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PATTERNS GENERATION AND SPATIAL ENTROPY IN

TWO-DIMENSIONAL LATTICE MODELS∗

JUNG-CHAO BAN† , SONG-SUN LIN‡ , AND YIN-HENG LIN§

Abstract. Patterns generation problems in two-dimensional lattice models are studied. Let
S be the set of p symbols and Z2ℓ×2ℓ, ℓ ≥ 1, be a fixed finite square sublattice of Z

2. Function
U : Z2ℓ×2ℓ → S is called local pattern. Given a basic set B of local patterns, a unique transition

matrix A2 which is a q2 × q2 matrix, q = pℓ2 , can be defined. The recursive formulae of higher
transition matrix An on Z2ℓ×nℓ have already been derived [4]. Now A

m
n , m ≥ 1, contains all

admissible patterns on Z(m+1)ℓ×nℓ which can be generated by B. In this paper, the connecting
operator Cm, which comprises all admissible patterns on Z(m+1)ℓ×2ℓ, is carefully arranged. Cm

can be used to extend A
m
n to A

m
n+1 recursively for n ≥ 2. Furthermore, the lower bound of spatial

entropy h(A2) can be derived through the diagonal part of Cm. This yields a powerful method for
verifying the positivity of spatial entropy which is important in examining the complexity of the set
of admissible global patterns. The trace operator Tm of Cm can also be introduced. In the case of
symmetric A2, T2m gives a good estimate of the upper bound on spatial entropy. Combining Cm

with Tm helps to understand the patterns generation problems more systematically.

Key words. Lattice dynamical systems, Spatial entropy, Patterns generation, Connecting op-
erator, Trace operator
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1. Introduction. Lattices are important in scientifically modelling underly-
ing spatial structures. Investigations in this field have covered phase transition [11],
[12], [34], [35], [36], [37], [38], [45], [46], [47], [48], chemical reaction [7], [8], [24], biology
[9], [10], [21], [22], [23], [31], [32], [33] and image processing and pattern recognition
[16], [17], [18], [19], [20], [25]. In the field of lattice dynamical systems (LDS) and
cellular neural networks (CNN), the complexity of the set of all global patterns re-
cently attracted substantial interest. In particular, its spatial entropy has received
considerable attention [1],[2], [3], [4], [5], [13], [14], [15], [28], [29],[30], [39], [40], [41],
[42], [43], [44].

The one dimensional spatial entropy h can be found from an associated transi-
tion matrix T. The spatial entropy h equals log ρ(T), where ρ(T) is the maximum
eigenvalue of T.

In two-dimensional situations, higher transition matrices have been discovered in
[30] and developed systematically [4] by studying the patterns generation problem.

This study extends our previous work [4]. For simplicity, two symbols on 2 ×
2 lattice Z2×2 are considered. A transition matrix in the horizontal (or vertical)
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direction

(1.1) A2 =









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









,

which is linked to a set of admissible local patterns on Z2×2 is considered, where
aij ∈ {0, 1} for 1 ≤ i, j ≤ 4. The associated vertical (or horizontal) transition matrix
B2 is given by

(1.2) B2 =









b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44









A2 and B2 are connected to each other as follows.

(1.3) A2 =









b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44









=

[

A2;1 A2;2

A2;3 A2;4

]

,

and

(1.4) B2 =









a11 a12 a21 a22

a13 a14 a23 a24

a31 a32 a41 a42

a33 a34 a43 a44









=

[

B2;1 B2;2

B2;3 B2;4

]

.

Notably if A2 represents the horizontal (or vertical) transition matrix then B2

represents the vertical (or horizontal) transition matrix. Results that hold for A2 are
also valid for B2. Therefore, for simplicity, only A2 is presented herein.

The recursive formulae for n-th order transition matrices An defined on Z2×n

were obtained [4] as follows

(1.5) An+1 =









b11An;1 b12An;2 b21An;1 b22An;2

b13An;3 b14An;4 b23An;3 b24An;4

b31An;1 b32An;2 b41An;1 b42An;2

b33An;3 b34An;4 b43An;3 b44An;4









whenever

(1.6) An =

[

An;1 An;2

An;3 An;4

]

,

for n ≥ 2, or equivalently,

(1.7) An+1;α =

[

bα1An;1 bα2An;2

bα3An;3 bα4An;4

]

,
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for α ∈ {1, 2, 3, 4}. The number of all admissible patterns defined on Zm×n which can
be generated from A2 is now defined by

(1.8)
Γm,n(A2) = |Am−1

n |
= the summation of all entries in 2n × 2n matrix Am−1

n .

The spatial entropy h(A2) is defined as

(1.9) h(A2) = lim
m,n→∞

1

mn
log Γm,n(A2) = lim

m,n→∞

1

mn
log |Am−1

n |.

The existence of the limit (1.9) has been shown in [4], [15], [30]. When h(A2) > 0,
the number of admissible patterns grows exponentially with the lattice size m×n. In
this situation, spatial chaos arises. When h(A2) = 0, pattern formation occurs.

To compute the double limit in (1.9), n ≥ 2 can be fixed initially and m allowed
to tend to infinite [30] and [4]; then the Perron-Frobenius theorem is applied;

(1.10) lim
m→∞

1

m
log |Am−1

n | = log ρ(An),

which implies

(1.11) h(A2) = lim
n→∞

1

n
log ρ(An),

where ρ(M) is the maximum eigenvalue of matrix M . An is a 2n × 2n matrix, so
computing ρ(An) is usually quite difficult when n is larger. Moreover, (1.11) does

not produce any error estimation in the estimated sequence
1

n
log ρ(An) and its limit

h(A2). This causes a serious problem in computing the entropy. However, for a
class of A2, the recursive formulae for ρ(An) can be discovered, along with a limiting
equation to ρ∗ = exp(h(A2)), as in [4].

This study takes a different approach to resolve these difficulties. Previously, the
double limit (1.9) was initially examined by taking the m-limit firstly as in (1.10).
Now, for each fixed m ≥ 2, the n-limit in (1.9) is studied. Therefore, the limit

(1.12) lim
n→∞

1

n
log |Am−1

n |

is considered. Write

(1.13) Am
n =

[

Am,n;1 Am,n;2

Am,n;3 Am,n;4

]

.

The investigation of (1.12) would be simpler if a recursive formula such as (1.7) could
be found for Am,n;α. The first task in this study is to solve this problem. For matrix
multiplication, the indices of An;α, α ∈ {1, 2, 3, 4} are conveniently expressed as

(1.14) An =

[

An;11 An;12

An;21 An;22

]

.

Then

(1.15) Am,n;α =
2m−1

∑

k=1

A(k)
m,n;α,
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where

(1.16) A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1

,

(1.17) k = 1 +

m
∑

i=2

2m−i(ji − 1),

and

(1.18) α = 2(j1 − 1) + jm+1.

A
(k)
m,n;α in (1.16) is called an elementary pattern of order (m, n), and is a fundamental

element in constructing Am,n;α in (1.15). Notably the elementary patterns are in
lexicographic order, according to (1.17). As in [4], the following m-th order ordering
matrix.

(1.19) Xm,n =

[

Xm,n;1 Xm,n;2

Xm,n;3 Xm,n;4

]

,

is represented to record systematically these elementary patterns, where

(1.20) Xm,n;α = (A(k)
m,n;α)t

1≤k≤2m−1

is a 2m−1 column vector.

The first main result of this study is to introduce the connecting operator Cm,

and to use it to derive a recursive formula like (1.7) for A
(k)
m,n;α. Indeed,

(1.21) Cm =









Cm;11 Cm;12 Cm;13 Cm;14

Cm;21 Cm;22 Cm;23 Cm;24

Cm;31 Cm;32 Cm;33 Cm;34

Cm;41 Cm;42 Cm;43 Cm;44









(1.22) =









Sm;11 Sm;12 Sm;21 Sm;22

Sm;13 Sm;14 Sm;23 Sm;24

Sm;31 Sm;32 Sm;41 Sm;42

Sm;33 Sm;34 Sm;43 Sm;44









,

where

(1.23)

Cm;ij =

(

[

ai1 ai2

ai3 ai4

]

◦

(

⊗̂

[

B2;1 B2;2

B2;3 B2;4

]m−2
)

2×2

)

2m−1×2m−1

◦

(

E2m−2×2m−2 ⊗

[

a1j a2j

a3j a4j

])

2m−1×2m−1

is a 2m−1×2m−1 matrix where Ek×k is the k×k full matrix; ⊗ denotes the Kronecker
product, ◦ denotes the Hadamard product and the product ⊗̂ which involves both
the Kronecker product and the Hadamard product, as stipulated by Definition 2.2.
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In Theorem 2.4, Cm;ij is shown to be ai1i2ai2i3 · · · aimim+1
, with i1 = i and im+1 =

j. Therefore, all admissible paths of A2 from i to j with length m are arranged
systematically in matrix Cm;ij . Now, the recursive formula is

(1.24) A
(k)
m,n+1;α =















2m−1

∑

l=1

(Sm;α1)klA
(l)
m,n;1

2m−1

∑

l=1

(Sm;α2)klA
(l)
m,n;2

2m−1

∑

l=1

(Sm;α3)klA
(l)
m,n;3

2m−1

∑

l=1

(Sm;α4)klA
(l)
m,n;4















,

for m ≥ 2, n ≥ 2, 1 ≤ k ≤ 2m−1 and 1 ≤ α ≤ 4. (1.24) is the generalization of (1.7).
The recursive formula (1.24) immediately yields a lower bound on entropy.

Indeed, for any positive integer K and diagonal periodic cycle β1β2 · · ·βKβK+1,
where βj ∈ {1, 4} and βK+1 = β1,

(1.25) h(A2) ≥
1

mK
log ρ(Sm;β1β2

Sm;β2β3
· · ·Sm;βKβK+1

).

Equation (1.25) implies h(A2) > 0, if a diagonal periodic cycle of β1β2 · · ·βKβ1 ap-
plies, with a maximum eigenvalue of Sm;β1β2

· · ·Sm;βKβ1
that greater than one. This

method powerfully yields the positivity of spatial entropy, which is hard in examining
the complexity of patterns generation problems.

However, the subadditivity of Γm,n(A2) is known to imply

(1.26) h(A2) ≤
1

mn
log Γm,n(A2)

as in [15]. Consequently, (1.8), (1.10) and (1.26) indicate an upper bound of entropy
as

(1.27) h(A2) ≤
1

n
log ρ(An),

for any n ≥ 2.
However, the Perron-Frobenius theorem also implies

(1.28) lim sup
m→∞

1

m
log tr(Am−1

n ) = log ρ(An),

where tr(M) denotes the trace of matrix M [26], [27]. Therefore, (1.28) implies

(1.29) h(A2) = lim sup
m,n→∞

1

mn
log tr(Am−1

n ).

In studying the double-limit of (1.29), for each fixed m ≥ 2, the n-limit in (1.29)

(1.30) lim sup
n→∞

1

n
log tr(Am−1

n )

is first considered. (1.30) can be studied by introducing the following trace operator

(1.31) Tm =

[

Cm;11 Cm;22

Cm;33 Cm;44

]

.
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Then, a recursive formula for tr(Am
n ) can be verified

(1.32) tr(Am
n ) =

∣

∣

∣

∣

∣

∣

Tn−2
m





trXm,2;1

trXm,2;4





∣

∣

∣

∣

∣

∣

,

for n ≥ 2, where tr(Xm,n;α) = (trA
(k)
m,n;α)t

1≤k≤2m−1 and |v| =

l
∑

j=1

vj for vector v =

(v1, · · · , vl)
t. Consequently, (1.29) and (1.32) yield

(1.33) h(A2) ≥ lim sup
m→∞

1

m
log ρ(Tm).

Notably, for a large class of A2, the limit sup in (1.28), (1.29), (1.30) and (1.33)
can be replaced by limit. See section 3 for details.

Now, (1.33) can be applied to find the upper bounds of entropy. For example,
when A2 is symmetric,

(1.34) h(A2) ≤
1

2m
log ρ(T2m),

for any m ≥ 1. Since

(1.35) Tn ≤ Bn

can be shown for any n ≥ 2. Generally, (1.33) and (1.34) yield better approximation
than (1.11) and (1.27).

In summary, this study yields lower-bound estimates of entropy like (1.25) by in-
troducing connecting operators Cm, and upper-bound estimates of entropy like (1.34)
by introducing trace operators Tm. This approach accurately and effectively yields
the spatial entropy.

The rest of this paper is organized as follows. Section 2 derives the connecting op-
erator Cm which can recursively reduce higher order elementary patterns to patterns
of lower order. Then, the lower-bound of spatial entropy can be found by computing
the maximum eigenvalues of the diagonal periodic cycles of sequence Sm;αβ . Section
3 addresses the trace operator Tm of Cm. The entropy can be calculated by comput-
ing the maximum eigenvalues of Tm. When A2 is symmetric, the upper-bounds of
entropy are also found. Section 4 briefly discusses the theory for many symbols on
larger lattices.

2. Connecting Operators.

2.1. Connecting operators and ordering matrices. This section derives
connecting operators and investigates their properties. For clarity, two symbols on
2 × 2 lattice Z2×2 are examined first. Section 4 addresses more general situations.

Let A2 and B2 be defined as in (1.1)∼(1.4). The column matrices ˜A2 and ˜B2 of
A2 and B2 are defined by

(2.1) ˜A2 =









a11 a21 a12 a22

a31 a41 a32 a42

a13 a23 a14 a24

a33 a43 a34 a44









=

[

Ã2;1 Ã2;2

Ã2;3 Ã2;4

]
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and

(2.2) ˜B2 =









b11 b21 b12 b22

b31 b41 b32 b42

b13 b23 b14 b24

b33 b43 b34 b44









=

[

B̃2;1 B̃2;2

B̃2;3 B̃2;4

]

,

respectively.
For matrices of higher order n ≥ 2, An, An+1 and An+1;α are defined as in

(1.5)∼(1.7).
For matrix multiplication, the indices of An;α are conveniently expressed as

(2.3) An =

[

An;11 An;12

An;21 An;22

]

.

Clearly, An;α = An;j1j2 , where

(2.4) α = α(j1, j2) = 2(j1 − 1) + j2.

For m ≥ 2, the elementary pattern in the entries of Am
n is represented by

An;j1j2An;j2j3 · · ·An;jmjm+1
,

where js ∈ {1, 2}. A lexicographic order for multiple indices

Jm+1 = (j1j2 · · · jmjm+1)

is introduced, using

(2.5) χ(Jm+1) = 1 +
m
∑

s=2

2m−s(js − 1).

Now,

(2.6) A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1

,

where

(2.7) α = α(j1, jm+1) = 2(j1 − 1) + jm+1

and

(2.8) k = χ(Jm+1)

is given in (2.5). Notably, (2.5) and (2.8) do not involve jm+1 but (2.7)does.
Therefore, Am

n can be expressed as

(2.9) Am
n =

[

Am,n;1 Am,n;2

Am,n;3 Am,n;4

]

,

where

(2.10) Am,n;α =
2m−1

∑

k=1

A(k)
m,n;α.
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Furthermore,

(2.11) Xm,n;α = (A(k)
m,n;α)t

1≤k≤2m−1 .

1 ≤ k ≤ 2m−1, Xm,n;α is a 2m−1 column-vector that consists of all elementary patterns
in Am,n;α. The ordering matrix Xm,n of Am

n is now defined by

(2.12) Xm,n =

[

Xm,n;1 Xm,n;2

Xm,n;3 Xm,n;4

]

.

The ordering matrix Xm,n allows the elementary patterns to be tracked during
the reduction from Am

n+1 to Am
n . This careful book-keeping provides a systematic

way to generate the admissible patterns and later, lower-bound estimates of spatial
entropy.

The following simplest example is studied first to illustrate the above concept.

Example 2.1. For m = 2, the following can easily be verified;

(2.13) A2
n =

[

A2
n;11 + An;12An;21 An;11An;12 + An;12An;22

An;21An;11 + An;22An;21 An;21An;12 + A2
n;22

]

,

and

(2.14)

A
(1)
2,n;1 = A2

n;11, A
(2)
2,n;1 = An;12An;21,

A
(1)
2,n;2 = An;11An;12, A

(2)
2,n;2 = An;12An;22,

A
(1)
2,n;3 = An;21An;11, A

(2)
2,n;3 = An;22An;21,

A
(1)
2,n;4 = An;21An;12, A

(2)
2,n;4 = A2

n;22.



















.

Therefore,

(2.15)

X2,n;1 =

[

A2
n;11

An;12An;21

]

, X2,n;2 =

[

An;11An,12

An;12An;22

]

,

X2,n;3 =

[

An;21An;11

An;22An;21

]

, X2,n;4 =

[

An;21An,12

A2
n;22

]

.























.

Applying (1.7), and by a straightforward computation,

(2.16) X2,n+1;1 =

[

A2
n+1;11

An+1;12An+1;21

]

=













[

b2
11A

2
n;1 + b12b13An;2An;3 b11b12An;1An;2 + b12b14An;2An;4

b13b11An;3An;1 + b14b13An;4An;3 b13b12An;3An;2 + b2
14A

2
n;4

]

[

b21b31A
2
n;1 + b22b33An;2An;3 b21b32An;1An;2 + b22b34An;2An;4

b23b31An;3An;1 + b24b33An;4An;3 b23b32An;3An;2 + b24b34A
2
n;4

]













Clearly, the j1j2 entries of A2
n+1;11 and An+1;12An+1;21 in (2.16) consist of entries

of X2,n;α in (2.14) with α = α(j1, j2) in (2.4). Moreover, the terms in (2.16) can be
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rearranged in terms of X2,n;α by exchanging the second row in the first matrix with
the first row in the second matrix in (2.16) as follows.

(2.17)













[

b2
11 b12b13

b21b31 b22b33

] [

A2
n;1

An;2An;3

] [

b11b12 b12b14

b21b32 b22b34

] [

An;1An;2

An;2An;4

]

[

b13b11 b14b13

b23b31 b24b33

] [

An;3An;1

An;4An;3

] [

b13b12 b2
14

b23b32 b24b34

] [

An;3An;2

A2
n;4

]













Applying (1.1), (1.2) and (2.1), (2.17) can be rewritten as













[

a2
11 a12a21

a13a31 a14a41

] [

A2
n;11

An;12An;21

] [

a11a12 a12a22

a13a32 a14a42

] [

An;11An;12

An;12An;22

]

[

a21a11 a22a21

a23a31 a24a41

] [

An;21An;11

An;22An;21

] [

a21a12 a2
22

a23a32 a24a42

] [

An;21An;12

A2
n;22

]













(2.18) =

[

(B2;11 ◦ Ã2;11)X2,n;1 (B2;11 ◦ Ã2;12)X2,n;2

(B2;12 ◦ Ã2;11)X2,n;3 (B2;12 ◦ Ã2;12)X2,n;4

]

.

Therefore, after the entries of X2,n+1;1 as in (2.17) or (2.18) have been permuted,
X2,n+1;1 can be represented by a 2 × 2 matrix

(2.19) X̂2,n+1;1 ≡ P(X2,n+1;1) ≡

[

X2,n+1;1;1 X2,n+1;1;2

X2,n+1;1;3 X2,n+1;1;4

]

,

where

(2.20)

X2,n+1;1;1 = S2;11X2,n;1,
X2,n+1;1;2 = S2;12X2,n;2,
X2,n+1;1;3 = S2;13X2,n;3,
X2,n+1;1;4 = S2;14X2,n;4















and

(2.21)

S2;11 = B2;11 ◦ Ã2;11 ≡ C2;11,

S2;12 = B2;11 ◦ Ã2;12 ≡ C2;12,

S2;13 = B2;12 ◦ Ã2;11 ≡ C2;21,

S2;14 = B2;12 ◦ Ã2;12 ≡ C2;22,















.

The above derivation indicates that X2,n+1;α can be reduced to X2,n;β via mul-
tiplication with connecting matrices C2;αβ . This procedure can be extended to intro-
duce the connecting operator Cm = [ Cm;αβ ], for all m ≥ 2.

Before Cm is introduced, three products of matrices are defined as follows.

Definition 2.2. For any two matrices M = (Mij) and N = (Nkl), the Kronecker
product (tensor product) M ⊗ N of M and N is defined by

(2.22) M ⊗ N = (MijN).

For any n ≥ 1,

⊗Nn = N ⊗ N ⊗ · · · ⊗ N,
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n-times in N.
Next, for any two m × m matrices

P = (Pij) and Q = (Qij)

where Pij and Qij are numbers or matrices, the Hadamard product P ◦ Q is defined
by

(2.23) P ◦ Q = (Pij · Qij),

where the product Pij · Qij of Pij and Qij may be a multiplication between numbers,
between numbers and matrices or between matrices whenever it is well-defined.

Finally, product ⊗̂ is defined as follows. For any 4 × 4 matrix

(2.24) M2 =









m11 m12 m21 m22

m13 m14 m23 m24

m31 m32 m41 m42

m33 m34 m43 m44









=

[

M2;1 M2;2

M2;3 M2;4

]

and any 2 × 2 matrix

(2.25) N =

[

N1 N2

N3 N4

]

,

where mij are numbers and Nk are numbers or matrices, for 1 ≤ i, j, k ≤ 4, define

(2.26) M2⊗̂N =









m11N1 m12N2 m21N1 m22N2

m13N3 m14N4 m23N3 m24N4

m31N1 m32N2 m41N1 m42N2

m33N3 m34N4 m43N3 m44N4









.

Furthermore, for n ≥ 1, the n + 1 th order of transition matrix of M2 is defined by

Mn+1 ≡ ⊗̂Mn
2 = M2⊗̂M2⊗̂ · · · ⊗̂M2,

n-times in M2. More precisely,

Mn+1 = M2⊗̂(⊗̂Mn−1
2 ) =

[

M2;1 ◦ (⊗̂Mn−1
2 ) M2;2 ◦ (⊗̂Mn−1

2 )
M2;3 ◦ (⊗̂Mn−1

2 ) M2;4 ◦ (⊗̂Mn−1
2 )

]

(2.27) =









m11Mn;1 m12Mn;2 m21Mn;1 m22Mn;2

m13Mn;3 m14Mn;4 m23Mn;3 m24Mn;4

m31Mn;1 m32Mn;2 m41Mn;1 m42Mn;2

m33Mn;3 m34Mn;4 m43Mn;3 m44Mn;4









=

[

Mn+1;1 Mn+1;2

Mn+1;3 Mn+1;4

]

,

where

Mn = ⊗̂Mn−1
2 =

[

Mn;1 Mn;2

Mn;3 Mn;4

]

.

Here, the following convention is adopted,

⊗̂M0
2 = E2×2.
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Definition 2.3. For m ≥ 2, define
(2.28)

Cm =









Cm;11 Cm;12 Cm;13 Cm;14

Cm;21 Cm;22 Cm;23 Cm;24

Cm;31 Cm;32 Cm;33 Cm;34

Cm;41 Cm;42 Cm;43 Cm;44









=









Sm;11 Sm;12 Sm;21 Sm;22

Sm;13 Sm;14 Sm;23 Sm;24

Sm;31 Sm;32 Sm;41 Sm;42

Sm;33 Sm;34 Sm;43 Sm;44









,

where

(2.29)

Cm;αβ =

(

[

aα1 aα2

aα3 aα4

]

◦

(

⊗̂

[

B2;1 B2;2

B2;3 B2;4

]m−2
)

2×2

)

2m−1×2m−1

◦

(

E2m−2×2m−2 ⊗

([

a1β a2β

a3β a4β

]))

2m−1×2m−1

.

Similarly, for B2, define
(2.30)

Um =









Um;11 Um;12 Um;13 Um;14

Um;21 Um;22 Um;23 Um;24

Um;31 Um;32 Um;33 Um;34

Um;41 Um;42 Um;43 Um;44









=









Wm;11 Wm;12 Wm;21 Wm;22

Wm;13 Wm;14 Wm;23 Wm;24

Wm;31 Wm;32 Wm;41 Wm;42

Wm;33 Wm;34 Wm;43 Wm;44









,

where

(2.31)

Um;αβ =

(

[

bα1
bα2

bα3
bα4

]

◦

(

⊗̂

[

A2;1 A2;2

A2;3 A2;4

]m−2
)

2×2

)

2m−1×2m−1

◦

(

E2m−2×2m−2 ⊗

([

b1β b2β

b3β b4β

]))

2m−1×2m−1

.

Sm = [Sm;αβ ] and Wm = [Wm;αβ ].

Now Cm+1 can be found from Cm by a recursive formula, as in (1.7).

Theorem 2.4. For any m ≥ 2 and 1 ≤ α, β ≤ 4,

(2.32) Cm+1;αβ =

[

aα1
Cm;1β aα2

Cm;2β

aα3
Cm;3β aα4

Cm;4β

]

,

and

(2.33) Um+1;αβ =

[

bα1
Um;1β bα2

Um;2β

bα3
Um;3β bα4

Um;4β

]

.

Proof. By (2.27),

⊗̂Bm−1
2 = B2⊗̂(⊗̂Bm−2

2 ) =

[

B2;1 ◦ (⊗̂Bm−2
2 ) B2;2 ◦ (⊗̂Bm−2

2 )
B2;3 ◦ (⊗̂Bm−2

2 ) B2;4 ◦ (⊗̂Bm−2
2 )

]

.

Therefore,

Cm+1;αβ = (B2;α ◦ (⊗̂Bm−1
2 )) ◦ (E2m−1×2m−1 ⊗ Ã2;β)

=

[

aα1(B2;1 ◦ ⊗̂Bm−2
2 ) aα2(B2;2 ◦ ⊗̂Bm−2

2 )
aα3(B2;3 ◦ ⊗̂Bm−2

2 ) aα4(B2;4 ◦ ⊗̂Bm−2
2 )

]

◦ (E2m−1×2m−1 ⊗ Ã2;β)

=

[

aα1Cm;1β aα2Cm;2β

aα3Cm;3β aα4Cm;4β

]

.
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A similar result also holds for Um;αβ; the details are omitted here. The proof is
complete.

Notably, (2.32) implies Cm;ij is ai1i2ai2i3 · · · aimim+1
with i1 = i and im+1 = j.

Cm;ij consist of all words(or paths) of length m starting from i and ending at j.
Indeed, the entries of Cm and Bm+1 are the same. However, the arrangements are
different. Cm can also be used to study the primitivity of An, n ≥ 2, as in [6].

That the recursive formula (1.24) holds remains to be shown. Indeed, in (2.6)
substituting n for n + 1 and using (1.7),

(2.34)

A
(k)
m,n+1;α

= An+1;j1j2An+1;j2j3 · · ·An+1,jmjm+1

=

m
∏

i=1

[

bαi1An;11 bαi2An;12

bαi3An;21 bαi4An;22

]

where αi = α(ji, ji+1), for 1 ≤ i ≤ m. After m matrix multiplications are executed
in (2.34),

(2.35) A
(k)
m,n+1;α =

[

A
(k)
m,n+1;α;1 A

(k)
m,n+1;α;2

A
(k)
m,n+1;α;3 A

(k)
m,n+1;α;4

]

where

(2.36) A
(k)
m,n+1;α;β =

2m−1

∑

l=1

K(m; α, β; k, l)A
(l)
m,n;β

is a linear combination of A
(l)
m,n;β with the coefficients K(m; α, β; k, l) which are prod-

ucts of bαlj , 1 ≤ l ≤ m. K(m; α, β; k, l) must be studied in more details.
Note that

(2.37) Am
n+1 =

[

Am,n+1;1 Am,n+1;2

Am,n+1;3 Am,n+1;4

]

=















2m−1

∑

k=1

A
(k)
m,n+1;1

2m−1

∑

k=1

A
(k)
m,n+1;2

2m−1

∑

k=1

A
(k)
m,n+1;3

2m−1

∑

k=1

A
(k)
m,n+1;4















=













∑2m−1

k=1 A
(k)
m,n+1;1;1

∑2m−1

k=1 A
(k)
m,n+1;1;2

∑2m−1

k=1 A
(k)
m,n+1;2;1

∑2m−1

k=1 A
(k)
m,n+1;2;2

∑2m−1

k=1 A
(k)
m,n+1;1;3

∑2m−1

k=1 A
(k)
m,n+1;1;4

∑2m−1

k=1 A
(k)
m,n+1;2;3

∑2m−1

k=1 A
(k)
m,n+1;2;4

∑2m−1

k=1 A
(k)
m,n+1;3;1

∑2m−1

k=1 A
(k)
m,n+1;3;2

∑2m−1

k=1 A
(k)
m,n+1;4;1

∑2m−1

k=1 A
(k)
m,n+1;4;2

∑2m−1

k=1 A
(k)
m,n+1;3;3

∑2m−1

k=1 A
(k)
m,n+1;3;4

∑2m−1

k=1 A
(k)
m,n+1;4;3

∑2m−1

k=1 A
(k)
m,n+1;4;4













Now, Xm,n+1;α;β is defined as

(2.38) Xm,n+1;α;β = (A
(k)
m,n+1;α;β)t.
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As in (2.17), the entries of Xm,n+1;α are rearranged into a new matrix

(2.39) X̂m,n+1;α ≡ P(Xm,n+1;α) ≡

[

Xm,n+1;α;1 Xm,n+1;α;2

Xm,n+1;α;3 Xm,n+1;α;4

]

.

From (2.36) and (2.38),

(2.40) Xm,n+1;α;β = K(m; α, β)Xm,n;β

where

K(m; α, β) = (K(m; α, β; k, l)), 1 ≤ k, l ≤ 2m−1,

is a 2m−1 × 2m−1 matrix. Now, K(m; α, β) = Sm;αβ must be shown as follows.

Theorem 2.5. For any m ≥ 2 and n ≥ 2, let Sm;αβ be given as in (2.28) and
(2.29). Then,

K(m; α, β) = Sm;αβ ,

i.e.,

(2.41) Xm,n+1;α;β = Sm;αβXm,n;β,

or equivalently, the recursive formula (1.24) holds. That is,

(2.42) A
(k)
m,n+1;α =















2m−1

∑

l=1

(Sm;α1)klA
(l)
m,n;1

2m−1

∑

l=1

(Sm;α2)klA
(l)
m,n;2

2m−1

∑

l=1

(Sm;α3)klA
(l)
m,n;3

2m−1

∑

l=1

(Sm;α4)klA
(l)
m,n;4















.

Moreover, for n = 1,

(2.43) A
(k)
m,2;α =















2m−1

∑

l=1

(Sm;α1)kl

2m−1

∑

l=1

(Sm;α2)kl

2m−1

∑

l=1

(Sm;α3)kl

2m−1

∑

l=1

(Sm;α4)kl















for any 1 ≤ k ≤ 2m−1 and α ∈ {1, 2, 3, 4}.

Proof. The result is proven by the induction on m.
When m = 2, and α = 1, (2.41) was proven as in Example 2.1. The case with

α = 2, 3 and 4 can also be proved analogously; the details are omitted.
Now, (2.41) ia assumed to hold for m; the goal is to show that it also holds for

m + 1. Since

Am+1
n+1 = An+1 · A

m
n+1 =

[

An+1;1 An+1;2

An+1;3 An+1;4

] [

Am,n+1,1 Am,n+1;2

Am,n+1,3 Am,n+1;4

]

,
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(2.11) implies

Xm+1,n+1;1 =

[

An+1;1Xm,n+1;1

An+1;2Xm,n+1;3

]

, Xm+1,n+1;2 =

[

An+1;1Xm,n+1;2

An+1;2Xm,n+1;4

]

,

Xm+1,n+1;3 =

[

An+1;3Xm,n+1;1

An+1;4Xm,n+1;3

]

, and Xm+1,n+1;4 =

[

An+1;3Xm,n+1;2

An+1;4Xm,n+1;4

]

.

For α = 1, by induction on m,

(An+1;1P(Xm,n+1;1), An+1;2P(Xm,n+1;3))
t

=













[

b11An;1 b12An;2

b13An;3 b14An;4

] [

Sm;11Xm,n;1 Sm;12Xm,n;2

Sm;13Xm,n;3 Sm;14Xm,n;4

]

[

b21An;1 b22An;2

b23An;3 b24An;4

] [

Sm;31Xm,n;1 Sm;32Xm,n;2

Sm;33Xm,n;3 Sm;34Xm,n;4

]













=













[

b11Sm;11An;1Xm,n;1 b11Sm;12An;1Xm,n;2

b13Sm;11An;3Xm,n;1 b13Sm;12An;3Xm,n;2

]

[

b21Sm;31An;1Xm,n;1 b21Sm;32An;1Xm,n;2

b23Sm;31An;3Xm,n;1 b23Sm;32An;3Xm,n;2

]













+













[

b12Sm;13An;2Xm,n;3 b12Sm;14An;2Xm,n;4

b14Sm;13An;4Xm,n;3 b14Sm;14An;4Xm,n;4

]

[

b22Sm;33An;2Xm,n;3 b22Sm;34An;2Xm,n;4

b24Sm;33An;4Xm,n;3 b24Sm;34An;4Xm,n;4

]













Hence Xm+1,n+1;1 can be represented by a matrix

X̂m+1,n+1;1 ≡ P(Xm+1,n+1;1) ≡

�
Xm+1,n+1;1,1 Xm+1,n+1;1,2

Xm+1,n+1;1,3 Xm+1,n+1;1,4

�
=

266664 �
b11Sm;11 b12Sm;13

b21Sm;31 b22Sm;33

��
An;1Xm,n;1

An;2Xm,n;3

� �
b11Sm;12 b12Sm;14

b21Sm;32 b22Sm;34

��
An;1Xm,n;2

An;2Xm,n;4

��
b13Sm;11 b14Sm;13

b23Sm;31 b24Sm;33

��
An;3Xm,n;1

An;4Xm,n;3

� �
b13Sm;12 b14Sm;14

b23Sm;32 b24Sm;34

��
An;3Xm,n;2

An;4Xm,n;4

� 377775
Once again, (1.1), (1.2) and (2.1) can be used to recast the matrix X̂m+1,n+1;1 as













[

a11Cm;11 a12Cm;21

a13Cm;31 a14Cm;41

]

Xm+1,n;1

[

a11Cm;12 a12Cm;22

a13Cm;32 a14Cm;42

]

Xm+1,n;2

[

a21Cm;11 a22Cm;21

a23Cm;31 a24Cm;41

]

Xm+1,n;3

[

a21Cm;12 a22Cm;22

a23Cm;32 a24Cm;42

]

Xm+1,n;4













According to Theorem 2.4, the above matrix becomes

=

�
Cm+1;11Xm+1,n;1 Cm+1;12Xm+1,n;2

Cm+1;21Xm+1,n;3 Cm+1;22Xm+1,n;4

�
=

�
Sm+1;11Xm+1,n;1 Sm+1;12Xm+1,n;2

Sm+1;13Xm+1,n;3 Sm+1;14Xm+1,n;4

�
.
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The cases with α = 2, 3 and 4 can also be considered analogously (2.41) follows.

Next, (2.42) follows easily from (2.35), (2.36) and (2.41).

Equation (2.43) remains to be shown. If the 2 × 2 matrix

(2.44) A1 ≡

[

A1;11 A1;12

A1;21 A1;22

]

≡

[

A1;1 A1;2

A1;3 A1;4

]

≡

[

1 1
1 1

]

is introduced, then the previous argument also hold for n = 1. Hence, (2.43) holds.
The proof is complete.

For any positive integer p ≥ 2, applying Theorem 2.5 p times permits the elemen-
tary patterns of Am

n+p to be expressed as the product of a sequence of Sm;βiβi+1
and

the elementary patterns in Am
n . The elementary pattern in Am

n+p is first studied.

For any p ≥ 2 and 1 ≤ q ≤ p − 1, define

(2.45) A
(k)
m,n+p;α;β1;β2;··· ;βq

=

[

A
(k)
m,n+p;α;β1;β2;··· ;βq ;1 A

(k)
m,n+p;α;β1;β2;··· ;βq;2

A
(k)
m,n+p;α;β1;β2;··· ;βq ;3 A

(k)
m,n+p;α;β1;β2;··· ;βq;4

]

.

Then

(2.46) A
(k)
m,n+p;α;β1;β2;··· ;βp

=

2m−1

∑

l1=1

· · ·

2m−1

∑

lp=1

(

p
∏

i=1

K(m; βi−1, βi; li−1, li))A
(lp)
m,n;βp

,

where β0 = α and l0 = k can be easily verified. Therefore, for any p ≥ 1, a general-
ization for (2.37) can be found for Am

n+p as a 2p+1 × 2p+1 matrix

(2.47) Am
n+p =

[

Am,n+p;α;β1;β2··· ;βp

]

where

(2.48) Am,n+p;α;β1;β2··· ;βp
=

2m−1

∑

k=1

A
(k)
m,n;α;β1;β2··· ;βp

.

In particular, if α; β1, β2 · · · , βp ∈ {1, 4}, then Am,n+p;α;β1;β2··· ;βp
lies on the diagonal

of Am
n+p in (2.47).

Now, define

(2.49) Xm,n+p;α;β1;β2;··· ;βp
= (A

(k)
m,n+p;α;β1;β2;··· ;βp

)t.

Therefore, Theorem 2.5 can be generalized to

Theorem 2.6. For any m ≥ 2, n ≥ 2 and p ≥ 1,

(2.50) Xm,n+p;α;β1;β2··· ;βp
= Sm;αβ1

Sm;β1β2
· · ·Sm;βp−1βp

Xm,n;βp

where α, βi ∈ {1, 2, 3, 4} and 1 ≤ i ≤ p.
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Proof. From (2.46), (2.40) and (2.42),

A
(k)
m,n+p;α;β1;β2;··· ;βp

=

2m−1

∑

l1=1

· · ·

2m−1

∑

lp=1

(

p
∏

i=1

K(m; βi−1, βi; li−1, li))A
(lp)
m,n;βp

=

2m−1

∑

l1=1

· · ·

2m−1

∑

lp=1

(

p
∏

i=1

(Sm;βi−1βi
)li−1li)A

(lp)
m,n;βp

=

2m−1

∑

l1=1

· · ·

2m−1

∑

lp=1

(Sm;β0β1
)l0l1(Sm;β1β2

)l1l2 · · · (Sm;βp−1βp
)lp−1lpA

(lp)
m,n;βp

=

2m−1

∑

lp=1

(Sm;β0β1
Sm;β1β2

· · ·Sm;βp−1βp
)l0lpA

(lp)
m,n;βp

=

2m−1

∑

lp=1

(Sm;αβ1
Sm;β1β2

· · ·Sm;βp−1βp
)klpA

(lp)
m,n;βp

is derived. By (2.49), then

Xm,n+p;α;β1;β2;··· ;βp
= (A

(k)
m,n+p;α;β1;β2;··· ;βp

)t

= (
2m−1

∑

lp=1

(Sm;αβ1
Sm;β1β2

· · ·Sm;βp−1βp
)klpA

(lp)
m,n;βp

)t

= Sm;αβ1
Sm;β1β2

· · ·Sm;βp−1βp
Xm,n;βp

.

The proof is complete.

2.2. Lower bound of entropy. In this subsection, the connecting operator Cm

is employed to estimate the lower bound of entropy, and in particular, to verify the
positivity of entropy.

First, recall some properties of Γm,n and spatial entropy.
Γm,n satisfies the subadditivity in m and n:

(2.51) Γm1+m2,n ≤ Γm1,nΓm2,n,

and

(2.52) Γm,n1+n2
≤ Γm,n1

Γm,n2
,

or equivalently,

(2.53) |Am1+m2

n | ≤ |Am1

n ||Am2

n |

and

(2.54) |Am
n1+n2

| ≤ |Am
n1
||Am

n2
|,

for positive integers m, n, m1, n1, m2 and n2. Here

(2.55) A1 =

[

1 1
1 1

]

is applied.
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The subadditivity property implies

(2.56) lim sup
m,n→∞

1

mn
log |Am

n | ≤
1

pq
log |Ap−1

q |

for any p and q ≥ 2. Therefore,

h(A2) = lim
m,n→∞

1

mn
log |Am

n |

exists, and equals

(2.57) inf
p,q≥2

1

pq
log |Ap−1

q |.

In particular, h(A2) has an upper bound

(2.58) h(A2) ≤
1

pq
log |Ap−1

q |

for any p and q ≥ 2.
Similarly, when A2 is horizontal (or vertical) transition matrix for any m ≥ 1 and

q ≥ 2,

(2.59) lim sup
n→∞

1

n
log |Am

n | ≤
1

q
log |Am

q |.

Hence, the spatial entropy is hm(A2) on an infinite lattice Zm+1×∞ (or Z∞×m+1) and

(2.60) hm(A2) ≡ lim
n→∞

1

n
log |Am

n | = inf
q≥2

1

q
log |Am

q |.

For the proof of the above results, see [15].
Furthermore, by Perron-Frobenius theorem,

(2.61) lim
m→∞

1

m
log |Am

n | = log ρ(An).

Therefore, for any n ≥ 2

(2.62) h(A2) ≤
1

n
log ρ(An).

For a proof of (2.61), see [4], [30].
The following notation is adopted.

Definition 2.7. Let X = (X1, · · · , XM )t, where Xk are N ×N matrices. Define
the summation of Xk by

(2.63) |X | =

N
∑

k=1

Xk.

If M = [Mij ] is a M × M matrix, then

(2.64) |MX | =

M
∑

i=1

M
∑

j=1

MijXj.
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Note that, (2.63) implies

(2.65) |Xm,n;α| =

2m−1

∑

k=1

A(k)
m,n;α = Am,n;α.

As usual, the set of all matrices with the same order can be partially ordered.

Definition 2.8. Let M = [Mij ] and N = [Nij ] be two M × M matrices, M ≥ N

if Mij ≥ Nij for all 1 ≤ i, j ≤ M .

Notably, if A2 ≥ A′
2 then An ≥ A′

n for all n ≥ 2. Therefore, h(A2) ≥ h(A′
2).

Hence, the spatial entropy as a function of A2 is monotonic with respect to the partial
order ≥.

Definition 2.9. A K + 1 multiple index

(2.66) BK ≡ (β1β2 · · ·βKβK+1)

is called a (periodic) cycle if

(2.67) βK+1 = β1.

It is called a diagonal cycle if (2.67) holds and

(2.68) βk ∈ {1, 4}

for each 1 ≤ k ≤ K + 1.
For a diagonal cycle (2.66), denote

(2.69) β̄K = β1; β2; · · · ; βK

and

(2.70) β̄n
K = β̄K ; β̄K ; · · · ; β̄K . (n times)

First, prove the following Lemma.

Lemma 2.10. Let m ≥ 2, K ≥ 1, BK be a diagonal cycle. Then, for any n ≥ 1,

(2.71) ρ(Am
nK+2) ≥ ρ(|(Sm;β1β2

Sm;β2β3
· · ·Sm;βKβK+1

)nXm,2;β1
|).

Proof. Since BK is a periodic cycle, Theorem 2.6 implies

(2.72) Xm,nK+2;β̄n
K

= (Sm;β1β2
Sm;β2β3

· · ·Sm;βKβK+1
)nXm,2;β1

.

Furthermore BK is diagonal, and |Xm,nK+2;β̄n
k
| = Am,nK+2;β̄n

k
lies on the diagonal

part as in (2.47) with n + p = nK + 2, therefore

(2.73) ρ(Am
nK+2) ≥ ρ(|Xm,nK+2;β̄n

K
|).

Therefore, (2.71) follows from (2.72) and (2.73).
The proof is complete.
The following lemma is valuable in studying maximum eigenvalue of

(Sm;β1β2
· · ·Sm;βKβK+1

)nXm,2;β1
in (2.71).
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Lemma 2.11. For any m ≥ 2, 1 ≤ k ≤ 2m−1 and α ∈ {1, 4}, if

(2.74) tr(A
(k)
m,2;α) = 0,

then for all 1 ≤ l ≤ 2m−1,

(2.75) (Sm,α1)kl = 0 and (Sm;α4)kl = 0,

i.e., the k-th rows of matrices Sm;α1 and Sm;α4 are zeros. Furthermore, for any
diagonal cycle BK, let U = (u1, u2, · · · , u2m−1) be an eigenvector of
Sm;β1β2

Sm;β2β3
· · ·Sm;βKβ1

, if uk 6= 0 for some 1 ≤ k ≤ 2m−1, then

(2.76) tr(A
(k)
m,2;α) > 0.

Proof. Since A
(k)
m,2;α can be expressed as in (2.43). Therefore, tr(A

(k)
m,2;α) = 0 if

and only if (2.75) holds for all 1 ≤ l ≤ 2m−1. The second part of the lemma follows
easily from the first part.

The proof is complete.
By Lemma 2.10 and Lemma 2.11, the lower bound of entropy can be obtained as

follows.

Theorem 2.12. Let β1β2 · · ·βKβ1 be a diagonal cycle. Then for any m ≥ 2,

(2.77) h(A2) ≥
1

mK
log ρ(Sm;β1β2

Sm;β2β3
· · ·Sm;βKβ1

).

and

(2.78) h(A2) ≥
1

mK
log ρ(Wm;β1β2

Wm;β2β3
· · ·Wm;βKβ1

).

In particular, if a diagonal cycle β1β2 · · ·βKβ1 exists and m ≥ 2 such that

ρ(Sm;β1β2
Sm;β2β3

· · ·Sm;βKβ1
) > 1,

or

ρ(Wm;β1β2
Wm;β2β3

· · ·Wm;βKβ1
) > 1

then h(A2) > 0.

Proof. First, show that

(2.79) h(A2) ≥
1

mK
lim sup

n→∞
(log ρ(|(Sm;β1β2

Sm;β2β3
· · ·Sm;βKβ1

)nXm,2;β1
|).

Indeed, from (1.11) and (2.71),

h(A2) = lim
n→∞

1

nK + 2
log ρ(AnK+2)

= lim
n→∞

1

m(nK + 2)
log ρ(Am

nK+2)

≥
1

mK
lim sup

n→∞

1

n
(log ρ(|(Sm;β1β2

· · ·Sm;βKβ1
)nXm,2;β1

|)).
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Now, the following remains to be shown

(2.80) lim sup
n→∞

1

n
(log ρ(|(Sm;β1β2

· · ·Sm;βKβ1
)nXm,2;β1

|) = log ρ(Sm;β1β2
· · ·Sm;βKβ1

).

Since Xm,2;β1
= (A

(k)
m,2;β1

)t, if tr(A
(k)
m,2;β1

) = 0 then Lemma 2.11 implies the k-th
row of Sm;β1β2

is zero which implies that the k-th row of (Sm;β1β2
· · ·Sm;βKβ1

)n is also
zero for any n ≥ 1.

If tr(A
(k)
m,2;β1

) = 0 for all 1 ≤ k ≤ 2m−1, then Sm;β1β2
≡ 0. (2.80) holds trivially.

Now, assume that 1 ≤ k′ ≤ 2m−1 exists such that tr(A
(k′)
m,2;β1

) > 0. Define

(2.81) X̂ = (A
(k′)
m,2;β1

)t = (X̂1, · · · , X̂M ),

where tr(A
(k′)
m,2;β1

) > 0 for 1 ≤ k′ ≤ M ≤ 2m−1. Then ρ(X̂j) > 0 for 1 ≤ j ≤ M .
Let M be the M ×M sub-matrix of Sm;β1β2

· · ·Sm;βKβ1
from which the k-th row

and k-th column have been removed whenever tr(A
(k)
m,2;β1

) = 0 for 1 ≤ k ≤ 2m−1.
Clearly,

(2.82) |(Sm;β1β2
· · ·Sm;βKβ1

)nXm,2;β1
| = |MnX̂ |,

and

(2.83) ρ(Sm;β1β2
· · ·Sm;βKβ1

) = ρ(M).

The proof of (2.80) comprise three steps, according to
(i) M is primitive,
(ii) M is irreducible, and
(iii) M is reducible.
(i) M is primitive. Then by Perron-Frobenius Theorem the maximum eigenvalue

ρ(M) of M is unique with maximum modulus, i.e.

(2.84) ρ(M) = λ1 > |λj |,

for all 2 ≤ j ≤ M , where λj are eigenvalues of M. Moreover, a positive
eigenvector v1 = (v1, v2, · · · , vM )t is associated with λ1 [26], [27]. Fur-
thermore, Jordan canonical form theorem states that a non-singular matrix
P = [Pij ]M×M exists, such that the real Jordan canonical form of M is

(2.85) M̂ ≡ PMP−1 =











λ1 0 · · · 0
0 Jn2

· · · 0
...

...
. . .

...
0 · · · · · · Jnq











,

where Jnk
, 2 ≤ k ≤ q are real Jordan blocks and the associated eigenvalue

λk of Jnk
satisfies (2.84). Moreover, the positivity of eigenvector v1 implies

that P can be chosen such that

(2.86)

M
∑

i=1

Pij = 1
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and

(2.87) P1j > 0

for all 1 ≤ j ≤ M . Therefore, by (2.86)

|MnX̂| = |PMnX̂ | = |PMnP−1PX̂|

= |(PMP−1)nPX̂| = |M̂nPX̂|

= λ1
n{

M
∑

j=1

P1jX̂j +
M
∑

j=1

qn,jX̂j}

where

(2.88) lim
n→∞

qn,j = 0,

for all 1 ≤ j ≤ M , by (2.84).
Hence, by (2.87) and (2.88),

(2.89) lim
n→∞

1

n
log ρ(|MnX̂|) = log λ1.

Combining with (2.82), (2.83) and (2.89), (2.80) follows.
(ii) M is irreducible.

If M is irreducible but imprimitive, then k ≥ 2 exists, such that

λ1 = |λ2| = · · · = |λk| > |λj |

for all j > k. Then, by applying a permutation, M can be expressed as

(2.90) M =

















0 M12 0 · · · 0
0 0 M23 · · · 0
...

...
...

. . .
...

0
...

... 0 Mk−1,k

Mk1 0 · · · · · · 0

















,

and,

(2.91) Mk =











M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 · · · 0 Mk











,

where Mj = Mj,j+1Mj+1,j+2 · · ·Mj−1,j is primitive with the maximum eigen-
value λk

1 , see [26], [27]. Hence, by the same argument as in (i)

lim
n→∞

1

n
log ρ(|MnkX̂|) = λk

1 ,

(2.80) follows.



518 J.-C. BAN, S.-S. LIN AND Y.-H. LIN

(iii) M is reducible.
In this case, by applying a permutation, M can be expressed as a block upper
triangular matrix:

(2.92) M =











M11 M12 · · · · · · M1k

0 M22 · · · · · · M2k

0 0 · · ·
. . . · · ·

0 0 · · · 0 Mkk











,

where Mii is either irreducible or zero. Furthermore,

σ(M) =

k
⋃

j=1

σ(Mjj),

where σ(M) and σ(Mjj) are the sets of eigenvalues of M and Mjj , respectively.
In particular, 1 ≤ j ≤ k exists, such that

(2.93) ρ(Mjj) = ρ(M) = λ1.

[26], [27]. Therefore, applying (2.83), (2.93) and the same argument as in (ii)
yields (2.80).
The proof is complete.

Definition 2.13. Let D denote the set of all diagonal cycle:

D = {β1β2 · · ·βKβK+1|β1β2 · · ·βKβK+1 satisfies (2.67) and (2.68)},

define

(2.94) h∗(A2) = sup
m≥2,β1β2···βK+1∈D

1

mK
log ρ(Sm;β1β2

Sm;β2β3
· · ·Sm;βKβ1

).

and

(2.95) h′
∗(A2) = sup

m≥2, β1···βK∈D

1

mK
log ρ(Wm;β1β2

Wm;β2β3
· · ·Wm;βKβ1

).

Then Theorem 2.12 implies

(2.96) h(A2) ≥ h∗(A2) and h(A2) ≥ h′
∗(A2).

Knowing whether the equality holds for A2 is of interest, since h∗(A2) and h′
∗(A2)

are more manageable than h(A2). However, a class of A2 has been found for what
equality (2.96) holds; details can be found in Example 2.14. of the next subsection.

2.3. Examples of transition matrices with positive entropy. In this sub-
section, various examples are studied to elucidate the power of Theorem 2.12 in veri-
fying that the entropies are positive. First, Golden-Mean type transition matrices are
studied.
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Example 2.14.
(A) Golden-Mean

When two symbols on two-cell horizontal lattice Z2×1 and vertical lattice
Z1×2 are considered and both transition matrices are given by golden-mean,
i.e.,

H1 = V1 =

[

1 1
1 0

]

,

then the (horizontal) transition matrix A2 on Z2×2 is

(2.97) A2 =









1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0









,

as in [41]. Verifying

(2.98) B2 = ˜A2 = ˜B2 = A2.

is also easy. Furthermore, for any n ≥ 2,

(2.99) An+1 =

[

An+1 Bn+1

Cn+1 0

]

=









An Bn An 0
Cn 0 Cn 0
An Bn 0 0
0 0 0 0









,

where

An+1 =

[

An Bn

Cn 0

]

with Cn = Bn
t and An

t = An, i.e., An are symmetric for all n ≥ 2.
Moreover, the following two properties hold:
(i) For any m ≥ 2,

(2.100) Cm;11 = Am−1,

where

(2.101) A1 ≡

[

a11a11 a12a21

a13a31 a14a41

]

,

and
(ii) for any m ≥ 2,

(2.102)
1

m
log ρ(Am−1) ≤ h(A2) ≤

1

m
log ρ(Am).

Therefore,

(2.103) h(A2) = h∗(A2) > 0.

The numerical results appears in Example 3.12.
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(B) Simplified Golden-Mean.
Consider

(2.104) A2 =









1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0









,

(2.104) cannot be generated from one-dimensional transition matrices H1 and
V1, as in the Golden-Mean (2.97). Equation (2.104) is obtained by letting
a23 = a32 = 0 in the Golden-Mean (2.97). (2.98) is easily verified, and for
any n ≥ 2,

(2.105) An+1 =









An
An−1 0

0 0
An−1 0

0 0
0 0
0 0









.

Furthermore, (i), (ii) and (2.103) hold as in (A).
(C) Generally, if A2 satisfies the following three conditions

(C1) B2 = A2,
(C2) a1j = 1 if A2;j 6= 0 for 1 ≤ j ≤ 4,

(C3) ˜A2;1 ≥ A2;j for 1 ≤ j ≤ 4,
then (i), (ii) and (2.103) hold. The matrices A2, which satisfy (C1), (C2) and
(C3) can be listed as

(2.106)









1 1 1 0
1 0 a23 0
1 a32 0 0
0 0 0 0









,

and

(2.107)









1 1 1 1
1 1 a23 a24

1 a32 1 a34

1 a34 a43 a44









,

where aij is either 0 or 1 in (2.106) and (2.107).
Notably, if (C2) and (C3) are replaced by

(C2)′ a4j = 1 if A2;j 6= 0 for 1 ≤ j ≤ 4,

(C3)′ ˜A2;4 ≥ A2;j for 1 ≤ j ≤ 4,
then for any m ≥ 2,

(2.108) Cm;44 = Am−1

with

(2.109) A1 =

[

a41a14 a42a24

a43a34 a44a44

]

,

and property (ii) and equation (2.103) hold.
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In Example 2.14, the diagonal parts A2;1 or A2;4 are dominant. In this case, only
Cm;11 or Cm;44 is required to apply Theorem 2.12. In contrast, when A2;1 and A2;4

are no longer dominant as in the following examples, A2;2 and A2;3 can complement
each other to establish that the entropy is positive.

Example 2.15.
(A) Consider

(2.110) A2 =









0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0









,

that (2.98) holds can be verified and

C2;11 =

[

0 1
1 0

]

, C2;22 =

[

1 0
1 0

]

C2;33 =

[

1 1
0 0

]

, C2;44 =

[

0 0
0 0

]

Therefore,

S2;14S2;41 =

[

1 1
1 1

]

and

h(A2) ≥
1

4
log 2.

(B) Consider

(2.111) A2 =









0 1 1 0
1 0 1 1
1 0 0 1
1 1 1 0









.

Then verifying

B2 =

2664 0 1 1 0
1 0 1 1
1 0 1 1
0 1 1 0

3775 , eB2 =

2664 0 1 1 0
1 0 0 1
1 1 0 1
1 1 1 0

3775 , and eA2 =

2664 0 1 1 0
1 1 0 1
1 1 0 1
0 1 1 0

3775 .

is simple.
Furthermore,

C2;11 =

[

0 1
1 0

]

, C2;22 =

[

1 0
0 1

]

C2;33 =

[

1 0
0 1

]

, C2;44 =

[

0 1
1 0

]

and

U2;11 =

[

0 1
1 0

]

, U2;22 =

[

1 0
0 1

]

,

U2;33 =

[

1 0
1 1

]

, U2;44 =

[

0 1
1 0

]

.
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Now, for any diagonal cycle, β1 · · ·βKβ1, ρ(S2;β1β2
· · ·S2;βKβ1

) = 1, h(A2) > 0 cannot
be established.
However,

W2;11W2;14W2;41 = U2;11U2;22U2;33 =

[

1 1
1 0

]

which implies

h(A2) ≥
1

6
log g,

where

(2.112) g =
1

2
(1 +

√
5)

is the golden mean, which is a root of λ2 − λ − 1 = 0.
This example demonstrates the asymmetry of A2 and B2 in applying Theorem

2.12, to verify the entropy is positive. Both Cm and Um are typically checked for
completeness.

Example 2.16. Consider

(2.113) A2 =









1 1 1 1
0 0 0 1
0 0 0 1
1 0 0 0









.

Then it is easy to check that

W2;11W2;14W2;41 =

[

2 0
0 0

]

, S3;44 =

[

G 0
0 0

]

,

and

S4;44 =









G 0 0 0
0 e1 0 0
0 0 0 0
0 0 0 0









,

where

(2.114) G =

[

1 1
1 0

]

and e1 =

[

1 0
0 0

]

.

Therefore,

h(A2) ≥ max{
1

6
log 2,

1

3
log g,

1

4
log g} =

1

3
log g.

Example 2.17. Consider

(2.115) A2 =









0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0









.
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Then

B2 =









0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 0









= Ã2 and B̃2 = A2.

Therefore

C2,11 =

[

0 1
1 1

]

≡ G′.

Furthermore,

C4;11 = G′ ⊗ e1 ⊗ G′

and

C2m;11 = G′ ⊗ (⊗(e1 ⊗ G′)m−1)

can be proved, and which implies

(2.116)
1

2m
log ρ(C2m;11) =

1

2
log g.

for all m ≥ 1. Hence, h(A2) ≥
1
2 log g. Moreover, in Remark 3.10 (ii), it can be shown

that h(A2) = 1
2 log g

3. Trace operators.

3.1. Trace operator Tm. The preceding section introduces connecting opera-
tors Cm, which can be used to find lower bounds of spatial entropy. This section
studies the diagonal part of Cm, which can be used to investigate the trace of Am

n .
When A2 is symmetric, T2m gives the upper bound of spatial entropy.

The trace operator is defined first.

Definition 3.1. For m ≥ 2, the m-th order trace operator Tm of A2 is defined
by

(3.1) Tm =

[

Cm;11 Cm;22

Cm;33 Cm;44

]

=

[

Sm;11 Sm;14

Sm;41 Sm;44

]

,

where Cm;ij is as given in (1.23) or (2.29).

Similarly, the m-th order trace operator T′
m of B2 is defined by

(3.2) T′
m =

[

Um;11 Um;22

Um;33 Um;44

]

=

[

Wm;11 Wm;14

Wm;41 Wm;44

]

where Um;ij is as given in (2.31).

The relationships between the trace operator Tm, T
′

m and Am, Bm are given as
follows.
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Theorem 3.2. For any m ≥ 2,
(3.3)

Tm = (Bm)2m×2m ◦













E2m−2×2m−2 ⊗

[

a11 a21

a31 a41

]

E2m−2×2m−2 ⊗

[

a12 a22

a32 a42

]

E2m−2×2m−2 ⊗

[

a13 a23

a33 a43

]

E2m−2×2m−2 ⊗

[

a14 a24

a34 a44

]













and
(3.4)

T′
m = (Am)2m×2m ◦













E2m−2×2m−2 ⊗

[

b11 b21

b31 b41

]

E2m−2×2m−2 ⊗

[

b12 b22

b32 b42

]

E2m−2×2m−2 ⊗

[

b13 b23

b33 b43

]

E2m−2×2m−2 ⊗

[

b14 b24

b34 b44

]













.

In particular,

(3.5) Tm ≤ Bm and T′
m ≤ Am.

Proof. By (3.1) and (2.29),

Tm = (Bm)2m×2m ◦













E2m−2×2m−2 ⊗

[

a11 a21

a31 a41

]

E2m−2×2m−2 ⊗

[

a12 a22

a32 a42

]

E2m−2×2m−2 ⊗

[

a13 a23

a33 a43

]

E2m−2×2m−2 ⊗

[

a14 a24

a34 a44

]













.

A similar result also holds for T′
m. Hence, (3.5) follows immediately.

The proof is complete.
Notably, the trace operator Tm (or T′

m) preserves all periodic words
ai1i2ai2i3 · · · aimim+1

(bi1i2bi2i3 · · · bimim+1
) with im+1 = i1 of length m systematically

as Bm (or Am).
The traces of the elementary patterns are defined accordingly.

Definition 3.3. For m, n ≥ 2 and 1 ≤ α ≤ 4, define

(3.6) t(k)
m,n;α = tr(A(k)

m,n;α),

(3.7) tr(Xm,n;α) = (t(k)
m,n;α)1≤k≤2m−1 ,

and

(3.8) tm,n = (tr(Xm,n;1), tr(Xm,n;4))
t,

which are 2m−1 and 2m vectors, respectively.

Note that

(3.9)
tr(Am

n ) = tr(
∑2m−1

k=1 A
(k)
m,n;1 +

∑2m−1

k=1 A
(k)
m,n;4)

= |tr(Xm,n;1)| + |tr(Xm,n;4)|
= |tm,n|.
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First prove that Tm can reduce the traces of higher-order to lower-order.

Proposition 3.4. For m ≥ 2 and n ≥ 2,

(3.10) tm,n+1 = Tmtm,n

Proof. By Theorem 2.5, it is easy to see




tr(Xm,n+1;1)

tr(Xm,n+1;4)



 =





Cm;11tr(Xm,n;1) + Cm;22tr(Xm,n;4)

Cm;33tr(Xm,n;1) + Cm;44tr(Xm,n;4)



 .

Then, (3.10) follows immediately.
The proof is complete.
Repeatedly applying Proposition 3.4 yields the following result.

Theorem 3.5. For m ≥ 2 and n ≥ 1,

(3.11) tr(Am
n+2) = |Tn

mtm,2|

(3.12) ≡
∑

βk∈{1,4}

|Sm;β1β2
Sm;β2β3

· · ·Sm;βnβn+1
tr(Xm,2;βn+1

)|.

Proof.

tr(Am
n )

=

2m−1

∑

k=1

tr(A
(k)
m,n;1;1) +

2m−1

∑

k=1

tr(A
(k)
m,n;1;4) +

2m−1

∑

k=1

tr(A
(k)
m,n;4;1) +

2m−1

∑

k=1

tr(A
(k)
m,n;4;4)

= |tr(Xm,n;1;1)| + |tr(Xm,n;1;4)| + |tr(Xm,n;4;1)| + |tr(Xm,n;4;4)|

= |tr(Sm;11Xm,n−1;1)| + |tr(Sm;14Xm,n−1;4)|

+|tr(Sm;41Xm,n−1;1)| + |tr(Sm;44Xm,n−1;4)|

= |Tmtm,n−1|,

here Theorem 2.4 is used.
Reduction on n, yields

tr(Am
n ) = |Tn−2

m tm,2|.

Finally, (3.12) follows from (3.1) and (3.8).
The proof is complete.
The following lemma is needed to show (1.33).

Lemma 3.6. Let Vm be a nonnegative eigenvector of Tm with respect to the
maximum eigenvalue ρ(Tm). If ρ(Tm) > 0, then

〈Vm, tm,2〉 > 0,

where 〈 , 〉 denotes the standard inner product of C2m

.

Proof. Let Vm = (u1, · · · , uM , u′
1, · · · , u′

M ) be a nonnegative eigenvector of Tm,
where M = 2m−1. Since ρ(Tm) > 0, by Lemma 2.11, if uk > 0 (or u′

l > 0) then

tr(A
(k)
m,2;1) > 0 (or tr(A

(l)
m,2;4) > 0). The result follows by (3.8).
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The proof is complete.
Now, (1.33) can be proved.

Theorem 3.7. For any m ≥ 2,

(3.13) lim sup
n→∞

1

n
log tr(Am

n ) = log ρ(Tm),

and

(3.14) h(A2) ≥ lim sup
m→∞

1

m
log ρ(Tm).

Furthermore, if An are primitive for all n ≥ 2, then limsup in (3.13) and (3.14) can
be replaced by lim, i.e.,

(3.15) lim
n→∞

1

n
log tr(Am

n ) = log ρ(Tm)

and

(3.16) h(A2) ≥ lim
m→∞

1

m
log ρ(Tm).

Proof. By Perron-Frobenius theorem, for all n ≥ 2, we have

(3.17) lim sup
m→∞

1

m
log tr(Am

n ) = log ρ(An).

Therefore, by (3.17) and Theorem 3.5, we have

h(A2) = lim
n→∞

1

n
log ρ(An) = lim sup

n,m→∞

1

mn
log tr(Am

n ) = lim sup
n,m→∞

1

mn
log |Tn

mtm,2|.

By Lemma 3.6 and by argument used to prove Theorem 2.12,

(3.18) lim sup
n→∞

1

n
log |Tn

mtm,2| = log ρ(Tm)

can be shown, and (3.13) and (3.14) follow immediately.
When An are primitive for all n ≥ 2, (3.15) and (3.16) follow.
The proof is complete.
Now, the symmetry of A2 is established to be able to be inherited by the higher

order matrices.

Proposition 3.8. If A2 is symmetric, then An is also symmetric for each n ≥ 3.

Proof. The proposition is proven by induction on n.

Let M =

[

M1 M2

M3 M4

]

be a square matrix and Mi, 1 ≤ i ≤ 4, all be square

matrices. Then, the transpose matrix Mt of M is

Mt =

[

M1
t M3

t

M2
t M4

t

]

.



TWO-DIMENSIONAL PATTERNS GENERATION PROBLEMS 527

Therefore, M is symmetric if and only if

M1
t = M1, M3

t = M2 and M4
t = M4.

In particular, A2 is symmetric if and only if

(3.19) At
2;1 = A2;1, At

2;3 = A2;2 and At
2;4 = A2;4.

Now, An is assumed to be symmetric, such that

(3.20) At
n;1 = An;1, At

n;3 = An;2 and At
n;4 = An;4.

Since

An+1;α = [A2;α]2×2 ◦

[

An;1 An;2

An;3 An;4

]

,

(3.19) and (3.20) imply

At
n+1;1 = An+1;1, At

n+1;3 = An+1;2 and At
n+1;4 = An+1;4.

Hence, An+1 is symmetric.
The proof is complete.
Now, upper estimates of spatial entropy h(A2) are obtained when A2 is symmetric.

Theorem 3.9. If A2 is symmetric then for any m ≥ 1,

(3.21) h(A2) ≤
1

2m
log ρ(T2m).

Proof. By Proposition 3.8, A2m
n is symmetric for any m ≥ 1. The symmetry of

A2m
n implies that all eigenvalues of A2m

n are non-negative. Hence,

(3.22) ρ(An)2m = ρ(A2m
n ) ≤ tr(A2m

n ).

On the other hand, the subadditivity of (2.58) implies

(3.23) h(A2) ≤
1

(2mk + 1)n
log |A2mk

n |.

Therefore, (3.22), (3.23) and (3.11) imply

h(A2) ≤ lim
n,k→∞

1

(2mk + 1)n
log |A2mk

n | = lim
n→∞

1

2mn
log ρ(A2m

n )

≤ lim
n→∞

1

2mn
log tr(A2m

n ) = lim
n→∞

1

2mn
log |Tn−2

2m t2m,2|

≤
1

2m
log ρ(T2m).

The proof is complete.
Notably, Tm (or T′

m) yields a better estimate than Bn (or An) whenever

(3.24) h(A2) ≤
1

m
log ρ(Tm)

holds.
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Remark 3.10.
(i) The problem in which An are primitive for all n ≥ 2 has already been investi-

gated [6]. In [6], various sufficient conditions have been found to ensure that
An are primitive for all n ≥ 2. Notably, limit in (3.15) and (3.16), instead of
limsup in (3.13) and (3.14), causes An to have a unique maximum eigenvalue
with a maximum modulus. Therefore, An may be imprimitive but (3.15) and
(3.16) still hold. For example, Golden-Mean and simplified Golden-Mean in
Example 2.14 are imprimitive but (3.15) and (3.16) still hold. The remaining
matrices of these An are primitive if their rows and columns with zero entries
are removed.

(ii) In general, limsup cannot be replaced by limit. For example, consider

(3.25) A2 =









0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0









.

Further computation shows that

T2m+1 = 0

and

T2m =

[

(⊗(G
′

⊗ e1)
m−1) ⊗ G

′

e1 ⊗ (⊗(G
′

⊗ e1)
m−1)

e1 ⊗ (⊗(G
′

⊗ e1)
m−1) e1 ⊗ (⊗(G

′

⊗ e1)
m−1)

]

for all m ≥ 1, where G
′

=

[

0 1
1 1

]

and e1 =

[

1 0
0 0

]

.

Therefore, ρ(T2m+1) = 0. Furthermore, it can be shown that

(3.26) ρ(T2m) ≤ gm + gm−1.

Combining (2.116) and (3.26), h(A2) = 1
2 log g. Hence (3.14) holds only for

limsup. Unlike (2.62) this example demonstrates that (3.24) does not hold
for any n = 2m + 1. This phenomenon is a disadvantage in determining the
upper estimate of entropy associated with replacing An with Tn.

Example 3.11. Consider

A2 =









1 1 1 1
0 0 0 1
0 0 0 1
1 0 0 0









which was studied as in Example 2.16. Now, A2 is asymmetric. Furthermore,

tr(A2
n) = 3

can be obtained for all n ≥ 2. Hence, (3.22) and then (3.21) fail when m = 1.
However,

C4;44 =









G 0 0 0
0 e1 0 0
0 0 0 0
0 0 0 0









,
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where G =

[

1 1
1 0

]

, e1 =

[

1 0
0 0

]

and 0 =

[

0 0
0 0

]

. Hence tr(A4
n) grows at least

exponentially with exponent ρ(G) = g, the golden-mean.

Whether (3.21) holds for some m ≥ 2 is of interest.

Example 3.12. Consider the Golden-Mean

A2 =









1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0









,

which was studied as in Example 2.14. A2 is symmetric, so the numerical results can
be obtained as follows.

m ρ(Am−1)
1
m ρ(Tm)

1
m ρ(Am)

1
m

2 1.3415037626 1.5537739740 1.5537739740
3 1.3804413572 1.4892228485 1.5370592754
4 1.4041128626 1.5069022259 1.5284545258
5 1.4201397131 1.5017251916 1.5233415461
6 1.4316975290 1.5035148094 1.5199401525
7 1.4404277508 1.5028716910 1.5175154443
8 1.4472546963 1.5031163748 1.5156994341
9 1.4527395436 1.5030208210 1.5142884861
10 1.4572426033 1.5030591603 1.5131606734
11 1.4610058138 1.5030435026 1.5122385423
12 1.4641976583 1.5030500001 1.5114705290
13 1.4669390746 1.5030472703 1.5108209763
14 1.4693191202 1.5030484295 1.5102644390
15 1.4714048275 1.5030479329 1.5097822725
16 1.4732476160 1.5030481473 1.5093605030

Notably, both ρ(Am)
1
m and ρ(T2m)

1
2m are monotonically decreasing in m. In contrast,

ρ(Am−1)
1
m and ρ(T2m+1)

1
2m+1 are monotonically increasing in m, that ρ(T2m)

1
2m

gives better upper bound than ρ(Am)
1
m . That ρ(T2m+1)

1
2m+1 are lower bounds is

conjectured. If they were, then ρ(Tm)
1
m would yield a very sharp estimates.

4. More symbols on larger lattice. As mentioned in the introduction, many
physical and engineering problems involve many (more than two) symbols and larger
lattices. Therefore, the results found in the previous sections must be extended to any
finite number of symbols p ≥ 2 on any finite square lattice Z2l×2l, l≥1. The results
are only outlined here, and the details are left to the readers. Proofs of theorems are
omitted for brevity.

For fixed p ≥ 2 and l ≥ 1, denote by

(4.1) q = pl2 .

The horizontal and vertical transition matrices are given by

(4.2) A2 =











a1,1 a1,2 · · · a1,q2

a2,1 a2,2 · · · a2,q2

...
...

. . .
...

aq2,1 aq2,2 · · · aq2,q2













530 J.-C. BAN, S.-S. LIN AND Y.-H. LIN

and

(4.3) B2 =











b1,1 b1,2 · · · b1,q2

b2,1 b2,2 · · · b2,q2

...
...

. . .
...

bq2,1 bq2,2 · · · bq2,q2











,

respectively.
Now, A2 and B2 are related to each other by

(4.4) A2 =











A2;1 A2;2 · · · A2;q

A2;q+1 A2;q+2 · · · A2;2q

...
...

. . .
...

A2;q(q−1)+1 · · · · · · A2;q2











where

(4.5) A2;α =











bα,1 bα,2 · · · bα,q

bα,q+1 bα,q+2 · · · bα,2q

...
...

. . .
...

bα,q(q−1)+1 bα,q(q−1)+2 · · · bα,q2











,

and

(4.6) B2 =











B2;1 B2;2 · · · B2;q

B2;q+1 B2;q+2 · · · B2;2q

...
...

. . .
...

B2;q(q−1)+1 · · · · · · B2;q2











where

(4.7) B2;α =











aα,1 aα,2 · · · aα,q

aα,q+1 aα,q+2 · · · aα,2q

...
...

. . .
...

aα,q(q−1)+1 aα,q(q−1)+2 · · · aα,q2











,

respectively, where 1 ≤ α ≤ q2. The column matrices ˜A2 and ˜B2, A2 and B2 are
defined as in (2.1) and (2.2). For higher order transition matrices An, n ≥ 3, are
defined as

(4.8) An =











An;1 An;2 · · · An;q

An;q+1 An;q+2 · · · An;2q

...
...

. . .
...

An;q(q−1)+1 An;(q−1)q+2 · · · An;q2











where
(4.9)

An;α =











bα,1An−1;1 bα,2An−1;2 · · · bα,qAn−1;q

bα,q+1An−1;q+1 bα,q+2An−1;q+2 · · · bα,2qAn−1;2q

...
...

. . .
...

bα,q(q−1)+1An−1;q(q−1)+1 bα,q(q−1)+2An−1;q(q−1)+2 · · · bα,q2An;q2











.
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Rewriting the indices of An;α as follows, facilitates matrix multiplication.

(4.10) An =











An;11 An;12 · · · An;1q

An;21 An;22 · · · An;2q

...
...

. . .
...

An;q1 An;q2 · · · An;qq











.

Clearly, An;α = An;j1j2 , where

(4.11) α = α(j1, j2) = q(j1 − 1) + j2.

For m ≥ 2, the elementary pattern in the entries of Am
n is given by

An;j1j2An;j2j3 · · ·An;jmjm+1
,

where js ∈ {1, 2, · · · , q}.
The lexicographic order for multiple indices

Jm+1 = (j1j2 · · · jmjm+1)

is introduced by

(4.12) χ(Jm+1) = 1 +

m
∑

l=2

qm−l(jl − 1).

Specify

A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1

,

where α = α(j1, jm+1) satisfies (4.11) and k = χ(Jm+1) is as given in (4.12). Based
on this arrangement, Am

n can be written as

Am
n =











Am,n;1 Am,n;2 · · · Am,n;q

Am,n;q+1 Am,n;q+2 · · · Am,n;2q

...
...

. . .
...

Am,n;q(q−1)+1 Am,n;q(q−1)+2 · · · Am,n;q2











,

where

Am,n;α =

qm−1

∑

k=1

A(k)
m,n;α.

Moreover, Xm,n;α = (A
(k)
m,n;α)t, where 1 ≤ k ≤ qm−1 and Xm,n;α is a qm−1-vector

that comprise all elementary patterns in Am,n;α. The ordering matrix Xm,n of Am
n is

now defined as

Xm,n =











Xm,n;1 Xm,n;2 · · · Xm,n;q

Xm,n;q+1 Xm,n;q+2 · · · Xm,n;2q

...
...

. . .
...

Xm,n;q(q−1)+1 Xm,n;q(q−1)+2 · · · Xm,n;q2











,
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and Xm,n+1;β can be reduced to X2,n;β by multiplication with connecting matrices
Cm;α,β . The connecting operator Cm is defined as follows.

Definition 4.1. For m ≥ 2, define

Cm =











Cm;1,1 Cm;1,2 · · · Cm;1,q2

Cm;2,1 Cm;2,2 · · · Cm;2,q2

...
...

. . .
...

Cm;q2,1 Cm;q2,2 · · · Cm;q2,q2











(4.13)

=

26666666666664
Sm;1,1 · · · Sm;1,q

.

.

.

.

.

.

.

.

.

Sm;1,q(q−1)+1 · · · Sm;1,q2

· · ·

Sm;q,1 · · · Sm;q,q

.

.

.

.

.

.

.

.

.

Sm;q,q(q−1)+1 · · · Sm;q,q2

.

.

.

.

.

.

.

.

.

Sm;q(q−1)+1,1 · · · Sm;q(q−1)+1,q

.

.

.

.

.

.

.

.

.

Sm;q(q−1)+1,q(q−1)+1 · · · Sm;q(q−1)+1,q2

· · ·

Sm;q2,1 · · · Sm;q2,q

.

.

.

.

.

.

.

.

.

Sm;q2,q(q−1)+1 · · · Sm;q2,q2

37777777777775
where
(4.14)

Cm;α,β = ((B2;α)q×q ◦ (⊗̂Bm−2
2 )q×q)qm−1×qm−1 ◦ (Eqm−2×qm−2 ⊗ Ã2;β)qm−1×qm−1 .

Like Theorem 2.4, Cm+1;α,β can be obtained in terms of Cm;γ,β.

Theorem 4.2. For any m ≥ 2 and 1 ≤ α, β ≤ q2

Cm+1;α,β =

26664 aα;1Cm;1,β aα;2Cm;2,β · · · aα;qCm;q,β

aα;q+1Cm;q+1,β aα;q+2Cm;q+2,β · · · aα;2qCm;2q,β

.

.

.

.

.

.

.

.

.

.

.

.

aα;q(q−1)+1Cm;q(q−1)+1,β aα;q(q−1)+2Cm;q(q−1)+2,β · · · aα;q2Cm;q2,β

37775 .

Denote by

A
(k)
m,n+1;α =













A
(k)
m,n+1;α;1 A

(k)
m,n+1;α;2 · · · A

(k)
m,n+1;α;q

A
(k)
m,n+1;α;q+1 A

(k)
m,n+1;α;q+2 · · · A

(k)
m,n+1;α;2q

...
...

. . .
...

A
(k)
m,n+1;α;q(q−1)+1 A

(k)
m,n+1;α;q(q−1)+2 · · · A

(k)
m,n+1;α;q2













and Xm,n+1;α;β = (A
(k)
m,n+1;α;β)t where A

(k)
m,n+1;α;β is a linear combination of A

(l)
m,n;γ .

Now, Theorem 2.5 can be generalized to the following theorem.

Theorem 4.3. For any m ≥ 2 and n ≥ 2, let Sm;α,β be as given in (4.13) and
(4.14). Then Xm,n+1;α;β = Sm;α,βXm,n;β.
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