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Abstract. The aim of our paper is to present an exhaustive study of the estimation of first
order autoregressive models with exponential white noise under innovation contamination.
Some theoretical aspects and Monte Carlo results are presented in the study of the stability
of this estimator when the model is contaminated. Using the methodology of Andẽl (1988)
based on the mean stationarity of the process, we prove that the maximum likelihood es-
timator of the parameter is asymptotically stable with respect to the bias and the mean
square error. Also, some results of the small sample case are obtained.

Résumé. Le but de ce travail porte sur l’estimation d’un modèle autorègressif ayant un bruit
exponentiel contaminé. En utilisant la mthode d’approximation d’Andẽl (1988) base sur la
stationnarit en moyenne du processus, nous prouvons, moyennant des rsultats analytiques
et numriques, que le biais et l’cart quadratique moyen de l’estimateur du maximum de
vraisemblance du paramtre sont asymptotiquement stables.
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1. The model

Consider the first order autoregressive process of the form

Xt = ρXt−1 + εt, t = 0, 1, ...., n. (1)
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Where the εt’s are independently distributed according to an exponential distribution
Exp(1), i.e., the density of εt is fεt(y) = e−y with y > 0. This model is useful for modeling a
wide range of phenomena which do not allow negative values such as water quality analysis
and hydrology (see, for example, Gaver and Lewis, 1980). Many authors have studied this
model. Bell and Smith (1986) studied the estimating and testing problem on ρ. They proved
almost sure consistency for the maximum likelihood estimator (MLE) of ρ whereas Davis
and McCormick (1989) found the limiting distribution. Turkman (1990) proposed a bayesian
estimator of ρ for the same model. This work was generalized by Fellag and Ibazizen (2003).
Also, Fellag and Ibazizen (2001) presented some results concerning the bias of the MLE
when the innovations are distributed according to the exponential power distribution.

Nielsen and Shephard (2003) derived the exact distribution of the maximum likelihood
estimator of a first-order linear autoregression with an exponential disturbance term. Also,
they proved that this estimator is consistent. However, the authors affirmed that, in practice,
this type of model has some significant disadvantages for the estimator of ρ, may be very
sensitive to small amounts of mismeasurement.

Now, assume that 0 ≤ ρ ≤ 1 and all what we observe is a segment of the process

X1, X2, ..., Xn, n fixed (2)

with ρ unknown and is to be estimated.

Andẽl (1988), in order to obtain the mean stationarity of the process, we assume that X0 is
distributed according to Exp(1− ρ). The maximum likelihood estimator for ρ is

ρ̂ = min
2≤t≤n

(Xt/Xt−1) = ρ+ min
2≤t≤n

εt
Xt−1

. (3)

In Andẽl and Zvãra (1988), tables of the bias and variance of ρ̂ are given using numerical
approximations. Moreover, Andẽl (1988) considered the following modification. Since the
process is stationary with mean m = 1/(1−ρ), he proposed to substitute m for Xt−1 in (3).
Then the estimator becomes

ρ̂∗ = ρ+
1

m
min

2≤t≤n
εt. (4)

Andẽl (1988) found then the distribution for this new modified estimator of ρ. Consistency
results for higher-order processes are given by Andẽl (1988) and An and Huang (1993).

The problem of contamination in this kind of models can be considered in many ways. Fellag
(2001) studied the behavior of the MLE under innovation outlier contamination.

In this paper, we propose a theoretical approximation of the bias and the mean square error
(MSE) according to Andẽl’s methodology . Also, we prove, using Monte carlo study that this
approximation is satisfactory. Then, this allows us to present some results concerning the
robustness of the bias and the MSE of ρ̂∗ when the innovations are contaminated according
to the model of Kale and Sinha (1969). Notice that, when a contaminant occur in the
distribution of the white noise, all the future of the process is deviated. Then, if the estimator
is influenced by this outlier, the estimation of the parameter can become useless.
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This paper is outlined as follows: the second section presents the method of Andẽl applied
to the exponential model. In the third section, the approximations of the bias and the MSE
in the contaminated model are presented. In this section one can remark the validity of this
approximation. An exhaustive numerical study is presented in the fourth section.

2. Exponential case

Let B(ρ) and MSE(ρ) be the bias and the mean squared error of the modified estimator of
Andẽl ρ̂∗ in model (1) respectively.

So, we have

B(ρ) = E(ρ̂∗ − ρ) = E(ρ̂∗)− ρ (5)

and,

MSE(ρ) = B(ρ)2 + V ar(ρ̂∗ − ρ). (6)

Therefore, in order to obtain the formulas of the bias and the MSE in the exponential case,
we need to know the distribution of ρ̂∗ − ρ. We proceed as follows,

p[(ρ̂∗ − ρ) < y] = 1− p[(ρ̂∗ − ρ) > y] = 1− p
[(

min
2≤t≤n

εt
m

)
> y

]
,

p[(ρ̂∗ − ρ) < y] = 1− p
[(

min
2≤t≤n

εt

)
> ym

]
= 1− exp{−ym(n− 1)}. (7)

Consequently, let G be the distribution of Y = (ρ̂∗− ρ) which will be given by the following
formula,

G(y) =

{
1− exp{−ym(n− 1)} y > 0
0 else.

So (ρ̂∗−ρ) follows an exponential distribution with parameter λ = m(n− 1), then the value
of the bias is

B(ρ) =
1− ρ
n− 1

. (8)

Since the variance of (ρ̂∗ − ρ) is equal to
(

1−ρ
n−1

)2
, we can obtain, from the formula (6), the

value of the MSE given by

MSE(ρ) = 2

(
1− ρ
n− 1

)2

. (9)

3. Contaminated exponential case

Consider the contaminated model (Kale and Sinha (1969))

Xt = ρXt−1 + εt, t = 0, 1, ...., n. (10)

such that {
εt ∼ Exp(1), ∀t 6= k, t = 0, 1, ...., n.
εt ∼ Exp( 1

α ), if t = k
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where 0 < α ≤ 1. Let be the ρ̃ the modified estimator of ρ̂∗ obtained in the model (10). It
means that

ρ̃− ρ = min

(
ε2

E(X1)
,

ε3
E(X2)

, ....,
εk−1

E(Xk−2)
,

εk
E(Xk−1)

,
εk+1

E(Xk)
, ...,

εn
E(Xn−1)

)
.

Then, the bias and the MSE of ρ̃ will be given by the following proposition.

Proposition 1. In the model (10), the exact bias of ρ̃ is equal to

B̃(ρ) =
α

α2(1 + ρm(1− ρn−k−1)) + αm[(n− 3 + ρ)− ρ(1− ρn−k−1)] +m
(11)

and the mean squared error is

M̃SE(ρ) = 2

[
α

α2(1 + ρm(1− ρn−k−1)) + αm[(n− 3 + ρ)− ρ(1− ρn−k−1)] +m

]2
(12)

such that,

m =
1

1− ρ
.

Proof. First, we need the distribution of (ρ̃− ρ),

P [ ( ρ̃− ρ) < x] = 1− P [(ρ̃− ρ) > x]

=

[
min

(
ε2

E(X1)
,

ε3
E(X2)

, ...,
εk−1

E(Xk−2)
,

εk
E(Xk−1)

,
εk+1

E(Xk)
, ...,

εn
E(Xn−1)

)
> x

]
= 1− exp

{
−x
(
E(X1) + E(X2) + ...+ E(Xk−2) +

E(Xk−1)

α
+ E(Xk) + ...+ E(Xn−1)

)}
.

Therefore, the distribution of (ρ̃− ρ) is

(ρ̃− ρ) ∼ exp

[
m(k − 2) +m/α+ ρm+ α+

n−1∑
t=k+1

θt

]
,

with

θt = ρt−k+1m+

t−k−1∑
i=0

ρi + ρt−kα.

And consequently the bias of the contaminated estimator is given by

B̃(ρ) =
α

α2(1 + ρm(1− ρn−k−1)) + αm[(n− 3 + ρ)− ρ(1− ρn−k−1)] +m

and the mean squared error is

M̃SE(ρ) = 2

[
α

α2(1 + ρm(1− ρn−k−1)) + αm[(n− 3 + ρ)− ρ(1− ρn−k−1)] +m

]2
This completes the proof.
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The Table 1 compares the theoretical approximation of the bias (formula (11)) and the
simulated bias of the ML estimator ρ̂, as well as the values of the theoretical MSE (formula
(12)) and of the simulated MSE of the ML estimator ρ̂. Then, some values are proposed for
n = 20, 100, 500, α = 0.1, 0.5, 0.9, 1.0 and ρ = 0.2, 0.6, 0.8. We assume that the contaminant
occurs at a specified time, say k = [n/2] where [m] means the integer part of the number m.
One can note that α = 1 represents the noncontaminated case.

Surprisingly, we notice that the values given by the formulas (11) and (12) are very similar
to the simulated values of maximum likelihood estimator ρ̂ based on 1.000.000 repetitions.
Then, one can say that the formulas (11) and (12) can be considered as good approximations
of the bias and the MSE of the MLE. That’s why, throughout the remainder of this paper,
we will use these formulas only.

Moreover, in all our simulations and computations, we noticed that the position of the
contaminant has no effect on the values of the bias and MSE as given in the following Table
2 obtained with n = 100.

In order to illustrate graphically the behavior of the bias and the MSE of the modified
estimator of ρ when α varies, the following figures are given. The figures 1 and 2 present the
variation of the approximate bias and the approximate MSE for n = 20, 50, 250 respectively.

Fig. 1. Variation of the approximate bias with α

4. Numerical study

Now, we propose to study the stability of the estimator of ρ using the measure of robustness
introduced by Zieliñski (1977) as follows: We consider the statistical model with exponential
white noise denoted by

Mα = (IR+;B+;Pα)
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n ρ α Approximate bias simulated bias Approximate MSE simulated MSE

0.1 0.0295 0.0306 0.0017 0.0019
0.2 0.5 0.0410 0.0394 0.0034 0.0028

0.9 0.0421 0.0390 0.0035 0.0030
1.0 0.0421 0.0404 0.0035 0.0031
0.1 0.0148 0.0153 0.4355*10−3 0.4908*10−3

20 0.6 0.5 0.0205 0.0202 0.8413*10−3 0.7507*10−3

0.9 0.0210 0.0197 0.8853*10−3 0.7671*10−3

1.0 0.0211 0.0199 0.8864*10−3 0.7647*10−3

0.1 0.0074 0.0081 0.1082*10−3 0.1454*10−3

0.8 0.5 0.0102 0.0105 0.2092*10−3 0.2093*10−3

0.9 0.0105 0.0102 0.2211*10−3 0.2151*10−3

1.0 0.0105 0.0103 0.2216*10−3 0.2167*10−3

0.1 0.0075 0.0077 0.1116*10−3 0.1150*10−3

0.2 0.5 0.0080 0.0076 0.1293*10−3 0.1153*10−3

0.9 0.0081 0.0082 0.1306*10−3 0.1388*10−3

1.0 0.0081 0.0081 0.1306*10−3 0.1314*10−3

0.1 0.0037 0.0039 0.2790*10−4 0.3001*10−4

100 0.6 0.5 0.0040 0.0038 0.3232*10−4 0.2817*10−4

0.9 0.0040 0.0040 0.3264*10−4 0.3306*10−4

1.0 0.0040 0.0040 0.3265*10−4 0.3152*10−4

0.1 0.0019 0.0019 0.6974*10−5 0.7408*10−5

0.8 0.5 0.0020 0.0019 0.8081*10−5 0.7396*10−5

0.9 0.0020 0.0020 0.8161*10−5 0.8032*10−5

1.0 0.0020 0.0020 0.8162*10−5 0.7826*10−5

0.1 0.0016 0.0015 0.4978*10−5 0.4632*10−5

0.2 0.5 0.0016 0.0016 0.5130*10−5 0.4999*10−5

0.9 0.0016 0.0015 0.5140*10−5 0.4645*10−5

1.0 0.0016 0.0015 0.5141*10−5 0.4935*10−5

0.1 0.7888*10−3 0.7704*10−3 0.1244*10−5 0.1153*10−5

500 0.6 0.5 0.8008*10−3 0.7917*10−3 0.1283*10−5 0.1263*10−5

0.9 0.8016*10−3 0.7635*10−3 0.1285*10−5 0.1149*10−5

1.0 0.8016*10−3 0.7665*10−3 0.1285*10−5 0.1203*10−5

0.1 0.3944*10−3 0.3828*10−3 0.3111*10−6 0.2810*10−6

0.8 0.5 0.4004*10−3 0.4000*10−3 0.3206*10−6 0.3273*10−6

0.9 0.4008*10−3 0.3850*10−3 0.3212*10−6 0.3005*10−6

1.0 0.4008*10−3 0.3894*10−3 0.3213*10−6 0.3259*10−6

Table 1. Approximate and simulated estimated values of the bias and MSE for ρ =
0.2, 0.6, 0.8

where Pα means that in the model (1), the kth innovation is distributed according to
Exp(1/α). Mα is called the supermodel. One can note that M1 is obtained when the errors
are noncontaminated. The measure of robustness is established with respect to the bias and
the MSE. The first measure is defined as follows :

rbias[α1,α2](ρ) = sup
α1≤α≤α2

B̃(ρ, α)− inf
α1≤α≤α2

B̃(ρ, α). (13)
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α = 0.2 α = 0.5 α = 0.8

ρ k Bias MSE Bias MSE Bias MSE

0.2 10 0.0078 0.1225*10−3 0.0080 0.1293*10−3 0.0081 0.1305*10−3

20 0.0078 0.1225*10−3 0.0080 0.1293*10−3 0.0081 0.1305*10−3

40 0.0078 0.1225*10−3 0.0080 0.1293*10−3 0.0081 0.1305*10−3

60 0.0078 0.1225*10−3 0.0080 0.1293*10−3 0.0081 0.1305*10−3

80 0.0078 0.1225*10−3 0.0080 0.1293*10−3 0.0081 0.1305*10−3

100 0.0078 0.1207*10−3 0.0080 0.1280*10−3 0.0081 0.1299*10−3

0.6 10 0.0039 0.3064*10−4 0.0040 0.3232*10−4 0.0040 0.3262*10−4

20 0.0039 0.3064*10−4 0.0040 0.3232*10−4 0.0040 0.0.3262*10−4

40 0.0039 0.3064*10−4 0.0040 0.3232*10−4 0.0040 0.0.3262*10−4

60 0.0039 0.3064*10−4 0.0040 0.3232*10−4 0.0040 0.0.3262*10−4

80 0.0039 0.3064*10−4 0.0040 0.3232*10−4 0.0040 0.0.3262*10−4

100 0.0039 0.3016*10−4 0.0040 0.3200*10−4 0.0040 0.0.3249*10−4

0.8 10 0.0020 0.7659*10−5 0.0020 0.8081*10−5 0.0020 0.8154*10−5

20 0.0020 0.7659*10−5 0.0020 0.8081*10−5 0.0020 0.8154*10−5

40 0.0020 0.7659*10−5 0.0020 0.8081*10−5 0.0020 0.8154*10−5

60 0.0020 0.7659*10−5 0.0020 0.8081*10−5 0.0020 0.8154*10−5

80 0.0020 0.7658*10−5 0.0020 0.8080*10−5 0.0020 0.8154*10−5

100 0.0020 0.7541*10−5 0.0020 0.8000*10−5 0.0020 0.8121*10−5

Table 2. Variation of the approximate bias and the MSE for n = 100, α = 0.2 and ρ =
0.2, 0.6, 0.8

Fig. 2. Variation of the approximate MSE with α

This function is called ”bias robustness function”. In the same way, we define the second
measure called the ”MSE robustness function” as follows:

rmse[α1,α2](ρ) = sup
α1≤α≤α2

M̃SE(ρ, α)− inf
α1≤α≤α2

M̃SE(ρ, α). (14)

where 0 < α1 < α2 ≤ 1. The methodology consists in evaluating the maximum oscillation of
a given property of a statistic in the supermodel. To calculate the values of these functions,
one need the following properties.

Proposition 2. The approximate bias B̃(ρ, α) of ρ̂ is an increasing function of α when
0 < α < 1.
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Proof.

B̃(ρ, α) =
α

α2(1 + ρm(1− ρn−k−1)) + αm[(n− 3 + ρ)− ρ(1− ρn−k−1)] +m

The first derivative of B̃(ρ, α) according to α is

B̃′(ρ, α) =
∂B̃(ρ, α)

∂α
=

−α2(1 + ρm(1− ρn−k−1)) +m

[α2(1 + ρm(1− ρn−k−1)) + αm[(n− 3 + ρ)− ρ(1− ρn−k−1)] +m]2

We have

B̃′(ρ, α) =
∂B̃(ρ, α)

∂α
= 0⇐⇒ α′ =

−1√
1− ρn−k

, α” =
1√

1− ρn−k

such that −∞ < α′ < 0 < 1 < α” < +∞

B̃′(ρ, α) =
∂B̃(ρ, α)

∂α
≥ 0⇐⇒ α ∈ [α′, α”] ⊃ [0, 1]

Then, the bias is an increasing function of α in the interval [0,1].♦

Proposition 3. The approximate Mean Square Error M̃SE(ρ, α) of ρ̂ is an increasing func-
tion of α when 0 < α < 1.

Proof. The first derivative of M̃SE(ρ, α) according to α is

M̃SE′(ρ, α) =
∂M̃SE(ρ, α)

∂α
= 4B̃(ρ, α)B̃′(ρ, α)

Since B̃(ρ, α) > 0, when 0 < α < 1 (see Proposition 2), and because B̃(ρ, 0) = 0, so

B̃(ρ, α) > 0, with 0 < α < 1. Then

M̃SE′(ρ, α) =
∂M̃SE(ρ, α)

∂α
= 4B̃(ρ, α)B̃′(ρ, α) > 0

when 0 < α < 1. We conclude that M̃SE(ρ, α) is an increasing function of α in the interval
[0,1].

4.1. The robustness bias function.

We consider the approach of Zieliñski to study the stability of the bias and the MSE.

Following the Proposition 2,

inf
0≤α≤1

B̃(ρ, α) = B̃(ρ, 0) = 0,

sup
0≤α≤1

B̃(ρ, α) = B̃(ρ, 1) =
(1− ρ)

n− 1
.

Journal home page: www.jafristat.net



H. Fellag, L. Atil and C. Belkacem, Afrika Statistika, Vol. 9, 2014, pages 647–658. On the stability
of estimation of AR(1) coefficient in the presence of contaminated exponential innovations. 655

Then, the robustness bias function

rbias[0,1](ρ) =
1− ρ
n− 1

. (15)

We can notice that

lim
ρ→1

rbias[0,1](ρ) = 0,

lim
ρ→0

rbias[0,1](ρ) =
1

n− 1

and
lim

n→+∞
rbias[0,1](ρ) = 0.

According to the above remarks, one can say that the maximal oscillation of the bias robust-
ness function is 1/(n − 1) when the contaminant α varies from one to zero. This maximal
oscillation vanishes in the asymptotic case. Then, we can affirm that the estimator is asymp-
totically robust with respect to the bias.

4.2. The robustness MSE function.

Let be

M̃SE(ρ, α) =
2(1− ρ)2α2

[α2(1− ρn−k) + α(n− 3 + ρn−k) + 1]2
.

Following the Proposition 3,

inf
0≤α≤1

M̃SE(ρ, α) = M̃SE(ρ, 0) = 0,

sup
0≤α≤1

M̃SE(ρ, α) = M̃SE(ρ, 1) =
2(1− ρ)2

(n− 1)2
.

The robustness MSE function is then,

rmse[0,1](ρ) =
2(1− ρ)2

(n− 1)2
. (16)

The MSE robustness function presents the same properties than the bias robustness function.
So,

lim
ρ→1

rmse[0,1](ρ) = 0,

lim
ρ→0

rmse[0,1](ρ) =
2

(n− 1)2

and
lim

n→+∞
rmse[0,1](ρ) = 0.

Finally, the maximum likelihood estimator is asymptotically robust with respect to the bias
and MSE.
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ρ
n 0.2 0.4 0.6 0.8

20 0.410908 0.358888 0.291902 0.195695

50 0.165808 0.141448 0.112171 0.073497

500 0.015981 0.013571 0.010712 0.006985

Table 3. Values of αs for bias function and ε = 0.01

ρ
k n 0.2 0.4 0.6 0.8

20 0.001792 0.001795 0.001749 0.001594
(0.000295) (0.000220) (0.000141) (0.000062)

50 0.001288 0.001177 0.001023 0.0007858
(0.000023) (0.000015) (8.58*10−6) (3.04*10−6)

500 0.000173 0.000151 0.000124 0.000088
(1.05*10−6) (6.80*10−7) (3.66*10−7) (1.26*10−7)

Table 4. Values of the bias and MSE robustness function in the interval [αs,1]

4.3. Analysis of the results

If we observe carefully the variation of the bias and MSE, in the previous Figures 1 and 2,
including small sample case, one can remark that there is a possible suitable value αs ∈ [0, 1]
such that the bias and MSE are stable in the interval [αs, 1]. In the following, we propose to
calculate the value αs for the bias. We proceed as follows : for a fixed ρ, n and the position
of the contaminant k,

• Step 1: Compute B̃′(ρ, 1) where B̃′(ρ, α) represents the first derivative of the bias
according to α.
• Step 2: Choose a maximal variation ε, say ε = 0.01, of the bias.
• Step 3: Calculate ϕbias = |B̃′(ρ, α)− B̃′(ρ, 1)|.
• Step 4: Compute αs = min{α ∈ [0, 1] : ϕbias < ε}.

The analytic expression of ϕ(α) is

ϕbias(α) =

∣∣∣∣ −α2(1− ρ)(1− ρn−k) + (1− ρ)

[α2(1− ρn−k) + α(n− 3 + ρn−k) + 1]2
− (1− ρ)ρn−k

(n− 1)2

∣∣∣∣ (17)

The Table 3 presents some values of αs obtained, using numerical approximations, for ρ =

0.2, 0.4, 0.6, 0.8, n = 20, 50, 500. Without loss of generality, the position k of the contaminant
is chosen to be occurring at the position [n/2].
After these computations of αs, we obtain the values of the bias and MSE robustness func-
tions given in Table 4, the values of the MSE robustness function are in brackets.

It is easy to see that the robustness functions are very close to zero in the interval [αs, 1],
even for small sample cases. This can be considered as a nice property of the maximum
likelihood estimator of ρ under this kind of contamination.
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If we consider the robustness functions of the bias and MSE with respect to the parameter
ρ, the formulas (16) and (17) allow us to say that:

(i) The bias robustness function is equal to twice the square of the MSE robustness function,
for every ρ and every n. i.e

rmse[0,1](ρ) = 2 ∗ (rbias[0,1](ρ))2

(ii) The robustness function decreases when ρ grows from zero to one as given in the following
figure :

Fig. 3. Variation of the robustness functions of the bias with ρ

Then, for every sample size n, the maximal oscillation of the bias and the MSE for all the
values of ρ are

max
ρ∈[0,1]

rbias[0,1](ρ) = 1/(n− 1) and max
ρ∈[0,1]

rmse[0,1](ρ) = 1/(n− 1)2

5. Concluding remarks

In this paper, we studied the behavior of the MLE of a first-order autoregressive parameter
ρ under a kind contamination proposed by Kale and Sinha (1969) in the identically indepen-
dent distribution case. We proved that the methodology of Andẽl (1988) is valid under this
contaminated model. Finally, we showed that the MLE is asymtotically robust with respect
to the bias and MSE and is stable if the contaminant α varies between a suitable value αs
computed numerically and one, even in small sample case. To improve this work, one can
consider other types of contamination.
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