..., the
variable of interest X is not necessarily completely available. This is the case in the presence
of random right censoring. The usual way to model this situation is to introduce a random
variable Y called censoring rv, independent of X, and then to consider the rv Z := min (X,Y)
and the indicator variable § := 1 (X <Y), which determines whether or not X has been ob-
served. The cdf’s of Y and Z will be denoted by G and H respectively. Statistics of extremes
of randomly censored data is a new research field. The topic was first mentioned in Reiss and
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Thomas (1997), where an estimator of a positive extreme value index was introduced, but
with no asymptotic results. Recently, Beirlant et al. (2007) proposed an estimators for the
general extreme value index and for the extreme quantile with their asymptotic properties.
Einmahl et al. (2008) adapted various extreme value index estimators to the case where
the data are censored, by a random threshold and establish their asymptotic normality by
imposing some assumptions that are rather unusual to the context of extreme value theory.
More recently Brahimi et al. (2014), using the empirical process theory to approximate the
adapted Hill estimator, for censored data, and derived its asymptotic normality.

The tail of the censoring distribution is assumed to be regularly varying too, that is 1 —
G € RV(_q,), for some as > 0. By virtue of the independence of X and Y, we have
1-H(z) = (1-F(x)(1~G(x)) and therefore 1 — H € RV(_,), with a := a1 + as.
Let {(Z;,0:), 1 <i<mn} be a sample from the couple of rv’s (Z,9) and Z1, < ... < Z,
represent the order statistics pertaining to (Z1, ..., Z,,) . If we denote the concomitant of the
ith order statistic by dj;., (i-e. O} = 05 if Z;,w = Zj), then the adapted Hill estimator of
the tail index oy is defined by

~H
~(He) . o (F)
(6] =, 3
1 5 (3)
where
1 k
o = . —
«Q (k) T E ZZ:;k)g Zn—l-i-l,n log Zn—k:n (4)
and
1 k
p= k Z(S[n*lﬁrl:n]v (5)
=1

with k := k,, satisfying (2). Roughly speaking, the adapted Hill estimator is equal to the
quotient of the classical Hill estimator to the proportion of non censored data.

The rest of the paper is organized as follows. In Section 2, after a brief discussion on the
huberized tail index M-functional and huberized M-estimator of the tail index, we derive
our main result, namely the asymptotic normality of the robust tail index estimator in the
framework of randomly censored samples. A small simulation study is cared to check the
performance and the robustness of our estimator is given in Section 3. Concluding notes are
given in Section 4. Proofs are relegated to Section 5.

2. Main results

The classical tail index estimators achieve consistency by relying on an asymptotically van-
ishing portion of high quantiles only. This results in a slow rate of convergence and appli-
cability to relatively large samples only. The alternative approach is inspired by the theory
of robust inference (Hampel et al., 1986 and Huber, 1981) instead of exact consistency this
theory aim at stability for small samples, possibly at the cost of a small asymptotic bias. This
can be obtained by the definition of the following class of M-functional and M-estimators
respectively that are defined as follows (see Beran and Shell, 2012).
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Definition 1. Let Fpy (z,0) =1 —27% (z > 1) and

Uy (z, ) = [alog (z) — 1], — /[a log (2) — 1]ydFpar(z, @)
= [alog (z) — 1], — (v + exp(— (v + 1))),

where [y], = max (y,v), and denote by F a set of distributions with support in R,. Then
the functional Ty p =: Ty defined on F as the solution ¢y of the equation

Br <t>:/¢@ (#,1)dF (x) =0, (F ¢ F)

is called huberized tail index AM-functional. The corresponding M-estimator T,, =: T,
defined by
> v (X5, T0) =0, (6)
j=1

is called huberized M-estimator of the tail index.

The nonparametric maximum likelihood estimator of F' in the case of censored data equals
the famous estimator of Kaplan and Meire (1958) also called the product limit estimator, is

given by
~ O(iin)
102 n<z

Stute and Wang (1993) and Stute (1995) studied the almost sure and distributional behavior
of the so-called Kaplan-Meier integrals

L= [¢(:)dbn(2).

where ¢ is an arbitrary integrable function. It is easily seen from (7) that
In == Z WmCP (Zz,n) 5

where for 1 <i<n

8] ilro —j O1jm)
W' — mn .
. n—i+1H{n—j+1}

j=1
When there is no censorship, W;,, = 1/n so that I,, becomes the sample mean.

Stute (1995) obtained under random censoring and under some assumptions of central limit
theorem for a general transformation ¢, that

/gpd(ﬁn—F).

The functions defined below are crucial to our needs:

Hy (2) ::P(Zgz,ézo):/z (1—F(t))G (dt),

— 00
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H, (2) ::P(Zgz,5:1):/z (1 -G (b)) F(dt),

-y

Hy (dz)
1-H (m)) ’
X )
- / Yo (2, 01) Ao () Lacay Fy (d2) |

A1 (2)

and

= Yo (,00) Ao (2) Lyes, y<a} 7. (dx
A2 (2) 7// Ay Hy (dy) H, (dz) .

The following assumptions will be needed in theorem

/ﬁmwﬂammw@<m (8)

and

&ﬂ%@@mm“mem<w, (9)

where

(" G (dy)
A“”/mu—H@»u—G@r

Theorem 1. Let X; ~ Fpy, (x, 1) and Y; ~ Fpar (y,a0), x> 1, y > 1 where a3 > 0
and ag > 0, with as < ay. Moreover, let F,, be the Kaplan-Meier estimator of the df F' and
(Th),,>¢ @ sequence of solutions of

)‘Fn (t)zz% (Xj’t):07 (n €N).

Then, under assumptions (8) and (9) we have
2 (T, — o) BN (0,07u) »

where
aq
v+ 2

)

and
o? =Var{—, (z,01) Mo (2) 6 + A1 (2) (1 = 3) — Ao (2)}.

Remark 1. Condition (8) is the properly modified variance assumption on 1, and (9) only
incorporates the first ¥, —moment. It is mainly to control the bias of f wvdﬁn, which is a
function of v, rather than 2. Stute (1994) and Stute (1995) gives a detailed account of
this issue. In our case, this two assumptions are satisfied when as < «7. The expressions of
Ao, A1 and Ay are previously given.
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3. Simulation study
3.1. Performance and comparative study

In this simulation study we examines the performance of our estimator given in Definition 1
and compare with the adapted Hill estimator given in (3) proposed by Einmahl et al. (2008).
For this reason, we follows the steps below.

Step 1: We generate 1000 pseudorandoms samples X and C' of size n = 100, 200, 500 and
1000 from Pareto cdf with a; = 0.6 and as = 0.25 respectively. Here v = 1 and p = 0.70
that means the percentage of censorship is 30%.

Step 2: We obtained 1000 pseudorandom samples Z = min (X, C) and the indicator variable
0 :=1(X < C) of size n = 100, 200, 500 and 1000.

Step 3: We estimate the tail index parameter by the two estimators frame the observed data
Z. We adopt the Reiss and Thomas algorithm (see Reiss and Thomas, 1997), for choosing
the optimal numbers of upper extremes k in adapted Hill estimator. By this methodology,
we define the optimal sample fraction of upper order statistics k by

J
k:= argmin%Zig ‘62{[ (i) — median {62{[ 1),...,al (])}’ .
T

On the light of our simulation study, we obtained reasonable results by choosing 6 = 0.3.

Step 4: We compute the bias and root mean squared error (RMSE) of the two estimators,
the results are summarized in Table 1. we see that our estimator performs better.

T, k al™e) (k)
n bias RMSE bias RMSE
100  0.0611 0.2511 17 —0.1143 0.2586
200 0.0431 0.1013 34 —0.0845 0.1821
500 0.0153 0.0684 86 —0.0245 0.1142
1000 0.0041 0.0356 169 —0.0070 0.0798

Table 1. Bias and RMSE of the two estimators based on 1000 samples of Pareto-distributed
with tail index 0.6.

3.2. Comparative robustness study

We study the sensitivity to outliers of our estimator and compare with the adapted Hill
estimator. We consider an e-contaminated model known by mixture of Pareto distributions

Frympe(2)=1—=(1—¢)z7Vor g7 /2 (10)

where ag,v2 > 0 and 0 < € < 0.5 is the fraction of contamination. Note that for ¢ = 0,
T, and agH’c) (k) are asymptotically unbiased. Therefore, for € > 0, the effect of contami-
nation becomes immediately apparent. If a; < 2 and € > 0, (10) corresponds to a Pareto
distribution contaminated by a longer tailed distribution.
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For the implementation of mixtures models to the study outliers one refers, for instance, to
(Barnett and Lewis, 1995, page 43). In this context, we proceed our study as follows.

We consider a; = 0.6, 72 = 2 to have the contaminated model. Then we consider four
contamination scenarios according to € = 5%, 10%, 15%, 25%.

For each value €, we generate 1000 samples of size n = 100, 200 and 1000 from the model
(10).

Finally, we compare the two estimators with this true value, by computing for each estimator,
the appropriate bias and RMSE and summarize the results in Table 2.

T, i (k)
n % contamination bias RMSE bias RMSE
100 5 0.0685 0.2865 —0.1325 0.3251
10 0.0754 0.3561 —0.6485 0.7546
15 0.0791 0.3940 —1.0452 1.1256
25 0.1245 0.5412 —1.1125 2.1951
200 5 0.0487 0.1965 —0.0911 0.2511
10 0.0510 0.2213 —0.2496 0.3217
15 0.0614 0.3889 —0.4518 0.9941
25 0.1002 0.5001 —0.7120 1.4963
1000 5 0.0095 0.1002 —0.1194 0.1227
10 0.0191 0.2249 —0.2162 0.3978
15 0.0531 0.3449 —0.4101 0.4355
25 0.0977 0.4250 —0.6788 0.9591

Table 2. Bias and RMSE of the two estimators based on 1000 samples of mixture of Pareto
distributions with tail index 0.6, € = 5%, 10%, 15%, 25%.

The adapted Hill estimator is a pseudo-maximum likelihood estimator based on the ex-
ponential approximation of the normalized log-spacings Y; = j (log Z;,, —log Z11 ) for
j =1,...,k, So in practice, this estimator depends on the choice of k£ and is inherently not
very robust to large values Y}, which be sensitive to few particular observations, which consti-
tutes a serious problem in terms of bias and RMSE. As expected, the adapted Hill estimator
turn out to be more sensitive to this type of contaminations, for example, in 0% contamina-
tion for n = 200 the (bias, RMSE) of the adapted Hill estimator equals (—0.0854,0.1013),
while for 25% contamination is (—0.7120, 1.4963) . We may conclude that the bias and RMSE
of the adapted Hill estimator in more sensitive (or note robust) to outliers, however for 0%
contamination the (bias, RMSE) of our estimator equals (0.0431,0.1821), while for 25%
contamination is (0.1002,0.5001). Both the bias and the RMSE of our estimator are note
sensitive to outliers, then we may conclude that is the better estimator.

4. Concluding notes

It has been shown that our estimator is more robust and perform better than the adapted
Hill estimator proposed by Einmahl et al. (2008).
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5. Proofs

Proof (Proof of Theorem 1). The proof is essentially based on Theorem 11 in (Stute and
Wang, 1993, page 1594), Corollary 1.2 in (Stute, 1995, page 426) and (Beran and Shell,
2012, page 3432).

Let

B(0) = Brpy oy (@) = / o (,0) dF pay (2, 01)

Partial integration yields

7alog - ( [ o) - 1]vdem<z,a>) 0Fpay (2,01)

_ o (exp( ”ZH) ~(exp—(v+1)).

g

Hence 5 (a1) = 0.

/wva dF /wvzaldF /wvzaldF /wvzaldF()

— [T~ v G da () + [ 6, and (B () - F ) =0 )
where
v —w, if 1 <z<exp U;L1>
%(Z,Oé ): !
' arlnz —1—w, ifexp(v;1)§z<oo
1

and
w=v+exp(—(v+1)) with —1<v < 0.

By Taylors theorem (11)
W2 (0 - ) [0 e dB () =02 [ (0 d (B ) - F ).
Then,
nY2 (T, — ay) = nl/? (/ (w; (z,a1)> dE, (z))l / (b (2,01)) d (Fn ()~ F (z)) .

It was shown in theorem 1.1 in Stute and Wang (1993) that for any measurable real function
¢, and under the condition [ |p|dF < oo, we get

/wﬁ, = /<de+op(1). (12)

From Stute (1995) under assumptions (8) and (9) we have

nl/Q/(—wv (z,01))d (Fn (2) — F(z)) 2>/\/'(0,02) )
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where
0% =Var (=, (z,a1) Ao (2) 6 + A1 (2) (1 =6) — X2 (2)).
Using (12) and (13) we get

nt/? (T, — aq) BN (O,U,wa) ,

= [ (v o) ar <z>)1 -

A simple calculate implies that w; (y,01) =Iny, and

where

/U’; (y,01)dF (y) = / y~ ' Inydy

v+1
e *1
1 o]
= gy ™ In i
Y ( v 041) -

2
_ o (4D) (”*) ,
aq

We showed that the conditions (8) and (9) are verified for ap < 1. So that

1 - .,
— [ 2 (x,00) N3 (2) Hy () da = |, (v —w)® a2 1y
aq

+f;op(%) (erlnzx —1— w)Q I Tt

The condition (9) can be written in the form

oo
C+/ oy Inz — 1 — w| (z*2F — 1)1/2 1 gy
exp(”;rll)
o] (6%) 7a171
NC+/ lorne —1—w|z 2 de,
exp(”;ll

where c is an arbitrary constant.
To complete the proof, it suffices to calculate the terms Ag, A\; and Ay in (13).
Compute A (2) :

We have
1-H(z)=(1-F(2)(1-G(2))

where F'(z) =1 — 27" and G (2) =1 — 27?2, therefore H (z) =1 — z7*~%1,

The subdivisions functions are equal to

o (2) P<zsm=0>=/1Z<1—F<y>>da<y>

a2 L —az—a
a1 + a2 (1 2 1)7

(13)
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and o
Hy(z) = —— (1 —z 02
1(2) a1+a2( z )
then
# dﬁo (CL‘) as
= —_— = . 14
Ao (2) exp(/1 = H (1) z (14)
To calculate A (z) there are two cases:
1
1°) If exp(v i ) < z < 00, then
aq
A1 (2) =2 [agInz — W]
= )\11 (Z) ,
1
2°) If1<z< exp(v * ), then
aq
z%2
M (2) = 22 (0= w) [1 = 2 exp (= (0 + 1)]
a1
v+1
+ A1 (eXp ( >> =: A2 (2)
aq
where
1 1
A1 (exp(v+ ))-[v+1w}exp< a2>
aq 1
Therefore
1
A1 (2), if z > exp <H> ,
M (2) = o /) (15)
A2 (2), if 1 <z <exp(—).
aq
Calculate \; (2) :
We have
N (2) = / /wv (2,01) o (&) dFfy () | — o) _
oy (1-H (y))
z dH, (y
:/ o (y) o)
1 (1—H(y))
where

D (y) = /OO Uy (2, a1) Ao (2) dH, (z).

Compute @ (y) :
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_ . v+1
P (y) =y (1lny —w) if exp(——) <2 <00
1
P (y) = — Y o —exp— 1
By ) = Sy —e— (0 D) oL
(o1 —w)exp— ((v+1) a
1°) If z > exp (U + 1) then
aq
oxo(52) :
dH,
@)= [ ey R
1 (1—-H(y))
z dH,
o 0
exp(%) (1 -H (y))
= o1 + A2 (2).
Firstly
o(22)
A21 = Dy (y) ary™ Ty
1
—w v+1
= <—1+exp( a2)> + CY,
Qaq 1
where
Q9 —
2 (v-wr1- Y epl- (04 1)
X (—1 + exp (a1 + az))
Similarly
# dH,
Aos (2) :/ (v) 0 (y) .
exp(”+1) (]- -H (y))
1

1
2°) Iflgzgexp<v+ )then
o

n ()= [ “0,() ST o)

= e e )
<J(o-er1- =) ew - @+ )
o (2).
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Then
1
)\21—‘1-)\22(2), if zZ > exp (UJ’_ >,
A2s (2), if 1 <z<exp(—).
(63}
We conclude, from (14), (15), (16) and (13) that
Var((w—arlnz 4+ 1) 2%26 4+ A1 (2) (1 — ) 1
~ (ar + Aaz (2))) it 2> exp( LF
0_2 — 21 ’ ft oy ’
. v+1
Var ((w—v) 204+ A2 (2) (1 —39) — A3 (2)), if 1<z<exp .
ai
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