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DETERMINANT LINE BUNDLES ON MODULI SPACES OF PURE

SHEAVES ON RATIONAL SURFACES AND STRANGE DUALITY∗

YAO YUAN†

Abstract. Let MH

X
(u) be the moduli space of semi-stable pure sheaves of class u on a smooth

complex projective surface X. We specify u = (0, L, χ(u) = 0), i.e. sheaves in u are of dimension 1.
There is a natural morphism π from the moduli space MH

X
(u) to the linear system |L|. We study a

series of determinant line bundles λcrn
on MH

X
(u) via π. Denote gL the arithmetic genus of curves

in |L|. For any X and gL ≤ 0, we compute the generating function Zr(t) =
∑

n
h0(MH

X
(u), λcrn

)tn.

For X being P2 or P(O
P1

⊕O
P1

(−e)) with e = 0, 1, we compute Z1(t) for gL > 0 and Zr(t) for all r
and gL = 1, 2. Our results provide a numerical check to Strange Duality in these specified situations,
together with Göttsche’s computation. And in addition, we get an interesting corollary (Corollary
4.2.13) in the theory of compactified Jacobian of integral curves.

Key words. line bundle, strange duality conjecture, moduli spaces of semistable sheaves.
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1. Introduction. It is an interesting problem in its own right to determine the
generating function of the sections of determinant line bundles on moduli space of
pure sheaves of dimension 1. But an additional motivation of our work comes from
the so-called Strange Duality conjecture due to Le Potier.

Let X be any projective scheme of dimension d over an algebraically closed field of
characteristic zero, andH the very ample divisor on it. LetK(X) be the Grothendieck
group of X . For any two elements u, c ∈ K(X), we say they are orthogonal to each
other, i.e. u ⊥ c, if χ(u ⊗ c) = 0 with χ being the holomorphic Euler characteristic.
For any u ∈ K(X), there is a projective scheme MH

X (u) corepresenting the functor of
semi-stable sheaves with respect to H in u. Let h = [OH ]. Given any other element
c ∈ K(X) such that

(1.1) c ∈ u⊥ ∩ (h, h2, . . . , hd)⊥⊥,

we then can associate to c a well-defined determinant line bundle λc.
If X is a smooth complex projective curve, then given any two elements c, u ∈

K(X) satisfying (1.1), the locus in MH
X (u)×MH

X (c)

(1.2) Dλ = {([E], [F ]) ∈ MH
X (u)×MH

X (c) s.t. h0(E ⊗ F ) 6= 0}

is a divisor of the line bundle λc ⊠ λu on MH
X (u) ×MH

X (c) and induces a morphism
D well-defined up to scalars,

(1.3) D : H0(MH
X (u), λc)

∨ → H0(MH
X (c), λu).

The Strange Duality conjecture for curves due to Beauville and Donagi-Tu says that
the map D in (1.3) is an isomorphism. This conjecture has been studied by many
people and has recently been proven. (See [4] for generic curves, [16] or [5] for all
curves.)

Now let X be a smooth complex projective surface. In general the locus Dλ in
(1.2) might not be a divisor in MH

X (u) ×MH
X (c). However, when Dλ is a divisor, is
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the induced morphism D an isomorphism? This is the question proposed by Strange
Duality conjecture for surfaces and so far only few special cases are known. For
instance Danila proves that Strange Duality holds for u = (0, dH, χ(u) = 0), c =
(2, 0, c2) on P2 for small c2 and d = 1, 2, 3 (see [7]); Abe shows that it holds for
u = (0, dH, χ(u) = 0), c = (2, 0, c2) on P2 for all c2 and d = 1, 2 (see [1]); and Marian
and Oprea prove that it holds in a large number of cases for generic K3 surfaces (see
[18]).

Strange Duality also proposes a numerical question, namely, whether the following
equality holds

(1.4) h0(MH
X (u), λc) = h0(MH

X (c), λu)?

There is another version of Strange Duality on the numerical level. Instead of the
same dimension of the spaces of global sections, we ask whether the two line bundles
have the same Euler characteristic. In other words, whether the following equality
holds

(1.5) χ(MH
X (u), λc) = χ(MH

X (c), λu)?

Some people think that Strange Duality conjecture might be too “good” to be
always true and Equation (1.5) seems more reasonable than Equation (1.4). In fact
in all the cases that are known so far, both λc and λu have no higher cohomology.
Hence in those cases (1.4) and (1.5) are both true.

In this paper we let X be a smooth complex projective surface, and most of the
time X = P2 or P(OP1 ⊕OP1(−e)) with e = 0, 1. And we let u and c be specified as
u = (0, L, χ(u) = 0) for L an effective line bundle on X satisfying some conditions
(see Subsection 4.2), and c = crn = r[OX ]− n[Opt] where Opt is the skyscraper sheaf
supported at a point in X. In this situation, the locus Dλ in (1.2) is a divisor in
MH

X (u)×MH
X (c) (see [7] Theorem 2.1). Hence we have a morphism D well-defined up

to scalars as in (1.3). According to Strange Duality, the morphism D is conjectured
to be an isomorphism.

We are concerned mainly with the numerical version of Strange Duality. We
would like to check (1.4) and (1.5) for our specified u and c = crn.

For r = 1, χ(MH
X (crn), λu) equals to h0(MH

X (crn), λu) and has been computed in
[8]. In this paper we get the first equality in this case and moreover the morphism D
in (1.3) is an isomorphism.

For r = 2, on the right hand side of both equations, it corresponds to studying
the Donaldson line bundle on MH

X (crn). Göttsche has computed χ(MH
X (2, c1, c2), λL),

for X P2 or any Hirzebruch surface. We expect that the higher cohomology groups
of λL vanish for L ample (at least for c2 large enough).

In this paper for X = P2 or P(OP1 ⊕OP1(−e)) with e = 0, 1, we also compute the
generating function

(1.6) Zr(t) =
∑

n≥0

h0(MH
X (u), λcrn)t

n.

for any r ≥ 1 and gL ≤ 2 with gL the arithmetic genus of curves in |L|. We also show
that λcrn has no higher cohomologies and hence the results as r = 2 provide a check
for the equality (1.5). And moreover the equality in (1.4) holds for n big enough.

The structure of the paper is as follows. In section 2, we briefly review how to
define the determinant line bundles. In section 3, we give some basic properties of the
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moduli spaceMH
X (u) and the line bundle λcrn . In section 4, we compute the generating

function (1.6). We divide section 4 into several subsections, we deal with the case
gL ≤ 0 in the first subsection. Then we specify X to be P2 or P(OP1 ⊕OP1(−e)) with
e = 0, 1 and in the second subsection we prove the result when r = 1 and also we
get an interesting corollary in compactified Jacobian theory of integral planar curves.
Finally the cases as r ≥ 2 and gL = 1, 2 are studied in the last two subsections.

2. Preliminaries. For any X projective scheme of dimension d over an alge-
braically closed field k of characteristic zero, with H the very ample divisor on it and
u ∈ K(X), one can construct a moduli space MH

X (u) corepresenting the functor of
semi-stable sheaves with respect to H of class u, as a categorical quotient of some
open subscheme Ωu in a Quot−scheme by a reductive group. (see [12] chap. 4.)

(2.1) Ωu
φu

// MH
X (u),

where φu is a categorical quotient.
Let c be another element in K(X) satisfying (1.1), then there is a well-defined

so-called determinant line bundle λc on MH
X (u) obtained by descending a line bundle

λ̃c on Ωu. λ̃c is defined as the image of c through λ̃ which is the composition of the
following homomorphisms:

(2.2) K0(X)
q∗
// K0(Ωu ×X)

.[E]
// K0(Ωu ×X)

p!
// K0(Ωu)

det−1

// Pic(Ωu),

where [F ].[G] =
∑

p(−1)p[Torp(F ,G)], p!([F ]) =
∑

i(−1)i[Rip∗F ]; and E is a uni-
versal sheaf on Ωu × X. Although the universal sheaf is not unique, it won’t cause
ambiguity because of (1.1). (also see [12] chap. 8, but the determinant line bundle by
our definition is the dual of the one by their definition.)

Notice that when X is a simply connected surface, i.e. H1(OX) = 0, both the
moduli spaces and the line bundles only depend on the images of u and c in K(X)num.
Here K(X)num is the Grothendieck group modulo numerical equivalence.

3. Determinant line bundles λcrn on MH
X (u). Let X be a smooth complex

projective surface, and u = (0, L, χ(u) = 0), where L is an effective line bundle on X
and χ(u) is the Euler characteristic. Let crn = r[OX ] − n[Opt] with r ≥ 1 with Opt

the skyscraper sheaf supported at a point in X. Then we have u ⊥ crn for all r and
n. One sees that the map λ̃ defined in (2.2) is a group homomorphism. So we have
λcrn ≃ Θ⊗r ⊗ λ⊗−n

pt , where Θ and λpt are line bundles obtained by descending λ̃(OX)

and λ̃(Opt) on Ωu respectively. We have the following lemma for the determinant line
bundles on MH

X (u).

Lemma 3.0.1. For any c ⊥ u with c of positive rank, choose a representative
torsion-free sheaf G ∈ c, then

(1) Tori(F ,G) = 0 for all i > 0 and [F ] ∈ MH
X (u);

(2) there is a natural global section of λc whose zero set consists of all points [F ]
that h0(G ⊗ F) 6= 0.

In particular Θ has a natural global section whose zero set consists of all the points
[F ] that h0(F) 6= 0.

Proof. See [7], Lemma 2.3 and Lemma 2.4.
It is easy to define a set map π from the moduli space MH

X (u) to the linear system
|L|, satisfying the condition C as follows.
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C :Generally when the sheaf E is of rank 1 at its support, π sends it to its support.
When E is of higher rank at some component, its image is a curve having nonreduced
structure at that component and the multiplicity is equal to the rank.

Since all sheaves in MH
X (u) have the same first Chern class, π is well-defined a

priori as a set map. We have the following proposition.

Proposition 3.0.2. π : MH
X (u) → |L| is a morphism.

Proof. We first show that there is a morphism π̃ : Ωu → |L| satisfying condition
C above. And because π̃ is invariant under the group action, it factors through the
quotient φu and gives the morphism π.

By Lemma 4.5.13 in Appendix A, we have a locally free resolution on Ωu ×X for
the universal sheaf E .

0 // A
α

// B // E // 0,

where A and B are locally free sheaves.
Since E is a family of sheaves of dimension 1, the map α is locally given by a

square matrix. So we can define a section of the line bundle (detA)−1⊗detB as det α.
The divisor given by this section defines a subscheme in Ωu × X, which induces a
morphism π̃ from Ωu to |L| satisfying condition C, this is because |L| represents the
functor of curves in class L in X. Hence the proposition.

We call the image of [F ] ∈ MH
X (u) through π the schematic support of F .

Since we have a morphism π : MH
X (u) → |L|, it is natural to study the moduli space

via π. Especially we have the following proposition due to Le Potier ([15], Proposition
2.8).

Proposition 3.0.3. If Opt is not supported at a base point of |L|, then λpt ≃
π∗O|L|(−1).

Let crn = r[OX ]− n[Opt] with the skyscraper sheaf [Opt] generic so that it is not
supported at any base point of |L|. We then have λcrn ≃ Θr ⊗ π∗O|L|(n). From now
on we write Θr ⊗ π∗O|L|(n) as Θ

r(n) for short.

Proposition 3.0.4. Θr(s) is ample on MH
X (u) for any positive r and s ≫ 0.

Proof. Proposition 7.6 and Proposition 7.7 in [3] imply that λc is ample onMH
X (u)

for

c = P (n)[OX(mH)]−P (m)[OX(nH)] = (m− n)H.L[OX ]−
1

2
(H.Lnm(m− n))[Opt],

where P (n) = H.Ln is the Hilbert polynomial of sheaves in u respect to a very ample
line bundle H , and m > n ≫ 0. We see that λc ≃ Θ(m−n)H.L(12 (H.Lnm(m − n))).
Moreover π∗O|L|(1) is nef and hence Θr(s) is ample for s ≫ 0.

4. Main results. Fix u and c as in previous section, and let Opt not be sup-
ported at the base points of |L|, we consider the generating function for any fixed
r ≥ 1 :

Zr(t) =
∑

n

h0(MH
X (u), λcrn)t

n.

Because of Proposition 3.0.3 above we can write Zr(t) as

Zr(t) =
∑

n

h0(MH
X (u),Θr(n))tn.
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Since h0(MH
X (u), λcrn) = h0(|L|, π∗λcrn), and π∗λcrn ≃ π∗(Θ

r)⊗O|L|(n), we have

Zr(t) =
∑

n

h0(|L|, π∗(Θ
r)⊗O|L|(n))t

n.

Since MH
X (u) is projective, π∗(Θ

r) is coherent on |L| and hence this sum is
bounded below, i.e. for every fixed r, ∃N r

0 ∈ Z, such that h0(MH
X (u), λcrn) = 0,

for all n < N r
0 .

For any two divisor classes L and L′, we write L′ ≤ L if L − L′ is an effective
class, i.e. h0(L− L′) 6= 0; and write L′ < L if L′ ≤ L and L′ 6= L. By saying ”genus”
we always mean arithmetic genus except stated otherwise. Let gL (resp. gL′) be the
genus of curves in |L| (resp. |L′|).

4.1. Non-positive genus cases. In this subsecton we consider the case when
gL ≤ 0. We have the following description for the moduli space MH

X (u) over |L| and
the determinant line bundles via the canonical morphism π : MH

X (u) → |L|.

Proposition 4.1.1. Let |L| be a linear system satisfying the following condition:
For any 0 < L′ ≤ L, we have gL′ ≤ 0, i.e. every curve in |L| does not contain

any one-dimensional subscheme with positive genus.
Then MH

X (u) ≃ |L|, Θ ≃ O|L|, and every closed point p in MH
X (u) corresponds

to a class S-equivalent to OP1(−1)⊕NC with NC the number of irreducible components
counting the multiplicity if it is not reduced, of the curve [C] = π(p) ∈ |L|.

Proof. In order to prove MH
X (u) ≃ |L|, it is enough to show that in this case

π : MH
X (u) → |L| is bijective.

Let C be an arbitrary curve in |L|, let {Ci} be the collection of its irreducible
components with reduced structure, i.e. Ci ≃ P1 since C has no subscheme of positive
genus. We then can write C =

∑
i miCi as a divisor and let NC :=

∑
mi.

It is enough to show that for any curve [C] ∈ |L|, π−1([C]) is only one point
corresponding to the S-equivalence class of

⊕
i OCi

(−1)⊕mi . And then by Lemma
3.0.1, the claim on Θ will follow since h0(OP1(−1)) = 0.

We want to prove the following statement: for any F semi-stable sheaf of OC -
modules, which is of Euler characteristic zero, F is S-equivalent to

⊕
i OCi

(−1)⊕ni ,
with ni[Ci] the first Chern class of F .

Let C =
∑

min(ni,mi)Ci. Notice that if C ( C, then F is a OC -module and
then we can reduce to C. So with no loss of generality, we assume that ni ≥ mi. And
the case ni = mi proves the proposition.

Now we prove that statement. We first assume that [C] is connected. We then
do the induction on NC .

If NC = 1, then the statement is trivial since C = P1 and every semi-stable sheaf
F of Euler characteristic zero and first Chern class n[C] is isomorphic to OP1(−1)⊕n.

Assume when NC ≤ n, all semi-stable sheaves F with χ(F) = 0 on C are S-
equivalent to

⊕
i OCi

(−1)⊕ni with ni[Ci] the first Chern class of F . Then let C have
NC = n+ 1 irreducible components counting with multiplicity. There must exist one
integral subscheme C′ ≃ P1 in C such that L′.(L−L′) ≤ 1 with L′ the class of C′. This
is because, if every integral curve in C intersected the closure of its complement at no
less than two points, C would have a ”circle” and hence there would be a subscheme
of C with positive genus, which contradicts the given assumption. Let ξ = L′.(L−L′)
and C′′ = C − C′. Then we have these two exact sequences:

(4.1) 0 // OC′(−ξ) // OC
// OC′′ // 0;
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(4.2) 0 // I // OC
// OC′ // 0.

In the second sequence I is defined as the kernel. We do not write OC′′(−ξ) but I
instead because C′′ may not have all the points linearly equivalent. Let F ∈ π−1([C]),
we then tensor those two exact sequences by F , we get

(4.3) F|C′(−ξ)
a

// F // F|C′′ // 0;

(4.4) F ⊗ I // F
b

// F|C′ // 0;

The morphism b is not zero because it is just a restriction. Let F ′ be the torsion-free
part of F|C′ , then F ′ is a direct sum of line bundles on C′ ≃ P1. And since every direct
summand OC′(µ) of F ′ is a quotient of F , µ ≥ −1 because of the semi-stabiblity of
F .

The morphism a factors through F|C′(−ξ) → F ′(−ξ) since F is pure. If a 6= 0,
then there exists one summand OP1(µ) of F ′ such that χ(OP1(µ − ξ)) ≤ 0, hence
µ ≤ −1+ ξ and hence either ξ = 0 and µ = −1 or ξ = 1 and µ = 0. And hence either
there is a quotient G of F and G ≃ OP1(−1) or there is a subsheaf G′ of F such that
G′ ≃ OP1(−1). For the first case, we have

0 → K → F → G → 0.

Because every subsheaf of K can not have positive Euler characteristic, it is semi-
stable of Euler characteristic 0. And hence F is S-equivalent to K ⊕ OP1(−1). But
K is supported at curve C′′ with NC′′ < NC , so by induction we are done. For the
second case when F has a subsheaf isomorphic to OP1(−1), it is analogous.

If a is zero, that means that F is actually a OC′′ -module, then we can use the
induction assumption to get the result. And thus we have proven the proposition for
C connected.

And when C has more than one connected component, the conclusion follows
immediately from the fact that F is the direct sum of its restrictions to every connected
component. Hence we have proven the whole proposition.

Proposition 4.1.1 applies to these following examples:

Example 4.1.2. X = P2. Denote H the hyperplane. Then we let L = dH with
d = 1, 2.

Example 4.1.3. Let X be any Hirzebruch suface, i.e. X = P(OP1 ⊕ OP1(−e))
for some e ≥ 0. Let F be the fiber class and G the section class with G.G = −e. Then
L = nF, nG, nF +G, for any n ≥ 1.

And on the blow-up X̂, denote E the exceptional divisor and let F̂ = π∗F , Ĝ =
π∗G with π : X̂ → X the projection. Then L = F̂ , Ĝ, 2F̂ − E, 2Ĝ− E, F̂ + Ĝ− E.

In this case, the generating function can be written down as

Zr(t) =
∑

n

h0(MH
X (u), λcrn)t

n =
1

(1− t)l+1
.

where l = dim |L|.
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Obviously Θr(n) has no higher cohomologies for n ≥ 0. And the formula is exactly
what we expect and it matches Göttsche’s result on the side of rank 2 sheaves in [9].
Hence we have

Corollary 4.1.4. Let X be the projective plane or some Hirzebruch surface, and
let L be an effective line bundle on X as in Proposition 4.1.1. Let u = (0, L, χ(u) = 0)
and cn = (2, 0, n), then we have under suitable polarization for all n ≥ 0

χ(M(cn), λu) = χ(M(u), λcn) = h0(M(u), λcn).

Moreover under any polarization for n ≫ 0, we have

χ(M(cn), λu) = χ(M(u), λcn) = h0(M(u), λcn).

4.2. Some properties of MH
X (u). In this subsection we are going to prove

some properties of the moduli space MH
X (u). Those results provide part of the key

ingredient for our later argument, when we deal with the positive genus cases.
Now we let the surface X and the effective line bundle L be as in Example 4.2.1

and 4.2.2 as follows.

Example 4.2.1. Let X = P2, and H be the hyperplane. Let L = dH with d ≥ 3.

Example 4.2.2. Let X = Xe := P(OP1 ⊕OP1(−e)) for e = 0, 1, with F the fiber
class and G the section class. G.G = −e. Let L = 2G+ nF, for any n > max{1, 2e}.

Let K be the canonical divisor on X. Denote l to be dim |L|, gL the arithmetic
genus of curves in |L|. As one can see, we always have gL > 0.

We have a natural morphism π : MH
X (u) → |L| sending every sheaf to its

schematic support. It is easy to see that fibers of π over integral curves are of dimen-
sion gL, but fibers over non-integral curves might not be of dimension gL. Let |L|int

denote the biggest open subscheme in |L| formed by the points where fibers of π have
dimension gL. Of course, |L|int contains all points corresponding to integral curves.

We can see that L satisfies three conditions as follows:
(A1) There is a very ample divisor H , such that for any 0 < L′ ≤ L, either

L′.(K +H) < 0 or L′ = G or 2G on X1 = P(OP1 ⊕OP1(−1)).
The very ample divisor on P2 can be chosen to be the hyperplane H , and on Xe

with e = 0, 1, G+ (e+ 1)F.
(A2) For any 0 < L′ ≤ L, if gL′ ≤ 0 then any curve in |L′| contains no one-

dimensional subscheme of positive genus; and moreover for any collection of effective
line bundles {Li} such that L =

∑
Li, we have

∑
li +

∑
max{gLi

, 0} + 2 ≤ l + gL
with li the dimension of |Li|.

This is trivial for dH on P2.
For cases on Xe, 0 < L′ ≤ L and gL′ ≤ 0 if and only if either L′ = mG + n′F

with m = 0, 1 and n′ ≤ n or L′ = 2G+ bF with 0 ≤ b ≤ e+1, so it is easy to see that
any one dimensional subscheme of any curve in such L′ is of non-positive genus. And
to prove the inequality on the dimension, first we assume that all |Li| contain integral
curves, which implies that either Li − K is nef and big. By Vanishing theorem of
Kawamata and Viehweg we know that li = χ(Li)− 1 for Li 6= G, moreover we know
that gLi

= χ(−Li) ≥ 0. Hence we have

l + gL = χ(L)− 1 + χ(−L) =
∑

(χ(Li) + χ(−Li)− 2) + 2
∑

i<j

Li.Lj + 1

=
∑

(li + gLi
− 1) + 2

∑

i<j

Li.Lj + 1.
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Write Li = aiG + biF , then
∑

ai = 2,
∑

bi = n > max1, 2e, bi ≥ eai or Li = G.
Denote N ≥ 2 the number of Li. We then have ∆ :=

∑
i<j Li.Lj = −

∑
i<j aiaje +∑

i6=j aibj . If e = 0 or e = 1 and ai0 = 2 for some i0, then we have ∆ =
∑

i6=j aibj =
2N − 2. If e = 1 and ai0 = aj0 = 1, then we have ∆ = 2n− bi0 − bj0 − 1. On the other
hand in this case N = n − bi0 − bj0 + 2, hence we have ∆ = n− 3 +N ≥ N Finally
we have

l + gL =
∑

(li + gLi
− 1) + 2∆+ 1 ≥

∑
li +

∑
gLi

+min{3N − 3, N + 1}

≥
∑

li +
∑

gLi
+ 2.

Now assume for some Li there is no integral curve in |Li|, this implies that gLi
≤ 0.

Write Li =
∑

Lj
i such that |Lj

i | contain integral curves and we know that gLj
i
= 0.

Then we have

li +max{gLi
, 0} =

∑

j

lji +
∑

j

max{gji , 0}.

Hence the statement (A2).
(A3) There are connected smooth curves in |L|, and non-integral curves are con-

tained in a subset of codimension 2 in |L|. Hence |L| − |L|int is of codimension at
least 2 in |L|.

This property follows from the fact that l =
∑

li +∆ and ∆ ≥ 2.
From now on for simplicity let M = MH

X (u) and M s = MH
X (u)s.

Lemma 4.2.3. The moduli space M is a rational singularity, hence normal and
Cohen-Macaulay, and its stable locus M s is smooth of dimension L.L+ 1 = l + gL.

Proof. Let F be a semistable sheaf of class u. From condition (A1) we know that
L′.K < 0 for all 0 < L′ ≤ L, which together with the semistability of F implies the
vanishing of Ext20(F ,F), since Ext2(F ,F)∨ ≃ Hom(F ,F ⊗K) = 0. Hence we have
the smoothness of both M s and the Quot-scheme Ωu. The whole moduli space M is
a rational singularity because it is a good quotient of a smooth scheme by a reductive
group (see [6]). To get the dimension is just a direct computation as follows with
exti(F ,F) = dimExti(F ,F)

dimM s = ext10(F ,F) = −
∑

(−1)iexti(F ,F) + 1 = −χ(u, u∨) + 1 = L.L+ 1.

with [F ] ∈ M s and u the class of F . As we see before L − K is nef and big, hence
L.L+ 1 = χ(L) + χ(−L)− 1 = l+ gL.

Remark 4.2.4. Because sheaves in M are torsion sheaves with rank zero, the
trace map tr : Ext1(F ,F) → H1(OX) may not be surjective if H1(OX) is not zero.
Then it will be more difficult to compute the dimension of M s.

Remark 4.2.5. Lemma 4.2.3 also holds for Mn := M(un) with un =
(0, L, χ(un) = n) and n any integer.

Lemma 4.2.6. The strictly semi-stable locus, i.e. M −M s, is of codimension at
least 2.

Proof. To see M −M s is of codimension at least 2, we can just follow Le Potier’s
method to prove Proposition 3.4 in [14]: there is an injective map from M −M s to
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⋃
∑

ui=u(
∏

iM
H
X (ui)

s), where ui = (0, Li, χ(ui) = 0) for some effective Li, and the

union is taken over all the collections {ui} such that
∑

Li = L. There are finitely
many of such collections. So the condition (A2) and Lemma 4.2.3 imply that M−M s

is of codimension at least 2.
Recall the quotient in (2.1)

(4.5) Ωu
φu

// M,

where φu is a good quotient by some reductive group G. Denote Ωsm
u to be the open

subscheme of Ωu consisting of all the sheaves that are locally free on their supports.
Let M sm be the intersection of M s with the image of Ωsm

u through φu. Notice that
there might be strictly semi-stable sheaves that are locally free on their supports,
hence M sm ( φu(Ω

sm
u ) in general.

It is proven by Le Potier ([14], Proposition 2.8 and Proposition 2.9) that π ◦ φu

restricted on Ωsm
u is smooth and π restricted on M sm is smooth.

Lemma 4.2.7. Ωu − Ωsm
u is of codimension no less than 2 in Ωu. Hence Ωsm

u is
dense in Ωu.

Proof. It is also proven by Le Potier ([14], Lemma 3.2) that Ωu − Ωsm
u is of

codimension 2 when the surface is P2. However we can just follow his method and
finally get that: For every closed point [H → F ] ∈ Ωu with F not locally free on its
support, if the sheaf Ext1(F ,F) is globally generated, then it is contained in a subset
of Ωu − Ωsm

u which is of codimension at least 2 in Ωu.
By Castelnuovo-Mumford Theorem ([19]; or [12], Lemma 1.7.2), if for all i > 0,

Hi(Ext1(F ,F)(−iH)) = 0 with H some very ample line bundle, then Ext1(F ,F) is
globally generated. Since F is of dimension 1, we know that Hj(Hom(F ,F(−iH))) =
0 and Hj(Ext1(F ,F)(−iH)) = 0 for all i and j > 1. And also by Lemma 4.5.13
in Appendix A, we know that F has a locally free resolution of length 1, hence
Extj(F ,F(−iH)) = 0 for all i and j > 1. Therefore by the spectral sequence we have
Ext2(F ,F(−H)) ≃ H1(Ext1(F ,F(−H))).

By Serre Duality, Ext2(F ,F(−H)) ≃Hom(F ,F(H+K))∨. ForX = P2 or P1×P1,
Condition (A1) says that for all 0 < L′ ≤ L, L′.(H +K) < 0 which together with the
semi-stability of F lead to the vanishing of Hom(F ,F(H +K)). And hence we know
that Ωu − Ωsm

u is of codimension at least 2 in Ωu for X = P2 or P1 × P1.

Let X = P(OP1 ⊕OP1(−1)) =: P̂2, i.e. X is obtained by blowing up P2 at a point.
Let L = 2G + nF with n ≥ 3 and H = G + 2F very ample. We only need to show
that all closed points [H → F ] ∈ Ωu with Hom(F ,F(H +K)) 6= 0 are contained in
some subset of codimension at least 2.

If Hom(F ,F(H + K)) 6= 0, then F must contain a subsheaf F ′ semistable of
Euler characteristic zero such that Hom(F ,F ′(H + K)) 6= 0. Then we must have
c1(F ′) = i[CG] with CG the only curve in class G and i = 1 or 2. By Proposition
4.1.1, we know that every semistable sheaf of Euler characteristic zero on 2G is S-
equivalent to OCG

(−1) ⊕ OCG
(−1). Hence with no loss of generality, we assume F ′

is supported at the curve CG ≃ P1 and F ′ ≃ F ′(H +K) ≃ OCG
(−1). Then we have

the following exact sequence.

(4.6) 0 → OCG
(−1) → F → G → 0.

Since Hom(F ,OCG
(−1)) 6= 0, eitherOCG

(−1) is a direct summand of F then sequence
(4.6) splits or there is a nonzero morphism G → OCG

(−1). We define two subsets of
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Ωu − Ωs
u as follows.

Σ1 := {[H → F ] ∈ Ωu|OCG
(−1) is a direct summand of F .}

Σ2 := {[H → F ] ∈ Ωu|with F in sequence (4.6) and Hom(G,OCG
(−1)) 6= 0}.

It will suffice for proving the rest of the lemma to show that both Σ1 and Σ2 are
of codimension at least 2 in Ωu. It is easy to compute that dim Σ1 = dim Ωu−G.(G+
nF ), hence Σ1 is of codimension ≥ 2 in Ωu as n ≥ 3.

Now we estimate the dimension of Σ2. In sequence (4.6) the sheaf G is semistable
and c1(G) = G + nF. Moreover since OCG

(−1) is stable, every nonzero morphism
G → OCG

(−1) must be surjective. Thus G must lie in the following sequence

(4.7) 0 → K → G → OCG
(−1) → 0,

where K is semi-stable of Euler characteristic zero and c1(K) = nF. By Lemma 4.5.14
in Appendix B, the space of isomorphic classes of such K has dimension equal to
n = dim |nF |.

For the fixed K, all the isomorphic classes of G in (4.7) form a space of dimension
no larger than dim (Ext1(OCG

(−1),K))/Gm. Since for i = 0, 2, Exti(OCG
(−1),K) =

0, dim (Ext1(OCG
(−1),K)/Gm)=G.nF − 1 = n− 1.

Fix the sheaf G, then the different choices of F in (4.6) form a space of dimen-
sion at most dim (Ext1(G,OCG

(−1)))/Gm. Notice that Ext2(G,OCG
(−1)) = 0, and

dim Hom(G,OCG
(−1)) = 1. Hence dim (Ext1(G,OCG

(−1)))/Gm = G.(G + nF ) +
1− 1 = n− 1.

Finally we know that dim Σ2 ≤ dim Hom(H,H) − 1 + n + (n − 1) + (n − 1).
On the other hand we have dim Ωu = dim Hom(H,H) − 1 + gL + l. By a direct
computation, we get gL + l = 4n− 3. Hence dim Σ2 ≤ dim Ωu − (n− 1), and hence
the lemma as n ≥ 3.

Lemma 4.2.8. Ωu is irreducible.

Proof. Since Ωsm
u is dense in Ωu by Lemma 4.2.7, it is enough to show that Ωsm

u

is irreducible. Since Ωsm
u is smooth, it is enough to show that it is connected. We

assume that Ωsm
u = U1 ∪ U2 with U1 and U2 are open and U1 ∩ U2 = ∅. Let V ⊂ |L|

be the open set parametrizing smooth curves. And obviously U := (π ◦ φu)
−1(V ) is

connected and open in Ωsm
u . Hence U is contained in U1 or U2. Let U be contained in

U1, then U2 is contained in the preimage of |L|−V in Ωsm
u . On the other hand, π ◦φu

restricted on Ωsm
u is smooth hence the preimage of |L| − V in Ωsm

u has dimension
less than the dimension of Ωu. But Ωu is smooth and equidimensional and every
nonempty open subscheme of it has the same dimension as it. Hence we know that
U2 has to be empty and Ωsm

u is connected and hence the lemma.

Corollary 4.2.9. The moduli space M is irreducible.

Remark 4.2.10. For any integer n, the stable locus M s
n of Mn (as defined in

Remark 4.2.5) is irreducible.

We now study the dualizing sheaf on M .

Proposition 4.2.11. Let ω be the canonical line bundle on M s, then ω ≃
(πs)∗O|L|(1)

⊗L.K , with πs obtained by composing the open embedding from M s to
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M with π. Moreover, the dualizing sheaf on M is locally free and isomorphic to
π∗O|L|(1)

⊗L.K .

Proof. Since M is normal, the dualizing sheaf on M is the push forward of the
canonical bundle on its smooth locus. On the other hand M is Cohen-Macaulay and
M−M s is of codimension ≥ 2. Hence if ω ≃ (πs)∗O|L|(1)

⊗L.K , then the push forward
of ω to M is the dualizing sheaf on M and isomorphic to π∗O|L|(1)

⊗L.K .
It will suffice to prove that det (TMs) = (πs)∗O|L|(−1)⊗L.K, where TMs is the

tangent bundle on M s.
Restrict the quotient in (4.5) on M s and we get

(4.8) Ωs
u

φs
u

// M s.

Since φs
u is a principal PG-bundle , we have (φs

u)
∗ : Pic (M s) → PicPG(Ωs

u) is an
isomorphism. And also because there is no surjective homomorphism from PG to
Gm, the natural morphism PicPG(Ωs

u) → Pic(Ωs
u) is injective ([20] Chap 1, Section

3, Proposition 1.4). Hence it is enough to prove that

(4.9) det (φs
u)

∗TMs ≃ (φs
u)

∗(πs)∗O|L|(−1)⊗L.K .

Because of Lemma 4.2.7, we know that it is enough to show the isomorphism in
(4.9) restricted on Ωsm

u ∩ Ωs
u, i.e. we prove that

det (φs
u)

∗TMs |Ωsm
u ∩Ωs

u
≃ (φs

u)
∗(πs)∗O|L|(−1)⊗L.K |Ωsm

u ∩Ωs
u
.

We have a universal sheaf on X × Ωs
u. We denote it as E . Then

(4.10) E // X × Ωs
u

q
{{ww

ww
ww

ww
w

p

��

X Ωs
u

By Theorem 10.2.1 in [12], we have

(φs
u)

∗TMs = Ext1p(E , E).

For every closed point m ∈ Ωs
u, we have Exti(Em, Em) = 0, for all i ≥ 2 and

Ext0(Em, Em) = C. Hence Ext0p(E , E) = p∗Hom(E , E) is a line bundle on Ωs
u, and

moreover isomorphic to OΩs
u
because it has a global section non-vanishing everywhere.

Extip(E , E) = 0, for all i ≥ 2, because fiberwise they are Exti(Em, Em). Therefore

(4.11) [det R•(p ◦ Hom(E , E))] = [det Ext1p(E , E)
−1].

By Proposition 4.5.15 in Appendix C, we know that

det R•(p ◦ Hom(E , E))|Ωsm
u ∩Ωs

u
≃ (φs

u)
∗(πs)∗O|L|(1)

⊗L.K |Ωsm
u ∩Ωs

u
.

Hence

det (φs
u)

∗TMs |Ωsm
u ∩Ωs

u
≃ (φs

u)
∗(πs)∗O|L|(−1)⊗L.K |Ωsm

u ∩Ωs
u
.

And this finishes the proof of the proposition.
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Remark 4.2.12. Proposition 4.2.11 holds for Mn, as long as Mn − M s
n is of

codimension ≥ 2 in Mn.

We then have a result in the theory of Compactified Jacobians of integral curves
as a corollary of Proposition 4.2.11.

Corollary 4.2.13. Let X and L be as before, i.e. as in Example 4.2.1 and
4.2.2. Let C be any integral curve in |L|. Then on the compactified Jacobian J̄d
which parametrizes pure sheaves of rank 1 of degree d on C, the dualizing sheaf ω0 is
trivial.

Proof. For any integral curve C in |L|, the fiber of π over [C] is a complete
intersection by l divisors in |π∗O|L|(1)| in the smooth locus M s and it is isomorphic
(not canonically) to the compactified Jacobian J̄d of C. Hence by Proposition 4.2.11
we have the lemma.

Remark 4.2.14. Altman, Iarrobino and Kleiman has proven in [2] that the com-
pactified Jacobian of an integral locally planar curve is a local complete intersection,
hence its dualizing sheaf is invertible. But in general it is not known whether it is
trivial.

4.3. Positive genus cases and r = 1. Let M and Θ be the same as before.
Then we have

Theorem 4.3.1. (1) R1π∗Θ
r = 0, for all r > 0.

(2) For all r > 0, π∗Θ
r is torsion-free on |L|, and locally free of rank rgL on

|L|int. In particular when r = 1, π∗Θ ≃ O|L|, hence π∗Θ is locally free on the whole
linear system |L|.

Statement 2 of Theorem 4.3.1 implies that for all gL > 0

Z1(t) =
∑

n

h0(M,λc1n
)tn =

1

(1− t)l+1
.

This coincides with the formula on the side of rank 1 sheaves in [9]. Thus we have a
corollary.

Corollary 4.3.2. Let X and L be as in Example 4.2.1 and 4.2.2. Let u =
(0, L, χ(u) = 0) and cn = (1, 0, n), then we have for all n ≥ 0

h0(M(cn), λu) = h0(M(u), λcn).

And moreover the morphism D in (1.3) is an isomorphism.

Proof. To show D is an isomorphism, it is enough to show that it is injective. We
choose a collection of generators {si} of H0(M,λcn), and we then show that we can
find a collection of ideal sheaves {Ii} with [Ii] ∈ M(cn) for all i, such that for each i
the divisor Di = {[F ] ∈ M |h0(F ⊗ Ii) 6= 0} is the zero set of si. This will suffice to
prove the injectivity of D.

Denote x to be a single point in X , let Ix be the ideal sheaf of x. For any [F ] ∈ M
we have

0 → Tor1(F ,Ox) → F ⊗ Ix → F → F ⊗Ox → 0.



STRANGE DUALITY ON SOME RATIONAL RULED SURFACES 463

Denote CF to be the supporting curve of F . Notice that: if x 6∈ CF , then
Tor1(F ,Ox) = 0 and F ⊗ Ix ≃ F ; if x ∈ CF , then Tor1(F ,Ox) is of zero dimension
and hence has nonzero global sections. Hence we know that

(4.12) h0(F ⊗ Ix) 6= 0 ⇔ h0(F) 6= 0 or x ∈ CF .

Given a point x ∈ X which is not a base point of |L|, we can define a hyperplane
in |L| by asking curves to pass through x. We choose l+1 points x0, . . . , xl ∈ X, such
that the corresponding hyperplanes Pi intersect transversely. Then sections induced
by Pi’s generate H0(|L|,O|L|(1)) and we say that the collection Γ = {x0, . . . , xl} is
regular.

For Θ(n) with n ≥ 1, we choose n regular collections Γi = {xi
0, . . . , x

i
l , } for

1 ≤ i ≤ n, such that Γi ∩ Γj = ∅ if i 6= j. We take a collection of ideal sheaves {Ix}
with x = {x1

i1 , . . . , x
n
in}. We can see that #{Ix} = (l + 1)n. And denote sx to be the

section induced by the divisor Dx = {[F ] ∈ M |h0(F ⊗ Ix) 6= 0}.
We have the following morphism m defined by multiplication

m : H0(M,Θ)⊗H0(M,π∗O|L|(1))
⊗n → H0(M,Θ(n)).

Because of (4.12), we know that sx’s generate the image ofm. Hence they generate
H0(M,Θ(n)) because of Lemma 4.3.3. Hence we have proven the corollary.

Lemma 4.3.3. π∗OM ≃ π∗Θ ≃ O|L| and the following morphism m1 defined by
multiplication is surjective for any n

(4.13) m1 : H0(M,π∗O|L|(1))⊗H0(M,Θ(n)) → H0(M,Θ(n+ 1)).

Proof. Since OM is a subsheaf of Θ, we have π∗OM is a subsheaf of π∗Θ and hence
π∗OM is a subsheaf of O|L|. But on the other hand, h0(|L|, π∗OM ) = h0(M,OM ) = 1.
Thus π∗OM ≃ O|L|.

On |L| we have that the following morphism m′
1 defined by multiplication is

surjective for any n

(4.14) m′
1 : H0(|L|,O|L|(1))⊗H0(|L|,O|L|(n)) → H0(|L|,O|L|(n+ 1)).

And since π∗OM ≃ O|L|, the morphism

π∗ : H0(M,π∗O|L|(1)) → H0(|L|,O|L|(1))

is a canonical isomorphism. And also the morphism

πΘ
∗ : H0(M,Θ(n)) → H0(|L|,O|L|(n))

is a isomorphism for any n. And hence the surjectivity of m1 in (4.13) can be deduced
from the surjectivity of m′

1 in (4.14). So we have proven the lemma.

Proof of Statement 1 in Theorem 4.3.1. From the spectral sequence we have

(4.15) H1(M,Θr(s)) → H0(|L|, R1π∗Θ
r ⊗O(s)) → H2(|L|, π∗Θ

r ⊗O(s)),

For any r > 0, according to Proposition 3.0.4 and Proposition 4.2.11 Θr(s)⊗ω−1

is ample for s ≫ 0, where ω is the dualizing sheaf, actually a line bundle, on M . We
know that Hi(M,Θr(s)) = 0 for i > 0, s ≫ 0 by the generalized version of Kodaira
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vanishing theorem (Theorem 1-2-5 in [13]). Although our moduli space may not be
smooth, it is Gorenstein and only has rational singularities, hence by Proposition
0-2-16 in [13] the generalized Kodaira vanishing theorem applies. Because π∗Θ

r is
coherent on |L|, H2(|L|, π∗Θ

r ⊗ O(s)) = 0 for s ≫ 0 by Serre vanishing theorem.
Hence we have H0(|L|, R1π∗Θ

r ⊗O(s)) = 0 for s ≫ 0, then R1π∗Θ
r has to be zero.

To prove Statement 2 of Theorem 4.3.1, we first show two lemmas. Recall that
|L|int consists of points over which the fibers are of dimension gL. We define M int by
the following Cartesian diagram

(4.16) M int
j

//

πint

��

M

π

��

|L|int
i

// |L|

Then we have

Lemma 4.3.4. πint is flat and πint
∗ (j∗Θr) is locally free of rank rgL on |L|int,

and moreover Riπint
∗ (j∗Θr) = 0, for all i ≥ 1, r ≥ 1.

Proof. We have already seen that both |L| and M are irreducilbe. The flatness
of πint is because |L|int is regular, M int is Cohen-Macaulay and every fiber of πint is
of dimension gL. (See [11], III, Ex 10.9.)

Every fiber over a point in |L|int is a complete intersection of l divisors in
|π∗O|L|(1)|. Since H

i(Θr(s)) = 0, ∀i > 0, s ≫ 0, Θr(s) restricted to every complete in-
tersection of divisors in |π∗O|L|(1)| has no higher cohomology as s ≫ 0. But fiberwise
Θr(s) is isomorphic to Θr. Hence Θr restricted to every fiber has no higher coho-
mology, which together with the flatness of πint implies the local freeness of πint

∗ Θr

(see Theorem 12.11 in Chap. III in [11]). For C a smooth curve in |L|, Lemma 3.0.1
implies that Θ|π−1([C]) is the usual θ-bundle, hence a principal polarization on the

abelian variety π−1([C]) ≃ JgL−1
C (see [21] Part III Section 17.3). By Corollary 11.19

in [21] and Riemann-Roch we know that h0(Θr|π−1([C])) = χ(Θr|π−1([C])) = rgL . Thus
πintΘr is of rank rgL .

Lemma 4.3.5. M −M int is of codimension at least 2.

Proof. Because of Lemma 4.2.6, it is enough to show that M s − (M int ∩M s) is
of codimension at least 2 in M s.

Notice that M s − (M int ∩M s) is contained in

(M sm ∩ π−1(|L| − |L|int))
⋃

(M s −M sm).

So it is enough to prove both the two sets above are of codimension ≥ 2 in M s.
π restricted to M sm is smooth. So condition (A3) implies that M sm ∩ π−1(|L| −

|L|int) is of codimension 2. And we can easily deduce from Lemma 4.2.7 that M s −
M sm is of codimension ≥ 2.

Proof of Statement 2 in Theorem 4.3.1. We go back to the Cartesian diagram
(4.16). As we proved in Lemma 4.3.4, πint

∗ j∗Θr is locally free on |L|int for r > 0.
Since both j and i in (4.16) are open immersions, we get πint

∗ j∗Θr ≃ i∗π∗Θ
r which

means that π∗Θ
r restricted to |L|int is locally free for all r > 0.

Moreover, M is Cohen-Macaulay, Θr is a line bundle on M , and M −M int is of
codimension ≥ 2. Hence according to the theory of cohomology with supports (see
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[10] Exp. III, p.8, Lemma 3.1), we have Θr ≃ j∗j
∗Θr and hence π∗Θ

r ≃ π∗j∗j
∗Θr. On

the other hand, because the diagram (4.16) commutes, we have π∗Θ
r ≃ i∗π

int
∗ j∗Θr.

We already know that πint
∗ j∗Θr is locally free hence torsion-free on |L|int. And i is

an open immersion. So i∗π
int
∗ j∗Θr must be torsion-free on |L|.

For r = 1, πint
∗ j∗Θ is a line bundle on |L|int. We want to show that it has a

global section non-vanishing everywhere. Recall that on M we have a locus

DΘ := {[F ] ∈ M |h0(F) 6= 0}.

If DΘ 6= M , it is a divisor of Θ by Lemma 3.0.1. So it is enough to show that DΘ

does not contain any fiber of πint: for any curve [C] ∈ |L|int, (πint)−1([C]) ≃ JgL−1
C ,

where JgL−1
C is the degree gL − 1 component of the Jacobian of C and JgL−1

C is
its compactification (when C is not smooth); it is enough to show that ∃[FC ] ∈
JgL−1
C such that h0(FC) = 0. If otherwise, then there is a surjective rational map

p :
∏

gL−1 C → JgL−1 sending (p1, . . . , pgL−1) to OC(
∑

pi) with pi smooth points,

and hence dimJgL−1
C ≤ gL − 1. On the other hand JgL−1

C is irreducible (see [2])

and of dimension gL, hence JgL−1
C is dense in JgL−1

C and of dimension gL which is a
contradiction.

Now we know that πint
∗ j∗Θ ≃ O|L|int = i∗O|L|. Because of (A3) we have that

i∗i
∗O|L| ≃ O|L| and hence π∗Θ ≃ π∗j∗j

∗Θ ≃ O|L|.
This finishes the proof of Statement 2.

At the end of this subsection we prove a lemma which gives an estimate of the
dimensions of all fibers of π. The lemma will be used later. We have

Lemma 4.3.6. For any point p ∈ |L|, let Dp = DΘ ∩ π−1(p). Then we have

gL ≤ dim π−1(p) ≤ dim Dp + 1.

Proof. Since every fiber is a closed subscheme defined by l equations and M is
irreducible of dimension l + gL, we have dim π−1(p) ≥ gL.

To prove π−1(p) ≤ dim Dp + 1, it is enough to show that every irreducible
component of π−1(p) has dimension no larger than dim Dp+1. Let Fp be an irreducible
component of π−1(p). If Fp ∩ DΘ 6= ∅, then Fp ∩ DΘ is a divisor in Fp and hence
dim Fp = dim (Fp ∩DΘ) + 1 ≤ dim Dp + 1. If Fp ∩DΘ = ∅, then Θ restricted on Fp

is isomorphic to the structure sheaf, so is Θ(n) for any n because Fp is contained in
a fiber. But on the other hand Θ(n) is ample for n big enough, hence Fp has to be of
dimension zero and hence dim Fp < 1 ≤ dim Dp+1. So we have proven the lemma.

4.4. Genus one case and r ≥ 1. In this subsection we let gL = 1 and prove
this following theorem:

Theorem 4.4.1. (1) |L|int = |L|, hence π is flat and Riπ∗Θ
r = 0, ∀i, r > 0;

(2) for r > 0, π∗Θ
r ≃ O|L| ⊕ (O|L|(−i))⊕

r
i=2 .

Statement 2 of Theorem 4.4.1 implies that for gL = 1 we can write down the
generating function

Zr(t) =
∑

n

h0(M,λcrn)t
n =

∑

n

h0(|L|, π∗(Θ
r)⊗O|L|(n))t

n

=
1 + t2 + t3 + . . .+ tr

(1− t)l+1
.
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When r = 2, it matches Göttsche’s computation in [9]. Hence we have

Corollary 4.4.2. Let X and L be as before and moreover gL = 1. Let u =
(0, L, χ(u) = 0) and cn = (2, 0, n), then under a suitable polarization we have for all
n ≥ 0

(4.17) χ(M(cn), λu) = χ(M(u), λcn) = h0(M(u), λcn).

Moreover (under any polarization) for n ≫ 0, we have

χ(M(cn), λu) = χ(M(u), λcn) = h0(M(u), λcn).

Proof. For any n ≥ 0, Θ2(n) has no higher cohomology. This is because π∗(Θ
2(n))

has no higher cohomology and Riπ∗Θ
r = 0 for all r > 0.

Proof of Statement 1 in Theorem 4.4.1. Notice that for any [C] ∈ |L|, the structure
sheaf OC on C is stable and of Euler characteristic zero. Hence for any [F ] ∈ DΘ

supported at curve C, F ≃ OC . And hence we know that DΘ restricted to every fiber
of π is a point and by Lemma 4.3.6 we know that every fiber of π is of dimension gL.
And hence the statement.

To prove Statement 2 in Theorem 4.4.1, we need some lemmas.

Lemma 4.4.3. There is a embedding ı : |L| → M induced by the structure sheaf
of the universal curve in X × |L|. Moreover ı provides a section of π with its image
the Θ-divisor DΘ, where DΘ consists of all the [F ] such that h0(F) 6= 0. And hence
DΘ ≃ |L|.

Proof. On X × |L|, there is a universal curve C such that every fiber Cs is just
the curve represented by point s in |L|.

(4.18) C // X × |L|

q
{{xx

xx
xx

xx
x

p

��

X |L|

The structure sheaf of C induces an injective morphism embedding |L| as a sub-
scheme of M.

ı : |L| → M.

One can see that the image of ı isDΘ and ı also provides a section of the projection
π.

Lemma 4.4.4. Θr|DΘ
≃ O|L|(−r)

Proof. According to Lemma 4.4.3 and the universal property of Θ, we know that
Θr|DΘ

= ı∗Θr ≃ (det(p![OC ]))
−r, with C and p the same as in (4.18).

We have an exact sequence on X × |L|.

0 → q∗OX(−L)⊗ p∗O|L|(−1) → OX×|L| → OC → 0.

Hence (det(p![OC ]))
−1 ≃ (det(p![OX×|L|]))

−1 ⊗ det(p![q
∗OX(−L)⊗ p∗O|L|(−1)]).

And also det(p![OX×|L|]) ≃ O|L|; det(p![q
∗OX(−L) ⊗ p∗O|L|(−1)]) ≃

O|L|(−1)⊗χ(OX(−L)).
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Since curves in |L| are of genus 1, which means that the structure sheaves of the
curves have Euler characteristic 0, and hence χ(OX(−L)) = χ(OX) = 1. So we have
Θr|DΘ

≃ O|L|(−r). And hence the lemma.

Proof of Statement 2 in Theorem 4.4.1. On M we have the exact sequence

(4.19) 0 → Θr → Θr+1 → Θr+1|DΘ
→ 0.

Push it forward via π to |L|. Because of Lemma 4.4.3 and Lemma 4.4.4, we have
π∗Θ

r+1|DΘ
≃ O|L|(−r − 1). Hence we get

(4.20) 0 → π∗Θ
r → π∗Θ

r+1 → O|L|(−r − 1) → 0.

We have zero on the right because of Statement 1 in Theorem 4.3.1. And by the
Statement 2 in the theorem, we know that π∗Θ ≃ O|L|. Then we have Θ2 ≃ O|L| ⊕
O|L|(−2) and by recursion we get the formula for π∗Θ

r. This finishes the proof.

4.5. Genus two case and r ≥ 1. There is no curve of genus two in P2, we only
have two examples as follow.

Example 4.5.1. X = P(OP1 ⊕OP1(−e)), with e = 0, 1; and L = 2G+ (e+ 3)F.

Let X and L be as in Example 4.5.1 and we have the following theorem:

Theorem 4.5.2. 1, |L|int = |L|, hence π is flat and Riπ∗Θ
r = 0, ∀i, r > 0;

2, for r > 0, we have:
π∗Θ

r ≃ O|L| ⊕O|L|(−2)⊕3
⊕r

i=3(O|L|(−i)⊕i+1 ⊕O|L|(−i− 1)⊕i−2).

Statement 2 of Theorem 4.5.2 implies that for X and L in Example 4.5.1 we can
write down the generating function

Zr(t) =
∑

n

h0(M,λcrn)t
n =

∑

n

h0(|L|, π∗(Θ
r)⊗O|L|(n))t

n

=
1 + 3t2 +

∑r
i=3((i + 1)ti + (i − 2)ti+1)

(1− t)l+1
.

When r = 2, it matches Göttsche’s computation in [9]. Hence we have

Corollary 4.5.3. Let X and L be as in Example 4.5.1. Let u = (0, L, χ(u) = 0)
and cn = (2, 0, n), then we have under a suitable polarization for all n ≥ 0

χ(M(cn), λu) = χ(M(u), λcn) = h0(M(u), λcn).

Moreover under any polarization for n ≫ 0, we have

χ(M(cn), λu) = χ(M(u), λcn) = h0(M(u), λcn).

On M we have an exact sequence for r > 0

(4.21) 0 → Θr → Θr+1 → DΘ(Θ
r+1) → 0.

Push it forward via π to |L|. By Statement 1 in Theorem 4.3.1, we have

(4.22) 0 → π∗Θ
r → π∗Θ

r+1 → π∗DΘ(Θ
r+1) → 0.
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Then we see that Statement 2 in Theorem 4.5.2 is just a consequence of the following
proposition.

Proposition 4.5.4. For r ≥ 2, π∗DΘ(Θ
r) = O|L|(−r)⊕r+1 ⊕O|L|(−r− 1)⊕r−2.

Before proving this proposition, we need to show some lemmas.

Lemma 4.5.5. DΘ is Cohen-Macaulay.

Proof. This is because M is Cohen-Macaulay and DΘ is a divisor in M.

Lemma 4.5.6. DΘ −Ds
Θ is of codimension ≥ 2 in DΘ.

Proof. Let F be a strictly semi-stable sheaf S-equivalent to ⊕iFi. Then F has a
nonzero global section if and only if one of the Fi’s has. Hence strictly semi-stable
points with nonzero global sections form a closed subscheme of codimension 1 in
M −M s. Then the lemma follows because M −M s is of codimension ≥ 2 in M .

For the stable points in DΘ, we have the following description.

Lemma 4.5.7. Let C be a curve in |L|. Let F be a sheaf of Euler characteristic
zero with schematic support C. Then F is stable and has a nonzero global section, i.e.
[F ] ∈ Ds

Θ ⇔ F lies in a non-splitting exact sequence

(4.23) 0 → OC → F → Op → 0,

with p a point (with reduced structure) in C, and F does not contain a subsheaf of
Euler characteristic zero.

Moreover, if F lies in the non-splitting sequence (4.23) and contains a subsheaf
of Euler characteristic zero, then it is strictly semi-stable and C is not integral.

Proof. ”⇒”: Let F be a stable sheaf supported at C with a nonzero global section,
then we have

(4.24) OC
s

// F ,

with s 6= 0.
If s is not injective, then its image is a quotient of OC hence is isomorphic to

OC′ with C′ some closed subscheme in C. Since s is nonzero, C′ 6= ∅; and also s is
not injective, C′ ( C. On the other hand, C is a curve of arithmetic genus 2 and for
any subscheme C′ ( C, C′ is of genus no larger than 1. Hence χ(OC′) ≥ 0 which
contradicts the stability of F . Therefore we have that s is injective.

As s is injective, it is easy to see that the cokernel of s is a sheaf of dimension
zero and of Euler characteristic 1, hence it is the structure sheaf over a reduced point
p with p ∈ C. Hence we have

(4.25) 0 → OC → F → Op → 0.

And of course F can not have a subsheaf of Euler characteristic zero.
”⇐”: Let F be a sheaf which is a nontrivial extension of Op by OC , with p a

point with reduced structure in C. Then we have

(4.26) 0 // OC
s

// F
v

// Op // 0.

It is easy to compute that χ(F) = 0 and also easy to see that F is pure. We want to
show that for any proper subsheaf G of F , χ(G) is non-positive, and this will suffice
for the proof of the rest of the lemma.
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Given G a proper subsheaf of F , we see that v(G) is a subsheaf of Op, hence
v(G) = 0 or v(G) = Op.

If v(G) = 0, then G is actually a subsheaf of OC and hence it is a ideal sheaf I of
some closed subscheme C′ ( C. C′ can be of dimension 1 or dimension 0. But in both
cases we have χ(OC′) ≥ 0 and hence χ(G) ≤ −1 because χ(G) + χ(OC′) = χ(OC) =
−1.

If v(G) = Op, then we have

0 → Ker → G → Op → 0.

Ker is a subsheaf of OC , hence χ(Ker) ≤ −1 or Ker = 0. If Ker = 0, then G ≃ Op

and the sequence (4.26) splits which is a contradiction. If Ker 6= 0, then χ(G) ≤ 0
with equality if and only if χ(Ker) = −1.

And finally if χ(Ker) = −1 and Ker 6= OC , then C must be either reducible or
non-reduced since OC/Ker can not be a sheaf of dimension 0.

Remark 4.5.8. For any curve C in |L|, let p be a point in C with reduced
structure and denote Ip to be the ideal sheaf of p in C. Then from Lemma 4.5.7 we
see that Hom(Ip,OC) is semi-stable and has nonzero global sections for any p ∈ C.
And moreover when p is a smooth point, Hom(Ip,OC) is a line bundle on C.

Remark 4.5.9. Actually for any single point p ∈ C, (Ext1(Op,OC)−{0})/Gm is
just one point and hence if F lies in an exact sequence (4.26), then F ≃ Hom(Ip,OC).

Let dC be the dimension of Ds
Θ restricted to the fiber of π over the curve C. Now

we know that dC is no larger than the dimension of the curve, hence dC ≤ 1 for every
[C] ∈ |L|. And when C is integral, dC = 1.

Proof of Statement 1 in Theorem 4.5.2.We know by Remark 4.5.9 that Ds
Θ re-

stricted to every fiber is of dimension no larger than 1. DΘ −Ds
Θ restricted to a fiber

over a non-integral curve [C] is a finite set of points, each of which corresponds to
the S-equivalence classes of OC′′ ⊕OC′(−1) with C′′ a component of arithmetic genus
1 and C′ ≃ P1. Thus we know that DΘ restricted to every fiber is of dimension no
larger than 1. And by Lemma 4.3.6 we know that DΘ restricted to every fiber is of
dimension 1 and every fiber of π is of dimension 2, and hence the statement.

Denote C to be the universal family of curves in X× |L| parametrized by |L|. C is
a smooth projective scheme. We then define a morphism from C to M with its image
in DΘ as following.

Let △ : C → C ×|L| C be the diagonal embedding. Then △ is a closed embedding
and the image of △ is a divisor in C ×|L| C. We denote I△ to be the ideal sheaf of
△(C). Notice that I△ is not locally free on C ×|L| C, because C ×|L| C is not smooth.

Since X × C = X × |L| ×|L| C, we have

(4.27) C
△
// C ×|L| C

i×idC
//

p1

��

X × C
p2

//

p1

��

C

π

��

C
i

// X × |L|
p

// |L|.

We can see that (i × idC)∗Hom(I△,OC×|L|C) is flat over C, because restricted
to the fiber over any point p ∈ C, it is HomOCp

(Ip,OCp
) and has the same Hilbert

polynomial restricted to every fiber. And because of Remark 4.5.8 we know that
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(i × idC)∗Hom(I△,OC×|L|C) is a flat family of semi-stable sheaves over C. Then it
induces a morphism f : C → M . It is easy to see that its image is contained in DΘ.

We have a commutative diagram

(4.28) C
f

//

π

��
@@

@@
@@

@@
DΘ

π

��

|L|

.

Notice that π∗(f
∗Θr) ≃ π∗f∗(f

∗Θr) ≃ π∗(f∗OC ⊗ Θr). Proposition 4.5.4 follows
immediately from the two following lemmas.

Lemma 4.5.10. f∗OC ≃ ODΘ
.

Lemma 4.5.11. π∗(f
∗Θr) ≃ O|L|(−r)⊕r+1 ⊕O|L|(−r − 1)⊕r−2.

Before proving these two lemmas, let us first give some notations. Let |L|1 be
the open subscheme of |L| containing integral curves. We can see that |L| − |L|1 is
of codimension ≥ 2 in |L|. Denote C1 (resp. D1

Θ) to be the preimage of |L|1 along π
(resp. π). And Do

Θ = D1
Θ ∩M sm, and also Co is the preimage of Do

Θ along f. Hence
we have the following Cartesian diagram.

(4.29) Co //

fo

��

C1 //

f1

��

C

f

��

Do
Θ

// D1
Θ

// DΘ

.

Notice that DΘ − D1
Θ is of codimension ≥ 2 in DΘ. This is because of Lemma

4.5.6 and Remark 4.5.9. We also have

Lemma 4.5.12. DΘ is integral and DΘ−Do
Θ is of codimension ≥ 2 in DΘ. Hence

Do
Θ is dense in DΘ.

Proof. The moduli space M is irreducible by Corollary 4.2.9, and DΘ is a divisor
in M. So if DΘ is not integral, then we can write DΘ = D1 +D2 with Di’s divisors
in M and dim Di = dim M − 1 = l + 1. On the other hand, DΘ restricted to every
fiber is of dimension 1. As a result for i = 1, 2, the image of Di along π is a closed
subscheme of |L| of dimension l and hence is |L|. Then we know that DΘ restricted
to a generic fiber of π is not integral. But this contradicts the fact that DΘ restricted
to a fiber over smooth curve is integral. So we know that DΘ is irreducible and hence
any open set in DΘ is dense in DΘ.

Since DΘ − D1
Θ is of codimension ≥ 2 in DΘ, to prove that DΘ − Do

Θ is of
codimension ≥ 2, it is enough to prove that D1

Θ −Do
Θ is of codimension ≥ 2 in D1

Θ.
Let F be a sheaf in D1

Θ −Do
Θ. Let C be its supporting curve.

Since C is integral, then F ≃ Hom(Ip,OC) with p a singular point in C. Hence
D1

Θ −Do
Θ restricted to the fiber over C is empty if C is smooth and contains finitely

many points if C is not smooth.
This finishes the proof of the lemma.

Proof of Lemma 4.5.10. f is a projective morphism, and by Lemma 4.5.12 we
know that DΘ is integral. Hence it is enough to show the following two statements:

(1) f is a birational map;
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(2) DΘ is normal.

Because of Lemma 4.5.5 we know that DΘ is Cohen-Macaulay. Hence it is nor-
mal if and only if it is regular in codimension one. Moreover since DΘ − Do

Θ is of
codimension ≥ 2, it is enough to show that Do

Θ is normal. Hence both Statement (1)
and Statement (2) will follow if we show that fo in (4.29) is an isomorphism.

Now we focus on fo. Since (4.29) is a Cartesian diagram, fo is projective. And
it is easy to see that fo is bijective, and hence it is affine. Then we also have f# :
ODo

Θ
→ fo

∗OCo is injective because of the surjectivity of fo. Moreover fo will be an

isomorphism if f# is surjective.

To prove the surjectivity of f#, by Nakayama’s lemma, it is equivalent to show
that f# restricted to every fiber of π is surjective, i.e. for any y ∈ |L| we have
f#
y : ODo

Θ
⊗ k(y) → fo

∗OCo ⊗ k(y) is surjective.

We restrict the commutative diagram (4.28) to Do
Θ and get

(4.30) Co
fo

//

πo

  B
BB

BB
BB

B
Do

Θ

πo

��

|L|1

.

Notice that both πo and πo are flat. This is because |L|1 is regular, both Co and
Do

Θ are Cohen-Macaulay and integral and also every fiber of πo and πo is of dimension
1.

Since fo is bijective, we have Rifo
∗OCo = 0 for all i > 0. And hence fo

∗ commutes
with the restriction to the fiber, i.e. fo

∗OCo ⊗ k(y) ≃ fo
∗ (OCo ⊗ k(y)) for any y ∈ |L|.

Hence to prove the surjectivity of f#
y it is enough to show that fo restricted to the

fiber over y is an isomorphism.

Let C be the curve corresponding to the point y in |L|. Denote Cy := Co ×
Spec k(y) and Dy := Do

Θ × Spec k(y). One then can see that Dy is the moduli
space parametrizing line bundles on C which are of degree 1 and have nonzero global
sections, and hence there is a morphism h : Dy → Pic1(C). Now we view the smooth
locus of C as a closed subscheme of Pic1(C) by assigning every smooth point p to
[OC(p)]. It is easy to see that the image of Dy via h is Cy and h provides an inverse
of fo

y . Hence fo restricted to every fiber is an isomorphism and hence the lemma.

Proof of Lemma 4.5.11. We define Cs to be the open subscheme in C by excluding
all singular points on every fiber of π in diagram (4.27). One sees that C − Cs is of
codimension ≥ 2 in C. Denote j : Cs → C be the open embedding. Because C is
smooth, we have that

(4.31) f∗Θr ≃ j∗j
∗f∗Θr.

We first compute j∗f∗Θr and then push it forward along j to get f∗Θr. We have a
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Cartesian diagram

(4.32) Cs
△s

//

j

��

C ×|L| C
s i×idCs

//

idC×j

��

X × Cs
ps
2

//

idX×|L|×j

��

Cs

j

��

C
△

// C ×|L| C
i×idC

//

p1

��

X × C
p2

//

p1

��

C

π

��

C
i

// X × |L|
p

// |L|.

By the universal property of Θ, we have (j∗f∗Θ)∨ ≃ det R•ps2 ◦ (idX×|L| ×
j)∗(i × idC)∗Hom(I△,OC×|L|C) ≃ det R•ps2 ◦ (i × idCs)∗(idC × j)∗Hom(I△,OC×|L|C).
And let Is△ denote I△ restricted to C ×|L| C

s, then (idC × j)∗Hom(I△,OC×|L|C) =
Hom(Is△,OC×|L|Cs).

Notice that π ◦ j is smooth and hence p1 ◦ (idC × j) is smooth. Then because
C is smooth, C ×|L| C

s is smooth. Then Is△ is locally free on C ×|L| C
s, and so

is Hom(Is△,OC×|L|Cs). We denote Is∨△ to be Hom(Is△,OC×|L|Cs). Since △s(Cs) =
△(C) ∩ (C ×|L| C

s), we have an exact sequence on C ×|L| C
s

(4.33) 0 → OC×|L|Cs → Is∨△ → O△s(Cs) ⊗ Is∨△ → 0.

We know that

(4.34) (j∗f∗Θ)∨ ≃ det R•ps2 ◦ (i× idCs)∗I
s∨
△ .

On the other hand, i is a closed embedding and so is i× idC . Hence

(4.35) R•ps2 ◦ (i × idCs)∗I
s∨
△ ≃ R•(ps2 ◦ (i× idCs))Is∨△ .

And because of sequence (4.33), we have

det R•(ps2 ◦ (i× idCs))Is∨△(4.36)

≃ (det R•(ps2 ◦ (i × idCs))OC×|L|Cs)⊗ (det R•(ps2 ◦ (i× idCs))O△s(Cs) ⊗ Is∨△ ).

First we compute det R•(ps2 ◦ (i × idCs))OC×|L|Cs .
Since the diagram (4.32) is Cartesian and π ◦ j is flat, we have that

[R•(ps2 ◦ (i× idCs))OC×|L|Cs ] = [(π ◦ j)∗R•(p ◦ i)OC ];

and

(4.37) det R•(ps2 ◦ (i× idCs))OC×|L|Cs ≃ (π ◦ j)∗det R•(p ◦ i)OC

Using the exact sequence on X × |L|

(4.38) 0 → q∗OX(−L)⊗ p∗O|L|(−1) → OX×|L| → OC → 0,

where q : X × |L| → X is the projection to the first factor, we get that

[det R•(p ◦ i)OC ] = (det R•pOX×|L|)⊗ (det R•p(q∗OX(−L)⊗ p∗O|L|(−1)))∨

= O|L|(1)
⊗χ(OX(−L)) = O|L|(2).(4.39)
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The last equality is because χ(OX(−L)) = χ(OX) + gL − 1 = 2.
Because of (4.37) and (4.39), we have

(4.40) det R•(ps2 ◦ (i× idCs))OC×|L|Cs ≃ j∗π∗O|L|(2).

Now we compute det R•(ps2 ◦ (i× idCs))O△s(Cs) ⊗ Is∨△ .
Notice that ps2 ◦ (i × idCs) restricted on △s(Cs) is an isomorphism and ps2 ◦ (i ×

idCs) ◦ △s = idCs . Hence

(4.41) R•(ps2 ◦ (i × idCs))O△s(Cs) ⊗ Is∨△ ≃ (△s)∗Is∨△ .

And morover (△s)∗Is∨△ is the relative tangent bundle TCs/|L| of the smooth mor-
phism π ◦ j : Cs → |L|. On X × |L| we have

(4.42) 0 → TC/|L| → i∗TX×|L|/|L| → NC ,

where i is the closed embedding of C into X × |L| as in diagram (4.32) and NC is
the normal bundle on C. Hence NC ≃ i∗(q∗OX(L)⊗ p∗O|L|(1)). When we restrict the
sequence (4.42) to Cs, it becomes a short exact sequence and hence we get

(4.43) 0 → TCs/|L| → j∗i∗TX×|L|/|L| → j∗i∗(q∗OX(L)⊗ p∗O|L|(1)) → 0,

Because of (4.41) and (4.43) we know that

det R•(ps2 ◦ (i × idCs))O△s(Cs) ⊗ Is∨△ ≃ det TCs/|L|

≃ (det j∗i∗TX×|L|/|L|)⊗ (det j∗i∗(q∗OX(L)⊗ p∗O|L|(1)))
∨.(4.44)

Since TX×|L|/|L| ≃ q∗TX , we have
(4.45)
det R•(ps2◦(i×idCs))O△s(Cs)⊗Is∨△ ≃ det TCs/|L| ≃ j∗i∗(q∗OX(−L−K)⊗p∗O|L|(−1)).

Combining (4.34) (4.35) (4.36) (4.40) and (4.45), we finally have

j∗f∗Θ ≃ j∗i∗(q∗OX(L+K)⊗ p∗O|L|(−1)).

And moreover because of (4.31), we have f∗Θ ≃ i∗(q∗OX(L+K)⊗ p∗O|L|(−1)).
Now in order to compute π∗f

∗Θr, we tensor the sequence (4.38) by q∗OX(r(L+
K))⊗ p∗O|L|(−r) and get

(4.46)
0 → q

∗
OX(r(L+K)−L)⊗ p

∗
O|L|(−r− 1) → q

∗
OX(r(L+K))⊗ p

∗
O|L|(−r) → f

∗Θr
→ 0,

We have f∗Θr on the right in the sequence (4.46) because

OC ⊗ (q∗OX(r(L +K))⊗ p∗O|L|(−r)) ≃ i∗(q∗OX(r(L +K))⊗ p∗O|L|(−r)) ≃ f∗Θr.

As X = P(OP1 ⊕OP1(−e)) and L = 2G + (e + 3)F, K = −2G− 2F with F the
fiber class and G.G = −e, we have that for all r ≥ 2,

(1) H0(r(L+K)−L) = 0, H2(r(L+K)−L) = H0(−(r− 1)(L+K))∨ = 0, and
hence h1(r(L +K)− L) = −χ(r(L+K)− L) = r − 2;

(2) Hi(r(L +K)) = 0, for i > 0, and h0(r(L +K)) = χ(r(L +K)) = r + 1.
Then using sequence (4.46) one can easily compute π∗f

∗Θr and get the expected
result. And this finishes the proof of the lemma.
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Appendix.

A. The conclusion of following lemma is somehow well-known, but we still give
a proof here because we didn’t find any good reference for any proof.

Lemma 4.5.13. Let X be a smooth projective surface, and let ω be its dualizing
sheaf. Let F be a pure sheaf of dimension one on X. Then F has a locally free
resolution of length one and F ≃ FDD := Ext1(Ext1(F, ω), ω).

Proof. On X we have an exact sequence

(4.47) 0 → E → P → F → 0,

where P is a locally free sheaf on X. To prove the first statement of the lemma, it is
enough to show E ≃ EDD := Hom(Hom(E,ω), ω), i.e. E is reflexive.

Let Hom(−, ω) act on (4.47) and we get

(4.48) 0 → Hom(P, ω) → Hom(E,ω) → Ext1(F, ω) → 0

The 0 on the left hand side is because of the vanishing of Hom(F, ω), which can be
deduced from the fact that F is a torsion sheaf and ω is torsion free. The 0 on the
right hand side is because of the vanishing of Ext1(P, ω), which can be deduced from
the fact that P is locally free. Moreover Hom(P, ω) is locally free and Ext1(F, ω) is a
torsion sheaf of dimension one.

Let Hom(−, ω) act on (4.48) and then we get
(4.49)

0 → Hom(Ext1(F, ω), ω) → EDD → PDD → FDD → Ext1(Hom(E,ω), ω) → 0.

Hom(Ext1(F, ω), ω) = 0, because Ext1(F, ω) is a torsion sheaf and ω is torsion
free. So there is a injective morphism EDD → PDD, sending EDD as a subsheaf of
PDD ≃ P. EDD/E is a subsheaf of F by sequence (4.47). But F is pure and EDD/E
is of dimension zero. Thus EDD/E is zero and E ≃ EDD.

As E is reflexive hence locally free, Ext1(Hom(E,ω), ω) = 0 and Hom(E,ω) is
locally free. Then sequence (4.49) can be rewritten as

(4.50) 0 → EDD → PDD → FDD → 0

Since every pure sheaf can be embedded into its reflexive hull, we have the commu-
tative diagram

(4.51) 0 // E //

θE

��

P //

θP

��

F //

θF

��

0

0 // EDD // PDD // FDD // 0

θE and θP are both isomorphisms, so is θF , and hence F ≃ FDD.

B. In this section we want to prove the following lemma.

Lemma 4.5.14. Let X be any Hirzebruch surface, with F the fiber class and G
the section class. Let K be a semistable sheaf of class (0, nF, 0) on X. If we fixed
the schematic support of K in |nF |, then there are finitely many isomorphic classes
of such K.
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Proof. With no loss of generality, we assume that the schematic support of K is
connected hence equals to nC with C ≃ P1 since F.F = 0. We then want to show
that K ≃

⊕
i OniC(−G), with ni positive integers such that

∑
i ni = n.

We use induction. When n = 1, K ≃ OC(−1) ≃ OC(−G) since G.F = 1. Then
assume that we have proved the statement for all n < n0. Let n = n0. By Proposition
4.1.1 K is S-equivalent to OC(−1)⊕n, so it has OC(−1) as a quotient. Hence we have
the exact sequence

(4.52) 0 → K′ → K → OC(−1) → 0.

By assumption, we have K′ ≃
⊕N

i=1 On′
i
C(−G) with

∑
i n

′
i = n0 − 1. We also assume

0 < n′
1 ≤ n′

2 ≤ . . . ≤ n′
N . By a direct computation and Hirzebruch-Riemann-Roch,

we have

dim Ext1(OC(−1),
N⊕

i=1

On′
i
C(−G)) = dim Hom(OC(−1),

N⊕

i=1

On′
i
C(−G))

=

N∑

i=1

dim Hom(OC(−1),On′
i
C(−G)).

For each On′
i
C(−G) we have the following exact sequence

(4.53) 0 // O(n′
i
−1)C(−G) // On′

i
C(−G) r

// OC(−1) // 0.

For every nonzero element s ∈Hom(OC(−1),On′
i
C(−G)), r ◦ s must be either zero or

isomorphic. If it was isomorphic, then the sequence (4.53) would split. Hence r◦s = 0
and Hom(OC(−1),On′

i
C(−G)) ≃Hom(OC(−1),O(n′

i
−1)C(−G)). So by induction we

know that dim Hom(OC(−1),On′
i
C(−G)) = 1 for all n′

i > 0.

Ext1(OC(−1),
⊕N

i=1 On′
i
C(−G)) ≃ CN . We then assign to every element t =

(t1, . . . , tN ) ∈ CN − {0} a sequence as follow. Let 0 < i0 ≤ N such that ti0 6= 0 and
ti = 0 for all i > i0.
(4.54)

0 //
⊕N

i=1 On′
i
C(−G)

ft

//
⊕

i6=i0
On′

i
C(−G)⊕O(n′

i0
+1)C(−G) // OC(−1) // 0.

The morphism f t restricted on On′
i
C(−G) is an isomorphism to its image for i 6= i0.

The image of On′
i0

C(−G) via f t is contained in
⊕

i≤i0
On′

i
C(−G) ⊕ O(n′

i0
+1)C(−G).

Let f t|On′
i0

C(−G) = (g1, . . . , gi0). Since n′
i ≤ n′

i0
for all i < i0, n

′
iC can be viewed as

a subscheme of n′
i0
C. For i < i0 and ti 6= 0, gi : On′

i0
C(−G) → On′

i
C(−G) is the

restriction (up to scalar) of On′
i0
C(−G) to n′

iC. gi = 0 if ti = 0. Finally gi0 is the

usual inclusion (up to scalar) of On′
i0

C(−G) into O(n′
i0

+1)C(−G).

Hence we have that K in (4.52) must have the form
⊕

iOniC(−G) and thus the
lemma.

C. In this section we let X be a smooth complex projective surface. We have
the good quotient φ : Ω → M(u) from the Quot-scheme Ω to the moduli space M(u)
of semistable sheaves of class u = (0, L, χ(u) = n) with L some effective line bundle
on X . Moreover assume L′.K < 0, ∀0 < L′ ≤ L with K the canonical divisor on X.
Then there is a natural morphism π : Ω → |L|.



476 Y. YUAN

Denote Ωsm to be the open subscheme in Ω consisting of quotients that are locally
free of rank 1 on their supports. We have a universal sheaf on X × Ωsm. We denote
it as E . Then we have

(4.55) E // X × Ωsm

q
zzuuuuuuuuu

p

��

X Ωsm

πsm

��

|L|

πsm is smooth by Proposition 2.9 in [14]. We have the following proposition.

Proposition 4.5.15. On Ωsm, we have

det R•(p ◦ Hom(E , E)) ≃ (πsm)∗O|L|(1)
⊗L.K .

Proof. First notice that

(4.56) det [R•(p ◦ Hom(E , E))] = det [R•p ◦R•Hom(E , E)].

We have a Cartesian diagram

(4.57) CΩ
i

//

πC

��

X × Ωsm
p

//

��

Ωsm

πsm

��

C
i1

// X × |L| p1

// |L|.

where C is the universal family of curves in |L|.
We know that πsm is smooth and hence πC is smooth. And C is smooth in X×|L|,

hence CΩ is smooth in X × Ωsm. The universal sheaf E is supported at CΩ and it is
locally free on every fiber of p ◦ i. On the other hand, since p1 ◦ i1 is flat, p ◦ i is flat
and hence E is locally free on CΩ. Now let us view E as a locally free sheaf on CΩ.
Since i in (4.57) is a closed embedding, for F any coherent sheaf on X × Ωsm, by
coherent duality we have

[R•HomX×Ωsm(F , i∗E)] = [i∗R
•HomCΩ(OCΩ ⊗L F , E)],

where ⊗L means the flat tensor as OX×Ωsm -modules.
Since E is locally free on CΩ, we have in K(CΩ)

[R•HomCΩ(OCΩ ⊗L E , E))] = [R•HomCΩ(OCΩ ⊗L OCΩ ,OCΩ))].

And hence

[R•HomX×Ωsm(i∗E , i∗E))] = [i∗R
•HomCΩ(OCΩ ⊗L OCΩ ,OCΩ))]

= [R•HomX×Ωsm(i∗OCΩ , i∗OCΩ))].(4.58)

We have exact sequence on X × Ωsm

0 → q∗OX(−L)⊗ p∗(πsm)∗O|L|(−1) → OX×Ωsm → OCΩ → 0.
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Hence

[R•HomX×Ωsm(i∗OCΩ , i∗OCΩ))]

= [HomX×Ωsm(OX×Ωsm ,OX×Ωsm)]

+ [HomX×Ωsm(q∗OX(−L)⊗ p∗(πsm)∗O|L|(−1), q∗OX(−L)⊗ p∗(πsm)∗O|L|(−1))]

− [HomX×Ωsm(OX×Ωsm , q∗OX(−L)⊗ p∗(πsm)∗O|L|(−1))]

− [HomX×Ωsm(q∗OX(−L)⊗ p∗(πsm)∗O|L|(−1),OX×Ωsm)]

Hence we know that

[R•HomX×Ωsm(i∗OCΩ , i∗OCΩ))] = 2[OX×Ωsm ]− [q∗OX(−L)⊗ p∗(πsm)∗O|L|(−1)]

− [q∗OX(L)⊗ p∗(πsm)∗O|L|(1)](4.59)

Put (4.56) (4.58) (4.59) together, we get

det [R•(p ◦ Hom(E , E))] = (πsm)∗O|L|(−1)⊗(χ(L)−χ(−L))

= (πsm)∗O|L|(1)
⊗L.K(4.60)

This finishes the proof of the proposition.
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