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In [7] a non-commutative Iwasawa Main Conjecture for elliptic curves over Q
has been formulated. In this note we show that it holds for all CM-elliptic curves
E defined over Q. This was claimed in (loc. cit.) without proof, which we want
to provide now assuming that the torsion conjecture holds in this case. Based on
this we show firstly the existence of the (non-commutative) p-adic L-function of E
and secondly that the (non-commutative) Main Conjecture follows from the existence
of the Katz-measure, the work of Yager and Rubin’s proof of the 2-variable main
conjecture. The main issues are the comparison of the involved periods and to show
that the (non-commutative) p-adic L-function is defined over the conjectured in (loc.
cit.) coefficient ring. Moreover we generalize our considerations to the case of CM-
elliptic cusp forms.

Acknowledgements. We are grateful to John Coates and Sujatha for their
interest and various discussions.

1. The non-commutative Main Conjecture. Let F be an elliptic curve de-
fined over Q and p > 5 a prime at which E has good ordinary reduction. Then the
p-adic Lie extension Fy, := Q(FE(p)) with Galois group § = G(F/Q) contains the
cyclotomic Zjy-extension Q.. of Q and the quotient of G by its closed normal subgroup
H = G(Foo/Qcyc) equals I' := G(Qeyc/Q) = Zy,.

We write D for the ring of integers Or,, where L is either a finite extension of Q,
or of the completion @“ of the maximal unramified extension Q)" of Q. As usual
we write

A :=Ap(G) := D[d]

for the Iwasawa algebra of G with coefficients in D. Note that is a Noetherian pseudo-
compact semi-local ring (which is compact if L is finite over Q,). We denote by

M (G) :==Mp,n(G)

the category of all finitely A(G)-modules M such that its quotient M /M (p) by its p-
primary subgroup M (p) is finitely generated over the subalgebra A(H) of A(G). Also
we recall from [7] the definition of the multiplicatively closed subsets

S :={X\ € Al A/AX is finitely generated over A(H)}
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and

s =Jrs.

n>0

The following theorem compromises the technical heart of [7].

THEOREM 1.1. The sets S and S* are (left and right) Ore sets, i.e. the localisa-
tions As and As« of A exist and the following holds:
(i) The category of all finitely generated S*-torsion A(G)-modules coincides with
Wi (G).
(ii) There is an long exact localisation sequence of K -groups

A(G)s-

i

K1(A(G)) — K1 (A(G)s+) —2> Ko(M(G) — 0

and analogously for A(G)s and the category of finitely generated S-torsion
modules.

(iii) There is a canonical way of evaluation an element f € Ki(A(G)g«) at any
continuous representation p : G — GL,(O) with n > 1 and O the ring of
integers of a finite extension (depending of p) of Qy :

f(p) € Cp U{oc},
i.e. f can be considered as a map on the set of such representations.

Proof. See [31, 7]. Another proof that S is an Ore-set was given by Ardakov
and Brown in [1]. The pseudo-compact case (generalised to certain skew power series
rings) is covered by [23] or can be proven in the same way as in [7]. O

By S(F/Fx) and X = X(E/Fyx) = S(E/Fx)Y we denote the (classical) p-
primary Selmer group of E over F, and its Pontryagin dual, respectively. It is easy
to see that X is a finitely generated Az, (G)-module with the natural Galois-action on
S(FE/Fy), but the following torsion-property can be interpreted as a generalization
of a deep conjecture of Mazur.

CONJECTURE 1.2 (Torsion-conjecture). The dual of the Selmer group is S*-
torsion:

X(E/Fx) € Mu(G).

Now let K (F4) be the maximal abelian extension of Q inside Fi, in which p does
not ramify and L = K (Fu)yp its completion at some P lying over p. Note that L is
a finite extension of Q,. Finally we put D = Of.

If w denotes the Neron differential of F, we obtain the usual real and complex
periods Q4+ = [ w by integrating along pathes 4 which generate H,(E(C),Z)*. We

+

5
set R = {q prime, |j(E)|, > 1} U {p} and let u, w be the roots of the characteristic
polynomial of the action of Frobenius on the Tate-module T),E of E

1—a,T+pT? = (1 —uT)(1—wT), u€Zy.
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Further let pf»(?) be the p-part of the conductor of an Artin representation p, while
P,(p,T) = det(1 — Frob,! T|Vplp) describes the Euler-factor of p at p. We also set

d*(p) = dimg Vpi and denote by % the contragredient representation of p. By e,(p)
we denote the local e-factor of p at p. In the notation of [29] this is e,(p, ¥(—x), dx1)
where ¢ is the additive character of Q, defined by * — exp(2miz) and dz; is the
Haar measure that gives volume 1 to Z,. Finally, in order to express special values of
complex L-functions in the p-adic world, we fix embeddings of Q into C and C,, the
completion of an algebraic closure of Q.

CONJECTURE 1.3 (Existence of p-adic L-function). There is a (unique) Lg €
K1(A(G)s~) such that

\%
v.  Lgr(E,p,1) Pp(pvuil)uffp(p)
1

= e (D
AR p(p)Pp(p,w_ )

S
&
=

for all Artin representations p of G.

For a class [M] € Ko(®Mu(G)) we denote by [M]p the base change to
Ko(Mp,1(9))-

CONJECTURE 1.4 (Main Conjecture). The p-adic L-function Lg is a character-
istic element of X(E/Fx) :

L = [X(E/Fx)lp.

We refer the reader to [5, 6] where a refined version involving leading terms is
discussed and where some implications of the Main Conjecture are explained.

2. The CM-case. In this section we assume that FE is still defined over Q,
has conductor N := N and moreover admits complex multiplication by the ring of
integers Ok of a quadratic imaginary field K = Q(v/—dk ), where cf. Appendix A §3
of [27] the discriminant dx > 0 lies in the finite set

{3,4,7,8,11,19,43,67,163}.

Note that since j(E) € Q the class number of K is trivial: hx = 1. As we assume
that E has good ordinary reduction at our fixed prime p, the latter decomposes into
two primes p = (7) and p = (7), such that = and 7 are conjugate under ¢ € A :=
G(K/Q) which is induced by complex conjugation. We fix an embedding of K into Q
such that p corresponds to the induced embedding of K into C, (using the convention
of the previous section).

Setting H := G(Koo/Keye), G = (Koo/K) we obtain isomorphisms G/H = T’
and H/H = A = G/G. The situation can be illustrated by the following diagram of
field extensions:
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Foo = Ko

Q

In particular the non-commutative group G is an extension of the cyclic group of
order 2 by the abelian group G, i.e. very close to being abelian.

One strategy to verify the Main Conjecture for F in the previous section would
be a close analysis how the groups K;(A(G)s+) and Ko(My(G)) look like, in order
to construct the (non-commutative) p-adic L-function and to know how to show that
two classes in Ko (9 (G)) in the absence of a suitable structure theory. This certainly
can be done, but we will follow a much simpler way.

In this work we are going to make the following assumption:
Assumption. The Conjecture 1.2 in the CM case is true.

REMARK 2.1. We remark that this assumption implies that X (F/F) is actually
S-torsion. For this one has simply to show that the p-invariant of X (F/F.) is
trivial since it is known by [18, théoréme 2.4] that X (F/F.,) contains no non-trivial
pseudonull A(G) submodules. But the triviality of the p-invariant follows from the
results of Schneps [24] after employing a descent argument similar to the one done in
[14, theorem 5.3].

The key ingredient for our proof of the Main Conjecture is the fact that to E
there is attached a Ap- Groflencharacter, in the sense of Weil, ¢ of weight (1,0) and
conductor f = fy with N = dg Nk q(f) such that

(2.1) "E =Indj v,

This can either be understood
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(i) in the sense of the attached compatible system of I-adic Galois representa-
tions. Indeed to the character ¢ there is by Weil attached a compatible system
of /-adic representations and then the corresponding system of ¢-adic repre-
sentations of E are obtained by induction from the absolute Galois group of
K to the absolute Galois group of Q.

(ii) or in the automorphic induction sense. Indeed the automorphic counterpart
of ¢ is an adelic character ¢ : A% /K> — C* and the corresponding cuspidal
automorphic representation g of GLa(Ag) associated to E is obtained by
automorphic induction from GLi(Ag) to GL2(Ag).

There is also a GréBencharacter ¢ of weight (0,1) (attached to E). As it was first
shown by Weil these characters although being adelic in nature can also be interpreted

as Galois characters of G(K(fp>°)/K) or G(K/K) with values in Zs, see also [9,
page 38]. Note that, since F is defined over Q, it holds by [17, page 559] that

(2:2) b =1°

where 1°(g) = 1(cgc™1) for all g € G(K/K).

By the functorial properties of K- and representation theory and using (2.1) the
desired result can be reduced to the two-variable Main Conjecture as proved by Rubin.
In order to state it we introduce X' (K ) to be the Galois group of the maximal abelian
p-extension of K., which is unramified outside p. This is a finitely generated torsion
A(G)-module, [21, page 37]. Furthermore, let

Tp =T F := lim E[r"]
P

n

be the m-primary Tate-module of F, similarly for 7, and
T = Hom(Tx,Zy)

its Zp-dual representation of G . Note that the action of Gk on T and T% is given
by the characters ¢ and v, respectively. Our above philosophy is confirmed by the
following

PROPOSITION 2.2. There is a natural isomorphism of A(G)-modules
X(E/Kx) = Ind§ (X(Kx) @z, T7)
where G acts diagonally on the tensor product X (Ko) ®z, Tk = X (Koo )(¥™1).

The proof is a modification of the proof of the old observation by John Coates
that the m-Selmer group S;(F/K) of E over Ko is canonically isomorphic to

Sp(E/Koo) = Hom(X(Koo), E(1)).

Proof. Conferring to [9, page 124] the m-primary Selmer group is given by the
following exact sequence

HY(Gs, (Kx), E(7))

CoindZP HY (K oo 1, B) ()

where the coinduction is dual to the induction functor, v denotes a prime of K
above p. Applying the exact functor Coindg , using the transitivity of coinduction,
the isomorphisms

Coind§H' (G5, (K ), BE(m)) = Hom(Gg, (K ), Coind§ B(m)) = H(Gs, (Kx), E(p))
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and
Hl(Koo,Va E)(p) ~ H' (Koo,w E)(ﬂ') o H' (Koo,uv E)(ﬁ)v

as well as the vanishing (see loc. cit.) of H' (K, F)(7), one just obtains the defining
sequence of the full p-primary Selmer group

0— S(F/Kx)

HY(Gs, (Koo), E(p)) — Coindg” H' (Kwo,, E) (p).

The result now follows by taking duals. O

In order to introduce the (commutative) two-variable p-adic L-function we choose
a complex period 2o, € C* such that Ag = Q. fy for the period lattice Ag attached
to the pair (E,w). Here we view fy, as a lattice in C with respect the chosen embedding
K — C that correspond to the type of 1. This determines the p-adic period 2, €

— ><
Zpr by the procedure described in [9, page 66] such that the ratio %;“’ is independent
P

of any choices. Actually we can pin down the p-adic 2, up to elements in Z; by the
0 . . . oo
rule o = u where ® is the extension of Frobenious to Zp". Then we have:

Q,

THEOREM 2.3 (Manin-Visik, Katz, Yager, de Shalit). Let f be an integral
ideal of K relative prime to p. For D = Z;? there is a unique measure p(fp>) €
Ap(G(K(fp*°)/K)) such that for any gréssencharacter € of conductor dividing fp™
and of type (k,j) with 0 < —j and k > 0 we have,

o [ (o) (™) = LT G (1 - By e, 0)
G(K(fp>)/K) ™ p
where
k15 (an k 15 (N
6() = L2 g1y = 2P0 S~y
p p ~eM

Here we write € = ¢F¢Ix with ¢ a Grissencharacter of conductor prime to p and of
type (1,0) and x a character of finite order of conductor at p equal to p™ and

M = {y € Gal(K(jp=p")/K)lvp = (p", F'/K)}, F':=K(fp™).

Proof. This theorem is from [9, thm. II 4.14] (where the restriction on the type of
the character is that 0 < —j < k) in combination with corollary 6.7 of the same book.
We note here that the relation between the Galois counterpart of € that appear in the
left hand side of the above formula and its automorphic counterpart that shows up
in the right side are related by e (Frob, ') = e**(q), is different from deShalit
who sets €701 (Frob,) = €*!(q). This explains the difference of the formula above
with the one of deShalit in page 80 (the argument of the integral is inverted). We also
need to remark that in the theorem of de Shalit also the I'-factor of the L-function
appears which is equal to (27)~!. However in de Shalit the archimedean period used
is equal to (27)"'Q., (compare theorem 4.11 and 4.12 in [9]). Finally the factor i¥ is
coming from the normalization of the p-adic periods (see [9, page 70]). O

For our purposes it is important to understand the relation of the ” Gauss sum”
like factor with the epsilon factor at p. To this end we have the following lemma,
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LEMMA 2.4. Let 6 € Z,” be the image of \/—dy under K — K, = Q, and
o5 € Gal(K (fp>®) /K (5p>°)) such that o5(¢) = ¢° for all p-power roots of unity. Then
with notation as in the theorem above we have

G(x) = x(os)ep (x)-
Proof. We base the following proof on the article of Tate [29] and [9] section 6.3.
By [9] (page 92) we have
ep(e,,dry) "t = p2 R 5 ke(g5)G ().

From the definition of § € Z,* we have ¢(05) = 1 and ¢(os) = & (see also [9] (page
92). In the above equation we set ¢ = Y¢~! where ¢ as always a Grossencharacter
of type (1,0). In particular we have that € is a character of type (—1,0). The above
equation reads (with k = —1 and j =0)

ep(Xo ™, (@), da1) ™" = 0x(05)¢  (06)G (x9)-

Now we note that ¢~!(05) = 6! and since ¢ is unramified at p we have that (see
29]) ep(p . ¥ (2), dxr) = G(p)"ep(X, ¥ (x),dr1). With these remarks the above
equation simplifies to

ep(X, ¥ (), dv1) ™ o (p)" = X(05)G(x9).

Using now the duality property (see [29])

€p ()Zﬂﬁ(@a dwl)ep(X7 1/1(—30)7 dxl) = pn

we obtain that
ep (X, ¥(—x), dz1)p™"d(p)" = X(05)G(x9)-
But G(x¢) = ¢(p)" G(x) from which we conclude that

G(x) = x(os)ep(x, ¥ (), dx1) = x(05)ep(X)

following our convention to write ey (-) for e, (-, ¥(—x),dz1). O

COROLLARY 2.5. There is a unique L;—) :=u € Ap(G) such that

L .
£500 = / xdp = 7%1 D e, (0B u By ) w0

€
for all Artin-character x of G.

Proof. This is in principle the measure mentioned in the above theorem 2.3
twisted by the fixed character ¢». However in the theorem above it is the imprimitive
L function that appears (as we remove the Euler factors at f even if the conductor of
the character is not f). For our purposes we need the primitive L-functions. We now
explain how it can be constructed. We consider the decomposition Gal(K/K) =
G = A x Gy where A = (Z/pZ)* x (Z/pZ)* and Gy = Z2Z. This decomposition
induces a decomposition of Iwasawa algebras

Ap[[G]] = D[[G]] = DIAJ[[G1]] = ©pe A DI[Gh]
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where A = Hom(A, D*) the dual group of A. For a character x of G we consider its
decomposition into x = xaxi1 according to the above decomposition of G. Similarly
we have ¢ = 1a1);. We are going to define the element p € Ap[[G]] claimed in the
proposition by defining the elements in D[[G1]] in the above decomposition of the
Iwasawa algebras. We define the 6" component py as follows. We write g for the
prime to p part of the conductor of the character i)A. We note that g can be different
from f,. We consider the measure § oy ! * Q0 u(gp™) € Ap(G(K (gp™)/K)) (here x
denotes convolution of measures) and define the measure pg on Gy as

Fdpg = — / 6710+ (f o pr) d(0 o % u(gh™))
e Qp Ja(x (ap=)/x)

for all integrable functions f on G;. Here pr : G(K(gp>)/K) — Gp denotes the
natural projection map and 6 is seen as a character of G(K (gp™)/K). We define
the measure p by putting together the components pg according to the isomorphism
Ap[[G]] = @y A D[[G1]]. Now the result follows from the above theorem by taking
k=1,7=0,e =1y and noting that f,(x¥’) = fp(x) = fp(x) because 9 is unramified
at p. Also note that from the equation

(1 -uX)1-wX)=1-a,X +pX*=(1-¢(p)X)(1 - 9(p)X)

and the condition that u is a unit in Z,, it follows that

(2.3) u=19y(p) =1
and

_w_ Y)
(2.4) u = PR

COROLLARY 2.6. There is a unique Lj := p1 € Ap(G) such that

_ _ L 1 B o B o
L;(X) =/xdu= %eﬁ(xﬂ%(mu P (x,u™t) u P
G
for all Artin-character x of G.

Proof. This measure is just a twist of the measure E;E by a unit in Ap(G). This

follows from the functional equation of the L-function involved. We defer the proof
of this corollary to the next section (compare with corollary 3.6 and corollary 3.7). O

Now we are ready to state the two-variable Main Conjecture.

THEOREM 2.7 (Rubin,Yager). As ideals in Ap(G) there is the following equality
char (X(Ks) @z, Ty) = (L),

where the left hand side denotes the characteristic ideal associated with the A(G)-
torsion module X (Ko ) ®z, T by the structure theory from commutative algebra.

REMARK 2.8. With respect to the two-variable Main Conjecture stated above we
would like to make some comments. In principle the theorem above follows by com-
bining [21, page 37, Theorem 4.1] of the work of Rubin with [32, page 413, Theorem
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1] of Yager. However there is a subtle issue with respect to the p-adic L-function.
The one constructed by Yager in (loc. cit.) and stated as theorem 2.3 above does
not interpolate the primitive L-function (see also the comment of Yager in pages 413-
414). On the other hand there is a remark by Rubin (remark (1) in page 37 in (loc.
cit.)) which we believe deserves some more explanation. There Rubin writes that the
p-adic L-function of Yager is the characteristic element of Us,/Cs (local units mod-
ulo completion of elliptic units) as defined in his work. However the elliptic units in
Rubin’s work do not coincide with those considered by Yager. Indeed, the ones used
by Rubin are the ones that satisfy the analytic class number formula [21, Theorem
1.3] for abelian extensions F' of K and these are defined for example as in the work of
Gillard [12, section 6] or Gillard and Robert [13, page 309]. The main point is that
one should consider carefully the various subfields of F' and their conductors. On the
other hand the Grossencharacter ¢/* may have conductor different from § for the var-
ious k’s. As it is shown in the work of Bernardi, Goldstein and Stephens [2] when one
takes care also of these considerations (i.e. working carefully the various eigenspaces
of the torsion part of G) then one obtains the p-adic L-function that interpolates
primitive L-values through the usual machinery of logarithmic derivatives.! Indeed,
the logarithmic derivatives of the elliptic functions considered in the latter work give
the primitive L-values and these elliptic functions are slightly different from the ones
in Yager’s work. The elliptic units in Rubin’s work are obtained as values of elliptic
functions similar to the ones used in the work of Bernardi, Goldstein and Stephens,
which implies that the characteristic element of Uy, / Co in Rubin’s work is indeed
the p-adic L-function that interpolates primitive values.

LEMMA 2.9. The module X (Ko ) ®z, T is S-torsion, in particular X (Ky) ®z,

™

Ty € Mu(G), and thus L € (AM(G)s)* € (A(G)s=)*.

Proof. By Proposition 2.2 X (K. ) ®z, T, being S-torsion is equivalent to
X(E/Ks) being S-torsion, which is just remark 2.1. The rest of the claim follows
from the two-variable Main Conjecture above and the commutative diagram

(AMG))
(AG))
where Q(G) denotes the maximal ring of quotients of A(G), while tors denotes the
category of all finitely generated A(G)-torsion modules. O

0—— K, —— K1 (A(G)s) ——= Ko(S—tor) ——=0

— K1(Q(G))

00— K3 Ky(tors) —0,

Note that, although the Ore-sets Sg, and Sg are different in general, we have a
natural isomorphism A(G)s; = A(G)s;, by [23, Lemma 4.6] where in the second case
the localization is formed with respect to the G-module structure of A(G). Hence we
have a commutative base change square

ANG@)——= A(G)s

AG)——=A(G)s,
1In their work they consider the one variable p-adic L-function but one can extend their consid-

erations to obtain the primitive two variable p-adic L-function applying the machinery developed by
Yager.
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which induces the following diagram with exact rows by functoriality of K-theory

0 — K1 (A(G)) — Ki(A(G)s+) —2= Ko(Mu(G)) —=0

L*l (Ls)*l A(Q)@A(G)—l

K1(A(G)) —— K1(A(G)s+) — Ko(Mn(G)) —0.

It follows that £ := (15)«(Ly) is automatically a characteristic element for
[X(E/Kx)] by Proposition 2.2. A naive hope would be that this is the desired p-adic
L-function for E. In order to check this we need the next lemma which describes the
evaluation of £ at representations.

LEMMA 2.10. For all Artin representations p of G one has
L(p) = L(ResSp)

where Resgp denotes the restriction to the subgroup G. With other words L is induced
by the measure pc; trivially extended

/gfd/m:/cﬂcducw

i.e. from the image of pc; under the natural map A(G) — A(G).

Proof. Upon comparing with the definition of evaluation in [7] the statement
follows from the following diagram, which is obviously commutative:

(Resg,p)®pr|c

A(G) s+

l

AG)s — 8~ M,(0) @z, A(T)s-,

M,,(0) @z, A(T)s-

where pr: A(G)s- — A(T")s+ denotes the canonical projection. O

The next task is to understand the (irreducible) Artin representations of G. By
[25, page 62] and the fact that G is a semi-direct product

GG xA

one immediately obtains that an irreducible such representation is either of

Typ A : p is one dimensional,

or

Typ B: p = Indg x is of dimension two where x is a one-dimensional character
of G with x # x°.

Indeed to see that the only irreducible representations of dimension bigger than
one are those of dimension two and they are of the form described above one has simply
to use Frobenious reciprocity. For, if an Artin representation p of G has dimension
n with n > 2 and we consider its restriction to G then Res§p = &I, x; for n one
dimensional representations of G. But then for every x;, with 1 < j < n, by applying
Frobenious Reciprocity we have

0# (Resgp,xj)a = (p, Ind§ x;)g
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and the representation I ndng is of dimension two. That is, every representation of
dimension greater (or equal) than two has a subrepresentation of dimension two. The
irreducibility assumption allows us to conclude our claim.

From Lemma 2.10 it is now clear that

L(e) = E@(Resge) =L(1)

where 1 is the trivial representation. But this is not compatible with the interpolation
property in Conjecture 1.3 because the periods 24 and €)_ are interchanged. This
is clear from an philosophical point of view as the periods 21 arise from paths vy €
H;(E(C),Z)* C Hy(E(C),Z,)* = T,E, while the period {2, corresponds to a choice
of v € TLE (via the same identification). Thus we define the following correction
term which describes the change of complex periods

Qrl4+c Q_1-c¢
Lo =+

Qoo 2 Qoo 2

LEMMA 2.11. Lo € Az, (G)*.

Proof. In order to prove this lemma we need to understand the relation between
the Neron periods €2, 2_ and the period {2, and in particular show that the ratios

él% and g—; belong to Z,*. Then we have that Lg € Az,(G) and it is easily seen then

that the element ?ﬁ Lre + Q= loc ¢ Ay (G) is its inverse. Recall that we write A for
the lattice associated to E and we have defined Q. by A = Q. : . For our aims we
may actually assume that A = Qo O as f = (f) for some f € K — K, = Z, which
is a p-adic unit since (f,p) = 1. Recall that we view O = Z + Z+/—dk as a lattice
in C by our fixed embedding K — C.

It is a well-known fact that the Neron periods have the property that 7 := % isa
totally imaginary number and moreover the lattice A’ := ZQ 4+ ZQ_ is isomorphic to
A as Z[%]—lattices. As p # 2 we may work for our purposes with the lattice A’ which

we keep denoting by A. As the lattice A has CM by Ok we have that ﬁA CK
is a fractional ideal of K [26, page 164]. In particular we have that 7 € K and that
7 + Z1 = Ok for some o € K. We write 7 = sv/—dg and a = o + asy/—dg with
s, a1, € Q. We will show that s € Z(Xp) and o € OPX. Note that this is enough for
our purposes because we have

Q_ A Qoo
Z+2t=2+72— = — = — .
+ 4T + o, 0, Q. Ok

The lattice Z 4+ Z1 has CM by Ok. That means that we have that
Ok =7+ Z\/—dx = {a +b7|a,b € Z,2br € Z and b(r* + dxs*) € Z}.

As v/—dk should belong to the set on the right we have that bs = 1 and dgs € Z.
That is, s = % for some s’ € Z. Asb=1 = ds—’f € Z we conclude that s'|dx. Hence
s= ()1 ez as DeZ). Thatis, 7 € O,

Now we show that a € Op'. We have Z + Z7 = Og . We take the completion at
p. It is enough to show that (Z 4+ Z7) ®0, Oy = O,. This follows trivially from the
fact that 7 € O,". Hence we obtain that also « is a unit. [
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Finally we set

= LLGY € K1(Ap(G)s+).

PROPOSITION 2.12. L' satisfies the interpolation property in Conjecture 1.3.
L(p)
L)’
hand side of the desired interpolation formula in Conjecture 1.3, in a purely formal
way in order to compare all terms showing up, in particular the possible presence of
zeroes does not matter at all.

We start with representations p = Indgx of type B. Then p|, = X © X where
X¢(g9) := x(cge™t) with complex conjugation ¢ € G.

Proof. We calculate the fraction where the denominator here is the right

1
L) Lp00-Ly(xe) Q2w B Deg(v)es (v°)
L) L) 0.l ! w1 @ ey ()

. Pp ()_(a uil)Pﬁ (Xa uil)Pp()_(ca uil)Pﬁ(Xcvuil) L(&Xa 1) L(J)Xca 1)
By(pouw )Py (pw ) 1By (E, p, 1) L(E.p, 1)

0.0 u*(fp()Z)Jrfﬁ(i))ep(j()eﬁ(j()
Qoo Qoo u= () e,(p)

PP (Xvu_l)Pﬁ(j(v u_l)Pp (_Xcv u_l)Pﬁ(Z(cv u_l) _Pp(pv w_l)_
Pp(pvuil) Pﬁ (U)Xv %) Pﬁ (UJXCv %) Pp (UJXCa %)Pp (U)Xv %)

LD LEOXST) e
L((Indy) ® Indyx;, 1)
Q_ Qyp
=—, =—cOSNK.
0, Yo, T
Let us comment on the calculations above. We start with our considerations on
the e-factors. Note that as the representation p is induced from x we have for the
conductor of p, Ny = DN ,g(Ny) where Ny the conductor of x. Locally at p that
means f,(p) = fp(X) + f5(X) as p splits in K. Concerning the e-factors note that we
know that they are inductive in degree zero. In particular we have

with T:

N e
ep(Indg(x ©1)) = ep(x © Deg(x 0 1) = m
But also
(Indg(x)) _  e(p)

@Inds(XO) == 580 = 4

where as always € is the non-trivial character of Gal(K/Q). Hence we obtain

er(p) = 20D
P(p)_ ep(l)e;,(l) P(l) P( )
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But note that p split in K we have ep(1) = ep(e) = ep(1) = e5(1) = 1. Hence
ep(p) = ep(X)ep(X). Now we explain the ratio of the Euler factors. The starting point
is the inductive properties of the Euler factors. In particular as p splits in K we have
that P,(p, X) = Pp(x, X)P;s(x,X). Using this and the relations

ot vk vk) _ k)

:—:—7’[1} :—:—7
p p p p

we see that the Euler factors cancel (the Euler factors which are opposite to each other
with respect to the fraction line cancel each other). Finally for the last equation we use
the inductiveness of L-functions and the following well-known fact from representation
theory implied by Frobenius reciprocity

(Inde)) ® Indy = Ind(¢) ® Res Indy) = Ind(¢) @ (x © x°)).

Note that, since 1) = ¢ by [17, page 559] also E = Indi holds.
Now we turn to those p of type A, i.e p is now one dimensional. We have

L(p) _ Lolpic)
Lip(p)  Lip(p)

1
Q. u PP es(pia) Po(piayu™ ") B (pia,u™ ") Bp(pyw™) L(vpig, 1)
Q) }3 u*fp(ﬁ) ep(ﬁ) Pp(ﬁ7u_1)Pp(E7p7p_1) L(Eupul)
Q) v Pes(pia) Po(pia,u ) Ps(pia, v ) P(pja,w™") Lpa:1)

Qo u~f(P) ep(ﬁ) Pp(p|G7 )P (/& PlgsP )Pﬁ(/&p\Gup_l) L(E,p,l)

— — 1
Qo LlWped) ) ” ple) =+
QOO L(Ind(l/} & p‘G), 1) or p(c) - 1
Q_ Q Q_
Recall that 7= —, a = —+, at = — all belong to O,,X N K. Let us comment
QL oo Qoo

on the above computations. We start with the e-factors. First note that as the
extension K is unramified at p we have that f,(p) = f(p|¢) since as adelic characters
plc = po Nk g and p splits in K, that is locally when we identify K with Q, the two
characters are equal. This explains also the equality e,(p) = ez(p|). Note that also
this remark explains the equality of Euler factors P,(p, X) = P,(p|¢, X) and similarly
for p. The rest is just trivial inspection of the formula. Finally for the L-functions we
use as before Frobenius reciprocity and inductive properties of L-functions.
Since it is easily checked that

a’r p = Indy
La(p) = a e D*if ple) = +1
at plc) = -1

for irreducible p, we obtain that
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for all Artin representations p as desired. O

Now let K (Fy) be the maximal abelian extension of Q inside i, = Ko in which
p does not ramify. We are grateful to John Coates for providing us the proof of the
following lemma.

LEMMA 2.13. In our setting we have K(Fy) = K.

Proof. Since K (F) is unramified at p we have that it must intersect the com-
posite of all Zy-extensions of K in K, and hence we must have that K(Fy) is an
extension of K contained in K (E[p]). If we write p = pp in K, the formal group of
E at p is a Lubin-Tate group, and similarly for the formal group of E at p. Thus
p is totally ramified in the extension K(FE[p])/K which has degree p — 1, and p is
unramified in this extension. The analogous statement holds for K (F[p])/K but with
p and p interchanged. Let d := [K(Fw) : K]. Thus we must show that d = 1.

Now by the definition of K (F), p is unramified in it, and so K (F)(E[p]) is an
extension of K of degree d(p — 1), in which every prime of K (F) above p is totally
ramified of ramification index equal to p — 1 and every prime above p is unramified.
Hence K (F)(E[p], E[p]) must have degree p — 1 over K(Fu)(E[p]) because every
prime of this latter field above p must be totally ramified of ramification index equal
to p— 1. But K(Fx)(E[p], E[p]) = K(E[p]) and K (E[p]) has degree (p — 1)? over K.
Hence d = 1, and the proof is complete. O

So in our setting we have that K(F.,) = K. Since p splits in K we can identify
K, with Q,. Then we have,

THEOREM 2.14. Assuming Conjecture 1.2 there exists L € K1(Az,(G)s) satis-
fying Conjecture 1.8 and 1.4.

Proof. This follows from the explanation before Lemma 2.10 and Theorem 4.3
in the appendix. Indeed assumption (ii) holds because Z,(p) is contained in Zj,[u(p)]
as the values of x (and thus p = Indy or x) are in pi(,_1)pe; (iii) is clear from the
construction, (iv) follows from the Lemma below while (v) again follows from the
explanation before Lemma 2.10. O

LEMMA 2.15 (Deligne-Conjecture, Blasius). In the CM setting the following
algebraicity result holds:

Lipy(E,p,1)

Pp(zauil)
e

d+(p) d=(p) P

b gl

uffp(p) c K p .
Py(p,w=1) »(p)

)
Moreover these values are p-adically integral.

Proof. That the values are p-integral follows from the fact that are obtained as
values of a p-integral valued measure. So we need to prove that actually the values are
in K, (p) and of course it is enough to prove it for p an irreducible Artin representation.
Note that as p splits we can identify Q, = K,. Moreover we have that u,w € Q,
hence we need simply to prove that

L(E,p,1) 3
B () € K(p).
d*(p) yd=(p) P
QL
If p is one dimensional then this is well known. Hence we consider the case where
p=1 ndgx. Then the above statement is equivalent to
L(E/K x,1)

0z (ep(X)es (X)) " € K (x)
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using the fact the QO = Q_ = Q. up to elements in K, e, (X)es(X) = ep(p) and the
duality of the e-factors. Moreover we have L(F/K, x,1) = L(v, x,1)L(¢, x,1). From
Blasius proof of Deligne’s conjecture for Hecke characters (of CM fields) [3] we know
that

E 6 71 e Ko, B8 D 5007 € k()

where c(1, x) and ¢(1), x) are defined as in [4] (see page 65 for the definition and page
67 for the factorization of Deligne’s periods for the Hecke characters ¢y and ).
Moreover we have that c(, x)c(1, x) = ep(x)es(x) up to elements in K (x)*. This
can be seen from the definition of the periods c(¢, x) and ¢(3, x). From [4, page 65]

we have that the element ¢(¢), x) is an element in K (x) ®g Q characterized from the
reciprocity law

(I@7)e(, x) = (x o Very)(T)e(¥, x)

where Very : Gg — G% is the half-transfer map of Tate associated to the CM-type
of the character 1. As it is explained by Blasius this reciprocity law characterizes the
element ¢(¢,x) up to elements in K(x)*. From the properties of the half-transfer
map of Tate one has that

Very(r) - Verg(r) =Ver(r), 7 € Gg

where Ver : Gg — G% is the classical transfer map. But then as is shown in [4, page
70], the product of the all epsilon factors [ ], eq(x) has exactly the same reciprocity
law as the product (1, x)c(3, x) with respect the operation of Gg and hence they are
equal up to elements in K (x)*. The characters x that we consider are only ramified
at p or at the primes g that divide f,. But for the epsilon factors eq(x) for q|f, we
have that eq(x) = eq(p) up to elements in K(x)* where ¢ :== qN Q. But moreover
it is well known [8, page 330] that e,(p) = eq(det(p)) up to element in Q(p)*. But
eq(det(p)) is a Gauss sum and hence an element in K (p)* (see [22, pages 103 and 104])
since ¢ # p and we know from the lemma above that the maximal abelian extension
of Q inside K, unramified at p is K. Hence we conclude that also eq(x) € K(x)*.
Hence putting all the above considerations together we conclude that e, (x)es(x) is
equal up to elements in K (x)* to c(v,x)c(¥, x). O

We finish this section with a last comment. It seems natural to ask if the measure
L has already values in Z, or could be suitably modified by a unit in the Iwasawa
algebra Ap(G) to still interpolate the critical values and take values in Z,. Let us
first try to explain why we believe that this measure does not take values in Z,. We
recall its interpolation property:

_ o LWx1) 1y - (x
Ly(x) = /xdu - % ep (VP (X, u™ ) Py u™ )
G
for all Artin characters x of G. Now we note that in order to prove that this measure
lies in Az, (G) is equivalent to show the following rationality result

L(yx, 1)

o ep(X) ' € K(x)
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since we are in the ordinary case i.e. K, = Qp. As we explained in the proof above
we know from Blasius work that
L(&Xv 1) 7

Tc(iﬂax)_l € K(x),

hence one needs to understand if e,(x) = ¢(,x) up to elements in K(x)* for fi-
nite characters y of G. However this cannot be the case for all finite characters
of Gal(K/K). (However we remark that it is the case when Y is cyclotomic i.e.
Xx¢ = x.) Indeed from Blasius [4] (page 66) we have that the extension of K defined
by adjoining to K the values c(¢), x)) for all finite order characters of Gal(K/K) is
an abelian extension of K not included in Q. However the e-factors are just Gauss
sums hence they can generate only extensions in Q. In particular we have that the
two “periods” cannot be equal up to elements in K (y)* € Q (see also the comment
in [22] page 109). Concerning the other question one may speculate that there is a
measure E% of G such that

T (%) = Y —M o .1\ Do -1 —fp (%)
Ew(X)_/Xd”_cp(w,x)ﬂoop"(x’“ )P (X, u™ ) wPtX

for some canonically normalized element cp(z/_J, X) equal to (¢, x) up to elements in
K (x)*. This measure would have values in Z,,.

3. CM-modular forms. In this section we would like to indicate how most
of our results can be extended to the case of CM-modular forms. Our reference for
the theory of CM-modular forms is Ribet’s aricle [19] as well as the last section of
Schappacher’s book [22].

We start by fixing our setting. Let f be cuspidal newform of weight k& > 2,
Nebentypus e¢ and level N. We pick a number field F' that contains all a,, of f =
Y n>10nq™. We want now to formulate a GLa-Main Conjecture for f. Our starting
point is the following theorem.

THEOREM 3.1 (Eichler-Shimura-Deligne-Scholl-Jannsen). There exists a motive
M(f) defined over Q with coefficients in F' of rank two over F' such that

Ly(M(f),s):=( [ detr(@—Fryp™[H(M(f)))r=( > ajn™®),
(p,N)=1 (n,N)=1

where T € Hom(F,C), £ # p prime, Fr, is a geometric Frobenius element at p and
Re(s) >0

Proof. We refer to the book of Schappacher [22] in page 139 and the references
there. O

It is known [16, page 240, 14.10] that the Kummer dual M (f)*(1) of M(f) is
isomorphic to M (f*)(k), where f* =3" ., dnq" is the dual cusp form.

We fix an embedding 7 : F — Q, we let p > 5 be a rational prime and let \ be
the prime of F' above p corresponding to our fixed embedding F «— Q — Qp. We
write px 1= ps.a 1 Gg — GLo(F)) for the associated Gg- representation given by the
A-adic realisation V' := V(f) := Vg, (f) of M(f). Moreover we assume that p is a
good ordinary prime for M (f), this is equivalent to p being relative prime to N and
a, a M-adic unit. Note that with f also f* is good ordinary at p, see [16, prop. 17.1].
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We consider the p-adic Lie extension Fi, of Q determined by the image of pj, i.e.
G = Gal(Fs/Q) = I'm(py). We note that the determinant of py is of the form
det(pr) = xbher!

and hence G contains a closed normal subgroup H such that G/H = Z,,. In particular
the setting of Theorem 1.1 of the introduction apply to the above defined group G.
Next we define the A-primary Selmer group attached to f as follows: By V/(f)
we denote the (unique) unramified one dimensional Gg,-subrepresentation of V'(f)
(restricted to Gg,), which exists due to [16, prop. 17.1] f being good ordinary at
A. We fix an O := Op,-lattice T(f) C V(f) and set T'(f) := T(f) N V'(f) and
T'(f) :=T()/T'(f) CV"(f):=V(f)/V'(f). Then, for any integer r, we define

Sel” (T (f)(r)/ Foe) = ker (H'(Gs, (Fec), T() (1) © Q/2Z)
— Coindd'H' (Fae,,, T"(f)(r) ® Q/Z))

where G's, (Fu) denotes the Galois group of the maximal outside p unramified exten-
sion of Fi, and v is a fixed place of Fi, over p. Using the same arguments as in the
proof of [16, prop. 17.2] one easily shows that this Selmer group coincides with the
Bloch-Kato Selmer group Sel(1)(T'(f)(r) ® Q/Z, F) in [11, 4.2.28]. Finally, we write

X 1= X(T(f)(r)/Fs) = Sel (T (f)(r)/Fx)"

for its Pontryagin dual. Then the Torsion-Conjecture reads as follows

CONJECTURE 3.2 (Torsion-Conjecture). For one (and hence any) r, the dual of
the Selmer group is S*-torsion:

X(T(f7)(r)/Foo) € My (G).

We let L denote the same field as in the introduction and we write A(G) for the
Iwasawa algebra of G with coefficients in D := Op. We denote by Q1 the periods
of Deligne associated to M(f) with respect to our fixed 7 € Hom(F,C), that is
determined up to elements in O}, see below for more details. We set

R = {p} U{l # p| the ramification index of | in F./Q is infinite}
and we define u € Z,* by
1—a,T +p" e (p)T? = (1 —uT)(1 — wT).

CONJECTURE 3.3 (Existence of p-adic L-function). There is a Lf € K1(A(G)s+)
such that

v
£y Le(D).P.1)
Qi+(P)Qi7(P)
for all Artin representations p of G.
And similarly:
CONJECTURE 3.4 (Main Conjecture). The p-adic L-function L¢ is a character-

istic element of X (T(f*)(k —1)/Fx) :
0Ly = [X(M(f)/Fo)lp-
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Actually, the last two conjectures are a consequence of the much more general
conjectures in [11]. Indeed, theorem 4.2.22 or 4.2.26 in (loc. cit.) applied to the
motive M = M(f)(1) with coefficients in F' predicts the existence of £ such that,
for 0 < i < k — 2, the following more general interpolation property holds (at least
for i +1 # £51)2

\
i Ler(M(f),pyi+1) . 4
Ly(pr™") = PV - (i) ep(p)
f QT DT (D) (9 yai P

P,(p,u"'p")

v . (utp")ir(P)
By (P up='=1)

where d = dim p while d*(p,4) and d~(p,i) denote the dimension of the part of p
n which complex conjugation acts as (—1)* and (—1)*"!, respectively. To this end
note that the eigenvalue u of the geometric Frobenius automorphism acting on V'(f)
equals pv for the v in (loc. cit.) due to the compatibility conjecture Cyy p in [10, 2.4.3],
which is known for modular forms (loc.cit., rem 2.4.6(ii)) and for Artin motives, and
that

. . d, fr=—-lorr=%k—2;
h(r) = dim gr' (M @ plar) = { 0, otherwise

because the de Rham realisation M (f)(j)ar has the following decreasing filtration

. M(f)ar, ifi < —j;
M(f)Gi)ar=14 Mg if1—j<i<k—-1-7;
0, if k—j<i,

see [16, §11.3]. In particular, all the twists M (f)(j), 1 < j < k — 1, are critical.
Moreover M (f) is pure of weight k£ — 1 with Hodge decomposition of type (k—1,0)+
(0,k — 1). The existence of good basis v+, v~ and § of M;E, Mg and the tangent
space ta := Myr/MJ3g, respectively, in the sense of [11, 4.2.24] follows from [16, 17.5]
where the dual situation is discussed, in particular we have chosen Q4 = Q(y*, ) in
the notation of [11].

Assuming the conjectures in [11], Conjecture 3.4 is a direct consequence of theo-
rem 4.2.22, proposition 4.3.15/16 in (loc. cit.) (observing that V/(f) grants an infinite
residue extension of p in F,/Q) once we have seen that T induces the zero class in
KoMy (G)). If f is not CM, this follows from proposition 4.3.17 in (loc. cit.) while
in the CM-case we give an argument in the proof of Proposition 3.5.

Now we focus on the case where f is a CM-modular form. We will say that f has
CM by a non-trivial (quadratic) Dirichlet character € if

€(q)ag = aq

for a set of primes ¢ of density 1. If we write K for the quadratic extension that
corresponds to € we say that f has CM by K. For example in our previous setting
if we write fg for the newform that corresponds to E we have that fr has CM by
the non-trivial quadratic character € of Gal(K/Q) as in that case a;, = 0 for the
primes that inert in K. From now on our fixed modular form f will have CM by
some quadratic field K and we will write € for the associated character. From [19]
(proposition 4.4 and theorem 4.5) we know:

20therwise some Euler factors might be zero and the formula can be rewritten by replacing R

—1,i R .
by the empty set and replacing PP(VL?I) by {Pr,(W,u)Pr »,(W,u) " }y=1 - Ppp(W*(1),1) -
Pp(pup—i—1)

[iep PLi(W,1), where W := M(p*) = [p*] ® My and W := [p*]y ® V/()(1).
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(i) The field K is imaginary.

(ii) Let G := Gal(Fx/K). Then py, is abelian.

(iii) f is (automorphic)-induced by a Gréssencharacter ¢ over K of type (k—1,0)
and after fixing an embedding of F in Q we have L(f, s) = L(1, s). Henceforth
we assume that F contains K (¢(K*)), where K denotes the finite adeles of
K, e.g. we can just take F' = K ((K*)) by [16, 15.10].

(iv) For the A-adic representation attached to ¢ we have

Pl = ¥r ® Y5

where 1, is the F -valued A-adic counterpart of the Grossencharacter .
In particular py = Indday = Indgys, see also [16, (15.11.2)]. Here our
convention is that ¥, ((a, Ko /K)) = ¥(a)~! and we write V (¢) = Vp, (¢) for
the corresponding representation space.

(V) ¥¥° = Ng~ (e o Ni).

Assumption. We are going to assume all along that the size of the torsion part
of GG is relative prime to p.

Now we pick a prime p that splits in K and write p = pp for a prime p of K.
We make the standard assumption that p is the prime that corresponds to the p-adic
embedding

K — Q (SN Qp
with respect to our fixed embedding Q — @p, in particular Alp. We now note that
L—a,T+p* tep(0)T? = (1 = 9(p)T)(L — (p)T)

and claim that ¢ (p) is a A-adic unit. Indeed, as the character v is of type (k — 1,0)
we have that its A-adic counterpart ¢ factors through Gal(K (f4p>°)/K), i.e. is it is
a character of the form

¥x : Gal(K (fpp™)/K) — OF

where O, the ring of integers of F}*. But then 1 (p) = 5 (Frobg) € O and we have
u=1(p).

For a Gk-representation p : Gxg — Aut(V) on a finite dimensional Fy-vector
space V and any Galois stable O := Op, -lattice T' C V' we define

S(T/Kw) :=ker (H (G, (Koo), T © Q/Z) — CoindZ" H (Ko ,,, T © Q/Z))
where v as before denotes any fixed place of K lying over p. Its Pontryagin-dual
X(T/Ks) =S(T/Kx)" = X(Ku) ®z, T*

is a finitely generated Ao (G)-module. We fix an O-lattice T'(¢))* C V(¢)* and assume
that

T = T(f)(k - 1)

coincides with
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As noted above T'(1)* is unramified at p, whence the free rank one O-module T'(¢)¢)*
with Galois action given by the complex conjugate character (1))~! is unramified at
p. It follows immediately that

T@W) =T"=T'(f)(k—1) and T(¢)" =T" :=T"(f*)(k - 1)
as G g-modules.

PROPOSITION 3.5. There is a natural isomorphism of A(G)-modules
X(T/Kwo) = Ind§ (X (Koo) @2, T(¥))

where G acts diagonally on the tensor product.

Proof. Applying the exact functor Coindg to the defining sequence

0= S(T(¥)"/Koo) = H'(Gs, (Koo), T(1))" ® Q/Z) == Coinde® H (Koo, T(¢))* ® Q/Z)
using the transitivity of coinduction and the isomorphisms

CoinddH' (G, (Kac), T(¥)" @ Q/2) = Hom(Gs, (K., Coind§ (T()" © Q/2))
~ H'(Gs,(Kx), T ® Q/Z)

as well as

H' (Koo, T(4)" ® Q/Z) = H' (Koo, T" ® Q/Z),

one just obtains the defining sequence of the full Selmer group
0 —= Sel”"Y(T/K+) — H'(Gs, (Kx), T ® Q/Z) — Coindg” H' (Ko, T" ® Q/Z).

The result now follows by taking duals. Finally, we give the promised proof that the
class of X(T/K«) coincides with that of the Selmer complex used in [11]: Let H’
be the (open) maximal torsionfree pro-p (abelian) subgroup of H, i.e. H = H' x H”
for some finite abelian group H”. Thus we have a natural functor from the category
A(H')-mod of finitely generated A(H’)-modules to My (G) by extending the H'-
action to a G-action letting G/H' = H"” x T act trivially, which induces the first
homomorphism in the following composition

Ko(A(H')-mod) — Ko(Mu(G)) — Ko(Mu(G)) = KoM (G)),

where the second map is induced by twisting with T'(1))* while the last one is induced
by tensoring with A(G) ®(q) —- As, A(H') being a regular local ring, the A(H’)-rank
induces an isomorphism Ky(A(H')-mod) 2 Z, one sees that the class of the trivial
H'-module Z,,, which is sent to the class of T = Indg (T'(x)* under the above map, is
zero. [

Now we explain the construction of the non-abelian p-adic L-function. We
start by fixing archimedean and p-adic periods that correspond canonical to the
Grossencharacter ¢ that we have associated to our CM modular form f. We pick
a prime ideal f of K that is relative prime to p and with the property that the integer
w; defined as the number of roots of unity in K congruent to 1 modulo § is equal to
1. Then from [9] (Lemma in page 41) we know that there is a Grossencharacter ¢
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of K of conductor { and type (1,0). Moreover from the same lemma in [9] we know
that if ¢ is a Grossencharacter of K of type (1,0) then there exists an elliptic curve
defined over K(f;) where fs the conductor of ¢ such that E has CM by Ok and its
associated Grossencharacter is given by ¥ = ¢ o Ni(j,)/x. Now we are ready to
define our periods for our Grossencharacter 1. We distinguish two cases
(i) v is of type (1,0), i.e. f is of weight 2. Then we write E for the elliptic curve
defined over K (fy) and A for its corresponding lattice in C. Then we define
Qoo by

QuoA = §

where we are implicity assuming that we see { as a lattice in C with respect
to the embedding K < C imposed by the CM type of the character ¢ (see
also [9] page 66). The p-adic periods €, are defined using the elliptic curve
E as is done in [9] page 66)

(i) If the character ¢ is of type (k — 1,0) for k¥ > 2 then we pick some other
Grossencharacter ¢ of type (1,0) and of conductor fg prime to p and write

b =00t

where 6 is some finite order character of conductor relative prime to p. We

define then the periods 2 and Q,, as in (i) using the character ¢.
Let K(p*°) be the maximal Z,-extension of K inside K(f,p>°) and set G’ :=
Gal(K (fypp>)/K(p>)). Let m := |G’|, then we define D to be the ring generated

—

over Zp" by the m!" roots of unity. Using exactly the same construction as in section
2 we conclude the following:

COROLLARY 3.6. There exists a unique Ly = p1 € Ap(G) such that for 0 < —j
and0<k—1+47

j j 1y Lk —14)
L5 (xr’ :/ Kdp=T(k -1+ )22 — 2D

fo (%)
_ _ w IR e (o
eP(X)PP(va)Pﬁ(X,u 1p 7 (?) ppr(X)

for all Artin-character x of G and the cyclotomic character & : F?"obq’1 — Nk(q).

Proof. We write g for the maximal ideal that is contained in f and f. From 2.3
we know that there exists a measure p(gp*>) of G(K(gp>)/K) so that

Qj_k/ (o) (gp) = PRFIH L i (1 - Sy (1, 0)
! G(K(gp>)/K) ot »

for € of type (k,j) with 0 < —j and k£ > 0. As explained above the character ¢ is
of the form ¢¥~16 for ¢ of type (1,0) and 6 a finite character, both unramified at p.

Moreover we have the relation ¢¢ = Ng. In particular for a finite order character y
of Gal(K (p™)/K) the character

€= YNjx = ¢" 1 gI0y
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is a valid choice for € above provided that 0 < —j and 0 < k — 1+ j. But then for the
L-functions we have the equalities

L(e1,0) = L "Ny x,0) = L(pxNg ¥ ) = L, bk — 1+ 7).

Then the proof is the same as in the case of elliptic curves with CM that we did in
corollary 2.6. O

We note that in the more general case that we consider now we do not have ¢ = 1°

but only that )¢ = ¢(e; 0 Ng) which means that the motive M (f) is not self-dual. We
now use the functional equation in order to get the critical values at the point s = 1.
For the character ¥y of type (k—1,0) we have that its dual representation is given by
the character (¢x) ™! = !y for which we have that L(¢ "'y, s) = L(¢x, s+ (k—1)).
Then the functional equation reads (see [29] page 16 or [9] page 37)

Ly (s)L(¥X, 8) = e(dxws)y((k — 1) +1 = s)L(x, (k= 1) +1 - s)

where for a character ¢ of type (k,j) we write Tg(s) := ~o=mnkd) nq e(yyw,) =

T (2m)smin(k.g)
Hq eq(YXws, Yaa, dxy,,) where ws as in Tate’s [29]. In particular for s := 1 — j with
7 <0 we have

— Ty(l—3j
Lyx,k—1+j) = %ewimg‘)%w% 1—j).

Hence

- fo()
L(yx,k—1+7)ep(x) (—) PO =

Ly(1-7)

fo()
Tt 1 ) W) e (—) PPOLy, ).

But we have

¥(p) fo(@
e(Yxwi—;) ep(X) (T) P = Heq(¢>€w1—ja¢adadfwad)_lep(iﬁféwl—j) =
9

H eq(w)zwlfja 1/}ada dx’lﬁad)71
a7p

where we have used the fact that dry,, = dr; at p as this prime is unramified in K.
Now we observe that

es (VXW1—j, 1) = e5(Xwi—j, Yad, dz1 )Y ()X = e5(xw;, ¥ 1) "1 (p) T
= e (xwy, oy ) MulP )

where we have used the duality es(xw;, .}, dr1)es(Xwi—j,Yad, dr1) = 1. Hence we
obtain

H eq (wxwl—ju wadu dwwad)_l = H eq(wiwl—ja wadu dwwad)_lef) (X)u_fﬁ (X)p_jf*’ (X)
a7p q7p,p
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We can now state the following:

COROLLARY 3.7. There exists a unique ng) = € Ap(G) such that for 0 < —j
and 0 < k — 1+ j we have

Eg’w) (X[gj) = /X,‘{/‘]du = F(k —1 +])’L (277')ij71 eﬁ(X)X
G

w ey o Ty(l—3)
P - \P: 1,—3 §5(X) y—3Fp (X) Y
p (0 ) B w™p ) Ty(k—1+))

for all Artin-character x of G.

Proof. We have already constructed a measure with the interpolation property

CloedY — i CLx k—143) T
Loon?) = [ xwtdp =Tk -1 )T g OB (K )

G

-1 *j) <@>fp(>{)pjfp(x)

Pi(x,u""p
i P

and using the above computations we can rewrite it as

: : Ty(1—j
5¢(><fi’)=/x&3du= T 2l =)

Gk—1+7) H eq(VXW1—j, Yad, Ty, ,) " | X

q#p.p

(k=144 -
( J)i (27T)JQI(§O—1

_ w _ s i (= o —
eﬁ(X>PP(X7m>Pﬁ(X7U Lp=3) 4= p=if (0,

Now we claim that the mapping yx? — HCHéma eq(UXwi—j,Yad, dxy,,) is a unit in
the Twasawa algebra Ap(G) and hence we can twist our measure by this element to
conclude the proposition.

We write Koo C K (p™) for the Z2-extension of K and define I' := Gal(K /K) =
ZZQ,. We decompose G = A x I for A finite of order relative prime to p. Then we have

that Ap(G) = D[[G]] = D[A][[[']]. We write A for the group of characters of A. Then
by our assumptions on D we have that D[A] = @, 2 D given by a + (...,0(a),...)
and hence Ap(G) = @pDJ[I']]. Every Artin character x of G can be decomposed as
x = Oxr for 0 a character of A and xr a character of I'. We write 0 for the different
of K over Q We note that 6 can be ramified at p or at q with q|f, for the conductor
of 1. We write fy for the non-p part of the conductor of 1f. Then we have

H eq(PXwi—j, ¥, dzy) = iF7! H eq(VxXwi—j,Yad, dxy,,)

q7#p,p qlfy o
= Xr(Fpo0r ) Nic (fpoor) "5 T €q (9, vaa, dy,,)

qlfydx
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since xr is only at p ramified and (p,fy0x) = 1 under our assumptions. But
qumak eq(¥0, Va4, dzy,,) is a p-adic unit (see [9] page 94) and hence we can de-
fine the measure

1

Nk (foodx) IT ea(®b. vas,dry,,)op 5y, € AplT))

qlfy oK

where o7j,,0, € I' corresponds through the Artin reciprocity to fye0x, well defined as
K, ramifies only at p. We then define the element £ € Ap[[G]]* to be the element
that corresponds to

1

o N (fpodx)

[T ea(®b.vaa dzy, )0y )}y, - ) € @6D[T]]

qlfydx

under the above mentioned isomorphism Ap(G) = @pD[[I']]. We then obtain for a
character y of G

E(X“j) = il_k H eq(wiwl—jvwvdxw)
a7p,p
which allows us to conclude the proposition. 0

Using now the natural map
(15)x : K1(A(G)s+) — K1(A(G)s+)
we define

L= (19)e(Ly) and LI = (15).(L5").

As in the case of elliptic curves with CM we need to understand the following correc-
tion term which describes the change of complex periods

om0 14 202 1—c
Lo = o1 5 + oF T 5

CONJECTURE 3.8 (Period Relation). We conjecture

(2m)* 2y
Okl

(2m)F 20

X X
€ Op, and 1 € Op,
o0

and hence Lq € Aoy, ().

The difficulty in proving the above conjecture for k£ > 3 is due to the fact that it
is not clear whether the motive M (f) that it is attached to f (a direct summand of
the motive associated to a Kuga-Sato variety) coincides with the motive that we have
associated to the Grossencharacter ¢ as k — 1-fold tensor power of the elliptic curve
associated to the character ¢ of type (1,0). For a similar discussion see also [16, page
263).

We define

— w)’ w) p—
b = LLG" and LU = L0V Lot

Assuming the above conjecture we have:
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PROPOSITION 3.9. Let M(f)Y be the dual motive to M(f). Then wa satisfies
the following interpolation property for 0 < —j and 0 < k — 1+ j:

, L (M), p =1+
£y (pr) = Tk = 1 4 jytgaon Lt LD P b))

(27T)2(k—2)+2j951:(p)9f(p) en(P)%

\Y «
Pp(pv #) (E)fp(p) p]fp(p)
Py(p,w=1p=7) \ p

for all Artin representations p of G.

Proof. As in the proof in the elliptic curve case we consider two cases of artin
representations, those that are one-dimensional and those that are induced from a
character from K to Q. We explain here the case where p = Indy to indicate the
similarities and differences with above. We compute

L(pr!) = E@(Xﬁj)ﬁqﬁ(XC’fj) =

I'k—1 +j)2i2jL(J)X7k — 1+ j)LWx% k—1+ )

(27T)2jQ§<(>k71) ep(X)ep(X) x

i\ Fr CO+F5(X)
Y(p)p’ _w B 1
( (p) Py (X p*j+1)Pﬁ(X7U p ])Pﬁ(xvp*jJrl)Pp(Xvu 'p) =

F(k -1 +j)2i2j L{p,ﬁ} (&Xv k-1 +j)L{p,ﬁ} (@XC, k-1 +])
(2m)2i Q2D

(d)(ﬁ)pj ) PO Py (X, 52%) B (w7 ) Pa (X, 5= ) By (x u™'p7)
p Py (x, w=p=7) Py (x,u=1p=7) Ps (x, w=1p=9) Py (x, u=1p~7)

k14 .)Ql.sz{p,ﬁ}(tﬁx, k=14 7)Lippy(0X° k= 1+)
! (2m)2 QY

Py(x,w=tp=7) Py (x, w=1p~7)

<w<p>pﬂ‘ > PO Py (%, =21 ) Py (X, 7245r)
p

i\ fr(p) L M)V, p,k—1+ Pp(ps =71)
en(p) (1/1(13)]9 ) T(k—1 +j)2l~2_] (o (M ( ) T ) o ;071+7j '
D (27)23900 P;D(pv w-p )

The last equation follows from the fact that since ¢ induces the cusp form fy, = f =
> n>1@nq", the character ¢ induces a cuspidal newform f; =3, -, @q" where the
complex conjugation on the coefficients a,, is with respect to our fixed embedding

F — Q. Actually one has that @, = efl(n)an. But then f; corresponds to the
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dual motive M (f)V. Then as above we conclude that L}'w = LL;" has the claimed
interpolation property. O

Similarly we have

ProPOSITION 3.10. The measure E(tw)lfw satisfies the following interpolation

property for 0 < —j and 0 < k—1+ 7,

—fp(P)

L P 71 j P ,uil —J
£, (pr?) = T(1 = )00 (2;)}(27;%9[1 D eul) L )

p\P> p=iFT
for all Artin representations p of G.

Proof. As above we have

L0 (el = £ o L7 () =

L(yx, 1 = L1~ j)

D(k =1+ )% ep(x)ep(x) (up?) PR ~H )

(2m)2i el
Pyt Byl ) Pt~ By ) (D))
p UG p_j+1 p G p PG p—j+1 pLGU P qu(k_ 1+]) B

(2m) 21 Q201

Lo s ) _ _
D(k — 1+ j)2% Z20} ep () (x) (up?) TP O-T500

Po(Xo 5=570) B O, u™'p ™) P (X, 5= ) B (X, u™ pj)< Ty(1— ) >2
Po(X, 5= ) B (X, =570 ) B (X 5= ) P (X, =) \Dp(k — 1+ )

1242 L sy (WX, 1 = J)Lip 5y (WX 1 — )

T(k—1+j RO

ep(X)ep (x) (up?)~Tr=Ts(x)

Pl u ) By utp ) ( Fo(l=J) ) _
Po(X, 55+ ) B (X, 5=5r) - \Tg(k —1+7)

j 5 Ly (M 5,1 —34) P —1,—j Dol — i 2
ep(p)(upJ)_fp(p)r‘(k_1+j)2i2] (M (f), Pk : J) p(piu up ) ( w(1—7) . ) '
(2m)2 QY Po(p, 5=5+=) \Iyp(k—1+)
We recall that I'4(s) = % for ¢ a Grissencharacter of type (k, 7). In
particular for the character ¢ of type (k — 1,0) (hence v of type (0,k — 1)) we have
that

Fw(l _]) _ F(l _j) (27T)k72+2j
Ly(k—1+4j) T(k—1+)) '

This allows us to conclude the proof of the proposition. O

Altogether we obtain the following (under our assumption over the torsion part
of G),

THEOREM 3.11. Assuming Conjectures 3.2 and 3.8 there exists ng(f) €
Ki1(Ap(G)s) satisfying Conjecture 3.3 and 3.4.
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4. Appendix: Galois descent for Iwasawa algebras. The aim of this ap-
pendix is to provide some results for Galois descent of (non-commutative) p-adic
L-functions, by which we mean the following general question:

Assume that G is a compact p-adic Lie group which possesses an closed normal
subgroup H such that G/H =:T' = Z, and let O = O, denote the ring of integers
of a finite extension L over Q,. Then we denote by D the discrete valuation ring of
the completion L of the maximal unramified extension L™ of L. If £ € K1(Ap(G)s-)
has the property

L(p) € O(p) for all p € InrG,
does it hold that there exists an element £’ € K1(Ap(G)g+) with
L' (p) = L(p) for all p € IrrG?

Here IrrG' denotes the set of isomorphism classes of irreducible Artin represen-
tations of G with values in Q, while for every p € IrrG we write O(p) for the dis-

—a
crete valuation ring of L(p) = Q, "7 where G, , is the stabilizer subgroup of p in
Gr = G(Qp/L) with respect to the natural action on the coefficients of p.
We start with a simple observation in the abelian case:

LEMMA 4.1. Let G be a topological finitely generated virtual pro-p, abelian group,
such that the exponent of its torsion part divides p — 1. Assume that for a given
f € Ap(G) the values f(p) belongs to L(p) (and hence to O(p)), for all (irreducible)
Artin characters p of G. Then f is already contained in Ao (G).

Proof. With out loss of generality me may assume that G = Zg for some natural
number d, because otherwise me can decompose Ap(G) into a product of such rings
by our assumption on the torsion part of G. Also by taking inverse limits afterwards
we may and do assume that G is a finite p-group. Then it is well-known (e.g. a variant
of prop. 4.5.14 in [28]) that we have a G -invariant isomorphism

01 Cy[G] = Hom(R(G),C,), f =D myg = (pr= f(p) = > map(9))

where on the left hand side the Galois action is just on the coefficients while on the
right hand side h9(p) = gh(g~'p) for all g € Gg,, and h any homomorphism from
the group of virtual representations R(G) of G defined over Q,. Recall that by the
Ax-Sen-Tate theorem

P
ci-1

for H := G(Qp)/Ly"). Similarly, if H, denotes the stabiliser of p we get

—

Lip) =C} =Ty = L (p).

Taking H- and Gp-invariants of ¢ thus induces the following commutative dia-
gram

L[G] —_— CP[G]H - HomH(R(G)7 (CP) —_— HpG(IrrG)/H E(p)
LJ[G] B Cp[G]GL = Homg, (R(G),C,) == HpE(IrrG)/GL L(p)
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where (IrrG) /U denotes the Galois-orbits with respect to some closed subgroup U C
Gp. Since L(p)/L is totally ramified, it is easy to see that

(IrrG)/H = (IrrGQ) /G L.

)

| satisfies f(p) € L(p) for all p € IrrG, i.e.

Now, by assumption f € D[G] C L]
€ ] N DI[G] = O[G], because LN D = {x €

o(f) € HpG(IrrG)/GL L(p). Hence f € L]
L| |z|, <1} = O coefficientwise. O

)

In the following we will use Frohlich’s Hom-description as it has been adapted
to Iwasawa theory by Ritter and Weiss [20, §3]. We have the following commutative
diagram

K1(Ap(G)) =~ Homy (R(G), OF)

J

K1(Ao(G)) 2> Homg, (R(G), OF),

where the homomorphism Det is defined as follows: for p € IrrG we obtain a homo-
morphism of rings

p: Ap(G) — M, (Zy),
taking K4 (—) of which gives a group homomorphism
byt Ki(Ap(G)) — K2 (M, (By)) = Ky (Zy) € O

Now we set Det(L)(p) := ¢,(L).
Setting A := G(L™" /L) we obtain the following generalisation of a theorem of M.
Taylor [30, §8, thm. 1.4]:

THEOREM 4.2. For O unramified over Z, we have
Det(K1(Ap(G)))2 = Det(K;(Ao(G))).
Proof. In Taylor’s theorem (loc. cit.) G is finite and D is the valuation ring of a
finite unramified extension of L. His proof generalizes immediately to the case of our

more general D, see [15] for details, thus we only have to show how the general case
can be reduced to the case of finite groups. To this end write G = limG,, as inverse
—

limit of finite groups. By Taylor’s result we have compatible continuous maps
O[G,]* =% Det(K1(Ap(Gyn)))d = Hompy(R(Gy), 0% )A

where the topology on HomH(R(Gn),Oép) = HpEIran/H(Oép)HP is induced from
the valuation topology on C,. Taking the inverse limit yields, by the compactness
of Ap(G)* = (H_m(O/w"[Gn])X and by letting R(G) := h_rn)R(Gn) denote the free

n n
abelian group on the isomorphism classes of irreducible Artin representations of G, a
factorization of the homomorphism Det into

Ao(G)* —2st (ImDet(K1(Ap(G)))® ., Homg, (R(G), 0F, ).

n
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The claim follows because denoting by res, HomH(R(G),Oép) —

Hompy (R(G.,), (’)(ép) the restriction we obtain from the universal mapping property
for

lim Homy (R(G), O ) = Homp (R(G), OF )

n

the inclusions

Det(K1(Ap(G))) C (h_mim(resn o Det)
C limDet(K1(Ap(Gn))),

n

whence the obvious inclusion

Det(K1(Ao(G))) € Det(K1(Ap(G)))* € (limDet(K1(Ap(Gn))))*

n
is surjective. 0

There are (at least) two obvious questions: Firstly whether this descent result
does also hold for the full Kj-groups ( this amounts to an analogous statement for
the SKj-terms) and secondly whether the analogue for the localisations holds, too.
We shall at least show a weak version towards the second issue. To this end we give
a variant of Ritter and Weiss’ Hom-description: Consider the following commutative
diagram

Ei(Ap(G)) 2% Hompy . (R(G), Ao, (1)) Homp (R(G), OF)

| | |

K1(Ap(G)g) 2> Hompy, gy (R(G), Qo., (I')*) —— Maps(IrrG, C), U {oc}),

where

* Qoc, (I') denotes the quotient field of Ao, (T'),

e for Aeither Ao (I')* or Qo (I')* we denote by Homp, g (R(G), A) the both
H-invariant and R(T')-twist-invariant homomorphisms. The latter means that
flp®x) =twy-1(f(p)) for all x in R(I"); here x is considered as element in
R(G) via the fixed surjection G — I' and tw, : A — A is induced by the
action v — x (v~ 1)y on Ao, ('), compare with [20, thm. 8],

e - analogously as for Det - the homomorphisms det are induced from the ring
homomorphisms

Ap(G) = My, (Oc,)@pAp(T) = My, (Ao, (1)), g~ plg) ® 4,
and its localisation at S™
Ap(G)s- — My, (Ao, (T)s+ = My, (Qog, (T'),

respectively.
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e the homomorphism ev : Homp . (R(G), Ao, (I')*) — HomH(R(G),OéP),
which is induced by the augmentation map Ao, (I')* — Oép, ie ev(f)(p) =
f(p)(Xtriv), where the latter means evaluation at the trivial character y, of

T, is injective by the Weierstrass preparation theorem and the twist invariance
of f (in the kernel of ev):

F(p)(x) = twy—1 (f(p)) (Xtriv) = F(p ® X)(Xtriv) = 1

for all x, whence f(p) =1 for all p,
e we do mnot know whether the map Homp g (R(G),Qo, (I)*) —
Maps(IrrG, Cp, U {o0}) is injective.
Note that
e a similar diagram exists with O-coeflicients (instead of D) and H replaced by
G, and that by construction the morphisms det commute with the canonical
change of coefficients maps.
e the composition of the top-line of the above diagram equals Det.
e the image of £ in Maps(IrrG, C, U {co}) is the map which attaches to p the
value L(p) of L at p and the map into this target is multiplicative at least in
the following sense: if f(p) # 0, 00 for all p, then (gf)(p) = g(p)f(p) for all p
(withoo-a=a-co=occand 0-a=a-0=0 for a # 0, 00).
By ¢ we denote the canonical map K1 (Ao (G)s+) — K1(Ap(G)g+).

THEOREM 4.3. Assume that
(i) O is absolutely unramified,

(ii) L(p)/L is totally ramified (or trivial) for all p € IrrG,
i

)
(ili) £ € K1(Ap(G)s+) is induced from an element in Ap(G) N (Ap(G)g+)*
(iv) L satisfies

L(p) € L(p) for all p € IrrG,

(v) there is an F € K1(Ao(G)s+) such that O(L - L(F)™') = 0 (e.g. if L is the
characteristic element of the base change from a module in Mo 1 (G)).

Then there exists L' € K1(Ao(G)g~) with

L'(p) = L(p) for all p € IrrG

and

in particular

Proof. Consider the following commutative diagram with exact rows

Ki(Ap(Q)) —2 K1(Ap(Q)s:) —22> Ko(Mp 1(G)) — Ko(Ap(Q))

| | |

K1 (Ao(@) =2 K1 (Ao (G)s+) —22> Ko(Mo, 1 (G)) ———=0.
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By assumption there exists D € K;(Ap(G)) such that 7p(D) = L - «(F)~1. By
Lemma 4.4 below Det(D) belongs to Det(K;(Ap(G)))2 = Det(K1(Ao(G))), i.e. there
isaD’ € K1(Ao(G)) such that D(p) = D'(p) for all p in R(G). Setting L' := 7o (F)D’
and recalling that D’(p) = D(p) # 0,00 we calculate

£) = (o)D)
F(p)D(p)
— det(F) o)) - det() () i)
= ((det(F)(p) det(D)(p) ) (xerss)
(

(

= det («(F)m(D)) (p) (Xtriv)
= det(£)(p) (Xtriv)

= L(p),

whence the theorem is proven. O

LEMMA 4.4. With notation as in the previous proof we have
(i) det(D)(p) € O(p)[[I']] for all p € R(G),

(ii) D(p) = Det(D)(p) € O(p) for all p € R(G),

(iii) Det(D) € Det(K;1(Ap(G)))A.

Proof. By construction and assumption (£ being induced from ....) we have
det(£)(p) € D(p)[[I']] with D(p) := (Oc,)" and thus by Lemma 4.1 det(L)(p) be-
longs to O(p)[[T]]. On the other hand det(F)(p) belongs to Qo (I")*, whence

det(D)(p) € Qo) (T)* N Ap(, (I)*.

We claim that this intersection equals Ap(,)(I')*. One inclusion being obvious we
assume that ¢ belongs to the intersection. It follows immediately that ¢(x) belongs
to O(p,x) = (Oc,)=»"CLx for all y € R(T). Thus the claim follows Lemma 4.1
(with O(p) for the base ring O). This proves (i) and as D(p) = det(D)(p)(xtriv) also
(ii) follows. In order to show (iii) observe first that A acts trivially on IrrG/G; =
IrrG/Gy,. Hence from the following commutative diagram the statement is clear:

Homp R(G ) HpG(IrrG)/GL D(p)x
Hompy (R(G), O ) —— Homg, (R(G), O¢,) == [ ,c(incz)/c,, O(0)*-
a
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