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Introduction. The classical inequality of Hardy for smooth functions f ∈
C∞

0 (f ∈ R \ {0}):
∫

R

xsf2 ≤ 4

(s+ 1)2

∫

R

xs+2(f ′)2

for s 6= −1 can be generalized in various ways and provides a weighted version of
Poincaré’s inequality. The standard generalizations replace the weight xs with the
radial variable or the boundary defining function of a smooth domain, are reduced to
the one-dimensional case and are proved directly by partial integration, as far as the
weight stays smooth. Here we we replace the weight by a homogeneous polynomial
that is singular also away from the origin, so its zero set is a singular algebraic cone.
In this case no direct method of the preceding form is available: the rectilinearization
of such a set being non-trivial along its singularities. Specifically, singular algebraic
varities are rectilinearized under the process of ”resolution of singularities” then, their
singularities unfold and appear as ”normal crossings”. We follow this procedure to
the extent of ” reduction of multiplicity ” of an algebraic set and prove following
generalization.

Let P (x1, . . . , xn) be a homogeneous polynomial of degree d in n-real variables
belonging to the class PgH that we define in the next paragraph. Let V (P ) = {x ∈
Rn/P (x) = 0} be the algebraic set that it defines. We introduce the Hardy factors:

H1(P ) = P− 2
d , H2(P ) =

∣∣∣∣
∇P
P

∣∣∣∣
2

.

We prove the following generalized Hardy inequalities GHIi:

∫

Rn

Hi(P )f2 ≤ Ci(P )

∫

Rn

|∇f |2

for functions f ∈ C∞
0 (Rn \ V (P )). This inequality while it is elementary to prove

when the algebraic variety V (P ) is smooth away from the origin, it is rather cum-
bersome when the variety is singular. The above inequality may be viewed as direct
generalization of Hardy’s Here, we will consider the stratification of the algebraic va-
riety V (P ) by multiplicity and the inequality will be examined through the resolution
of singularities process. This provides a finite covering, in every chart of which the
algebraic set is reduced to normal crossings. The inequality is readily reduced to a
corresponding one for inhomogeneous polynomials.
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Theorem 0.1. Let P be a nonhomogeneous polynomial of degree d. Then there
is a constant c′1(P ) > 0, i = 1, 2 such that

∫

Rn

H1(P )f2 ≤ c′1(P )

h1∑

i=1

||∇if ||22.

If f ∈ PgH ,PgH being a class of polynomials that we define in the sequel, then we
have the following:

∫

Rn

H2(P )f2 ≤ c′1(P )

h2∑

i=1

||∇if ||22.

However, it is worthnoticing that we can refine the crude form of the preced-
ing inequality for an inhomogeneous polynomial of degree d, belonging in the class
described below; precisely there is a constant c3(P ) > 0 such that for functions
f ∈ C∞

0 (Rn \ V (P )) there holds:
∫

Rn

H1(P )f2 ≤ c3(P )

∫

Rn

|∇f |2 + (1 + |x|2)f2.

We present two applications of this inequality:
• We apply the inequality to a particular case of a problem that motivated the
study of these inequalities: the existence of an asymptotic expansion in powers
and logarithms of the distributional trace of the heat operator corresponding
to

Hc,α = −∆+
c

|P |α

for c ∈ C∞
0 (Rn) and small α > 0. The inequalities provide the required

estimates for the domain, closure and the Neumann series of a suitable power
of the resolvent of Hc,α. The existence of the asymptotic expansion follows,
in view of the singular asymptotics lemma [C1], from the well known theo-
rem of Bernshtein-Gelfand, [BG], for the meromorphic extension of integrals
containing complex powers of polynomials.

• We consider a smooth domain that approaches arbitrarily close a non-smooth
one: it is defined by the level sets of a polynomial. In this domain we com-
pare the growth of functions to the growth of the polynomial defining it.
This allows us to compare values of functions in the following manner: in a
smooth metric in a Euclidean domain represent the domains of given curva-
ture growth by the semialgebraic sets defined by specific polynomials. Then
we obtain estimates of the local growth of laplacian eignefunctions in terms
of the curvature growth. Here we prove the simple inequality that provides
the growth of integrals of functions is such semilagebraic domains.

The article begins with a review of the local reduction of an algebraic set to
normal crossings according to [BM1] with certain comments that adjust the process
with our purposes. In the sequel we prove the preceding theorem and its further
generalizations and then we proceed to the applications.

1. Local reduction of an algebraic set to normal crossings. We commence
by reviewing the necessary definitions and results on blowing up and local desingu-
larization of an algebraic set with guide essentially the presentation in [BM1].
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1.1. Standard constructions.

1.1.1. Blown up space. In the various steps we will use conical partitions of
unity covering the euclidean ball centered at the origin

B0,ǫ,n = {x ∈ Rn/|x|2 := x21 + · · ·x2n < ǫ}
subordinate to the cones

Cα;j = {x ∈ Rn/x2j >
1

1 + α
|x|2}

for α > 1. Let Pn denote the n-dimensional projective space of lines through the
origin in Rn+1. Let B∗

0,ǫ,n+1 = B0,ǫ,n+1 \ {0} be the punctured euclidean ball around
the origin in Rn+1, set

B̂0,ǫ,n+1 = {(x, l) ∈ B∗
0,ǫ,n+1 ×Pn : x ∈ l}

and let σ : B̂0,ǫ,n+1 → B0,ǫ,n+1 (x, l) 7→ x. Then σ is proper, restricts to a homeo-
morphism over B∗

0,ǫ,n+1, and σ−1(0) = Pn. This mapping is called the blowing up
of B0,ǫ,n with center {0}. In a natural way, B∗

0,ǫ,n+1 is an algebraic submanifold of
B0,ǫ,n ×Pn:

Coordinates. Let (x1, . . . , xn+1) denote the affine coordinates in Rn+1 and let
t = [t1 : ... : tn+1] denote the homogeneous coordinates of Rn. Then

B̂0,ǫ,n+1 = {(x, t) ∈ B0,ǫ,n+1 ×Pn : x ∧ t = 0}.

Furthermore B̂0,ǫ,n is covered for α > 1 by the conical charts j = 1, . . . , n+ 1:

Ĉα:j = {(x, t) ∈ B̂0,ǫ,n+1 : t2i >
1

1 + α
|t|2},

with coordinates (x1,i, ..., xn+1,i), for each i, where

xii = xi, xji =
tj
ti
, i 6= j

with respect to these local coordinates, σ is given by

xi = xii xj = xiixji, i 6= j.

Let n > c and Bn−c
ǫ (0) then the mapping σ × id : B̂0,ǫ,c ×B0,ǫ,c → Bc

ǫ (0)×Bn−c
ǫ (0)

is called the blowing up of Bc
ǫ (0) × Bn−c

ǫ (0) with center C := {0} × Bn−c
ǫ (0) ⊂ Rn

and it is denoted by BlC(B
c
ǫ (0)×Bn−c

ǫ (0)) = B̂0,ǫ,c ×Bn−c
ǫ .

1.1.2. Blown up volumes and vector fields. Let the usual volume in Rn be
denoted by vn, then under blow up with center of codimension c > 1 considered in
the i-th chart it pulls back the volume

vn = xc−1
i v̂n.

It is noteworthy the way that the vector fields that generate dilation transform under
blowing up or down. Let then x = σ(y) and

Dxi = xi
∂

∂xi
, Dyi = yi

∂

∂yi
,

E0 =
∑

i

xi
∂

∂xi
, E1 =

∑

i

yi
∂

∂yi
,
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then in the k-th chart we have the formulas:

i 6= k : Dxi = Dyi,

Dk1 = E0,

E1 = 2E0 −Dxk
.

Notice theat the Euler vector field E is expressed in the radial variable r = |x| as

E = r∂r = Dr.

We will consider mappings obtained as a finite sequence of local blow-ups ; i.e.,
πN = σ1 ◦ ... ◦ σN , where for each i = 1, ..., r, σi : V̂i → Vi is a local blow up with
center Ci = {0} × B0,ǫ,n−c of the preceding form with V̂i = B̂0,ǫ,ci × B0,ǫ,n−ci and
Vi = B0,ǫ,ci ×B0,ǫ,n−ci.

The conical atlas partition of unity. We conclude with the partition of unity of
the punctured ball B∗

0,ǫ,n+1 subordinate to its conical covering. Let ϕ ∈ C∞
0 (R+)

with supp(ϕ) ⊂ [0, 1 + ε), φ ≡ 1 in [0, 1] then set

χj(x) = ϕ

(
r√

1 + α|xj |

)
.

We compute its derivatives:

|∇ℓχj | ≤
1

rℓ

∑

i1+···+iℓ=ℓ

|ϕi1 | · · · |ϕil | ≤ Cℓ

rℓ
.

This formula is very important because in the end of the blow-up process we encounter
the derivatives of the localizations functions. These will require the further application
of the one dimensional Hardy inequality, i.e. in the radial variable.

1.2. The local desingularization algorithm. Here we ’ll follow the proof
of the local desingularization theorem in algorithm devised in [BM] and developed
in the conventions that we need for the inequalities. It consists of two steps the
determination of the center and the reduction of the multiplicity.

Theorem 1.1. Let P : Rn → R be a regular function. Then there is a countable
collection of regular mappings πr :Wr → Rn such that:

1. Each πr is the composition of a finite sequence of local blows up (with smooth
centers)

2. There is a locally finite covering Ur of Rn such that πr(Wr) ⊂ Ur for all r.
3. If K is a compact subset of Rn, there are compact subsets Mr ⊂ Wr such

that K =
⋃

r πr(Mr). The union is finite by (2).
4. For each r, P ◦ πr is locally normal crossings.

Determination of the center. Let a ∈ V (P ),mboxorda(P ) =: m and choose
coordinates x = (x1, . . . , xn) such that x(a) = 0 and, ina(P )(0, ..., 0, xn) 6= 0
the lowest degree homogeneous component of the polynomial. Moreover denote
by x̃ = (x1, ..., xn−1) and let hj = V (xj) be the coordinate hyperplanes. Since
(∂mxn

P )(x) 6= 0 then

(∂m−1
xn

P )(x) ∼ xn −H(x̃) =: x′n,
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for some regular function H . Then we perform the division

P (x) = Q(x)xmn +
∑

0≤k<m

ck(x̃)x
k
n.

Moreover, possibly after translation, we may assume that cm−1(x̃) = 0 and also
observe that each ck(x̃) = ∂kxn

|hnP, x̃n ∼ ∂m−1
xn

P.

Let a ∈ hn then for 0 ≤ k < ordaP = µP (a) introduce the sets

P(a) := {(P, ordaP )}, CP (a) := {(ck, µP − k)}.
The union of stata of multiplicity at least µP (a)(= m) is denoted by

SP(a) := {x : ordxP ≥ µP (a)}
as well as that

SCP (a) := {x : ordxg ≥ p, forall g ∈ CP (α)}.
First we will use an induction on n (and on m), to arrive at the particular instance
when for all k

(∗) ck(x̃) = (x̃γ)m−kc∗k(x̃)

while γ ∈ 1
m!N

n−1 and for some k0, c
∗
k0
(0) 6= 0. In order to handle at once the various

ck’s we define the auxiliary function

AP (x̃) := product of all non zero c
m!

m−k

k and all their nonzero differences.

The inductive assumption asserts that there is already a uniformization for AP :

AP ∼ xa1
1 ...x

an−1

n−1 .

This implies in first place that each nonzero ck(x̃) = (x̃Ωk )c∗k(x̃) with Ωk ∈ Nn−1 and

ck(0)
∗ 6= 0. Moreover each nonzero c

m!
m−k

k − c
m!

m−j

j ∼ x̃Λij , with Λij ∈ (Nn−1)∗. The
following elementary lemma suggests:

Lemma 1.2. Let x = (x1, ..., xn). If a(x)x
α−b(x)xβ = c(x)xγ and a(0)b(0)c(0) 6=

0 then either α ∈ β +Nn or β ∈ α+Nn

The lemma implies that the set E := { 1
m−kΩk} ⊂ 1

m!N
n−1 is totally ordered with

the induced partial ordering from Nn−1 and therefore there exist a ρ = min(E) ∈
1
m!N

n−1. Therefore we are reduced to the case (*) with γ = ρ ∈ 1
m!N

n−1. We show
that the special case (*) implies reduction in multiplicity by blowing up succesively
the components of SP(a).

SP(a) = SCP (a) = {x : xn = 0, ordx(x̃
γ) ≥ 1} =

⋃

I

ZI

where ZI =
⋂

i∈I(hi ∩ hn) and I ⊂ {1, ..., n− 1}, card(I) = νm − 1 minimal such that∑
i∈I γi ≥ 1 or equivalently that 0 ≤ ∑i∈I γi − 1 < γk for all k ∈ I. Actually, these

serve as centers of the desingularizing blowups C = ZI , for all k we have that

ordCck ≥ m− k > 0,

where ordCck = infx∈C

(
ordxck

)
.
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Reduction of the multiplicity. Let a ∈ V (P ) and choose coordinates such that
x(a) = 0, I = (1, . . . , νm − 1). Let further

Cα;ǫ;j,n,νm = (Cα;j,n ∩B0,ǫ,νm)×B0,ǫ,n−νm

Ĉα;ǫ;n,νm =
(
Ĉα;ǫ;j,n,νm ∩B0,ǫ,νm

)
×B0,ǫ,n−νm

and the blowup

σ : B̂0,ǫ,n−νm ×B0,ǫ,n−νm → B̂0,ǫ,νm ×B0,ǫ,n−νm

at β ∈ σ−1(0). We calculate in these conical charts:

• Let β ∈ Ĉα;ǫ;n,n,νm then the strict transform σ|Cn maps as follows

xn = yn, xj = yjyn, j = 1, . . . , νm − 1, xs = ys, n > s > νm.

Its effect on the polynomial is

(σ∗(χnP ))(y) = ymn P
1
n(y) = ymn [(σ∗Q)(y) +

∑

0≤k<m

(σ∗ck)(y)y
k−m
n ]

and we observe that Q(σ(β)) 6= 0 while
(∑

0≤k<m ck(y)y
k−m
n

)
(σ(β)) = 0 and

hence P 1
n(β) 6= 0.

• In the conical sector Ĉα;ǫ;j,n,νm , j ∈ I the strict transform σ maps as follows

xn = yn, yj , xj = yj, xk = ykyj , j 6= k = 1, . . . , c− 1, xs = ys, s > n.

Then the polynomial becomes

(σ∗(χjP ))(y) = ymj P
1
j (y) = ymj

(
(σ∗Q(y))ymn +

∑

0≤k<m

(σ∗ck)(ỹ)y
k−m
j ykn

)

since in this sector

x̃ = σ(ỹ), ỹ = (y1, ..., yn−1).

Observe that ∂m−1
yn

P 1
j ∼ yn since Q(α) 6= 0 while h′n = σ−1(hn) = {yn = 0}

and cm−1 = 0 identically.
We conclude that for all points on the exceptional divisor the order is not big-

ger than m, β ∈ σ−1(C), ordβP
1 ≤ d if P 1 denotes the resulting regular function.

Therefore assume that ordβP
1 = m iff β ∈ hn

⋂{ordyC′
k ≥ m− k} where

c′k = yk−m
j (σ∗ck)(ỹ) = (ỹγ

′

)m−k.(c∗k(σ(ỹ))

and ỹγ
′

:= y−1
j .(x̃γ ◦ σ) and there is k0, (c

∗
k0
)(σ(β)) 6= 0 by the particular case (*).

Hence, γ′i = γi, if i 6= j and γ′j =
∑

i∈I γi − 1 therefore 1 ≤ |γ′| < |γ| and since

|γ|, |γ′| ∈ 1
m!N

n−1 it follows that after no more than |γ|m! blows up of this type
multiplicity has to decrease.

Remarks.

• Let P ∈ R[x1, . . . , xn] and V (P ) := V the variety it defines. Set then

P k(x) =
∑

j1+···+jn=k

( ∂kP

∂xj11 . . . ∂xjnn
(x)
)2
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and consequently Vk := V (Pk) The stratification by multiplicity we ’ll use
consists of the strata that are semialgebraic sets:

Σk = (Vk \ Vk+1) ∩ V.

If P is homogeneous then by Euler’s theorem Σk+1 ⊂ Σk while the implicit
function theorem asserts that Σk are smooth.

• Let I(V ) be the sheaf of germs of regular functions on Rn that vanish on V .
Let x ∈ Σk then set

Lx,k = {ξ ∈ Rn : P ∈ Ix(V ),
∑

j

ξj
∂P

∂xj
∈ Ix(V )}

and also that Ex,k = L⊥
x,k.

• The class PgH of polynomials consists of those P such that when codimΣk = 2
for some k then

{(x+ Ex,k) ∩ Vx} \ {x} 6= ∅

where Vx is the germ of V at x.
• If P ≥ 0 everywhere as well as that P1, . . . , Pp ≥ 0 everywhere and it is true
that

P =
∑

j

Pj

then V (P ) is not a hypersurface. Then the same procedure with more com-
plicated details brings the set to normal crossings, cf [BM]. However, if we
assume that each of the Pj ’s belongs to the class H then we can proceed
without appealing to the desingularization for codimension> 1.

• We would assume that P is irreducible otherwise split it in its factors and
use Young’s inequality to deal with its factor separately.

The inequalities of Lojasiewicz. Through the paper certain distances from al-
gebraic sets are estimated by the values of the defining polynomials through the
fundamental Lojasiewicz inequalities, cf [BM]:

Theorem 1.3. Let P be a regular function on an open subspace M ⊂ Rn.
Suppose that K is a compact subset of M , on which V (|∇P |2) ⊂ V (P ). Then there
exist c, c′ > 0 and µ, 0 < µ ≤ 1, ν > 1 such that

|∇P (x)| ≥ c|f(x)|1−µ, |P (x)| ≥ c′d(x, V (P ))ν

in a neighborhood of K, sup(µ), sup(ν) ∈ Q.

It is true that ν(K) ≤ supa∈K µa(P ). Furthermore in the case of a homogeneous
polynomial function in Rn the constant depends on conical neghborhoods of the
origin.

In the case of a homogeneous polynomial P of degree m then the algebraic cone
decomposes as V (P ) = R+×K where K is the trace of the cone on the sphere. Then
Lojasiewicz inequality suggsets that for C(K) > 0, µ = 1

m :

|∇P | ≥ Cm|P |1−µ.
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This follows from the application of Lojasiewicz on the trace, under stereographic
projection in coordinates (r, ξ) ∈ R+×Rn−1, and for applying Young’s inequality for
p, q > 1, pq = p+ q,:

|∇P (x)| ≥ mrm−1|P̃ (ξ)|+ rm|∇̂P (ξ)| ≥
≥ mrm−1|P |+ Crm|P |1−µ ≥ C′

mr
1
µp−

m
q |P (x)|1− p

µ .

We choose as p = m+µ
m scale and arrive at the result µ = 1

m .

2. The inequalities. Here we will prove the inequalities GHI1,GHI2 for an
inhomogeneous polynomial P of degree d in the class H and an arbitrary function
f ∈ C∞

0 (Rn \ V (P )):

Ii[P ](f) =

∫

Rn

Hi(P )f2 ≤ C

∫

Rn

hi∑

j=0

|∇jf |2 = ||f ||Hhi (R) , (GHIi)

where

H1(P ) = P− 2
d , H2(P ) =

∣∣∣∣
∇P
P

∣∣∣∣
2

.

This inequality will be based on the fact that after a suitable number of blow-ups
with suitably chosen centers the multiplicity of the polynomial has to decrease. The
choice of centers is provided in the proof of the local desingularization theorem.

To fix the ideas assume that we are localised in a tubular neighbourhood of V (P )

of width ǫ
1
d :

Nǫ(P ) = {x ∈ Rn/|P (x)| < ǫ}

and also the tubes of width ǫ
1
d

k that enclose the strata of multiplicity Σk:

Nǫk,k(P ) = {x ∈ Rn/Qk(x) =

k∑

j=0

P j(x) < ǫ2k}.

We assume that ǫ1, . . . , ǫm, ǫ are chosen so that this system of tubes N1, . . . , Nm

exhaust Nǫ and using functions of the form χ
(

Qk

ǫk

)
, for χ a one-dimensional cut-

offs we localize in these sets. Thanks to Lojasiewicz these cut-off functions when
differentiated stay away from the variety. The integral then is splitted up as

Ii[P ](f) =

m∑

j=0

Iij [P ](f)

where

Iij [P ](f) =

∫

Nj

Hi(P )f2.

As a matter of fact we have that

supp(f) =

m⋃

j=0

(supp(f) ∩Nj).
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We are ready to set-up the multiplicity reducing algorithm. Select then points

a ∈ V (P ) ∩Nm,ǫ(P ) : ordaP = m, codim(SP (a)) = νm

and choose a system of coordinates such that x(a) = 0 and also that

P (0, . . . , 0, xn) ∼ xmn .

The initial change of coordnates that rectifies the center we will denote by Km :
Nm → Rn−νm × Rνm , which consists of algebraic maps localized through ϕm,ℓm at
such points on a ∈ Sm:

Km =

Nm∑

ℓm=1

ϕm;ℓmKm;ℓm .

These maps have jacobians 0 < cm(ǫm) ≤ J(Km;ℓm) ≤ Cm(ǫm)

2.1. The inequality GHI1 for H1 = P− 2
d .

The inequality in the multiplicity reduction step m ⇒ m − 1. Using the conical
partition of unity {χm,k} subordinate to the covering in

νm⋃

k=1

Km(Nǫ,m(P )) ∩Rn−νm × Ck

we localize and compute that

(1)

Im(P )[f ] =

∫

Nǫm,m

H1(P )f2(x)vn ≤ c

νm∑

k=1

∫

Nm;1,k

∣∣∣Dk(|P1,m,k|−
1
d fm;1,k)

∣∣∣
2 (

D1
k

)2
v̂n

where

c = κm(νm, d) =

(
16d2

d(νm + 1) +m)

)2

Nm;1,k = σ−1(Nm;0,k), Nm,0,k = Km(Nǫm) ∩Rn−νm × Ck

Dk = xk∂xk
, D1

k = x
−m

d + νm−1
2

k

fm,1,k = χm,kf.

The last integral is majorized further by:

∫

N1
ǫm,m

H1(Pm;1,k)
[
|Dkf

1
k |2 +

(
Qm

1,k,1(P )fm;1,k

)2] (D1
k

)2
v̂n.

The singular term is made of the following factors that we are going to keep track in
the process:

Qm
1,k,1(P ) = Dk(log |Pm,1

k |),
H1

m;1,k = (Pm;1,k)
− 2

d , Pm;1,k = x−m
k σ∗(χkP ).
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We perform successive blowups of this type in order to reduce the multiplicity of
the algebraic set and every time apply the one dimensional inequality. Therefore, we
introduce inductively for the blow up years j > 1 and corresponding blow - up chart
kj the following functions that can come out:

Nm;j = σ−1(Nm;j−1), Nm;0 = Nǫ,m

fm;0,k,0 = χm,kf, fm;j,kj ,l = σ∗(χkjfm;j−1,kj−1,l),

fm;j,kj,l = Dkj

(
fm;j,kj−1,l−1

)

H1
m;j,kj

= x
2m
d

m,kj
σ∗(χm,kjH1

m;j−1,kj−1
),

Dm;j,kj ,l = Dkj (Dm;j,kj−1,l−1),

Dm;j,kj ,l = σ∗(χm,kjDm;j−1,kj−1,l) · D1
kj
,

Qm
j,kj ,l = Dkj (Q

m
j,kj ,l−1)

Qm
j,kj ,l = σ∗(χm,kjQ

m
j−1,kj−1,l).

The integral is then majorised by the sum after γm generations of blow-ups that are
neccessary for the multiplicity to reduce to m− 1:

Im(P )[f ] ≤ C(ǫm,m, d, νm)

∫

Nγm

c∑

kγm=1

H1
m;γm,kγm

Φ2
m,1;kγm

for the functions that encode the history of blow ups

(
Φm,1;kγm

)2
= χ2

kγm


 ∑

l1+l2+l3=γm

(
fm;γm,kγm ,l1Dm;γm,kγm ,l2Q

m
γm,kγm ,l3

)2

 .

This sum extends over the set of all νm-adic numbers with γm digits: Λγm(c). After
these blow ups the polynomial Pm;γm,kγm

has multiplicity m − 1. In the next γm−1

generations of blow-ups:

Im(P )[f ] ≤ c

νm∑

kγm=1

Im−1[Pm;γm,kγm
](Φm,1;kγm

).

Therefore we have to work with

Im[P ](f) + Im−1(P )[f ] ≤ c

∫

Nm;γm

H1(Pm;γ,kγm
)Φ2

m,1;kγm
+

∫

Nǫm−1,m−1

H1(P )f
2

and proceed analogously. The desingularization algorithm guarantees that on the set
Nm;γm ∩ Nǫm−1,m−1 the polynomials Pm;γm,kγm

, P have multiplicity m − 1. There-
fore the choice of blow up centers entails the change of coordinates Km−1 that we
trace in the summands. Their appearance modifies the constant c. Thus we have m
generations of γ1, . . . , γm years of blow-ups.

Summing up for m = 1 and final step. We arrive at the m = 1 stratum with the
following sum of integrals:

I1(P )[f ] =
∑

1≤i2≤i1≤m

∫

Ni1,i2

H1(Pi1 ;i2,ki2
)Φ2

i1,i2;ki2

where the pair of indices stands keeps track of the origin of the function Φi1,i2;ki2

while the polynomials Pi1;i2,ki2
have multiplicity 1. Hence we change coordinates by

the map K1 and conclue with an applcation of Hardy’s inequality.
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Return to Nǫ. In order to return back to Nǫ. We summarize the process that we
followed:

Rectilinearization of the centers, blow up till we reduce the multiplicity by 1, again
rectilinearization of the new centers and new blow ups etc.

This finally made up a map: B : Nǫ → Ñǫ, which is a piece-wise algebraic diffeo-
morphism outside a variety of positive codimension originating from the exceptional
divisors of the blow ups. Clearly the process can be reversed and the formula derived
above. We will perturb back the centers and blow down. The rectilinearization maps
just modify the constants back. The terms that have been produced will be examined
then. We examine now the Φi1,i2 terms: the Q factors are constants hence they just
modify the consntant coefficients. The D-terms split in two terms: those that consist

of the jacobians and the ”Hardy divisor factor” y
−2

i1
d

k . In the course of the blow down
process the jacobian terms dissapear while in the conical charts of the Rνm factor of
the coordinate system we have that for the radial variable r:

y
−2

i1
d

k ≤ cr−2
i1
d ,

which combine with the blow down formula to give us that

|Dyk
(fσ)|2 = |E(f)|2 ≤ r2|∇f |2.

If r−β persists then we apply again the usual Hardy inequality. The blowing down
process will effect the replacement of the |D (fD) ◦ σ)| with a term |∇f | and finally
we get the result stated in the introduction

2.2. The inequality GHI2 for H2(P ) =
∣∣∇P

P

∣∣2. Here we separate at each year

of blow up the ”Hardy divisor term”, x−2
k and blow down directly, which could have

been done also in the preceding case. We apply the following elementary generalization
of the Hardy’s inequality refered in the introduction, for ℓ ∈ N, f ∈ C∞

0 (R \ {0}):
∫

R

f2

x2ℓ
≤ Cℓ

∫

R

(
f (ℓ)

)2
, (EGHI)

and the appropriate detemination of the factors D, Q that appear during the process.
Therefore we start with the first blow up in the conical charts and obtain in view of

H2(P ) ≤ m2

x2k
+

4

x4k
+ 4

(
H2(Pm;1,k

)2
,

that since m ≥ 2

Im(P )[f ] =

∫

Nǫm,m

H2(P )f2(x)vn

≤ c

νm∑

k=1

∫

Nm;1,k

(
|Dkfm;1,k|2 +

∣∣D2
kfm;1,k

∣∣2
)
(Bm;1,k1)

2

+c

νm∑

k1=1

∫

Nm;1,k1

(
H2

m;1,k1

)2
f2
m;1,k1

(Bm;1,k1)
2v̂n
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where

c = κm(νm, d) =
16m2

(2νm + 1)2

Nm;1,k1 = σ−1(Nm;0,k1), Nm,0,k1 = Km(Nǫm) ∩
(
Rn−νm × Ck1

)

fm;1,k1 = σ∗(χm,k1f)

Dk1fm;1,k1 =
1

xk1

E(f), Bm;1,k1 = |xk1 |
νm−1

2 ,

H2
m;1,k1

= (∇ log |Pm;1,k1 |)2 , Pm;1,k1 = x−m
k1

σ∗(χk1P ).

The first terms is blown down directly since in the conical chart

Ck : |xk|2 ≥ α2

1 + α2
r2,

and hence implies that

|Dkfm,k,1| ≤
α2

1 + α2
|∇f |2.

Therefore we have by an application of Hardy to the derivative of the jacobian Bm;1,k1

we could comprise all terms in the following inequality

Im[P ](f) ≤ C
(
||∇f ||2H1(Nm) + I1;m;j [P ](f)

)
,

where we have the usual Sobolev space norm:

||∇f ||H1(Nm) =

∫

Nm

|∇f |2 + |∇2f |2,

and

I1;m;1[P ](f) =

νm∑

k=1

∫

Nm;1,k

(
H2

m;1,k

)2
(fm;1,kB1,k)

2 v̂n.

Set then

fm;j,kj = σ∗
(
χkjfm;j−1,kj−1Bm;j−1,kj−1

)
, Bm;j,kj = σ∗(χm,kjBm;j−1,kj−1,l),

and

Iℓ;m;ℓ[P ](f) =

νm∑

kℓ=1

∫

Nℓ,kℓ

(
H2(Pm;ℓ,kℓ

)
)ℓ+1

(fm;ℓ,kℓ
Bℓ,kℓ

)2 .

Then we derive the recursive formula for these integrals. and then through the in-
equality, which is derived thorugh Young’s inequality and for |xkℓ

| < 1

(
H2(Pm;ℓ−1,kℓ−1

)
)ℓ ≤ Cℓm

2ℓ

(
1

x
4ℓ(ℓ+1)
kℓ

+
(
H2(Pm;ℓ,kℓ

)
)ℓ+1

)
,

then

Iℓ−1;ℓ−1[P ](f) ≤ Cℓ,m,ǫ

(
||∇f ||H2ℓ(ℓ+1)(Nm) + Iℓ;ℓ[P ](f)

)
.



ON CERTAIN GENERALIZED HARDY’S INEQUALITITES & APPLICATIONS 451

The first term originates from the (EGHI), Leibniz’s rule and the application of
Hardy’s inequality for the term DkjBm;j,kj to transfer the derivative to the f -term.
The blow down process in the conical charts gives us the Sobolev space norms. Specif-
ically we have that

|Dj
xkℓ
fm;ℓ,kℓ

| = |
(

1

xkℓ

E

)j

(σ∗
(
χkjfm;j−1,kj−1Bm;j−1,kj−1

)
)|.

Therefore by expanding the differentiation we arrive at

|Dj
xkℓ
fm;ℓ,kℓ

|2 ≤ C
∑

i1+i2+i3=j

1

r2i1
|∇i2σ∗

(
χkjfm;j−1,kj−1 |2|∇i3B2

m;j−1,kj−1

)
≤

≤ C′
∑

i1+i2=j

1

r2i1
|∇i2fm;j−1,kj−1 |2B2

m;j−1,kj−1
.

We iterate this process and finally we end up with the following inequality

Im[P ](f) ≤ C
(
||∇f ||Hβm (Nm) + Im;1[P ](f)

)
,

where the term

Im;1[P ](f) =

νm∑

kγ=1

∫

Nm;γm,kγm

(
H2(Pm;γm,kγm

)
)γm+1

(fm;γm,kγm
)2,

contains the polynomial mith mulitplicity m− 1 after the first generation of γm years

of blow-ups for the m stratum and βm = 2
∑γ(m)

ℓ=1 (ℓ2 + ℓ) = 2S2(νm) + S1(νm) ∼ ν3m.

Conclusion. Having exhausted the first generation of γm-years of blow -ups we
reduced the multiplicity to m− 1 at the cost of bringing in the Hardy - factor in the
γm+1 power, and we integrate in the tubular neighbourhood of set of lower multiplic-
ity. Again the ”center defining maps” enter and are composed and we proceed. Higher
order derivatives appear but they are treated due to the formula that we calculated
above.

2.3. The inequality for homogeneous polynomials. Let P ∈ PgH then
the inequality receives the simple form with the first derivatives. We start blowing
up the origin which supports the maximal multiplicity of V we obtain inequalities
corresponding to the traces of the algebraic set on the balls

B0,α,n = V (xj − 1) ∩ Cα;j,n+1, j = 1, . . . , n+ 1.

Then we use the preceding inequalities for inhomogeneous polynomials and by a scal-
ing transformation we obtain the desired result by trowing the “higher order terms”.
In the sequel we assume without loss of generality that we are already reduced to the
essential variables and proceed through the conical partition of unity and the notation
of the preceding paragraph:

Id[P ](f) =

∫

Rn+1

H1(P )f2(x)vn+1 =

νd∑

j=1

∫

Ĉα;j,n+1

(fd;1,j)
2xνd−3

j (Pd;1,j)
− 2

d v̂n+1.

Now in each cone Ĉα;j,1 the function fd,1,j = σ∗(χjf) is compactly supported and
wehave that the volume form decomposes for the volume form of Rn, vn

v̂n+1 = dxjvn
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and the integral splits as

Id[P ](f) =

νd∑

j=1

∫

R

Id−1[Pd;1,j](fd;1,j)(xj)x
νd−3
j dxj (CS).

In each term we have GHI1 in the cross section: we obtain for ∇̃j the gradient in all
but the xj -variable:

Id−1[Pd;1,j](fd;1,j) ≤ C

∫

B0,α,n

h1,j∑

i=0

|∇̃ifd;1,j|2 = (Rd,1,j[P ](fd;1,j)(xj))
2 ,

where the function is compactly supported in R and smooth with respect to xj . Hence
we return back to (CS) and we have that

Id[P ](f) ≤ C

νd∑

j=1

∫

R

(Rd,1,j[P ](fd;1,j)(xj))
2
xνd−3
j dxj .

We apply the Hardy’s inequality in each summand and obtain:
∫

R

(Rd,1,j [P ](fd;1,j)(xj))
2
x
νd−3
j dxj ≤

16

(νd − 1)2

∫

R

∣

∣∂xjRd,1,j [P ](fd;1,j)(xj)
∣

∣

2
x
νd−1
j dxj .

Cauchy-Schwarz inequality suggests that

∣∣∣∣∣∣
∂xj

(
N∑

i=1

G2
i

)1/2
∣∣∣∣∣∣
=

∣∣∣∣∣
1

∑N
i=1G

2
i

(
N∑

i=1

Gi∂xjGi

)∣∣∣∣∣ ≤
∣∣∣∣∣
∑

i=1

∂xjGi

∣∣∣∣∣ .

Then apply this for Gi(xj) =
(∫

Rn f
2(·, xj)

)1/2
and thanks to Cauchy-Schwarz again

we pass under the integral to obtain thanks to Leibniz’ srule that in gives us the
following

∫

R

∣∣∂xjRd,1,j[P ](fd;1,j)(xj)
∣∣2 xνd−1

j dxj ≤
∫

Ĉα;j,n+1

h1,j∑

i=1

|∇if |2xνd−1
j v̂n+1.

Then we blow down in each conical chart and taking into account the usual estimates
(we apply Hardy’s inequlaity for the conical atlas partition of unity) and obtain that

Id[P ]f ≤ C

n+1∑

j=1

∫

Ĉα;j,n+1




hi,j∑

i=1

|∇if |2

 vn+1.

In the end we scale x 7→ x̃ := (λ−1x1, . . . , λ
−1xn+1) Evidently, we let λ → ∞ to

obtain the inequality. Similarly we obtain the inequality for H2(P ).

Remark. Sticking on the inequality for H2 =
∣∣∇P

P

∣∣2 one could also deduce the
following inequality, actually by partial integration: for C3(P ) we have

∫

Rn

∣∣∣∣
∆P

P

∣∣∣∣ f2 ≤ C3(P )

∫

Rn

|∇f |2.
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2.4. Further inequalities. Let P ∈ PgH of degree d and for s ∈ R then the
following more general inequality is true for f ∈ C∞

0 (Rn \ V (P )):
∫

Rn

|P |sf2 ≤ C(P, s)

∫

Rn

|P |s+ 2
d |∇f |2.

First we observe that the homogeneity we localize near V (P ), the rest being treated by
rectilinearization and partial integration. We have for f ∈ C∞

0 (Rn \V (P )), β = s+ 2
d :

and Young’s inequality for p, q > 1, pq = p+ q:

|P |sf2 ≤ εp|P |pβf2

p
+

1

εqq
|P |− 2q

m f2, (BI1)

then we have that

∫

Rn

|P |2f2 ≤
∫

Rn

1

p
|P |pβf2 +

|P |− 2q
m f2

q
≤

≤
∫

Rn

1

p
|P |pβf2 + C

∫

Rn

∣∣∣∇
(
P− 2(q−1)

m f
)∣∣∣

2

.

Then the last term gives us that for κ1 = (q−1)2

m2

∫

Rn

|∇
(
P− 2(q−1)

m f
)
|2 ≤ 2 (κ1I1 + I2) ,

where

I2 =

∫

Rn

|P |− 2(q−1)
m |∇f |2 .

Now

I1 =

∫

Rn

P−
2(q−1)

2m H2(P )f2 ≤ C1(P )

[
(1 + ǫ)κ1I1 + (1 +

1

ǫ
)I2

]
.

Now we selct q such that:

C1κ1(1 + ǫ) ≤ 1

1 + ǫ
⇒ q ≤ 1 +

m

C1(1 + ǫ)
,

and we have that

I1 ≤ C3I2,

and finally we have that:
∫

Rn

|P |sf2 ≤ C

(∫

Rn

|P |2βpf2 +

∫

Rn

|P |− 2(q−1)
m |∇f |2

)
.

Now we split Nη(P ) = {x ∈ Rn/|P (x)| ≤ ηm}, η < 1 in sets

Ni = {x ∈ Rn/ηm(i+1) ≤ |P (x)| ≤ ηmi},

and accordingly Fi = supp(f) ∩Ni:

∫

Rn

|P |sf2 =

∞∑

i=1

∫

Fi

|P |sf2 +

∫

Rn\Nη

|P |sf2.
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The second term is reduced to the 1-d problem by change of variable. The integral
near the zero set is treated using the inequality derived from (BI1) for ε = ηm(i+1 or
ε = ηmi analogously for β > 0, < 0. Finally we scale and obtain tyhe result.

The inequality for the homogeneous polynomial allows to improve the inequality
for inhomogeneous polynomials, keeping only first derivatives:

Proposition 2.1. Let P : Rn → R be a polynomial function of degree d from
the class PgH with V (|∇P |2) ⊂ V (P ). Let f ∈ C∞

0 (Rn \ V (P )) then for C3(P ) it is
true that:

∫

Rn

P− 2
d f2vn ≤ C3(P )

∫

Rn

f2 + (1 + |x|2)|∇f |2vn.

Proof. From the assumption we localize near V (P ), the rest being treated by
rectilinearization and partial integration. We stratify the algebraic set V (P ) by mul-
tiplicity:

V (P ) = Σ1

⋃
· · ·
⋃

Σµ.

Since P is inhomogeneous then d > µ. The smooth part being clear, we will study the
singular strata. Let a ∈ Σm, x(a) = 0 and P0,m = ina(P ) and introduce the tubular

neighbourhood of Σm of width ǫ
d
m

Nǫ = {x ∈ Rn/P 2
0,m(x) + P 2(x) < ǫ2d}.

We write this as

Nǫ = Cǫ

⋃
Sǫ

⋃
Rǫ,

where for suitable δ < 1:

Cǫ,δ = {x ∈ Nǫ : |P | ≥ δ2|P0,m|}
Sǫ,δ = {x ∈ Nǫ : |P | ≤ δ|P0,m|}

Rǫ,δ = {x ∈ Nǫ : δ
2|P0,m| ≤ |P | < δ|P0,m|}.

Notice that the stratum of multiplicity Σm ⊂ Sǫ,δ, Cǫ,δ, Rǫ,δ.
The integral

Iǫ =

∫

Nǫ

P−2/df2

splits in three parts , i = 1, 2, 3:

Ii =

∫

Nǫ

P−2/dψ2
i f

2

for the functions localizing in the sets Cǫ,δ, Sǫ,δ, Rǫ,δ respectively:

ψ2
1 = ϕ

(
δ2|P0,m|

|P |

)

ψ2
2 = ϕ

( |P |
δ|P0,m|

)

ψ2
1 = 1− φ21 − φ22.

We would estimate them seperately:
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1. Estimate for I3. The crucial observation is that supp(ψ3f) ∩ V (P0,m) = ∅
hence we apply the inequality for P0,m:

I3 ≤ δ−2/d

∫

Rǫ,δ

|∇(φ3f)|2.

Now in Rǫ,δ we have that for κ1 <
1
2

|∇ψ3| ≤ C1 + κ1

∣∣∣∣
∇P0,m

P0,m

∣∣∣∣
2

and we apply the inequality for H2(P0,m) and we are done.
2. The integral I2 is filtered in the sets, for j > 1:

Sǫ,δ,j = {x ∈ Nǫ/δ
j+1|P0,m| < |P | < δj |P |}

and we obtain through the cut-off estimate:

|∇ψ2| ≤ C +

(
δ

2

)j ∣∣∣∣
∇P0.m

P0,m

∣∣∣∣
2

and the fact that supp(f) ∩ V (P0,m) therefore we have that

I2 ≤ C

∫

Rn

f2 + |∇f |2.

3. The last is the term near the cone V (P ). Then introduce the sets for η < 1:

Sǫ,η,j = {x ∈ Nǫ/|P | ≥ δηj ≥ δ|P0,m|}.

Then through the cut-off estamates that allow us to select appropriately ǫ,
we conclude that:

I1 ≤
∫

Rn

f2 + |∇f |2.

Summing up we find

I1,ǫ ≤ C

∫

Rn

|∇f |2 + f2.

2.5. Example: cubic hypersurfaces. Here, we treat the inequality for cubic
forms (n+ 1)- variables, defining a conic variety with singular part containing a line
through the origin. The case n = 2 is treated in [P] with elementary methods.

If we choose the x1− axis such that V (P ) is singular along it then the form is
written as P (x) = x1Q(x̃) + C(x̃) where x̃ = (x2, . . . , xn+1) and Q,C are quadratic
and cubic forms without common factors since otherwise the inequality is fairly easier.
The form P defines a cubic hypersurface in Pn with a singularity at the point E1 with
homogeneous coordiantes

E1 ≡ [1 : 0 : · · · : 0]
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as well as at the points of the variety T where the varieties V (C), V (Q) touch each
other or the singular set Σ of V (C) on the hypeplane H1. We assume also without
loss of generality that rank(Q) = n.

For the sake of simplicity we treat first the smooth part of the hypersurface defined
for ǫ > 0 by

Vǫ(P ) =
⋃

j

Vǫ,j(P ), Vǫ,j = {x ∈ Rn+1/

∣∣∣∣
∂P

∂xj

∣∣∣∣ > ǫr2}.

Observe that in Vǫ(P ) it is true that for ci > 0, depending on the values of P on Sn

that c1r
2 ≤ |∇P | ≤ c2r

2, c1 = (n + 1)ǫ and also that c3r ≤
∣∣∣ ∂2P
∂xi∂j

∣∣∣ ≤ c4r. Therefore

the integral I1,ǫ(P )[f ] = I(P )[χ1,ǫf ] is studied in Vǫ(P ) by the change of variables for
each j by

Ψj : Vǫ,j → Rn+1,

(x1, . . . , xn+1) 7→ (x1, . . . , xj1 , ξ, xj+1, . . . , xn+1), ξ = P (x).

Then we calculate vj,n+1 = dx1 . . . dxj−1dξdxj+1 . . . dxn+1

∫

Vǫ(P )

P− 2
3 f2vn+1 =

∑

j

∫

Ψj(Vǫ,j)

ξ−
2
3 f̃2

∣∣∣∣
∂P

∂xj

∣∣∣∣
2

vj,n+1 ≤ C

∫

Vǫ

|∇f |2vn+1,

by applying the preceding inequalities in combination with that of Hardy.

To proceed to I2,ǫ(P )[f ] further we blowup σn+1 : R̂
n+1 → Rn+1 through the

usual cones for α > 1:

Cα;j,n+1 = {x ∈ Rn+1/x2j ≥ 1

1 + α
|x|2}.

The procedure will incorporate an induction with respect to n. Explicitly we have
the formulas:

Let j 6= 1 then after restriction to Cα;j,n+1, σn+1 maps as

i 6= j : xi = vivj ,

xj = vj ,

P (σn+1(v)) = x3j .P
1
j ,

P 1
j = x1Q

1
j(ṽ) + C1

j (ṽ),

where ṽ = (v2, . . . , vj−1, vj+1, . . . , vn+1). At the point a ∈ Tj or a ∈ Σj the
order orda(P

1
j ) = 2 and we choose coordinates such that u(a) = 0 and setting

ũ = (u2, . . . , un) we assume that P 1
j (u1, 0, . . . , 0) ∼ u21 hence

P 1
j (u) = (1 + lj(u))u

2
1 + bj(ũ)u1 +Rj(ũ),

where

deg(lj) = 1, deg(µj) = 1, orda(lj) = 0, orda(bj) = 1,

as well as that Rj is of the smae form as P 1
j but in (n − 1)−variables. Then we

determine inductively the center

Kn,j = {x ∈ B0,α,n/ordx(P
1
j ) = 2}
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of blowups and the years ν2 of blow-ups for the generation m = 2. The formulas for
the blowups in the j1-conical chart, j1 6= 1 are:

uj = vjvj1 , j 6= j1, vj1 = uj1 ,

implying that

P 1
j (u) = v2j1P

2
jj1 (v), P 2

jj1 (v) = (1 + vj1 ljj1 (v))v
2
1 + bjj1(ṽ))v1 +Rj(ṽ).

These blowups are repeated up to the desingularization of V (Rj) and at each step we
apply Hardy’s inequality for the factor coming out of the blowup; finally we obtain
a smooth chart as precedingly and we apply Hardy’s inequality. The j = 1 conical
chart is carried through analogously.

In conclusion we have that

∫

Rn+1

P− 2
3 f2vn+1 ≤ C

∫

Rn+1

|∇f |2vn+1 +

ν2∑

ℓ=2

∫

Rn+1

∣∣∇ℓf
∣∣2 vn+1

and scaling we get the desired result.

3. Heat expansion for operators Hc,α = −∆+c|P |−α. In this section we will
establish the existence of the small time expansion of the heat trace of the operator

Hc,α = −∆+ c|P |−α.

Actually we will prove the λ→ ∞ expansion of the distributional trace tr(Rc,α(λ)
kχ)

of the k-th power of

Rc,α(λ) = (Hc,α − λ)−1.

This will achieved in the following steps:
1. Determination of the domain of self-adjointness of Hc,α

2. Estimates for Rc,α(λ) = (Hc,α − λ)−1 in various operator norms
3. The preceding allow us to prove the expansion by considering the expansion

of each term of the Neumann series for Rc,α(λ) around R0(λ) = (−∆n−λ)−1.
4. After identifying the form of these terme we appeal to the usual Mellin trans-

form theorem in view of the Atiyah-Bernshtein-Gelfand theorem on the mero-
morphic continuation of integrals depending on complex powers

Domain of Self-Adjointness. First we determine the domain of selfadjointness
of the operator Hc,α = −∆ + c|P |−α where c ∈ C∞

0 (Rn) and P is a homogeneous
polynomial of degree d in the class PgH . We extend C∞

0 (Rn) provided that the
exponent α < n

d .
The Kato-Rellich theorem ([RS]) suggests that the operator Hc,α is essentially

self adjoint on C∞
0 (Rn). The neccessary semiboundedness estimate reads as

Proposition 3.1. Let c ≥ 0, φ ∈ C∞
0 (Rn), α < n

d , κ < 1 then it is true that

‖ c.|P |−αφ ‖L2≤ κ ‖ −∆φ ‖L2 +β ‖ φ ‖L2 .

Furthermore the domain closure of the operator Hc,α|(C∞
0 (Rn)) for small α consists

of H2(Rn).
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Proof. We decompose the integral in two parts, through a suitable partition of
unity: one sufficiently close - at distance ǫ1/d- to the algebraic set and one in the
complement. Set then

Nǫ = {x ∈ Rn/|P (x)| < ǫ}

and

Kǫ = Rn \Nǫ.

Choose χ2
1,ǫ+χ

2
2,ǫ = 1, supp(χ1,ǫ) ⊂ Kǫ the functions that execute this decomposition

(it just suffice to take functions of the form χ
(
P
ǫ

)
) Split then

φ2 = φ21 + φ22 = (χ1,ǫφ)
2 + (χ2,ǫφ)

2.

Then for the part localized in K2,ǫ, we use the inequality:

|P |−α ≤ εP−2/d +Bε.

Hence, we compute and obtain

‖ c|P |−αφ ‖L2=‖ c.|P |−αφ1 ‖L2 + ‖ c.|P |−αφ2 ‖L2

≤M. ‖ φ ‖L∞‖ χ1,ǫ ‖L2 +ν ‖ (−∆)φ2 ‖L2 +β ‖ φ ‖L2

having applied twice the inequality P−2/d ≤ C(−∆) for the second term where the
first term is due to the fact for α < n

d then |P |−α ∈ L1
loc(R

n). Finally, we let ǫ → 0
and obtain the desired inequality. The Kato - Rellich theorem gives the essential
self-adjointness we have been looking for; the operator Hc,α is bounded below by −β.
q.e.d

Further we will examine the closure of the operator, initially considered on
C∞

0 (Rn). For this we write:

‖ Hc,αφ ‖2L2=‖ −∆φ ‖2L2 + ‖ c|P |−αφ ‖L2 +

+(φ, [(−∆) · c|P |−α|P |−α + c|P |−α · (−∆)] · φ).

Therefore combining the obvious inequality for the inner product with the inequality
obtained above, we get the desired estimate.

Operator estimates. For the Neumann series we will need the following estimates
relative to the resolvent R0(λ) = ((−∆)− λ)−1:

Proposition 3.2. Let λ be sufficiently large and outside a cone shaped region
enclosing the positive real axis then the operator norm is,

|||P |−αR0(λ)||L2 = 0(|λ|−1+ dα
2 ),

|||P |−αR0(λ)∂i||L2 = 0(|λ|− 1
2+

dα
2 )

||[|P |−α, R0(λ)]||L2 = 0(|λ|−1+ dα
2 ),

||[...[|P |−α, R0(λ)], ...], R0(λ)]||L2 = 0(|λ|−k+ dα
2 ).

Proof. Compute

(|P |−αR0(λ)φ, |P |−αR0(λ)φ)
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with φ ∈ L2(Rn). For this use a suitable partition of unity as in Proposition (2),
splitting ψ = R0(λ)φ ∈ C∞

0 (Rn) as before, far and close to the algebraic set V (P ).
For the term involving ψ1 = χ1ψ apply Cauchy-Schwarz, while for ψ2 = χ2ψ use the
inequality as follows:

ab ≤ ap

p
+
bq

q
,

1

p
+

1

q
= 1,

p =
2

dα
, a = δ

1
pP−2α, b = δ−

1
p ,

and for the two terms we have that

‖ P−αψ2 ‖L2≤ Cǫ ‖ φ2 ‖,

and also that

‖ ψ2 ‖L2≤ Cǫ|λ|−
1
2 ‖ φ2 ‖ .

Choosing then

δ = δ−
αd

2−αd |λ|−1

we get the desired estimate.The other estimates follow in the same fashion as the first
one.

The Neumann series. We will prove the existence of an asymptotic expansion for
a suitable power

Rk
c,α(λ) = (λ−Hc,α)

−k

and proving the existence for each term there. Actually, Rk
c,α(λ) is represented by an

integral kernel since as we intend to show, it is in the Hilbert-Schmidt ideal.
The resolvent expansion for Rc,α(λ) is

Rc,α(λ) =

N−1∑

j=0

(R0(λ)|P |−α)j .R0(λ) + O(|λ|−(1− dα
2 )N−1)

the remainder is considered in the L2-norm. Use the fact that

Rk
c,α(λ) =

1

k!
∂kλ(Rc,α(λ))

to calculate the form of the Neumann series for Rk
c,α(λ). We set then

Πj(λ) = (R0(λ)|P |−α)j ,

so that

Rc,α(λ) =
N−1∑

i=0

ΠiR0(λ) + +0(|λ|−(1−dα
2 )N−1).

In order to obtain the Neumann series of Rc,α(λ)
k to study the beaviour of the terms

in this series. Therefore we set us

Ii,j = ∂jλ
(
ΠiR0(λ)

)
=

j∑

ℓ=0

(−)j−ℓ+1
(
∂ℓλΠ

i
)
R0(λ)

j−ℓ+1.
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Therefore we need

∂ℓλΠ
i =

∑

m1+···+mℓ+1=i,m1≥1

Πm1R0(λ)Π
m2R0(λ) · · ·R0(λ)Π

mℓ+1.

Here observe that the number of R0(λ)-factors is ℓ Conclusively we have that for the
operator product factor

Ci;ℓ;m1,...,mℓ+1
= Πm1R0(λ)Π

m2R0(λ) · · ·R0(λ)Π
mℓ+1,

Ii,j = (−1)j+1
∑

0≤ℓ≤j,m1≥1,m1+···+mℓ+1=i

Ci;ℓ;m1,...,mℓ+1
·R0(λ)

j−ℓ+1.

Now we see that

||Ci;ℓ;m1,...,mℓ+1
||L2 ≤ |λ|−(1− dα

2 )i−ℓ

||Ii,j ||L2 ≤ |λ|−(1− dα
2 )i−j−1.

The trace class norm estimates are derived through the following estimate from [C1]:

Proposition 3.3. Suppose k > n(ql−l+2)
4lq , l ≥ 2, χ ∈ L2p

0 (Rn), 1p + 1
q = 1. Then

χ.R0(λ) is in Cl(R
n) for λ ∈ C \ R̄+ and

||χR0(λ)
k||l ≤ Cl,ǫ||χ||2p|λ|−k+ n(ql−l+2)

4lq

for supp(χ) ⊂ K ⊂⊂ Rn for all λ in |Imλ| > ǫReλ+ ǫ for given ǫ > 0.

Combining the preceding estimates (Proposition 3.1, 3.2) we can conclude that
Ii,j ∈ Cl(R

n) and furthermore that

‖ χIi,j(λ) ‖l≤ Cl,ǫ,j ‖ χ ‖2p |λ|−j+ n(ql−l+2)
4lq −i(1− dα

2 )

The existence of the Asymptotic Expansion for tr(χRk
c,α(λ)). We conclude this

section with the proof of the existence of the λ → ∞ asymptotic expansion of the
trace tr(χ ·Rk

c,α(λ)). The latter for k chosen conveniently is a sum of integrals of the
form

T j,k(λ, α1, . . . , αj) := tr(χIj,k)(λ, α1, ..., αj) =

=

∫

Rnj

Πj
i=1(R

ki
0 (λ)(xi, xi+1)) · Πj

i=1|P |−αi(xi)χ(x)ω1 · · ·ωj

with the convention xj+1 ≡ x1, X = (x1, . . . , xj) ∈ Rnj . The resolvent is given by

R0(λ)(x1, x2) =
(
√
−λ)n

2 +2

2
n
2 |x1 − x2|n2 −1

Kn− 1
2
(
√
−λ|x1 − x2|) =

1

(4π)
n
2

∫ ∞

0

eλy−
(x1−x2)2

4y
dy

y
n
2
.

The existence of the asymptotic expansion of the trace T j,k(λ, α1, . . . , αj) is proved
using the Mellin transform suggested by the following classical result - stated in the
terminology of [C2]:

Proposition 3.4. Let f ∈ C∞
0 (R+),m ∈ R such that xmf ∈ L1

loc(R+). Suppose

that the Mellin transform f̂ has a meromorphic extension from the half plane {z ∈
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C/ℜz > −m} with poles and multiplicity function S, d = deg(S) and further that

limℑs→∞(|s|df̂(s)) = 0. Then f ∈ Γ∞(R+).

Using the integral representations for the resolvent and changing variables we
deduce that the Mellin transform of Tj,k with respect to λ takes the form for k =
k1 + · · ·+ kj :

T̂ j,k(s, α1, . . . , αj) = cn,j,k(s)

∫

Rnj×R+
j
P(s,α1,...,αj)(x, y)χ(x, y)dxdy

where we have set above

cn,j,k(s) := 4s−
(2k−n)j

2 −jΓ(s)Γ(−s− (2k − n)j

2
− j)

y := (y1, . . . , yj) and the integrand consists of:

P(s,α1,...,αj)(x, y) =

∏j
i=1 P

αi(xi)(
∏j

i=2 y
s−j(ki−

n
2 )−1

i (Q̃(x, y))−s+( n
2 −k)j+1

(1 + y2 + · · ·+ yj)−s

and Q̃ = i∗Q is the restriction of the homogeneous polynomial function Q : Rnj ×
Rj → R on the y1 = 1 hyperplane

Q(x, y) =

j∑

k=1

(yk + yk−1)πk(y)x
2
k −

j∑

i=1

πj
(i,i+1)(y)(xi−1yi + xi+1yi−1) · xi

where · denotes the Euclidean inner product and we have set as well

πj
i (y) = y1 . . . yi−1yi+1 . . . yj , πj

(i,i+1)(y) = y1 . . . yi−1yi+2 . . . yj .

The existence of the asymptotic expansion is a direct consequence of the following the-
orem on the meromorphic continuation of integrals depending on complex parameters,
[BG].

Theorem 3.5. Let P1, ..., Pk be regular functions on Rn and φ ∈ C∞
0 (Rn), then

the integral

I(λ1, ..., λk) =

∫

Rn

|P1|λ1 ...|Pk|λkφωn

can be continued as a meromorphic function on the whole space of the complex vari-
ables λ1, ..., λk; at the same time the poles can be situated on a finite number of series
of hyperplanes of the form a1λ1 + ... + akλk + b + s = 0 where a1, . . . , ak, b are fixed
nonnegative integers and s runs through all the odd natural numbers

4. Growth of inegrals in semialgebraic sets. Let P ∈ PgH be a homoge-
neous polynomial and consider the following semialgebraic sets:

NP (η) = {x ∈ Rn/ǫ0 ≤ P (x) ≤ η}.

Then we consider the function ζ, supp(ζ) ⊂ B0,R that satisfies the gradient estimate
for γ, δ > 0:

|∇ζ| ≤ γ|ζ|+ δ.
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If ϕ ∈ C∞
0 (R+) with supp(ϕ) ⊂ [0, 1 + ε), φ ≡ 1 in [0, 1] then ϕ

(
P
η

)
localizes in the

space P < η. We will follow the classical identities for the monotonicity formulas, cf.
[HL]. Then we have the following elementary identity:

η∂ηφ = − P

|∇P |2∇P · ∇ϕ

we can differntiate the integral replacing ζ by ϕ
(
ǫ0
P

)
ζ in order to localize in NP (η):

Iζ(η) =

∫

Rn

φζ2

and get:

η
dIζ
dη

= −
∫

Rn

P

|∇P |2 ζ
2∇P · ∇ϕ.

Then integrate by parts to obtain for Q = |∇P |2:

ζ
dIζ
dη

≤
∫

Rn

(
P 2

Q2

∣∣∣∣
∆P

P

∣∣∣∣+ δ + 2γ
P 2

Q
+

|P |
|∇P |

|∇Q|
Q

)
ϕζ2 + vol(Nη).

Then applying the conical Lojasiewicz inequality we obtain:

|P |
|∇P | ≤ c|P |1/m ≤ cη1/m.

If we assume that Q ∈ PgH -it is not neccessary, since with partial integration we can
avoid the term involving ∇Q - then applying the generalized Hardy’s inequality we
arrive at the differential inequality

dIζ
dη

≤ C
(
γ2η

2
m−1Iζ + η

1
m

)
.

Then we arrive at the conclusion:

Iζ(η) ≤ c1e
c2γ

2η2/m

Iζ(η/2).

Actually this estimate combined with Harnack inequalities for semialgebraic sets
(proved in [P1]) provide growth estimates for functions on semialgebraic sets.
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