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Abstract. We consider a class of nonstationary time series defined by Yt = µt+
∑∞
k=0 Ct,kσt−kηt−k where {ηt; t ∈ Z}

is sequence of iid random variables with regularly varying tail probabilities, σt is a scale parameter and {Ct,k, t ∈
Z, k > 0} an infinite array of random variables identically distributed called weights. In this article, the extreme value
theory of {Yt} is studied. Under mild conditions, convergence results for a point process based on the moving averages
are proved.

Résumé. Nous considérons une classe de processus non stationnaires définis par Yt = µt +
∑∞
k=0 Ct,kσt−kηt−k où

{ηt; t ∈ Z} est une suite de variables aléatoires indépendantes et identiquement distribuées dont les queues de distri-
bution sont à variation régulière, σt est un paramètre d’échelle et {Ct,k, t ∈ Z, k > 0} une suite de variables de même
loi appelées poids. Nous montrons que le processus de Poisson basé sur la série non stationnaire converge vaguement.
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1. Introduction

Point processes play an important role in the study of extreme value theory of random sequences. Some extreme value
data, especially in environmental contexts, often exhibit some nonstationarities. To take into account these features,
it is necessary to understand the behavior of point processes based on nonstationary sequences. We quickly review the
salient facts of point process theory, for notation and background of point process theory, we follow Neveu [9]; see also
Kallenberg [7] and Resnick [12].

Let E be a state space taken to be a subset of compactified Euclidean space (such as Rd = [−∞; +∞]d). Let E be the
Borel σ-algebra generated by open sets. For x ∈ E and A ∈ E , define the measure εx on E by

εx(A) =

{
1, x ∈ A,
0, x /∈ A.

(1)

Let {xi, i ≥ 1} be a countable collection of (not necessarily distinct) point of the space E. A point measure mp is
defined to be a finite measure on relatively compact subsets of E of the form mp =

∑∞
i=1 εxi which is nonnegative

integer-valued. The class of point measures is denoted by Mp(E) and Mp(E) is the smallest σ-algebra making the
evaluation maps m→ m(F ) measurable where m ∈Mp(E) and F ∈ E .

Let C+
K be the set of all continuous, non-negative functions on the state E with compact support. If Nn ∈ Mp(E)

then Nn converges vaguely to N (Nn ⇒ N) if Nn(f) converges to N(f) for every f ∈ C+
K , where N(f) =

∫
fdN . A

Poisson process on (E, E) with mean measure µ is a point process N such that, for every A ∈ E , N(A) is a Poisson
random variable with mean measure µ(A). If A1, . . . , Ak are mutually independent sets then N(A1), . . . , N(Ak) are
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independent random variables. A Poisson process or a Poisson random measure with mean measure µ is denoted by
PRM(µ).

In this paper, we study the limit theory for extreme values of a class of nonstationary time series defined by the
following relations

Yt = µt +Xt, Xt =
∞∑
k=0

Ct,kηt−kσt−k (2)

where {ηt; t ∈ Z} is sequence of iid random variables with regularly varying tail probabilities, σt is a scale parameter
and {Ct,k, t ∈ Z, k > 0} an infinite array of random variables identically distributed called weights.
In recent years, modeling extremes of environmental time series has been the purpose of many investigations because
of its wide applicability to the analysis of phenomena such as extreme temperature, flood, storm winds and extreme
ozone concentrations. See Horowitz [6] who considered the following model for daily ozone maxima Yt:

log(Yt) = f(t) + ζt

where f(t) is a deterministic part, such as a seasonal component or trend, (ζt) is a normal stationary autoregressive
process. Ballerini and McCormick [1] studied the limit theory for processes of the form

Yt = f(t) + h(t)ζt

where h(.) is positive and periodic and {ζt} is a stationary process satisfying certain mixing conditions. Niu [10] studied
the limit theory for extreme values of a class of nonstationary time series with the following form

Yt = µt +Xt, Xt =

∞∑
k=0

ckηt−kσt−k

where σt is a non random positive constant, {ck} is a sequence of real constants and {ηt} is a sequence of iid random
variables with regularly varying tail probabilities.

In this paper, we are interested in a nonstationary moving average process with random coefficients. The object of the
paper is to study the extreme value theory of the nonstationary moving average process with random coefficients and
appears as a direct extension of the results of Niu [10].

The rest of this paper is organized as follows. Section 2 describes the model. Section 3 contains assumptions and main
results.

2. The model

Some extreme value data, especially in environmental contexts, often exhibit some stylized facts (see Coles, [2] and
Eastoe and Tawn, 2009):

– dependence on covariate effects
– short term dependence (storms for example)
– seasonality (due to the annual cycle in meteorology)
– long-trends (due to gradual climatic changes)
– other forms of non-stationarity (switching regime motivated by interventions of central banks in finance).

To take into account these facts, we introduce a class of nonstationary time series defined by the following relations

Yt = µt +Xt, Xt =

∞∑
k=0

Ct,kηt−kσt−k (3)

We may give an example of model (3) for, say, ground-level ozone data {Xt} defined by the following relation

Xt =

{
ϕ1Xt−1 + σ1tη

(1)
t , if Wt−δ > τ,

ϕ2Xt−1 + σ2tη
(2)
t , if Wt−δ ≤ τ,

(4)

where τ and ϕi are non random constants and with threshold variable Wt−δ.The sequences {ηit, i = 1, 2} are sequence
of iid random variables with regularly varying tail probabilities.
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The ground level ozone process has piecewise linear structure. It switches between two first order autoregressive process
according to meteorological conditions, including daily temperature, relative humidity, wind speed and direction, which
play an important role in determining the severity of ozone concentration.

In hydrological framework where the water level Xt is observed at a given location, Wt−δ could be interpreted as
threshold level upstream from that location and δ the delay (in terms of days, hours, for instance) for the raw wave
to reach that location.

– The dependence on covariates effects can also be modeled by considering the scale parameters σit, i = 1, 2 as a
nonlinear function of meteorological variables of the form

σit = exp

βi0 +
m∑
j=1

βijxtj

 .

– To allow for a seasonal component (annual for instance) in the variance, we could use

σit = exp

αi0 +
m∑
j=1

αij cos

(
2πjt

365

)
+ βij sin

(
2πjt

365

) .

– To allow for long trends due to gradual climatic changes, we could use µt = a0 + a1t.

We define I1t = 1{Wt−δ>τ}, I2t = 1− I1t. The model (4) can be written as

Xt = ϕ(t)Xt−1 + Zt (5)

where

ϕ(t) = ϕ1I1t + ϕ2I2t and Zt = σ1tη
(1)
t I1t + σ2tη

(2)
t I2t.

The equation (5) is a stochastic difference equation where the pairs (ϕ(t), Zt)t are sequences of independent and not
identically distributed R2-valued random variables. The solution of (5) can be written as

Xt =
∞∑
j=0

(
j−1∏
k=0

ϕ(t−k)

)
Zt−j . (6)

3. Assumptions and Main results

3.1. Preliminary results

The derivation of convergence results for point process based on non stationary sequences is far from trivial. For this,
firstly we give mixing conditions and secondly we establish a general and important result for extreme value theory of
non stationary process.

Let for each n ≥ 1, {Xn,i, i ≥ 1} be a nonstationary sequence of random elements of E.
Let T > 0 be fixed and C be the finite collection of functions

C = {h0, h1, . . . , hm, }

where h0, hi ∈ C+
K(E), hi ≤ 1, i = 1, . . . ,m. We say that the array {Xn,i, n ≥ 1 i ≥ 1} satisfies the condition D∗ if

for any disjoint intervals of integers I1 and I2 which are contained in 1, 2, . . . , [nT ] and separated by l, we have∣∣∣∣∣∣E
2∏
j=1

∏
i∈Ij

gi(Xn,i)−
2∏
j=1

E
∏
i∈Ij

gi(Xn,i)

∣∣∣∣∣∣ ≤ αn,l

where αn,l → 0 as n→ ∞, l = l(n) = o(n).

The condition D∗ has the following straightforward generalization. Let I1, I2, . . . , Ik be disjoint collections of integers
which are separated by at least l and such that

∪k
j=1 Ij ⊂ [1, nT ].
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Then ∣∣∣∣∣∣E
k∏
j=1

∏
i∈Ij

gi(Xn,i)−
k∏
j=1

E
∏
i∈Ij

gi(Xn,i)

∣∣∣∣∣∣ ≤ (k − 1)αn,l

where 1− gi ∈ C.

Now we can state convergence result for point processes based on nonstationary sequences under mixing conditions.
This is an extension of similar theorem for independent and identically random variables and stationary processes.
Our result provides the link between nonstationary processes and point process.

Theorem 1. Suppose that for each n ≥ 1, {Xn,i, i ≥ 1 } is a sequence (not necessarily stationary) of random elements
of E and that the array {Xn,i, i ≥ 1, n ≥ 1} satisfies the condition D∗. Further assume that there exists a Radon
measure ν on E such that

∞∑
j=1

εj/n(.)P{Xn,j ∈ .} → λ× ν (7)

and for any g ∈ C+
K(E), g ≤ 1,

lim sup
n→∞

∑
i,l∈Lj,k, i ̸=l

Eg(Xn,i)g(Xn,l) = o(k−1) uniformly in j (8)

where Lj,k = {(j − 1)pn + 1, ..., jpn} and pn =
[
n
k

]
. Then Nn =

∑∞
j=1 ε(j/n,Xn,j) converge in Mp([0,∞) × E) to N,

where the limit is a PRM on [0,∞)× E with mean measure λ× ν, where λ is Lebesgue measure on [0,∞).

Proof:
We prove weak convergence by showing Laplace functionals converge. We follow the same lines as Davis and Resnick
[3] and show that for any f ∈ C+

K([0,∞)× E),

E exp

{
−

∞∑
i=1

f(i/n,Xn,i)

}
→ exp

{
−
∫
[0,∞)×E

∫ (
1− e−f(t,x)

)
dtν(dx)

}
. (9)

We begin to show that for T > 0 and f ∈ C+
K(E) that

E exp

−
[nT ]∑
i=1

f(Xn,i)

→ exp

{
−T

∫
E

(
1− e−f(x)

)
ν(dx)

}
. (10)

For each n and k fixed, we consider a partition of the integers 1, 2, . . . , [nT ] into 2k consecutive blocks of size [[nT ]/k]−
l(n) and l(n), i.e.,

Ij = {(j − 1)rn + 1, . . . , jrn − l(n)} I∗j = {jrn − l(n) + 1, . . . , jrn}

and
Ik = {(k − 1)rn + 1, . . . , krn − l(n)} I∗k = {krn − l(n) + 1, . . . , [nT ]}

where rn = [[nT ]/k]. First, we split the following difference into three terms and show that each term goes to zero as
n→ ∞ : ∣∣∣∣∣∣E exp

−
[nT ]∑
i=1

f(Xn,i)

−
k∏
j=1

E exp

−
∑

i∈Ij∪I∗j

f(Xn,i)


∣∣∣∣∣∣

≤

∣∣∣∣∣∣E exp

−
[nT ]∑
i=1

f(Xn,i)

− E exp

−
k∑
j=1

∑
i∈Ij

f(Xn,i)


∣∣∣∣∣∣

+

∣∣∣∣∣∣E exp

−
k∑
j=1

∑
i∈Ij

f(Xn,i)

−
k∏
j=1

E exp

−
∑
i∈Ij

f(Xn,i)


∣∣∣∣∣∣

+

∣∣∣∣∣∣
k∏
j=1

E exp

−
∑
i∈Ij

f(Xn,i)

−
k∏
j=1

E exp

−
∑

i∈Ij∪I∗j

f(Xn,i)


∣∣∣∣∣∣
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= A1 +A2 +A3.

Step 1:

Using the mixing condition, we have A2 ≤ (k − 1)αn,l. Then A2 goes to zero as n→ ∞.

Step 2:

A1 =

∣∣∣∣∣∣E exp

−
[nT ]∑
i=1

f(Xn,i)

− E exp

−
k∑
j=1

∑
i∈Ij

f(Xn,i)


∣∣∣∣∣∣

=

∣∣∣∣∣∣E
[nT ]∏
i=1

exp−f(Xn,i)−
k∏
j=1

∏
i∈Ij

exp−f(Xn,i)

∣∣∣∣∣∣
Note that {1, 2, . . . , [nT ]} =

∪k
j=1 Ij ∪ I∗j . Using the following inequality∣∣∣∣∣

n∏
i=1

xi −
n∏
i=1

yi

∣∣∣∣∣ ≤
n∑
i=1

|xi − yi| , 0 ≤ xi, yi ≤ 1 i = 1, . . . , n

we have

A1 ≤ E
k∑
j=1

1− exp

−
∑
i∈I∗j

f(Xn,i)




≤
k∑
j=1

∑
i∈I∗j

∫ (
1− e−f(x)

)
P(Xn,i ∈ dx)

≤
k∑
j=1

∫ (
1− e−f(x)

)∑
i∈I∗j

P(Xn,i ∈ dx)

≤
k∑
j=1

∫ (
1− e−f(x)

) ∞∑
i=1

εi/n

(
jT

k
− c,

jT

k

)
P(Xn,i ∈ dx)

for all 0 < c < 1 since l(n) = o(n). Thus by (7)

A1 → ck

∫ (
1− e−f(x)

)
ν(dx) for all 0 < c < 1.

Therefore A1 converges to zero as n→ ∞.

Step 3:

A3 =

∣∣∣∣∣∣
k∏
j=1

E exp

−
∑
i∈Ij

f(Xn,i)

−
k∏
j=1

E exp

−
∑

i∈Ij∪I∗j

f(Xn,i)


∣∣∣∣∣∣

≤
k∑
j=1

∣∣∣∣∣∣E exp

−
∑
i∈Ij

f(Xn,i)

− E exp

−
∑

i∈Ij∪I∗j

f(Xn,i)


∣∣∣∣∣∣

≤
k∑
j=1

E

1−
∏
i∈I∗j

e−f(Xn,i)


≤

k∑
j=1

∑
i∈I∗j

E
(
1− e−f(Xn,i)

)
.

Using the same arguments as in Step 2, the right bound of the above inequality goes to zero as n→ ∞.

Step 4:

Now let us show that

k∏
j=1

E exp

−
∑

i∈Ij∪I∗j

f(Xn,i)

→ exp

{
−T

∫
E

(
1− e−f(x)

)
ν(dx)

}
. (11)
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Set yi = 1− e−f(Xn,i) and apply the following inequality

1−
∑

i∈Ij∪I∗j

yi ≤
∏

i∈Ij∪I∗j

(1− yi) ≤ 1−
∑

i∈Ij∪I∗j

yi +
∑

i<l∈Ij∪I∗j

yiyl 0 ≤ yi ≤ 1.

We have
1−

∑
i∈Ij∪I∗j

(
1− e−f(Xn,i)

)
≤

∏
i∈Ij∪I∗j

(
e−f(Xn,i)

)
≤ 1−

∑
i∈Ij∪I∗j

(
1− e−f(Xn,i)

)
+

∑
i<l∈Ij∪I∗j

(
1− e−f(Xn,i)

)(
1− e−f(Xn,l)

)
.

We first show that
E
∑

i∈Ij∪I∗j

(
1− e−f(Xn,i)

)
has the same limit as ∫ (

1− e−f(x)
) ∞∑
i=1

εi/n

[
(j − 1)T

k
,
jT

k

)
P(Xn,i ∈ dx).

It suffices to prove

B1 =

∞∑
i=1

εi/n

[
(j − 1)T

k
,
(j − 1)rn

n
+

1

n

)
P(Xn,i ∈ dx)

and

B2 =

∞∑
i=1

εi/n

[
jrn
n
,
jT

k

)
P(Xn,i ∈ dx)

go to zero. Indeed for all γ1 > 0 there exists N1 such that for all n ≥ N1,
∣∣∣ (j−1)rn

n + 1
n − (j−1)T

k

∣∣∣ ≤ γ1. Then

B1 ≤
∞∑
i=1

εi/n

[
(j − 1)T

k
,
(j − 1)T

k
+ γ1

)
P(Xn,i ∈ dx) → γ1ν(dx).

Using the same argument, we have for all γ2 > 0 there exists N2 such that for all n ≥ N2, B2 ≤ γ2ν(dx). Hence B1

and B2 tend to zero as n→ ∞. We can conclude that

E
∑

i∈Ij∪I∗j

(
1− e−f(Xn,i)

)
→ T

k

∫ (
1− e−f(x)

)
ν(dx) (12)

Secondly, from (7) and (8), we have

E
∑

i<l∈Ij∪I∗j

(
1− e−f(Xn,i)

)(
1− e−f(Xn,l)

)
=

∑
i<l∈Ij∪I∗j

E
(
1− e−f(Xn,i)

)(
1− e−f(Xn,l)

)
→ 0.

(13)

Combining (12) and (13), we get (11).

Following the same lines as in Davis and Resnick [3], let f ∈ C+
K([0,∞)) and suppose that the support of f is contained

in [0, T ]×K, K is a subset of E with ν(∂K). Given ε > 0, there exists a partition of [0, T ]

0 = a1 < b1 < a2 < b2 < . . . < am < bm = T

such that
m−1∑
j=1

(aj+1 − bj) ≤ ε/ν(K)

and
sup

t∈(aj ,bj ], x∈E
|f(bj , x)− f(t, x)| < εT−1/ν(K), j = 1, . . . ,m.
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Now, we split the following difference into four terms and show that each term goes to zero as n→ ∞:∣∣∣∣∣Eexp
(
−

∞∑
i=1

f(
i

n
,Xn,i)

)
− exp

{
−
∫
[0,∞)×E

∫ (
1− e−f(t,x)

)
dtν(dx)

}∣∣∣∣∣
≤

∣∣∣∣∣∣Eexp
(
−

∞∑
i=1

f(
i

n
,Xn,i)

)
− Eexp

−
m∑
j=1

∞∑
i=1

ε i
n
(aj , bj ]f(

i

n
,Xn,i)


∣∣∣∣∣∣

+

∣∣∣∣∣∣Eexp
−

m∑
j=1

∞∑
i=1

ε i
n
(aj , bj ]f(

i

n
,Xn,i)

− Eexp

−
m∑
j=1

∞∑
i=1

ε i
n
(aj , bj ]f(bj , Xn,i)


∣∣∣∣∣∣

+

∣∣∣∣∣∣Eexp
−

m∑
j=1

∞∑
i=1

ε i
n
(aj , bj ]f(bj , Xn,i)

−
m∏
j=1

Eexp

{
−

∞∑
i=1

ε i
n
(aj , bj ]f(bj , Xn,i)

}∣∣∣∣∣∣
+

∣∣∣∣∣∣
m∏
j=1

Eexp

{
−

∞∑
i=1

ε i
n
(aj , bj ]f(bj , Xn,i)

}
− exp

{
−
∫
[0,∞)×E

∫ (
1− e−f(t,x)

)
dtν(dx)

}∣∣∣∣∣∣
= C1 + C2 + C3 + C4.

First,

C1 ≤ E

1− exp

1− exp


m∑
j=1

∞∑
i=1

ε i
n
(aj , bj ]f(

i

n
,Xn,i)




≤ P

m−1∪
j=1

∪
i
n∈(bj ,aj+1]

Xn,i ∈ K


≤
m−1∑
j=1

∞∑
i=1

ε i
n
(bj , aj+1]P {Xn,i ∈ K} .

By (7), this last bound goes to

m−1∑
j=1

(aj+1 − bj) ν(K) ≤ ε.

C2 ≤
m∑
j=1

∞∑
i=1

ε i
n
(aj , bj ]E

(∣∣∣∣f( in ,Xn,i)− f(bj , Xn,i)

∣∣∣∣ IXn,i∈K

)
≤ ε

Tν(K)

m∑
j=1

∞∑
i=1

ε i
n
(aj , bj ]P {Xn,i ∈ K} .

This last term tends to εT−1

m∑
j=1

(bj − aj) ≤ ε. It is easy, using the mixing condition, that C3 ≤ (m− 1)αn,l(n).

We show that C4 goes to zero by combining Lemma 1 below and the same arguments as in Davis and Resnick [3].

Lemma 1. For all j

Eexp

{
−

∞∑
i=1

ε i
n
(aj , bj ]f(bj , Xn,i)

}
→ exp

{
−(bj − aj)

∫
E

(
1− e−f(bj ,x)

)
ν(dx)

}
. (14)

Proof :

The proof is similar to the proof of (10). Il suffices to split the interval [[nai], [nbi]] into 2k - consecutive blocks

Ij = {[nai] + (j − 1)rn, . . . , [nai] + jrn − l(n)− 1} I∗j = {[nai] + jrn − l(n), . . . , [nai] + jrn − 1}

for j = 1, . . . , k where rn = ([nbi] − [nai] + 1)/k. Note that we do not need the condition of stationarity as in Davis
and Resnick [3].
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3.2. Main results

To study the limit theorem for point processes based on the nonstationary time series (3), we will use Theorem 1 and
the following assumptions. We assume that the absolute value of each weight Ct,k has an upper endpoint ck defined
by

ck = sup{c : P(|Ct,k| ≤ c) < 1}, k = 1, 2, . . . .

Assume the following conditions hold:

H1− The sequence of random variables {ηt, t ∈ Z} is a sequence of independent, identically distributed (i.i.d) random
variables and satisfy the condition of regularly varying tail probabilities

P(|η1| > x) = x−αL(x), (15)

where α > 0 and L is a slowly varying function at infinity that is limt→∞
L(tx)
L(t) = 1, ∀x > 0 and tail balancing

condition,

lim
x→∞

P(η1 > x)

P(|η1| > x)
= π0, lim

x→∞

P(η1 < −x)
P(|η1| > x)

= 1− π0 (16)

where 0 < π0 ≤ 1. Let an be the 1− n−1 quantile of |η1| :

an = inf{x : P(|η1| ≤ x) ≥ 1− n−1}. (17)

The condition of regularly varying tail probabilities satisfied by the sequence of random variables {ηt, t ∈ Z} is
equivalent to vague convergence

nP(a−1
n η1 ∈ .) → ν(.), (18)

where ν has density ν(dx) = απ0x
−α−1dxI(0, ∞](x) + α(1− π0)(−x)−α−1dxI[−∞, 0)(x).

H2− The array {Ct,k, t ∈ Z, k ≥ 0} is independent of {ηt, t ∈ Z}.
H3− For each fixed m, the sequence {(Ct,0, . . . , Ct,m), t ∈ Z} is strongly mixing.
H4− For some δ > 0

∑∞
k=1 c

1−δ
k <∞ and

∑∞
k=1 σ

α
t−kc

δα
k <∞.

Furthermore we assume that for fixed k ≥ 0,

1

n

n∑
j=1

σαj−k → σα−k, as n→ ∞, (19)

where σ−k > 0. When k = 0, this assumption is required by Niu [10].

Now let
A

(m)
n,t = (a−1

n (σtηt, . . . , σt−mηt−m), (Ct,0, . . . , Ct,m)) (20)

and assume that the R∞-valued random elements Ct = {Ct,k, k ≥ 0} form the stationary sequence {Ct, t ≥ 1}.
Assume the R∞-valued random elements Vt = (Vt,0, Vt,1, . . .), t ∈ Z has the same distribution as C0.
It is known from Niu [10] that for the process (Xt) defined in (1),

Nn =
n∑
t=1

εa−1
n Xt

⇒
∞∑
t=1

∞∑
k=1

εckjt

in Mp([−∞,∞] \ {0}) where
∑∞
t=1 εjt is a PRM with density

µ(dx) = σα
(
π0αx

−α−1dxI(0,∞](x) + (1− π0)α(−x)−α−1dxI[−∞, 0)(x)
)
.

The main result of this section is formalized through the following theorem, which discusses the weak convergence of
the sequence of point processes based on (a−1

n Xk)k∈N to a function of a PRM.

Theorem 2. Suppose that the non stationary sequence (Xt) is given by (3). Assume that the conditions H1−H4 hold.
Then we have this convergence in Mp([−∞,∞] \ {0})

n∑
t=1

εa−1
n Xt

⇒
∞∑
t=1

∞∑
k=1

εjtVt,k
. (21)
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Proof

The random vectors A
(m)
n,t defined in (20) have the following properties:

– The sequence {A(m)
n,t , t ≥ 1} satisfies the mixing condition D∗, by H2 and H3.

– For each m, there exists a Radon measure µm on the product space E2m+2 = ([0,∞)× [−∞,∞] \ {0})2m+2 such
that

∞∑
j=1

εj/n(.)P{A
(m)
n,j ∈ .} → λ× µm.

It suffices to show that for any b > 0

∞∑
j=1

εj/n([0, b))P{A
(m)
n,j ∈ .} → bµm(.).

Notice that by H2 and the definition of an given in (17), we have

∞∑
j=1

εj/n([0, b))P{A
(m)
n,j ∈ ((dz0, . . . , dzm), (dx0, . . . , dxm))}

=

[nb]∑
j=1

P{a−1
n (σjηj , . . . , σj−mηj−m) ∈ (dz0, . . . , dzm), (Cj,0, . . . , Cj,m) ∈ (dx0, . . . , dxm)}

=

[nb]∑
j=1

P{a−1
n (σjηj , . . . , σj−mηj−m) ∈ (dz0, . . . , dzm)} × P{(Cj,0, . . . , Cj,m) ∈ (dx0, . . . , dxm)}

where [nb] denotes the integer part of nb. This last term has the same limit as

1

n

[nb]∑
j=1

m∑
k=0

σαj−kν(dzk)
m∏
l ̸=k

δ0(dzl)Fm(dx0, . . . , dxm)

which converges to

b

m∑
k=0

σα−kν(dzk)
∏
l ̸=k

δ0(dzl)Fm(dx0, . . . , dxm)

by (19), where Fm is the distribution function of {Ct,0, . . . , Ct,m}.
– For all g ∈ C+

K(Em+1 × [−∞,∞]m+1), we have

lim
m→∞

lim sup
n→∞

∑
i,l∈Lj,m, i ̸=l

Eg(A(m)
n,i )g(A

(m)
n,l ) = 0 (22)

where Lj,m = {(j − 1)pn + 1, ..., jpn} and pn =
[
n
m

]
. Actually, let K a compact subset of E1 and assume that g

has compact support contained in K1 = (K × [−∞,∞])m+1

Eg(A(m)
n,i )g(A

(m)
n,l ) ≤ P(a−1

n σiηi ∈ K, a−1
n σlηl ∈ K).

Since ηi and ηl are independent for all i ̸= l, we have∑
i,l∈Lj,m, i ̸=l

Eg(A(m)
n,i )g(A

(m)
n,l ) ≤

∑
i∈Lj,m

P(a−1
n σiηi ∈ K)

∑
l∈Lj,m

P(a−1
n σlηl ∈ K).

Using the same arguments as in the proof of Theorem 1, Step 4, it is easy to see that∑
i∈Lj,m

P(a−1
n σiηi ∈ K)

has the same limit as
∞∑
i=1

εi/n

[
(j − 1)

m
,
j

m

)
P(a−1

n σiηi ∈ K).

This last term tends to
1

m
µ(K), by Lemma 2.2 of Niu [10]. Therefore, (22) follows.
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Now we can apply Theorem 1 for the sequence {A(m)
n,t , t ≥ 1}

n∑
t=1

ε
(A

(m)
n,t )

⇒
∞∑
t=1

m∑
k=0

ε(jtek,Vt,0,...,Vt,m) (23)

in Mp(Em+1 × [−∞,∞]m+1) where Em+1 = [−∞,∞]m+1 \ {0}.
Now let Vt = (Ct,0Zt, . . . , Ct,mZt−m) and

gi,m(x0, . . . , xm, u0, . . . , um) =

{
xiui, if ui <∞,
0, otherwise,

gi,m is a continuous mapping from Em+1 × [−∞,∞]m+1 into [−∞,∞] \ {0}. By Proposition 3.2 of Davis and Resnick
[4], this induces a continuous mapping from Mp(Em+1 × [−∞,∞]m+1) into Mp([−∞,∞] \ {0}). Thus from (23) and
the continuous mapping Theorem, we get

n∑
t=1

εa−1
n Vt

⇒
∞∑
t=1

m∑
k=0

εjtVt,kek
.

An application of the continuous mapping Theorem gives
n∑
t=1

εa−1
n

∑m
k=0 Ct,kZt−k

⇒
∞∑
t=1

m∑
k=0

εjtVt,k
.

Recall that Xt =
∑∞
k=0 Ct,kZt−k. To establish (21), it suffices to show that

lim
m→∞

lim sup
n→∞

P

{∣∣∣∣∣
n∑
t=1

f

(
a−1
n

m∑
k=0

Ct,kZt−k

)
−

n∑
i=1

f
(
a−1
n Xt

)∣∣∣∣∣ > ζ

}
= 0 (24)

for all ζ > 0 and f ∈ C+
K(E1) (Resnick, 1987). Taking into account the support of f , for some θ > 0, this last probability

is bounded by

P

[∣∣∣∣∣
n∑
t=0

a−1
n

(
m∑
k=0

Ct,kZt−k

)
−

n∑
t=0

a−1
n

( ∞∑
k=0

Ct,kZt−k

)∣∣∣∣∣ > θ

]
≤ P

[∣∣∣∣∣
n∑
t=0

∞∑
k=m+1

a−1
n (Ct,kZt−k)

∣∣∣∣∣ > θ

]

≤ P

[
n∑
t=0

∞∑
k=m+1

|Ct,k|
∣∣a−1
n σt−kηt−k

∣∣ > θ

]

≤ P

[
n∑
t=0

∞∑
k=m+1

ck
∣∣a−1
n σt−kηt−k

∣∣ > θ

]

≤ P

[
n∑
t=0

∞∑
k=m+1

ck
∣∣a−1
n σt−kηt−k

∣∣ > ∞∑
k=m+1

ck
1−δθ

]

≤
∞∑

k=m+1

nP
[∣∣a−1

n σt−kηt−k
∣∣ > c−δk θ

]
.

By (18), (16) and H4, we obtain

nP
[
a−1
n |σt−kηk| > c−δk θ

]
= nP

[
|ηk| > anθσ

−1
t−kc

−δ
k

]
→ π−1

0 (θ |σt−k|−1
c−δk )−α.

Then

lim
n→∞

lim
m→∞

∞∑
k=m+1

nP
[∣∣a−1

n σt−kηt−k
∣∣ > c−δk θ

]
= lim
m→∞

π−1
0

∞∑
k=m+1

θ−ασαt−kc
δα
k .

Hence (24) follows, which ends the proof of the theorem.
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