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PATTERNS GENERATION AND SPATIAL ENTROPY IN
TWO-DIMENSIONAL LATTICE MODELS*

JUNG-CHAO BANT, SONG-SUN LIN#, AND YIN-HENG LIN$

Abstract. Patterns generation problems in two-dimensional lattice models are studied. Let
S be the set of p symbols and Zogya¢, £ > 1, be a fixed finite square sublattice of Z2. Function
U : Zoyxoe — S is called local pattern. Given a basic set B of local patterns, a unique transition

matrix Az which is a ¢ x ¢? matrix, ¢ = pe2, can be defined. The recursive formulae of higher
transition matrix A, on Zspxne have already been derived [4]. Now AT m > 1, contains all
admissible patterns on Z(,,41)¢xne Which can be generated by B. In this paper, the connecting
operator Cr,, which comprises all admissible patterns on Z(,,11)¢x2¢, is carefully arranged. Cp,
can be used to extend AT} to AT ; recursively for n > 2. Furthermore, the lower bound of spatial
entropy h(A2) can be derived through the diagonal part of Cp,. This yields a powerful method for
verifying the positivity of spatial entropy which is important in examining the complexity of the set
of admissible global patterns. The trace operator Ty, of C,, can also be introduced. In the case of
symmetric Az, Ta,, gives a good estimate of the upper bound on spatial entropy. Combining C,,
with Ty, helps to understand the patterns generation problems more systematically.

Key words. Lattice dynamical systems, Spatial entropy, Patterns generation, Connecting op-
erator, Trace operator
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1. Introduction. Lattices are important in scientifically modelling underly-
ing spatial structures. Investigations in this field have covered phase transition [11],
[12], [34], [35], [36], [37], [38], [45], [46], [47], [48], chemical reaction [7], [8], [24], biology
[9], [10], [21], [22], [23], [31], [32], [33] and image processing and pattern recognition
[16], [17], [18], [19], [20], [25]. In the field of lattice dynamical systems (LDS) and
cellular neural networks (CNN), the complexity of the set of all global patterns re-
cently attracted substantial interest. In particular, its spatial entropy has received
considerable attention [1],[2], [3], [4], [5], [13], [14], [15], [28], [29],[30], [39], [40], [41],
[42], [43], [44].

The one dimensional spatial entropy h can be found from an associated transi-
tion matrix T. The spatial entropy h equals log p(T), where p(T) is the maximum
eigenvalue of T.

In two-dimensional situations, higher transition matrices have been discovered in
[30] and developed systematically [4] by studying the patterns generation problem.

This study extends our previous work [4]. For simplicity, two symbols on 2 x
2 lattice Zaxo are considered. A transition matrix in the horizontal (or vertical)
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direction

a1 ai2 a3 ai4
_ a21 G22 A23 (24
(1.1) Ag =
az1 asz2 a3z G34
Q41 G422 Q43 (44

which is linked to a set of admissible local patterns on Zsxo is considered, where
a;j € {0,1} for 1 <i,j < 4. The associated vertical (or horizontal) transition matrix
B is given by

bin b2 biz bus
bor baa baz Do

1.2 By =
(1.2) 2 b1 baz b3z b3
byr biz bz bag

As and By are connected to each other as follows.

b1 bia | ba1 bao

b1z bia | b2z bas Ao A2-2]
1.3 Ay = = ’ ’
(13) ? b31 b3z | ba1 ba2 {

b3z bas | baz  bas

and

air ai2 | G21 Q22

(1.4) B, — | 13 4|02 a2 | _ { Ba.1 B } _
as1 a2 | 41 Q42 Bz Bay
a33 az4 | G43 Q44

Notably if Ao represents the horizontal (or vertical) transition matrix then Bs
represents the vertical (or horizontal) transition matrix. Results that hold for Ay are
also valid for Bs. Therefore, for simplicity, only A, is presented herein.

The recursive formulae for n-th order transition matrices A, defined on Zsy.,
were obtained [4] as follows

bllAn;l b12An;2 b21An;1 b22An;2
blBAn;B b14An;4 bQBAn;S b24An;4

1.5 Apiq =
( ) 1 b31An;1 b32An;2 b41An;1 b42An;2
bssApz b3aApa bazAnz baaApa
whenever
| A App
(1.6) A, = { Avs Ang } ,

for n > 2, or equivalently,

(17) An+1;a — |: balAn;l baQAn;g :|

ba3An;3 ba4An;4
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for @ € {1,2,3,4}. The number of all admissible patterns defined on Z,, «, which can
be generated from Ay is now defined by

Fm,n(A2) = |Aﬁ_1|

(1.8) = the summation of all entries in 2" x 2" matrix A™~ 1.

The spatial entropy h(Az) is defined as

(1.9) h(A2) = lim € log Ty n(A2) = lim 1 log |A™1].
m,n—oo Mmn m,n—o0 Mn
The existence of the limit (1.9) has been shown in [4], [15], [30]. When h(A3) > 0,
the number of admissible patterns grows exponentially with the lattice size m x n. In
this situation, spatial chaos arises. When h(As) = 0, pattern formation occurs.
To compute the double limit in (1.9), n > 2 can be fixed initially and m allowed
to tend to infinite [30] and [4]; then the Perron-Frobenius theorem is applied;

1
(1.10) lim — log |[A™ | =log p(A,),
m

m— 00

which implies

1
(1.11) h(A2) = lim —logp(A,),
n—oo n,
where p(M) is the maximum eigenvalue of matrix M. A, is a 2" x 2" matrix, so
computing p(A,) is usually quite difficult when n is larger. Moreover, (1.11) does

not produce any error estimation in the estimated sequence — log p(A,,) and its limit
n

h(Az). This causes a serious problem in computing the entropy. However, for a
class of Ag, the recursive formulae for p(A,) can be discovered, along with a limiting
equation to p* = exp(h(Az)), as in [4].

This study takes a different approach to resolve these difficulties. Previously, the
double limit (1.9) was initially examined by taking the m-limit firstly as in (1.10).
Now, for each fixed m > 2, the n-limit in (1.9) is studied. Therefore, the limit

1
(1.12) lim —log |[A™ !

n—oo n

is considered. Write

(113) A:In — |: Am,n;l Am,n;2 :| )

Am,n;3 Am,n;4

The investigation of (1.12) would be simpler if a recursive formula such as (1.7) could
be found for A,, .. The first task in this study is to solve this problem. For matrix
multiplication, the indices of A,., a € {1,2,3,4} are conveniently expressed as

Aniin Anio ]
1.14 An = ’ ’ .
( ) [An;m Api22
Then
271171
(115) Am,n;a = Z Ass,)n;av

k=1
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where
(1.16) AP = Ay Aniags * Anion o
(1.17) k=14 2m7(j; — 1),
1=2
and
(1.18) a=2(j— 1) + Jm+1-

Ag,]i?n;a in (1.16) is called an elementary pattern of order (m,n), and is a fundamental
element in constructing A, n.o in (1.15). Notably the elementary patterns are in
lexicographic order, according to (1.17). As in [4], the following m-th order ordering
matrix.

_ Xm,n;l Xm,n;2
(119) Xm,n N Xm,n;B Xm,n;4

is represented to record systematically these elementary patterns, where

m,n;x

(1.20) Xonmsa = (Al hia) i <heom—1

is a 2™~! column vector.
The first main result of this study is to introduce the connecting operator C,,,
and to use it to derive a recursive formula like (1.7) for Ag,’f?n;a. Indeed,

Om;ll Om;l? Cm;lB Cm;14
C(771;21 Om;22 Cm;23 Cm;24
Cm;Sl Cm;32 Cm;33 Cm;34
Cm;41 Cm;42 Cm;43 Cm;44

(1.21) Cp =

Sm;ll Sm;12 Sm;Zl Sm;22
1.29 _ Sm;13 Sm;14 Sm;23 Sm;24
(1.22) S S S S

m;31 m;32 m;41 m;42

Sm;33 Sm;34 Sm;43 Sm;44

m—2
co— ain aiz | o By Do
msi =
J ;3 Qs Baz Boy
2x2/ gm—1yom—1
a1; G2
0] Egm—2><2m—2 ® 1]‘ 2'?
azj Q4j om—1yom—1

is a 2™~ x 2™~ ! matrix where Ejx} is the k x k full matrix; ® denotes the Kronecker
product, o denotes the Hadamard product and the product @ which involves both
the Kronecker product and the Hadamard product, as stipulated by Definition 2.2.

where

(1.23)
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In Theorem 24, Om;ij is shown to be Q145 Ainizg " Qi i1y with il =¢and im+1 =
j. Therefore, all admissible paths of Ay from ¢ to j with length m are arranged
systematically in matrix C,,;;;. Now, the recursive formula is

gm—1
Z m;al klAm n;l Z (Sm§a2)klA57lL),n;2
(124) Agj)nJrl o T le 11 217’”‘:’11 ’

Z m;a3 klAm n;3 Z (Sm;a‘l)klAgwlz),n;él

=1 =1

form>2 n>2 1<k<2" !land 1< a<4. (1.24) is the generalization of (1.7).

The recursive formula (1.24) immediately yields a lower bound on entropy.
Indeed, for any positive integer K and diagonal periodic cycle (102 - BxBr+1,
where §; € {1,4} and Brx41 = b,

1
(1.25) h(Ag) > I log p(Sm;Blﬁzsm;ﬁzﬁs T Sm;BKBK+1)'

Equation (1.25) implies h(Ag) > 0, if a diagonal periodic cycle of 3182 - - Bk 51 ap-
plies, with a maximum eigenvalue of Sy,.3,3, - - - Sm:8x 3, that greater than one. This
method powerfully yields the positivity of spatial entropy, which is hard in examining
the complexity of patterns generation problems.

However, the subadditivity of I', ,(A2) is known to imply

1
(126) h(A2) S % logrm,n(AQ)

as in [15]. Consequently, (1.8), (1.10) and (1.26) indicate an upper bound of entropy
as

(1.27) h(Ag) < %logp(An),

for any n > 2.
However, the Perron-Frobenius theorem also implies

(1.28) lim sup — log tr(A™ 1) = log p(A,),

m—00

where tr(M) denotes the trace of matrix M [26], [27]. Therefore, (1.28) implies

(1.29) h(Ag) = limsup — log tr(A™h),

m,n—oo MM

In studying the double-limit of (1.29), for each fixed m > 2, the n-limit in (1.29)

1
(1.30) lim sup — log tr(A™ 1)
n

n—oo

is first considered. (1.30) can be studied by introducing the following trace operator

Cm'll Cm'22
1.31 T,, = ’ ’ .
( ) |: Cm;33 Cm;44 :|
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Then, a recursive formula for ¢r(A") can be verified

tTXm,Q;l
(1.32) tr(A™) = |T2 :
tTXm)2;4

!
for n > 2, where tr(X nia) = (trAg,li,)n;a)’iSka,l and |v] = Zvj for vector v =
j=1
(v1,-++,v)t. Consequently, (1.29) and (1.32) yield

1
(1.33) h(Ag) > limsup p- log p(Ty,).
Notably, for a large class of Ay, the limit sup in (1.28), (1.29), (1.30) and (1.33)
can be replaced by limit. See section 3 for details.
Now, (1.33) can be applied to find the upper bounds of entropy. For example,
when Ag is symmetric,

1
(1.34) h(A2) < o log p(T2m),
for any m > 1. Since
(1.35) T, <B,

can be shown for any n > 2. Generally, (1.33) and (1.34) yield better approximation
than (1.11) and (1.27).

In summary, this study yields lower-bound estimates of entropy like (1.25) by in-
troducing connecting operators C,,,, and upper-bound estimates of entropy like (1.34)
by introducing trace operators T,,. This approach accurately and effectively yields
the spatial entropy.

The rest of this paper is organized as follows. Section 2 derives the connecting op-
erator C,, which can recursively reduce higher order elementary patterns to patterns
of lower order. Then, the lower-bound of spatial entropy can be found by computing
the maximum eigenvalues of the diagonal periodic cycles of sequence S,,.q3. Section
3 addresses the trace operator T,, of C,,. The entropy can be calculated by comput-
ing the maximum eigenvalues of T,,. When A, is symmetric, the upper-bounds of
entropy are also found. Section 4 briefly discusses the theory for many symbols on
larger lattices.

2. Connecting Operators.

2.1. Connecting operators and ordering matrices. This section derives
connecting operators and investigates their properties. For clarity, two symbols on
2 x 2 lattice Zaxo are examined first. Section 4 addresses more general situations.

Let Ap and Bs be defined as in (1.1)~(1.4). The column matrices A, and By of
A5 and By are defined by

ail  az1 | @12 a22 5 5

(2'1) KQ _ a31 aq1 | G32 Q42 _ [ {12;1 {12;2 }
a13 a3 | G4 Q24 Agz Apy
azz 43 | G34 (44
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and
bir ba1 | biz D22
~ b1 ba1 | b2 b2
2.2 By =
(22) 2 b1z bag | bia  bas
b3z baz | b3a  bas
respectively.

|

Bs

B3

3

Bs.o

Ba.y

)

|\
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For matrices of higher order n > 2, A,, A,4; and A, 1,, are defined as in

(1.5)~(1.7).

For matrix multiplication, the indices of A, are conveniently expressed as

An'll An‘l?
2.3 A, = ’ ’ .
( ) |: An;21 An;22 :|
Clearly, An.q = Ap;j,j,, Where
(24) o= Oé(jl,jg) = 2(]1 — 1) + jo.

For m > 2, the elementary pattern in the entries of A} is represented by

Anijrgs Ansjags **

N3 JmJIm+1)

where j; € {1,2}. A lexicographic order for multiple indices

Im+1 = (Jij2 - Jmim+1)

is introduced, using

(2.5) X(Jmt1) =1+ Z 2" (js — 1).
s=2

Now,

(2.6) AR = Anijria Anijaga * Anigmim>

where

(2.7) o= a(f1, jm+1) = 2(j1 — 1) + Jm+1

and

(2.8) k= x(Jm+1)

is given in (2.5). Notably, (2.5) and (2.8) do not involve j,+1 but (2.7)does.

Therefore, A7 can be expressed
(2.9) AT = {
where

as

Am,n;l
Am,n;3

271171

(2.10) Apma= > A

k=1

Am,n;2
Am,n;4

(k)

m,n;o”

|\
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Furthermore,
(211) Xm,n;a = (Ags,)n;a)ﬁgk§2m*1'

1<k<2m 1 Xm,n;a 1S @ 2™~ column-vector that consists of all elementary patterns
in Ap, n;o. The ordering matrix X, ,, of A7" is now defined by

Xm,n;l Xm,n;2
(212) Xm,n - Xm,n;?) Xm,n;él

The ordering matrix X,, ,, allows the elementary patterns to be tracked during
the reduction from A7’ ; to A7'. This careful book-keeping provides a systematic
way to generate the admissible patterns and later, lower-bound estimates of spatial
entropy.

The following simplest example is studied first to illustrate the above concept.

Ezxample 2.1. For m = 2, the following can easily be verified;

2
An;ll + An;12An;21 An;llAn;12 + An;IQAn;22

2.13 A2 = 7
( ) " An;21An;11 + An;22An;21 An;?lAn;12 “+ Ai;22
and

A(l)l_Anlla A2 1—An12An21;
(2.14) A%n? = An14ni2, 14%2,)12 = Ap124n;20,

A2n3_An 21An 11, Agng—An 22Am217

A(l) 4 A"l 21An 12, A2n4 An 29-
Therefore,

A7 Apii A
Xopi1 = n;11 . Xomo = n;11An,12 ,
2 [ An124n21 ] B2 [ Ap12An;22

(2.15)

An'21An'11 An'?lAn 12
Xopis = 2LARIL | x) = 21 8n12
23 |: An;22An;21 2Zmid A%;Qg

Applying (1.7), and by a straightforward computation,

A2
2.16 Xopi11 = n+1;11
(2.16) 2l [ Ant1124n41.21

b%lA%;l + b12b13An;2An;3 b11b12An;1An;2 + b12b14An;2An;4
blellAn;SAn;l + b14b13An;4An;3 b13b12An;3An;2 + b%4A721;4

[ ba1bs1 A7 + bosbssApio Apis ba1b32An:1 An + baobsa An2Ana }
basb31 An:3An1 + baabssAnaAns basbsa Aniz Ao + bosbss A2 4

Clearly, the jj jo entries of A%+1;11 and A, 41.12A4541,21 in (2.16) consist of entries
of Xo .0 in (2.14) with a = a(j1, j2) in (2.4). Moreover, the terms in (2.16) can be
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rearranged in terms of Xs 5., by exchanging the second row in the first matrix with
the first row in the second matrix in (2.16) as follows.

{ b3, biobis } { Az, ] { b11b12  bi2big } [ Api1Apso ]
ba1b31  bagbss An2An:3 ba1b32  baob3g ApoAna

(2.17)
b13b11 b14b13 An;BAn;l b13b12 b%4 An;3An;2
b23b31 b24b33 An;4An;3 b23 b32 b24b34 A%;4

Applying (1.1), (1.2) and (2.1), (2.17) can be rewritten as

[ @%1 12021 ] [ A%;u } [ a11a12  @12022 } [ An;llAn;12 ]
A

13031 014041 ni12A4n;:21 (13032 014042 Ani12An;22

2
(21011 (22021 An21An1 a21012 G35 Ani21An;12
2
23031 (24041 An20An21 (23032 G24G42 A 90
(2.18) | (Bamio 42;11)X2,n;1 (Bz2:.11 © {12;12)X2,n;2
(Ba;12 0 A2,11) X213 (Baji2 0 Asi12) Xo nia

Therefore, after the entries of X5 ;11,1 asin (2.17) or (2.18) have been permuted,
X2 n+1;1 can be represented by a 2 x 2 matrix

5 Xont1,1;1 Xopnt1;1;2
(2.19) X1 =P(Xonprn) = | 3000 S0 T
2,n+1;1;3 2,n+1;1;4
where
Xont1:11 = S2;11 X2, n:1,
(2.20) Xont1;1;2 = 52,12X2 n:2,
Xo.nt1;1;3 = 52,13X2.n:3,
Xont1;154 = 52,14 X2 4
and
Sa11 = Bai 0 Az = Con,
(2.21) 2,12 2;11 © Az;12 212,

S2:13 = Ba,12 0 Ag.1 = Ca01,
So.14 = Ba,12 0 Agi10 = Cay09,

The above derivation indicates that X ,,11,o can be reduced to X2 .3 via mul-
tiplication with connecting matrices Cs,n3. This procedure can be extended to intro-
duce the connecting operator C,,, = [ Cpyap |, for all m > 2.

Before C,,, is introduced, three products of matrices are defined as follows.

DEFINITION 2.2. For any two matrices M = (M;;) and N = (Ny;), the Kronecker
product (tensor product) M@ N of M and N is defined by

(2.22) M®N = (M;;N).
For anyn > 1,

SN"=N@N® --®N,



506 J.-C. BAN, S.-S. LIN AND Y.-H. LIN

n-times in N.
Nezt, for any two m x m matrices

P = (P;;) and Q = (Q;;)

where Pi; and Q;; are numbers or matrices, the Hadamard product P o Q is defined
by

(2.23) PoQ = (P - Qsj),

where the product Pi; - Qi; of Pi; and Q;; may be a multiplication between numbers,
between numbers and matrices or between matrices whenever it is well-defined.
Finally, product & is defined as follows. For any 4 x 4 matriz

(2.24) M, = _ { Mo Moz }

M.z Moy

and any 2 X 2 matrizc

[N N
(2.25) N= [ N N } ,

where m;; are numbers and Ny, are numbers or matrices, for 1 <1i,j,k < 4, define

m11N1 mi2Na ma1N1  moaNa
m13Ns mi1aNs mo3N3 masNy
m31 N1 m3zaNa mgua N1 myaNo
m33N3  m3aNy ma3N3 mgaNy

(2.26) M,®N =

Furthermore, for n > 1, the n+ 1 th order of transition matriz of My is defined by
Mn+1 = ®Mg = M2®M2® te ®M2,
n-times i Ms. More precisely,

S — M. AM"_l Mo. AMn—l
M,11 = Me®(@My 1) = [ 210 (M3 ) 2:2 0 (®M5 ™) }

Mygo (SM5') Moy o (M5 ')

mitMp;1 miaMpo | mor My, moaMy.o

(2.27) = mizMy3 migMpg | masMy3 mogMpa | | Mug1n Mpgape
ms1Mp;1 masaMp.o | marMp;r  maa Mo Myt1;3 Mpyra |
ma3Mp.3  maaMp.a | MmagMp3  maaMya

where

S —1 Mn;l Mn;2
My Myg

Here, the following convention is adopted,

OMY = Egxo.
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DEFINITION 2.3. For m > 2, define

(2.28)
Cm;ll Cm;12 Om;lS C(771;14 Sm;ll Sm;l? Sm;21 Sm;22
C, = Cm;21 Cm;22 Om;23 C(771;24 _ Sm;13 Sm;14 Sm;23 Sm;24
" Cm;31 Cm;32 Om;33 Om;34 Sm;31 Sm;32 Sm;41 Sm;42
Cm;41 Cm;42 Cm;43 Cm;44 Sm;33 Sm;34 Sm;43 Sm;44
where
m—2
ms = ([ w2 ]o(e[ 3 22]7). )
(2.29) o ’ ’ 2x2/ gm—1ygm-1
a1 Qa3
o FEom-—2y9m—2 ® .
(e ([0 20 )
Similarly, for Ba, define
(2.30)
Um;ll Um;12 Um;13 Um;l4 Wm;ll Wm;12 Wm;?l Wm;22
U, = Um;21 Um;22 Um;23 Um;24 _ Wm;13 Wm;14 Wm;23 Wm;24
m Um;31 Um;32 Um;33 Um;34 Wm;31 Wm;32 Wm;41 Wm;42
Um;41 Um;42 Um;43 Um;44 Wm;33 Wm;34 Wm;43 Wm;44
where
m—2
s = ([ e ]e (5[4 42]7) )
(2.31) s s R 2x2/ gm—1yam-1
bis bos

] <E2m2><2'm,2 ® (|:

] >) 2m—1ygm—1 .
Sm = [Sm;ag] and Wm = [Wm;ag].
Now C,,,4+1 can be found from C,, by a recursive formula, as in (1.7).

THEOREM 2.4. For anym > 2 and 1 < a, 0 < 4,

(¢28% Cm'lﬁ (075% Cm'2B :|
2.32 Crnitiag = | For>m 2omi26 |
( ) el [ aa3Cmi3p Aoy COmiap
and

ba Um'lB ba Um'2B :|
2.33 Unit.a = Lo 2o .
( ) +liab |: bag,Um;Bﬁ boc4Um;4ﬁ

Proof. By (2.27),
®BY ! = By®(&By ?) = [ So2 o2
2 20 B5") Ba3 0 (®Bj 2) B 0 (®Bj 2)
Therefore,

Cm+1;ag e (BQ;Q o (®B72n_1)) o (E27n71><27n71 ® 1212;5)

a1 (B © ©B5 %) aa2(Bag 0 ©B5 %)
aa3(B23 0 ®BY ) aaa(Baa 0 OB )

(2%} Cm;lﬁ aa2cm;2[3
aaSCm;?)ﬁ aa4cm;4ﬁ

By o (®BY?) By o (®B5 ) }

:| e} (E27n71 x2m—1 ® AQ;ﬁ)

507
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A similar result also holds for Us,.ag; the details are omitted here. The proof is
complete. O

Notably, (2.32) implies Cyniij 1S QiyipQigiy = - Qi With i3 = @ and iy = J.
Cinsij consist of all words(or paths) of length m starting from ¢ and ending at j.
Indeed, the entries of C,, and B,,;1 are the same. However, the arrangements are
different. C,,, can also be used to study the primitivity of A,, n > 2, as in [6].

That the recursive formula (1.24) holds remains to be shown. Indeed, in (2.6)
substituting n for n 4+ 1 and using (1.7),

A(k)

m,n+1;«
= Ant13150 Ant1idads = Antljmimia
(2.34)

_ ﬁ |: bailAn;ll baiQAn;IZ :|
i1 bai3An;21 bai4An;22

where o; = a(j;, jit1), for 1 < i < m. After m matrix multiplications are executed
in (2.34),

A(k) A k)
(2.35) AB o= | Cmertieit Amnttias

Agn?n-i-l;aﬁ Afn?n—i-l;a;4
where

277171

k l

(236) Agn,)n-l-l;a;ﬁ = Z K(ma «, ﬁa k, l)ASn),n,B

=1

is a linear combination of Affl)ﬁn; 5 with the coefficients K (m; «, 3; k, 1) which are prod-
ucts of ba,;,1 <1 <m. K(m;a,f;k,l) must be studied in more details.
Note that

A 11 Amonti;2
2.37 Amy = | el e
( ) 1 |: Am,n+1;3 Am,n+1;4

2m71 277171

E : (k) } : (k)
Am,n+1;1 Am,n+1;2

k=1 k=1

gm—1 gm—1

k k
Z Afn,)n+l;3 Z Afn,)n+l;4
k=1 k=1

m—1 m—1 m—1 m—1
iill j%z,;n-i-l;l;l gill j%z;n-l-l;lﬁ iill j%z;n-l-l;%l iill j%z;n-l-lﬂﬁ
_ Zgill sz]z,)n-i-l;l;?) I;ill sz]z,)n-i-l;l;él Zgill sz]z,)n+1;2;3 Zgill sz]z,)n+1;2;4
l;ill Azz,)n-i-l;?»;l I;ill AEZ,)n+1;3;2 I;ill sz]z,)n-i—l;él;l I;ill sz]z,)n+1;4;2
k=1 m,n+1;3;3 k=1 m,n+1;3;4 k=1 m,n+1;4;3 k=1 m,n+1;4;4

Now, X nt1;0:8 is defined as

k
(2.38) Xmnt1,08 = (Afn.,)nnLl;a;ﬁ)t'
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As in (2.17), the entries of X, 41,0 are rearranged into a new matrix

3 Xm n+1;a;1 Xm n+1l;a:2
(230)  Kunrra = PKumgna) = | g hest Xt
m,n+1;a;3 m,n+1;0;4

From (2.36) and (2.38),
(2.40) Xmn+tias8 = K(m; a, 8) Xon i
where
K(m;a, 8) = (K(m;, 5 k,1)), 1< k1< 2™,
is a 2™~ x 271 matrix. Now, K(m; @, 3) = Sp.ap must be shown as follows.

THEOREM 2.5. For any m > 2 and n > 2, let Sp.ap be given as in (2.28) and
(2.29). Then,

K(m; a, ﬁ) = Sm;aﬁa
i.e.,
(2'41) Xmnt1,08 = Sm;aBXm,n;ﬁv

or equivalently, the recursive formula (1.24) holds. That is,

2m71
Z m;al klAmnl Z (Sm a2)klAmn2
(2.42) Afr]:)n-i-l ja Qm L zl;}l

Z m;a3 klAmnS Z (Sm a4)klAmn4

=1 =1

Moreover, forn =1,

gm—1
i Z m; al Z (Sm O¢2)kl
(243) Agn,)2;a = 2m 1 2lm:—11

for any 1 <k <2™ ! and a € {1,2,3,4}.

Proof. The result is proven by the induction on m.

When m = 2, and o = 1, (2.41) was proven as in Example 2.1. The case with
a = 2, 3 and 4 can also be proved analogously; the details are omitted.

Now, (2.41) ia assumed to hold for m; the goal is to show that it also holds for
m + 1. Since

Am+1

A L A™ . — An—i—l;l An+1;2 :| |: Am,n—i—l,l Am,n+l;2
n+1 — nt+l " Bpypg —

An+l;3 An+1;4 Am,n—i—l,?) Am,n+l;4
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(2.11) implies

X 1 11 = An+1;1Xm,n+1;1
m+1,n+1;1 —
An+1;2Xm,n+l;3 ’
X 1 L3 = An+1;3Xm,n+l;l
+1,n+1;3 —
m " An+1;4Xm,n+1;3

For a = 1, by induction on m,

J.-C. BAN, S.-S.

LIN AND Y.-H. LIN

Xm+1,n+1;2 - |:

(An+1;1P(Xm,n+l;l); An+1;2P(Xm,n+1;3))t

[ ] b11Ana bi2Ano ]
| D13A4n;3 b1aAna
[ b21An;1 b22An;2

L L bQBAn;3 b24An;4

T bllsm;llAn;le,n;l
L b13Sm;11An;3Xm,n;l

b21Sm;31An;1Xm,n;1
L bQBSm;BlAn;BXm,n;l

leSm;13An;2Xm,n;3
b14Sm;13An;4Xm,n;3

b22 Sm;BBAn;2Xm,n;3
b24 Sm;33 An;4Xm,n;3

Sm;lle,n;l
Sm;13Xm,n;3

Sm;SIXm,n;l
Sm;33Xm,n;3

bllsm;IZAn;le,n;2
b13Sm;12An;3Xm,n;2

b218m;32An;1Xm,n;2
b238m;32An;3Xm,n;2

leSm;14An;2Xm,n;4
b14 Sm;14An;4Xm,n;4

b22 Sm;34An;2Xm,n;4
b24 Sm;34An;4Xm,n;4

Hence X;41,n+1;1 can be represented by a matrix

Xm+1,n+1;1 = P(Xm+1,n+1;1) = |:

Xm+1,n+1;1,1
Xm+1,n+1;1,3

Xm+1,n+1;1,2
Xmt+1,n+1;1,4

An+1;1Xm,n+l;2
An+1;2Xm,n+1;4

:| ) and Xm+1,n+1;4 = |:

|
|
|
|

|

|\

An+1;3Xm,n+l;2
An+1;4Xm,n+1;4

Sm;lZXm,n;2
Sm;l4Xm,n;4

Sm;32Xm,n;2
Sm;34Xm,n;4

[ bllsm;ll b12Sm;13 :| [ An;le,n;l :| [ bllsm;IZ b12Sm;14 :| [ An;le,n;2
b21Sm;31  b22Sm;33 AnoXm,n;3 b21Sm;32  b22Sm;34 AnoXm na
[ blBSm;ll b14Sm;13 :| [ An;BXm,n;l :| [ blBSm;IZ b14Sm;14 :| [ An;BXm,n;2
b23Sm;31  b24Sm;33 Ap;aXmon;3 b23Sm;32  b24Sm;34 An;aXmona

Once again, (1.1), (1.2) and (2.1) can be used to recast the matrix X, 41,041, as

a11Cm;11 a12Cm:21 Xyt a11Cm;12 a12Cm;22 Xy it
m—+1,n; m+1,n;

&130m;31 a140m;41 G13Om;32 a140m;42

a21Cm;11 422021 Xt s a21C ;12 a22Cm.02 Xt
m+1,n; m—+1,n;

a23C ;31 a24Cra1 a23C ;32 a24Chy.a0

According to Theorem 2.4, the above matrix becomes

Om+1;12Xm+1,n;2
Cr+1;22 X m41,n54

Om+1;11Xm+1,n;1
Crn+1;21 Xm+1,n53

]:

Sm+1;11Xm+1,n;1
Sm+1;13Xm+1,n:3

Sm+1;12Xm+1,n;2
Sm+1;14 Xm+1,n54

|

|
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The cases with a = 2,3 and 4 can also be considered analogously (2.41) follows.
Next, (2.42) follows easily from (2.35), (2.36) and (2.41).
Equation (2.43) remains to be shown. If the 2 x 2 matrix

Arin Ao A Agp 11
2.44 A = ' ' = ’ ’ =
(244) ! { Ar21 Arae ] [ A1z Ara } { 11 ]

is introduced, then the previous argument also hold for n = 1. Hence, (2.43) holds.
The proof is complete. O

For any positive integer p > 2, applying Theorem 2.5 p times permits the elemen-
tary patterns of A" to be expressed as the product of a sequence of Sy,;3,4,,, and
the elementary patterns in A". The elementary pattern in A" is first studied.

n-+p
For any p > 2 and 1 < g < p—1, define

(k) (k)

A A
(k) _ m,n+p;o;01;82;- 58431 m,n+p;a;B1;082; 58432
(2.45) Am,’ﬂ"rl)?a?Bl;ﬁZ?”';ﬁq B (k) o ’ A o '
m,n+p;a;B1;82; 18433 m,n+p;a;B1;82; 584
Then
( ) 2mfl 2mfl P ( )
K l
(246) Am,n+p;a;ﬁ1;ﬁ2;-“;ﬁp = Z Z (H K(m;ﬁi—luﬁi;li—luli))Amﬁn;ﬁp7
=1 ly=1 i=1

where By = a and ly = k can be easily verified. Therefore, for any p > 1, a general-
ization for (2.37) can be found for A}, as a 2P*! x 2P*! matrix

(2.47) ?er = [Am,n-i-p;a;ﬁﬁﬁz”'?ﬁp]
where
2m71
(2.48) A = 4l
. m,n+p;a;B1;82:58p — Z m,n;o; 81382 38p”
k=1

In particular, if o; 81,82 - -+, B, € {1,4}, then Ay iy piaipiips-- 6, lies on the diagonal

of AT, in (2.47).
Now, define
k
(249) Xm,n-i-P;a;Bl?BQ;"' Bp — (Aﬁm,)nqu;a;ﬁl;ﬁmm ;ﬁp)t'

Therefore, Theorem 2.5 can be generalized to
THEOREM 2.6. For anym > 2, n>2 and p > 1,
(2.50) X ntpiasriBorri6p = SmiapySmipi By~ Smify 16, Xm.ni,

where a, 5; € {1,2,3,4} and 1 < i < p.
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Proof. From (2.46), (2.40) and (2.42),

p
Ag:-,)n*f'P?Oé%ﬁl;ﬁ%' Z Z HK m3 Bt B lia, i) A mzlﬁp

lll l_lll

P
= Z Z H ,ﬁiflﬁi)liflli>A§Tl;jZ7f;ﬁp

=1 p—l =1
om— 1 om— 1
(Ip)

= Z Z miBo1 oty (SmiBa B2 )ints (Sm;ﬁpflﬁp)lpfllpAmzjn;Bp

l1=1 =

B

(Ip)

= ) (Smioi Smiis -+ SmiBy 18, ioly A,

lp=1

b=l

(Ip)

= Z (Sm;aﬁl Smipips Sm;ﬁp—lﬁp)klpAmfn;ﬁp

l,—1

is derived. By (2.49), then

—(A®
Xm7n+10;0¢;51§52§'”§ﬁp - (Am,n+p;a;ﬁ1;ﬁ2;m;ﬁp)t
277171
(p)
= (D (St Smspi s+ Smsgy 18, kly A,
lp=1

= Smiap Om;pifs " Sm;ﬁp—lﬁpXmm;ﬁp'
The proof is complete. O

2.2. Lower bound of entropy. In this subsection, the connecting operator C,,
is employed to estimate the lower bound of entropy, and in particular, to verify the
positivity of entropy.

First, recall some properties of I'y, 5, and spatial entropy.

Iy, n satisfies the subadditivity in m and n:

(251) le-i-mg,n S le,nrmg,na
and
(252) Fm,n1+n2 S Fm,nlrm,nza

or equivalently,

(2.53) |AREme| < AT [JAT
and
(2.54) AT o | < [ATL AT

for positive integers m, n,my,n1, mo and no. Here

(2.55) Ay = { 1 } ]

is applied.
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The subadditivity property implies

1 1
(2.56) limsup — log [A}}| < — log |AP~!|
mn pq

m,n— o0

for any p and ¢ > 2. Therefore,

1
h(Ag) = lim —log|A}Y|

m,n—o0 M
exists, and equals
1
2.57 inf — log |[AP71].
(2.57) S g A

In particular, h(A2) has an upper bound
1

(2.58) h(Ag) < —log|AP~1|
pq

for any p and ¢ > 2.
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Similarly, when As is horizontal (or vertical) transition matrix for any m > 1 and

q>2,

, 1 o1 .
(2.59) limsup — log |AT"| < alog |AZ"]-

n—oo N

Hence, the spatial entropy is hy, (A2) on an infinite lattice Z,41x00 (0T Zooxm+1) and

.1 mi e L m
(2.60) hm(Ag) = nh_}ngo - log |AT| = ;Izlg 7 log |A7"].

For the proof of the above results, see [15].
Furthermore, by Perron-Frobenius theorem,

1
(2.61) lim —log|AT'| = log p(A,).
m

m—00

Therefore, for any n > 2
1
(2.62) h(Az) < —log p(An).

For a proof of (2.61), see [4], [30].
The following notation is adopted.

DEFINITION 2.7. Let X = (X1, ,Xu)!, where Xy, are N x N matrices. Define

the summation of X by
N
(2.63) X =) X;.
k=1
If M = [M;;] is a M x M matrix, then

M M
(2.64) IMX| =" M;X;.

i=1 j=1
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Note that, (2.63) implies

om—1
(265) |Xm,n;oz| = Z Agi,)n;a = Am,n;a-
k=1

As usual, the set of all matrices with the same order can be partially ordered.
DEFINITION 2.8. Let M = [M;;] and N = [N;;] be two M x M matrices, M > N
ifMij > Nij fO'l“ all 1 < i,j < M.

Notably, if As > A} then A, > A/ for all n > 2. Therefore, h(A2) > h(A}).
Hence, the spatial entropy as a function of A, is monotonic with respect to the partial
order >.

DEFINITION 2.9. A K + 1 multiple index

(2.66) Br = (182 Bk Br+1)
is called a (periodic) cycle if

(2.67) Br+1 = P

It is called a diagonal cycle if (2.67) holds and

(2.68) Br € {1,4}

foreach1 <k<K+1.
For a diagonal cycle (2.66), denote

(2.69) Br = Br; Bo; -+ 5 Bx
and
(2.70) B = Br; B -+ B (n times)

First, prove the following Lemma.

LEMMA 2.10. Let m > 2, K > 1, B be a diagonal cycle. Then, for anyn > 1,

(2'71) p(A?KJ&) 2 P(|(Sm;ﬁ1ﬁ28m;ﬁ2ﬁ3 T Sm;ﬁKﬁK+1)nXm,2;ﬁ1 |)
Proof. Since By is a periodic cycle, Theorem 2.6 implies

(2.72) X255 = (SmiBi e Smipass =+ SmiBrcBreir)” Xm, 2,6 -

Furthermore By is diagonal, and X, k10,50 = Ay nii2,p lies on the diagonal
part as in (2.47) with n + p = nK + 2, therefore

(2.73) P(ATK12) 2 P(1X i t2,7.1)-

Therefore, (2.71) follows from (2.72) and (2.73).
The proof is complete. O
The following lemma is valuable in studying maximum eigenvalue of

(Sm;ﬁlﬁz T SW;ﬁKBK+1)nXm>2?ﬁl in (2'71)'
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LEMMA 2.11. For any m >2, 1 <k <2™" ! and o € {1,4}, if
(2.74) tr(A%), ) =0,
then for all 1 <1 <2m~1
(2.75) (Sm,a1)kt =0 and (Smiaa)w =0,

i.e., the k-th rows of matrices Spm.a1 and Spm;aa are zeros. Furthermore, for any
diagonal cycle Bg, let U = (u1,us, -+ ,usm-1) be an eigenvector of
Sm;ﬁlﬁ2sm§ﬁ2ﬁ3 "'Sm;ﬁkﬁla if ug 7£ 0 for some 1 <k < 2m71; then

(2.76) tr(A%), ) > 0.

Proof. Since A;’ié;a can be expressed as in (2.43). Therefore, tT(ASS,)z;a) =0 if
and only if (2.75) holds for all 1 < < 2™~1. The second part of the lemma follows
easily from the first part.

The proof is complete. O

By Lemma 2.10 and Lemma 2.11, the lower bound of entropy can be obtained as

follows.

THEOREM 2.12. Let 31532+ Br 1 be a diagonal cycle. Then for any m > 2,

1
(2.77) h(A2) 2 —108 P(Simin 2 Smifas =+ Smifiucn)-
and
1
(2'78) h(AQ) > ﬁlog p(Wm;ﬁ1ﬁ2Wm;52ﬁ3 e 'Wm;ﬁkﬁl)'

In particular, if a diagonal cycle 102 --- BrB1 exists and m > 2 such that

p(Sm;ﬁlﬁz‘S’m;@ﬁa o 'Sm;ﬁxﬁl) >1,
or
p(Wm;ﬁlﬁme;ﬁbﬁs e 'Wm;ﬁkﬁl) >1

then h(Az) > 0.
Proof. First, show that

1 . n
(2'79) h(AQ) > i lim sup (1Og p(|(Sm;ﬁ152Sm;ﬁ2ﬁ3 e 'Sm;ﬁkﬁh) Xom, 2 |)

n—oo

Indeed, from (1.11) and (2.71),

. 1
h(A2) = lim ——— log p(Anr+2)

+2

= lim ——log p(A™
L e oy S 0g p(Alk 12)

W lim sup ﬁ (log P(|(Sm;ﬁ1ﬁ2 T Sm;ﬁkﬁl)nXm,Q;ﬁl |))

n—oo

Y
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Now, the following remains to be shown

. 1 "
(2'80) lim sup E(log p(|(Sm;ﬁ1ﬁ2 T Sm;ﬁx[h) Xm,2;ﬁ1|) = log P(Sm;ﬁlﬁz e 'Sm;ﬁkﬁ1)'

n—oo

Since X, 2.8, = (Ai’j?z;ﬁl)t, if tT(Ags,)zm) = 0 then Lemma 2.11 implies the k-th
row of Sy,.3, 8, is zero which implies that the k-th row of (Sp.8,8, -+ - Sm:gr )" is also
zero for any n > 1.

It t’”(Afv]i,)m) =0 forall 1 <k <2m"' then S5, = 0. (2.80) holds trivially.

Now, assume that 1 < k' < 2™~ exists such that tr(Afr]f:%;ﬁl) > 0. Define
A k/ A A
(2.81) X =)0 = (X Xur),
where tr(Aif:%;ﬁl) >0 for 1 <k <M <27 ' Then p(X;) >0 for 1 <j < M.
Let M be the M x M sub-matrix of Sy,.3,8, - - - Sm;8x 5, from which the k-th row

and k-th column have been removed whenever tr(Ag:,)zﬁl) =0for1<k<2m L
Clearly,

(2.82) (S -+ Smiprcsn)" Xomo2i, | = MM X,
and
(283) p(Sm;ﬁlﬁz e 'Sm;ﬁkﬁl) = p(M)

The proof of (2.80) comprise three steps, according to
(i) M is primitive,
(ii) M is irreducible, and
(iii) M is reducible.
(i) M is primitive. Then by Perron-Frobenius Theorem the maximum eigenvalue
p(M) of M is unique with maximum modulus, i.e.

(2.84) p(M) = Ay > [Nyl,

for all 2 < j < M, where ); are eigenvalues of M. Moreover, a positive
eigenvector vi = (v1,v2,--,vp)t is associated with A; [26], [27]. Fur-
thermore, Jordan canonical form theorem states that a non-singular matrix
P = [P;j]arx M exists, such that the real Jordan canonical form of M is

MO -0
. 0 J,, - 0

(2.85) M=PMP'=| . 7 |,
0 o e Jp,

where J,,, 2 < k < q are real Jordan blocks and the associated eigenvalue
A of J,, satisfies (2.84). Moreover, the positivity of eigenvector v; implies
that IP can be chosen such that

M
(2.86) Y Pi=1
=1
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and
(2.87) Py >0
for all 1 < j < M. Therefore, by (2.86)

IM"X| = |PM"X| = |PM"P~1PX|
= |(PMP~1)"PX| = [M"PX]|
M

M
=MD PN Y 0K}
=1 j=1
where
(2.88) lim g, ; =0,

for all 1 < j < M, by (2.84).
Hence, by (2.87) and (2.88),

1 A
(2.89) lim - log p(IM"X|) = log A1
Combining with (2.82), (2.83) and (2.89), (2.80) follows.

M is irreducible.
If M is irreducible but imprimitive, then k& > 2 exists, such that

AL = [do] == Ak > |

for all j > k. Then, by applying a permutation, M can be expressed as

0 Mp 0 - 0
0 0 My --- 0
(2.90) M= : : C : ,
0 0 Mg 1k
My 0 0
and,
M, 0 0
0 M, 0
(2.91) MF = : .|
0 0 My

where M; = M j 1M1 j4+2 - M;_1 ; is primitive with the maximum eigen-
value \¥, see [26], [27]. Hence, by the same argument as in (i)

1 N
lim_—log p([M™* X[) = AT,

(2.80) follows.
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(iii) M is reducible.
In this case, by applying a permutation, M can be expressed as a block upper
triangular matrix:

]\411 ]\412 e . Mlk
0 Moy -+ -+ Moy
(2.92) M = ;
0 0 S
0 0 0 My

where M;; is either irreducible or zero. Furthermore,
k
o(M) = | o(M;y),
j=1

where (M) and o(M};) are the sets of eigenvalues of Ml and M;;, respectively.
In particular, 1 < j < k exists, such that

(2.93) p(M;) = p(M) = A1

[26], [27]. Therefore, applying (2.83), (2.93) and the same argument as in (ii)
yields (2.80).
The proof is complete. O

DEFINITION 2.13. Let D denote the set of all diagonal cycle:

D ={f1B2 BrBr+11b1P2 - BrBr+1 satisfies (2.67) and (2.68)},

define
1
(2'94) P (AQ) = sSup —K log p(Sm;Blﬁzsm;ﬁzﬁs T SW?BKBI)'
m>2,41B2-Br41€D T
and
1
(2'95) h; (AQ) = sup — log p(Wm;ﬁlﬁzwm;ﬁzﬁs T Wm;ﬁkﬁl)'

m>2, By--BxeD MK

Then Theorem 2.12 implies

Knowing whether the equality holds for A, is of interest, since h.(Az) and A/ (As)
are more manageable than h(As). However, a class of Ay has been found for what
equality (2.96) holds; details can be found in Example 2.14. of the next subsection.

2.3. Examples of transition matrices with positive entropy. In this sub-
section, various examples are studied to elucidate the power of Theorem 2.12 in veri-
fying that the entropies are positive. First, Golden-Mean type transition matrices are
studied.
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Example 2.14.
(A) Golden-Mean

519

When two symbols on two-cell horizontal lattice Zsx1 and vertical lattice
Z1x2 are considered and both transition matrices are given by golden-mean,

i.e.,

1

leVlz[l

1
O )

then the (horizontal) transition matrix Ag on Zaxo is

(2.97) Ay =

e
O = O =
OO ==

as in [41]. Verifying
(2.98)

is also easy. Furthermore, for any n > 2,

A, B, A, 0
[ Apss Bapr ] | Co 0 €. 0
(2:99) A”“_{Cnﬂ 0 | |4 B, 0 0
0 0 0 O
where
A, B,
An+1 = |: On O :|

with C,, = B, and A,,' = A,, i.e., A,, are symmetric for all n > 2.

Moreover, the following two properties hold:
(i) For any m > 2,

o o oo

BQZ&QZ@QZAQ.

(2.100) Cr11 = A1,

where

(2.101) A, = | @101 012021
13031 Q14041

and

(ii) for any m > 2,

1
< =
m

log p(An,).

1

(2.102) — log p(Ap—1) < h(A2)
m

Therefore,

The numerical results appears in Example 3.12.
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(B) Simplified Golden-Mean.
Consider

(2.104) Ay =

O = =
OO O
SO O =
oo oo

(2.104) cannot be generated from one-dimensional transition matrices Hy and
V1, as in the Golden-Mean (2.97). Equation (2.104) is obtained by letting
a3 = azz = 0 in the Golden-Mean (2.97). (2.98) is easily verified, and for
any n > 2,

(2.105) App1 =

o o © O

0
0

Furthermore, (i), (ii) and (2.103) hold as in (A).
(C) Generally, if Ao satisfies the following three conditions
(C1) By = Ao,
(02) aljzling;j #0f01‘1§j§4,
(C?)) gg;l 2 Ag;j for 1 S ] S 4,
then (i), (ii) and (2.103) hold. The matrices Az, which satisfy (C1), (C2) and
(C3) can be listed as

1 1 1 0
1 0 a3 0
(2.106) 1 az, 0 0|
0 0 0 0
and
1 1 1 1
1 1 a3 ax
(2.107) A A
1 a3 as3 au

where a;; is either 0 or 1 in (2.106) and (2.107).
Notably, if (C2) and (C3) are replaced by

(CQ)I A4 = 1if Ag;j 75 0 for 1 < ] < 4,

(C3>/ ;{2;4 Z Ag;j fOI‘ 1 S j S 4,
then for any m > 2,

(2.108) Cmiaa = A

with

(2'109) Al — 41014 (42024
(43034 (44044

and property (ii) and equation (2.103) hold.
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In Example 2.14, the diagonal parts Ag.; or As.4 are dominant. In this case, only
Cm;11 or Cpyaq is Tequired to apply Theorem 2.12. In contrast, when A, and Agy
are no longer dominant as in the following examples, A2 and As.3 can complement
each other to establish that the entropy is positive.

Example 2.15.
(A) Consider

01 1 0
1 01 0
(2.110) M=, 700l
0 0 0 O
that (2.98) holds can be verified and
0 1 1 0
Co11 1 0l Cao0 = 10
1 1 0 0
Ch;33 0 0l Coua = 0 0
Therefore,
1 1]
S2.1452.41 = 11
and
1
h(Ag) > 1 log 2.
(B) Consider
01 1 0
1 01 1
(2.111) M= 0 01
1 1 1 0
Then verifying
0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 1 ~ 1 0 0 1 ~ 1 1 0 1
Bo=ty o 1 1| Bem| g oo 1| adbz= gy gy
0 1 1 0 1 1 1 0 0 1 1 0
is simple.
Furthermore,
0 1 1 0
Con1 = 10| Coo = 0 1
1 0 0 1
Co33 = 01l Crua = 10
and
0 1 1 0
Us1 = 1 0l Uz;22 = 011"
1 0 0 1
Us;33 = 11| Usaa = 10
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Now, for any diagonal cycle, 81 - - - BxB1, p(S2:8,8, - - S2:8x8:) = 1, h(A2) > 0 cannot
be established.

However,

Wa.11Wa14Waa1 = Uz11U2;22U2;33 = [ i (1) ]
which implies
h(Az) > %logg,
where
(2.112) , %(1+\/5)

is the golden mean, which is a root of A> = A —1=0.

This example demonstrates the asymmetry of As and By in applying Theorem
2.12, to verify the entropy is positive. Both C,, and U,, are typically checked for
completeness.

Ezxample 2.16. Consider

(2.113) Ag

Il
_ o O
OO O
SO O =
O = =

Then it is easy to check that

2 0 G 0
Wo1 Wo1aWaan = { 0 0 ] » Ssuaa = { 0 0 ] ’

and

G 0 00

0 0 0

Sg44 = 0 601 0 0|

0O 0 0 O
where
Therefore,

1

1 1
h(Ag) > max{g log 2, 3 log g, 1

1
logg} = 7 logg.

Ezxample 2.17. Consider

(2.115) Ag

== O
SO O
SO O
oSO O
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Then

0 1 1 0

By = i (1) (1) 8 = Ay and By = As.

0 00O
Therefore

Cop = { - } el
Furthermore,

Cinn=G0e0G

and

Com1 =G ® (@(e1 @ G')™ 1)

can be proved, and which implies

1 1
(2.116) %logp(CQ,mll) = 510gg.

523

for all m > 1. Hence, h(Ay) > %log g. Moreover, in Remark 3.10 (ii), it can be shown

that h(Ag) = 1logg

3. Trace operators.

3.1. Trace operator T,,. The preceding section introduces connecting opera-
tors C,;,, which can be used to find lower bounds of spatial entropy. This section
studies the diagonal part of C,,, which can be used to investigate the trace of AJ".

When As is symmetric, Ty, gives the upper bound of spatial entropy.

The trace operator is defined first.

DEFINITION 3.1. For m > 2, the m-th order trace operator T,, of Ay is defined

by

(3.1) T,, = [ Cminr - Cims2z } _ { Smi11 Smila }

Cm;33 Cm;44 Sm;41 Sm;44

where Cy,.5 is as given in (1.23) or (2.29).
Similarly, the m-th order trace operator T,  of By is defined by

(3.2) T/

m

_ Um;ll Um;22 _ Wm;ll Wm;14
Um;33 Um;44 Wm;41 Wm;44

where Up,.ij s as given in (2.31).

The relationships between the trace operator T,,, 'H‘;n and A,,, B,, are given as

follows.



524 J.-C. BAN, S.-S. LIN AND Y.-H. LIN

THEOREM 3.2. For any m > 2,
(3.3)

a1l a921 aiz a2
E2m—2><2m—2 ® Ezm—2><2m—2 ®
az1 aq1 aszz2 Q42

Tm = (Bm)2m><2m o ~
a a a a
E2m—2><2m—2 ® 13 23 :| E2m—2><2m—2 ® |: 14 24 :|

i | G433 Q43 a34 Q44
and
(3.4) i )
bll b21 b12 b22
Egmoawam=2 @ | 0 by ] Eam-axam=2 @ [ by bio ]
T, = (Am)amxam o )
b1z ba3 bia  boy
I E2m—2><2m—2 ® i b33 b43 :| E2m—2><2m—2 ® |: b34 b44 :|
In particular,
(3.5) T < B, and T, < A,,.

Proof. By (3.1) and (2.29),

a a a a
Ezm—2><2m—2 ® 1 21 Ezm—2><2m—2 ® 12 22
azr  a41 az2  A42

a a a a
E2m—2><2m—2 ® 13 23 E2m—2><2m—2 ® 14 24
a33 443 a34 Q44

A similar result also holds for T/ ,. Hence, (3.5) follows immediately.

The proof is complete. O

Notably, the trace operator T, (or T/ ) preserves all periodic words
Qiyig Gigis ** iivnsy (DiviaDigis =+ Dipyipnyy) With ipqq =41 of length m systematically
as B, (or A,).

The traces of the elementary patterns are defined accordingly.

DEFINITION 3.3. For m,n > 2 and 1 < a < 4, define

(3.6) to i = (AN,

(3.7) tr(Xm,nia) = (tsrlf,)n;a)lgk§2m47
and

(3.8) bt = (X ns1) s (X nia))',

which are 2™~ 1 and 2™ vectors, respectively.

Note that
tT(AT) = tT(ZiZIl Ag::)n,l + Eii;l Agj)nA)
(3.9) = |tT(Xm,n;l)| + |tT(Xm,n;4)|

[tm.n-
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First prove that T, can reduce the traces of higher-order to lower-order.

PROPOSITION 3.4. For m > 2 and n > 2,

(310) tm,nJrl = Tmtm,n

Proof. By Theorem 2.5, it is easy to see
tr(Xm,n-i-l;l) Cm;lltT(Xm,n;l) + Cm;22tT(Xm,n;4)

tT(Xm,nJrl;Al) Om;33tT(Xm,n;1) + Om;44tT(Xm,n;4)

Then, (3.10) follows immediately.
The proof is complete. O
Repeatedly applying Proposition 3.4 yields the following result.

THEOREM 3.5. Form >2 andn > 1,

(3.11) tr(Ay o) = [Thtm 2|
(312) = Z |Sm;ﬁ1ﬁ2sm;ﬁ2ﬁ3 o 'Sm;ﬁnﬁn+1tT(Xm,2;ﬁn+1)|'
Bref{1,4}
Proof.
tr(AT)
2771 1 m m m
k
:Z”Afn)nll Z mn14 Z Afn)n41 Z mn44
k=1 k=1 k=1

= [tr(Xom,ni11)| + [tr(X m7n;1;4)| + [tr (Xomnsa;1)| + [t7(Xom,ns4:4)|
= [tr(Smi1 Xm,n—1;1)] + [t7(Smi14 X n—1;4)|

+tr (Sm;a1 Xm,n—1;1)| + [0 (Sp;a4 Xim,n—1;4)|
= |Tmtm,n71|v

here Theorem 2.4 is used.
Reduction on n, yields

tr(AT) = [T tm 2.

n

Finally, (3.12) follows from (3.1) and (3.8).
The proof is complete. O
The following lemma is needed to show (1.33).

LEMMA 3.6. Let V,,, be a nonnegative eigenvector of T,, with respect to the
mazimum eigenvalue p(Ty,). If p(T.,) > 0, then

<Vmu tm,2> > 07

where ( , ) denotes the standard inner product of C*"

Proof. Let V,, = (u1,- - ,un,ul, - ,ul,) be a nonnegative eigenvector of Ty,
where M = 2™~'. Since p(T,,) > 0, by Lemma 2.11, if u, > 0 (or uj > 0) then

tT(ASn)Q 1) >0 (or tr(Asn)Q 4) > 0). The result follows by (3.8).
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The proof is complete. O
Now, (1.33) can be proved.

THEOREM 3.7. For any m > 2,

1
(3.13) lim sup — log tr(A") = log p(To ),
n—oo N
and
. 1
(3.14) h(Ag) > limsup — log p(Tp,).
m—oo M

Furthermore, if A, are primitive for all n > 2, then limsup in (3.18) and (3.14) can
be replaced by lim, i.e.,

1
(3.15) lim — logtr(A) =log p(T,,)
n—oo n,
and
1
(3.16) h(Ag) > lim Elogp(?l‘m).

Proof. By Perron-Frobenius theorem, for all n > 2, we have

1
(3.17) limsup — log tr(A7") = log p(Ay,).
m

m—00

Therefore, by (3.17) and Theorem 3.5, we have

1 1 1
h(Ag) = nlim —log p(A,,) = limsup — log tr(A]') = limsup — log |T7 tm, 2|

—oon n,m—oo MMM n,Mm— 00

By Lemma 3.6 and by argument used to prove Theorem 2.12,

(3.18) lim sup % log [Ty tm, 2| = log p(Ty,)
can be shown, and (3.13) and (3.14) follow immediately.

When A,, are primitive for all n > 2, (3.15) and (3.16) follow.

The proof is complete. O

Now, the symmetry of Ay is established to be able to be inherited by the higher
order matrices.

PROPOSITION 3.8. If As is symmetric, then A, is also symmetric for each n > 3.

Proof. The proposition is proven by induction on n.

| My M,
LetM—[]\/[3 M,

matrices. Then, the transpose matrix M? of M is

o[ Mt My

} be a square matrix and M;, 1 < ¢ < 4, all be square
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Therefore, M is symmetric if and only if
M,' = M, Ms' = M, and M4 = M,.
In particular, As is symmetric if and only if
(3.19) Ag;l = Ay, Ag;g = Ay and A§;4 = Asy.

Now, A,, is assumed to be symmetric, such that

(3.20) Al =Ang, Alg=Appand ALy = Ay
Since
At An.
Anita = [A2a]ox2 © { An:l), Anfl ] ,

(3.19) and (3.20) imply
Al g = Angra, AL = Anpip and A7y = Apjra

Hence, A, 11 is symmetric.
The proof is complete. O
Now, upper estimates of spatial entropy h(Az) are obtained when Aj is symmetric.

THEOREM 3.9. If Ay is symmetric then for any m > 1,

1
(3.21) h(A2) < om log p(T2m).
Proof. By Proposition 3.8, A2™ is symmetric for any m > 1. The symmetry of
A?™ implies that all eigenvalues of A?™ are non-negative. Hence,
(3.22) p(An)?™ = p(AZ™) < tr(A27).

On the other hand, the subadditivity of (2.58) implies

(3.23) h(As) < log |A2mF).,

1
(2mk + 1)n

Therefore, (3.22), (3.23) and (3.11) imply

1
h(As) < lim ——————log|AZ™| = i log p(AZ™
(A2) = lim Smk £ 1) og |4, = lim o—log p(A;"™)
1
< lim logtr(A?™) = lim log |5 2tom o
n—oo ZMmmn n—oo ZMn
<

— I Tom).
5o og p(Tam)

The proof is complete. O
Notably, T,, (or T/,) yields a better estimate than B,, (or A,,) whenever

(3.24) h(Az) < —log p(Tpm)

1
m

holds.
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Remark 3.10.

(i) The problem in which A, are primitive for all n > 2 has already been investi-
gated [6]. In [6], various sufficient conditions have been found to ensure that
A, are primitive for all n > 2. Notably, limit in (3.15) and (5.16), instead of
limsup in (8.13) and (3.14), causes A,, to have a unique mazimum eigenvalue
with a mazimum modulus. Therefore, A, may be imprimitive but (3.15) and
(3.16) still hold. For example, Golden-Mean and simplified Golden-Mean in
Ezample 2.14 are imprimitive but (3.15) and (3.16) still hold. The remaining
matrices of these A, are primitive if their rows and columns with zero entries
are removed.

(i) In general, limsup cannot be replaced by limit. For example, consider

01 1 1
1 0 00
(3.25) A2=11 0 0 o
1 0 0 0
Further computation shows that
Tomt1 =0
and
Tom = { @G @eym oG e1® (G @en)" ) }
T e @ (3G @e)™ ) e1® (®(G ®e)™ )
/ 0 1 10
for allm > 1, where G = [ 11 ] and e; = [ 0 O]'
Therefore, p(Tom41) = 0. Furthermore, it can be shown that
(3.26) p(Tam) < g™+ g™ .

Combining (2.116) and (3.26), h(Az) = 3logg. Hence (3.14) holds only for
limsup. Unlike (2.62) this example demonstrates that (3.24) does not hold
for any n =2m + 1. This phenomenon is a disadvantage in determining the
upper estimate of entropy associated with replacing A, with T,,.

Ezxample 3.11. Consider

Ay =

= O O
o O O -
SO O
O~ =

which was studied as in Example 2.16. Now, A, is asymmetric. Furthermore,
tr(A%) =3

can be obtained for all n > 2. Hence, (3.22) and then (3.21) fail when m = 1.
However,

Cuaa =

o o oQ

0
el
0
0

o O OO
o O OO
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Wherer{1 1

107

1 0
0 0

and 0 =

0

0
0 0

exponentially with exponent p(G) = g, the golden-mean.
Whether (3.21) holds for some m > 2 is of interest.
Example 3.12. Consider the Golden-Mean

which was studied as in Example 2.14. As is symmetric, so the numerical results can

be obtained as follows.

Ay =

1 1
1 0
1 1
0 0 00

(e
o O O

m

p(Am—l)%

p(Tp)m

p(Am)%

00 N O UL i W N

9
10
11
12
13
14
15
16

1.3415037626
1.3804413572
1.4041128626
1.4201397131
1.4316975290
1.4404277508
1.4472546963
1.4527395436
1.4572426033
1.4610058138
1.4641976583
1.4669390746
1.4693191202
1.4714048275
1.4732476160

1.5537739740
1.4892228485
1.5069022259
1.5017251916
1.5035148094
1.5028716910
1.5031163748
1.5030208210
1.5030591603
1.5030435026
1.5030500001
1.5030472703
1.5030484295
1.5030479329
1.5030481473

1.5537739740
1.5370592754
1.5284545258
1.5233415461
1.5199401525
1.5175154443
1.5156994341
1.5142884861
1.5131606734
1.5122385423
1.5114705290
1.5108209763
1.5102644390
1.5097822725
1.5093605030

. Hence tr(A%) grows at least

Notably, both p(A, )= and p(Ts,,)?w are monotonically decreasing in m. In contrast,
p(Ap_1)m and p(’I['QmH)#H are monotonically increasing in m, that p(Tay,)2m
gives better upper bound than p(A,,)=. That p(TgmH)ﬁ are lower bounds is
conjectured. If they were, then p(T,, )= would yield a very sharp estimates.

4. More symbols on larger lattice. As mentioned in the introduction, many
physical and engineering problems involve many (more than two) symbols and larger
lattices. Therefore, the results found in the previous sections must be extended to any
finite number of symbols p > 2 on any finite square lattice Zsjx2;, ;>1. The results
are only outlined here, and the details are left to the readers. Proofs of theorems are
omitted for brevity.

For fixed p > 2 and [ > 1, denote by

l2

(4.1) q=p .

The horizontal and vertical transition matrices are given by
a1 ay 2 ai,q2
az 1 a2 2 a2 42

(4.2) Ay, =
Gg2,1 Gg22 "0 (g2 g2
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and
bin bia oo b
(4.3) B, — b2:,1 b2:,2 b2;q2 |
bq;,l bq'272 .. bq2'7q2
respectively.
Now, Ay and By are related to each other by
Az Ase - Agy,
(4.4) Ay = AQ;.qul Az;.q+2 e Azqu
Asiq(q-1)+1 e s Agge
where
ba,1 ba2 o bayg
(4.5) Agey = ba,f;+1 ba)thQ o baag |
bagla—14+1 Daga-1)+2 -+ bag?
and
Baq Bs.o -+ By,
(4.6) B, — B2;'t1+1 B2;.q+2 . B2';2q
Bag(g-1)+1 e oo Bgpe
where
QAa,1 Qe,2 o Gayg
(4.7) By = aa,'q+1 aa,'ﬁz . %:Qq |
Qa,q(g—1)+1  OGa,q(g—1)+2 ~°°  OGaq?

respectively, where 1 < a < ¢2. The column matrices 1&; and I@;, As and By are
defined as in (2.1) and (2.2). For higher order transition matrices A,, n > 3, are
defined as

An;l A'n,;2 NN An;q
An; +1 An; +2 NN An;2
(48) An — '(1 .q ' q
AW?Q(q—1)+1 An;(q—l)q+2 e An;qz
where
(4.9)
ba1An—1;1 ba2An—12 o ba,gAn—15
A ba,q+1An71;q+l ba1q+2An,1;q+2 . ba,?qAnfl;Qq

ba,q(Q*l)JrlAnfl;q(qfl)Jrl ba,q(q71)+2An—1;q(q71)+2 e ba,qun;qQ
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Rewriting the indices of A, as follows, facilitates matrix multiplication.

An;ll An;l? e An;lq
An;21 An;22 e An;?q
(4.10) A, = . . . .
An;ql An;q2 T An;qq
Clearly, An.q = Ap;j,j,, Where
(4.11) a = a(ji, j2) = q(j1 — 1) + ja.

For m > 2, the elementary pattern in the entries of A} is given by

AnijijaAnigags *** Anmimirs

where js € {1,2,--- ,¢}.
The lexicographic order for multiple indices

Im+1 = (Jij2 - Jmim+1)

is introduced by

(4.12) X(Jmt1 —1+Zq ‘G — 1)

Specify

AR)

m,n;a

= AnijijoAnsjags A

"?jmjm+1 9

where o = a(j1, jm+1) satisfies (4.11) and k = x(Jmt1) is as given in (4.12). Based
on this arrangement, A" can be written as

Am,n;l Am,n;? e Am,n;q

m Am,n;q-i-l Am,n;q+2 T Am,nﬂq
An = . . . 9

Am,n;q(q—l)-%l Am,ﬂ;l}(q—l)+2 o Amngg?

where

Moreover, Xy, nia = (Ag,]f?n;a)t, where 1 < k < ¢™ ! and X, 5.0 is a ¢™ 1-vector
that comprise all elementary patterns in A, ».o. The ordering matrix X,, ,, of A" is
now defined as

Xm,n;l Xm,n;? e Xm,n;q
Xm,n;qul men;qu? T Xm,n;Qq

erl;tl(trl)+1 Xm,n;q(q*1)+2 Xm,n;q2
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and X,, n+1,8 can be reduced to X ,.3 by multiplication with connecting matrices
Cm;a,3- The connecting operator C,, is defined as follows.

DEFINITION 4.1. For m > 2, define

Cm;l,l Cm;l,2 v C'm;l,q2
Cm;?,l Cm;2,2 T van;2,q2
C,, = .
O Cigzz - Cmigr g2
(4.13)
( SM;IJ o Sm;lyq Sm;q,I U Sm;q,q T
Smitala=D+1 " Smiig? Smiq.ala=1)+1 Siniq.q?
Smiq(a—1)+1,1 0 Smiga=1)+1,q Sm;q2,1 T Smuﬁ’q
L Smig(g—D+1,q(g—1+1 " Sm;CI(qfl)H,q2 Sm;qz,Q(qfl)H Smiq2,e2 |
where
(4.14)

Cm;a,ﬁ = ((BZ;a)qu o (®B;n*2)qxq)qu1xqul o (Equz X qm—2 ® AQ;B)qulxqm—l.

Like Theorem 2.4, Ci41;q,3 can be obtained in terms of Cy,.y 3.

THEOREM 4.2. For any m >2 and 1 < a, 8 < ¢?

a0;1Cm;1,8 a0;2Cm;2,6 Aa;qCrmiq,8
Aaiq+1Cmiq+1,8 Aa;q+2Cmiq+2,8 “ @a;2¢Cmi2q,8
Cmitia,8 = :
Gaiq(g—1)+1C0miga-1)+1,8  Gaiq(g—1)+2C0miq(q-1)+2,8 0a;q2Cmiq2,p
Denote by
(k) (k) (k)
Am,n—i—l;a;l Am,n+1;a;2 T Am,n—i—l,a,q
k
A(k) Am,nJrl;a;qul Am,n+1;a;q+2 T Am,n+1;a;2q
m,n+1;« = . . . .
() ne a®
m,n+105q(g—1)+1 m,n+105q(g—1)+2 m,n+1;0;q>

and Xy nt1:0:8 = (Af:)n+l_a_ﬁ)t where Agj)nﬂiaﬂ is a linear combination of AEQ,M.
Now, Theorem 2.5 can be generalized to the following theorem.

THEOREM 4.3. For any m > 2 and n > 2, let Sp.a,3 be as given in (4.13) and
(414) Then Xm,nJrl;a;B = Sm;a,ﬁXm,n;ﬁ-
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