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PARAMETRIZATION OF SINGΘ FOR A FANO 3-FOLD OF

GENUS 7 BY MODULI OF VECTOR BUNDLES∗

ATANAS ILIEV† AND DIMITRI MARKUSHEVICH‡

Abstract. According to Mukai, any prime Fano threefold X of genus 7 is a linear section of
the spinor tenfold in the projectivized half-spinor space of Spin(10). The orthogonal linear section of
the spinor tenfold is a canonical genus-7 curve Γ, and the intermediate Jacobian J(X) is isomorphic
to the Jacobian of Γ. It is proven that, for a generic X, the Abel-Jacobi map of the family of
elliptic sextics on X factors through the moduli space of rank-2 vector bundles with c1 = −KX and
deg c2 = 6 and that the latter is birational to the singular locus of the theta divisor of J(X).
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0. Introduction. This work is a sequel to the series of papers on moduli spaces
MX(2; k, n) of stable rank-2 vector bundles on Fano 3-folds X with Picard group Z

for small Chern classes c1 = k, c2 = n. The nature of the results depends strongly on
the index of X , which is defined as the largest integer that divides the canonical class
KX in PicX . Historically, the first Fano 3-fold for which the geometry of such moduli
spaces was studied was the projective space P3, the unique Fano 3-fold of index 4.
The most part of results for P3 concerns the problems of rationality, irreducibility or
smoothness of the moduli space, see [Barth-1], [Barth-2], [Ha], [HS], [LP], [ES], [HN],
[M], [BanM], [GS], [K], [KO], [CTT] and references therein.

The next case is the 3-dimensional quadric Q3, which is Fano of index 3. Much
less is known here, see [OS]. Further, the authors of [SW] identified the moduli spaces
MX(2;−1, 2) on all the Fano 3-folds X of index 2 except for the double Veronese
cone V ′

1 , which are (in the notation of Iskovskikh) the quartic double solid V2, a
3-dimensional cubic V3, a complete intersection of two quadrics V4, and a smooth 3-
dimensional section of the Grassmannian G(2, 5) by three hyperplanes V5. It turns out
that all the vector bundles in MX(2;−1, 2) for these threefolds are obtained by Serre’s
construction from conics. Remark that for P3 and Q3 all the known moduli spaces
are either rational or supposed to be rational, whilst [SW] provides first nonrational
examples.

We will also mention the paper [KT] on the moduli of stable vector bundles on
the flag variety F(1, 2), though it is somewhat apart, for F(1, 2) has Picard group 2Z.
This is practically all what was known on the subject until the year 2000, when a
new tool was brought into the study of the moduli spaces: the Abel–Jacobi map to
the intermediate Jacobian J(X). For the 3-dimensional cubic X = V3, it was proved
in [MT-1], [IM-1] that the open part of MX(2; 0, 2) parametrizing the vector bundles
obtained by Serre’s construction from elliptic quintics is sent by the Abel–Jacobi map
isomorphically onto an open subset of J(X). Druel [D] proved the irreducibility of
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MX(2; 0, 2) and described its compactification by semistable sheaves; see also the
survey [Beau-1]. The other index-2 case, that of the double solid V2, was considered
in [Ti], [MT-2], where it was proved that the vector bundles coming from the elliptic
quintics on V2 form an irreducible component of MV2

(2; 0, 3) on which the Abel–Jacobi
map is quasi-finite of degree 84 over an open subset of the theta-divisor Θ ⊂ J(V2).

In the index-1 case, several descriptions of the moduli spaces MX(2; k, n) were
obtained for the following threefolds: the 3-dimensional quartic [IM-2], the Fano
threefold of degree 12 [IM-3] and the one of degree 16 [IR]. The vector bundles
studied in these three papers are related respectively to the half-canonical curves of
degree 15, elliptic quintics and elliptic sextics. Kuznetsov in [Ku-1], [Ku-2] used the
moduli spaces associated to elliptic quintics on the 3-dimensional cubic V3 and the
Fano threefold X = X12 of degree 12 to construct semiorthogonal decompositions of
the derived categories of sheaves on these threefolds.

According to Mukai, any Fano threefold X = X12 is a linear section of the spinor
tenfold in the projectivized half-spinor space of Spin(10). The orthogonal linear sec-
tion of the spinor tenfold is a canonical genus-7 curve Γ, and the intermediate Jacobian
J(X) is isomorphic to the Jacobian of Γ. It is proved in [IM-3] that MX(2; 1, 5) is
isomorphic to Γ. Kuznetsov remarks that the last moduli space is fine and provides
a natural universal bundle on it.

Here we work on the same variety X = X12, but consider the moduli space
MX(2; 1, 6). We prove that all the vector bundles represented by points of MX(2; 1, 6)
are obtained by Serre’s construction from reduced sextics which deform to elliptic
sextics (Proposition 7.4). The main result (Theorem 6.4 and Corollary 7.5) is the
following: for generic X , MX(2; 1, 6) is irreducible and the Abel–Jacobi map sends
it birationally onto the singular locus Sing Θ of the theta-divisor of J(X). Our con-
struction provides no universal bundle on MX(2; 1, 6), and it seems very likely that
this moduli space is not fine.

Throughout the paper, we extensively use the Iskovskikh–Prokhorov–Takeuchi
birational transformations that can be obtained by a blowup with center in a point
p, a conic q or a twisted rational cubic C0

3 followed by a flop and a contraction of
one divisor (Section 1). The existence of such transformations is proved in [Tak],
[Isk-P] by techniques from Mori theory. The principal idea is the following. The
anticanonical class −KX̃ of the blowup X̃ of X along one of the above centers is nef

and big and defines a small contraction of X̃−→W onto some Fano 3-fold W with
terminal singularities. By a result of Kollár [Kol-1], there exists a flop X̃ 99K Ỹ
over W . The flop is a birational map, biregular on the complement of finitely many
flopping curves which are exactly the curves contracted to the singular points of W .
The thus obtained variety Ỹ admits a birational contraction Ỹ −→Y onto another
Fano threefold Y with Picard group Z. The composition X 99K X̃ 99K Ỹ −→Y is
what we call an Iskovskikh–Prokhorov–Takeuchi transformation.

If one applies this construction to a conic q in X , then the resulting birational
map Ψq (see Diagram 2) ends up in the 3-dimensional quadric Q3, and the last
blowdown in its decomposition is the contraction of a divisor onto a curve Γ7

10 ⊂ Q3

of genus 7 and degree 10. The curve Γ7
10 is identified with the projection of Γ, the

orthogonal linear section associated to X , from two points u, v ∈ Γ. This allows us
to parameterize the family of conics in X by the symmetric square Γ(2). Further,
the rational normal quartics C0

4 in X meeting q at 2 points are transformed by Ψq

into conics in Q3 meeting Γ7
10 in 4 points. If we denote the 4 points u1, u2, u3, u4,

then the divisor u + v +
∑

ui on Γ belongs to W 1
6 . The Brill–Noether locus W 1

6 is
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nothing else but the singular locus of the theta-divisor in J(Γ), and the Abel–Jacobi
image of the degenerate elliptic sextic C0

4 + q is minus the class of u + v +
∑

ui. Any
elliptic sextic in X defines a rank-2 vector bundle E via Serre’s construction S. We
show that the fibers of S are the projective spaces P3 = PH0(X, E) and those of the
Abel–Jacobi map on elliptic sextics are finite unions of these P3’s. Further, we verify
that the reducible sextics of type C0

4 + q in a generic fiber of the Abel–Jacobi map
form an irreducible curve. Hence the fiber of the Abel–Jacobi map is just one copy of
P3, which implies the birationality part of the main result.

In order to handle degree-6 curves, we start with lines, conics, then continue by
rational normal quartics, each time constructing higher degree curves as smoothings
of the reducible one. Thus we prove auxiliary results on the families of low degree
curves which may be of interest themselves. For example, we identify the curve τ(X)
of lines in X with tne Brill–Noether locus W 1

5 (Γ) and determine its genus gτ(X) = 43

(Proposition 2.1). We prove that the surface of conics F(X) is isomorphic to Γ(2)

(Proposition 2.2). This result was also obtained by [Ku-2] via a different approach
using the Fourier–Mukai transform Db(X)−→Db(Γ). It is curious to note that F(X)
remains nonsingular for all nonsingular X .

Proceeding to curves of higher degree, we show that the families of rational normal
cubics and quartics in X are irreducible (Lemmas 4.1, 4.3). We prove that the family
of degenerate elliptic sextics of the form C0

4 + q in X is irreducible (Lemma 5.1).
A standard monodromy argument together with the result of N. Perrin [P-2] on the
irreducibility of the family of elliptic curves of given degree on the spinor tenfold Σ
allow us to deduce the irreducibility of the family of elliptic sextics in X and that of
the moduli space MX(2; 1, 6).

On several occasions, we use the rigidity of the symmetric square of Γ in the
following sense: Γ(2) has neither nontrivial self-maps, nor maps to a curve. Though
the subject seems to be classical, we did not find appropriate references and included
the proof of the rigidity of Γ(2) for a generic curve of genus g ≥ 5 in the last section
(Proposition 8.1).

Acknowledgements. The authors thank Yu. Prokhorov and N. Perrin for dis-
cussions.

1. Preliminaries. Let Σ = Σ10
12 be the spinor tenfold in P15. It is a homogeneous

space of the complex spin group Spin(10), the unique closed orbit of Spin(10) in the

projectivized half-spinor representation Spin(10) : P15
�

�

�

. It can be also interpreted
as one of the two components of the orthogonal Grassmannian G(4; Q) = Σ+ ⊔ Σ−

parametrizing the linear subspaces P4 of P9 contained in a given smooth 8-dimensional
quadric Q = Q8 ⊂ P9. See [Mu-1], [RS] or Section 1 of [IM-3] for more details and
for expicit equations of Σ.

The Fano threefold X12 is a smooth 3-dimensional linear section of Σ by a sub-
space P8 ⊂ P15. We will also consider smooth linear sections of Σ by linear subspaces
P7 and P6, which are K3 surfaces, resp. canonical curves of degree 12. The Gauss
dual Σ∨ ⊂ P15∨ of Σ is naturally identified with Σ via the so called fundamental form
on P15, and to a linear section V = P7+k ∩ Σ for k = −1, 0, resp. 1 we can associate
the orthogonal linear section V̌ = (P7+k)⊥ ∩ Σ∨. The orthogonal linear section of a
Fano 3-fold X12 is a canonical genus-7 curve Γ = Γ7

12, and that of a K3 surface (k = 0)
is another K3 surface. By [Mu-1], Γ = X̌ is not an arbitrary smooth curve of genus
7, but a sufficiently generic one: it has no g1

4, neither g2
6 .

If we identify Σ with Σ+ ⊂ G(4; Q), then Σ∨ is naturally identified with the other
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component Σ− of G(4; Q). Denote by P15± the half-spinor space spanned by Σ±, so
that P15+ = P15 and P15− = P15∨. For c ∈ Σ±, introduce the following notation:

P4
c , the linear subspace of Q represented by c;

P14
c , the tangent hyperplane to Σ∓ in P15∓ represented by c;

Hc, the corresponding hyperplane section P14
c ∩ Σ∓;

ε(c), the sign of c, that is ε(c) ∈ {+,−} and c ∈ Σε(c).
The following proposition lists some useful properties of Σ±.

Proposition 1.1. The following assertions hold:
(i) For c, d ∈ G(4; Q), ε(c) = ε(d), that is c, d lie in the same component of

G(4; Q), if and only if dim(P4
c ∩ P4

d) ∈ {0, 2, 4}.
(ii) For c, d ∈ G(4; Q), ε(c) = −ε(d), that is c, d belong to different components

of G(4; Q), if and only if dim(P4
c ∩ P4

d) ∈ {−1, 1, 3}, where the negative dimension
corresponds to the empty set.

(iii) Let c ∈ G(4; Q). Then Hc = {a ∈ G(4; Q) | dim(P4
c ∩ P4

d) ∈ {1, 3}} = {d ∈
Σ−ε(c) | P4

c ∩ P4
d 6= ∅}.

(iv) The hyperplane P14
c is tangent to Σ−ε(c) along a linear 4-dimensional subspace

P4 ⊂ Σ−ε(c), which we will denote by Π4
c, and Π4

c = {d ∈ G(4; Q) | dim(P4
c∩P4

d) = 3}.
Any 3-space P3 ⊂ Q determines in a unique way a pair P4

c, P4
d of 4-subspaces of Q

containing P3, so Π4
c is naturally identified with the dual of P4

d.
(v) Hc is a cone whose vertex (= ridge) is Π4

c and whose base is the Grassmannian
G(2, 5), embedded in a standard way into P9 ≃ (Π4

c)
⊥. The linear projection with

center Π4
c identifies the open set Uc = Hc r Π4

c with the universal vector subbundle of
C5 × G(2, 5) of rank 3.

Proof. The assertions (i), (ii) are classical, see for example [Mu-1]. For a proof of
(iii)–(v) see [IM-3], Lemma 3.4.

The families of lines and conics on the spinor tenfold are easy to describe:

Proposition 1.2. (i) Fix a plane P2 contained in Q = Q8. Then

ℓ±
P2 = {c ∈ Σ± | P2 ⊂ P4

c}

is a line in Σ±. Every line in Σ± is of this form. The variety τ(Σ±) is thus identified
with the Grassmannian G(2; Q) parametrizing the planes P2 contained in Q.

(ii) Fix a point p ∈ Q. Then

Q6±
p = {c ∈ Σ± | p ∈ P4

c}

is a nonsingular 6-dimensional quadric contained in Σ±. Any conic q in Σ± belongs
to one of the following two types: either q lies in a plane P2 contained in Q, or there
exist a unique point p ∈ Q depending on q, and a plane P2 in the linear span P7±

p of
Q6±

p such that q = Q6±
p ∩ P2.

More generally, for any quadric qk of dimension k = 0, 1, . . . , 6 contained in Σ±,
either its span Pk+1 is contained in Σ±, or there exists a unique point p ∈ Q such
that Pk+1 ⊂ P7±

p and qk = Pk+1 ∩ Q6±
p .

Proof. Assertion (i) is proved in [RS], Section 3. For the part (ii), see [Mu-1],
1.14–1.15.

We will often use the following property of the plane linear sections of Σ, whose
proof is obtained by a refinement of the proof of Proposition 1.16 in [Mu-1]:
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Lemma 1.3. Let P2 be a plane in P15. If P2∩Σ is finite, then length(P2∩Σ) ≤ 3.

Informally speaking, this means that Σ has no 4-secant 2-planes. As Σ is an
intersection of quadrics, any intersection P2 ∩ Σ that contains a subscheme of length
4 is either a line, or a line plus a point, or a conic, or the whole plane P2.

Let now X = X12 be a smooth Fano threefold of degree 12. We will describe the
Iskovskikh–Prokhorov–Takeuchi ([Isk-P], [Tak]) birational maps Φx, Ψq, resp. ΨC0

3

associated to a point x ∈ X , a conic q ⊂ X , resp. a rational normal cubic C0
3 ⊂ X

(Theorems 4.5.8, 4.4.11, 4.6.3 in [Isk-P]; see also Theorems 6.3 and 6.5 of [IM-3] for
the first two). For the reader’s convenience, we will briefly remind their structure.
Each of these maps is a composition of three birational modifications: blowup of a
point or a curve in X , flop and blowdown of some divisor onto a curve. The blowup
gives a 3-fold X̃ with nef and big anticanonical class and 2 exceptional divisors. The
first one is that of the blowdown X̃−→X . The contraction of the second one provides
a new 3-fold Y , but before the contraction, one has to make a flop in finitely many
irreducible curves C ⊂ X̃ characterized by the condition C · KX̃ = 0.

Start by Φx, the birational map associated to a generic point x ∈ X . It is a
birational isomorphism of X onto Y = Y5, the Del Pezzo variety of degree 5, that is a
nonsingular 3-dimensional linear section P6 ∩ G(2, 5) of the Grassmannian in P9. Its
structure is described by Diagram 1:

EX
� �

��

X̃

σX

��

flop //_______

π̃

��0
00

00
00

00
00

00
0 Ỹ ? _

σY

��
η̃

����
��
��
��
��
��
��

EY

��
x � �

blowup

of x

BB

3
�
�

X
Φx //_______

π
  B

B
B

B Y ? _

η
~~}

}
}

}
Γ

blowup

of Γ

\\

�

�
3

W

Diagram 1. The birational isomorphism Φx : X 99K Y5 = G(2, 5) ∩ P6.

In the diagram, π = π2x is the double projection from x, that is the rational
map X 99K P4 defined by the linear system of hyperplanes in P8 tangent to X at
x, Γ = Γ7

12 is a canonical genus-7 curve contained in Y , and η the projection by the
linear system of quadrics containing Γ. The map Φx is given by the incomplete linear
system |OX(3 − 7x)| and the opposite map Φ−1

x by the linear system |OY (12 − 7Γ)|.
The curve Γ is isomorphic to the orthogonal linear section Γ = X̌ of Σ−, denoted by
the same symbol. Both projections π, η are birational and end up in the same singular
quartic 3-fold W ⊂ P4. When lifted to X̃ and Ỹ , they become regular morphisms
defined by the anticanonical linear system: π̃ = ϕ|−KX̃ |, η̃ = ϕ|−KỸ |. The essential

point in this diagram is that the flop X̃ 99K Ỹ is a flop over W , that is π̃, η̃ are small
morphisms contracting the flopping curves to isolated singular points of W , and these
flopping curves are the only indeterminacies of the flop. We showed in [IM-3] that for
generic X, x, the flopping curves in X are the 24 conics passing through x, and those
in Y are the 24 bisecant lines to Γ contained in Y .
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The map Ψq : X 99K Q3 of the second type is a birational isomorphism from X to
a 3-dimensional quadric Q3 ⊂ P4, associated to a generic conic q ⊂ X . It is given by
the linear system |OX(2 − 3q)|, and its inverse Ψ−1

q by |OQ3(8 − 3Γq)|. Its structure
is described by Diagram 2:

EX
� �

��

X̃

σX

��

flop

ϕ
//______ Q̃3 ? _

σQ

��

EQ

��
q � �

blowup

of q

CC

2
�
�

X
Ψq //______ Q3

? _Γq

blowup

of Γq

[[

�

�
2

Diagram 2. The birational isomorphism Ψq : X 99K Q3.

In this diagram, Γq ⊂ Q3 is a curve of degree 10 and genus 7, isomorphic to
the orthogonal linear section Γ associated to X (see Corollary 5.12 in [IM-3]). It
is not canonically embedded, for it has genus 7 and lies in P4. By the geometric
Riemann–Roch Theorem, there is a unique unordered pair of points u, v ∈ Γ such
that OQ3(1)|Γq

≃ OΓ(K − u − v), where K denotes the canonical class, and Γq ⊂ P4

is the image of Γ under projection from the line uv. We will denote it sometimes Γu,v

in place of Γq. The flopping curves in X are the 14 lines meeting q, and those in Q3

are the 14 trisecants of Γq contained in Q3.

EX
� �

��

X̃

σX

��

flop //______
˜P3 ? _

σ
P3

��

EP3

��
C0

3
� �

blowup

of C0
3

CC

2
�
�

X
ΨC0

3 //______ P3 ? _Γ7
9

blowup

of Γ7
9

[[

�

�
2

Diagram 3. The birational isomorphism ΨC0
3

: X 99K P
3.

The map ΨC0
3

of the third type is a birational isomorphism of X onto P3 and is

described by Diagram 3. In this diagram, C0
3 is a sufficiently generic rational cubic

curve in X , and Γ7
9 ⊂ P3 is a nonsingular curve of degree 9 and genus 7 which is a

projection of the canonical curve Γ = X̌ from three points u, v, w ∈ Γ. The direct map
ΨC0

3
is given by the linear system |OX(3 − 4C0

3 )| and its inverse by |OP3(15 − 4Γ7
9)|.

The flopping curves in X are the 21 lines meeting C0
3 , and those in P3 are the 21

quadrisecants to Γ7
9.

2. Lines and conics in X12. We will start the study of curves on X with a
description of the families of lines and conics in terms of the orthogonal curve Γ = X̌.

Proposition 2.1. Let X = X12 be any transversal linear section P8 ∩Σ, Γ = X̌
its orthogonal curve and τ(X) = Hilbt+1

X the Hilbert scheme of lines in X, where a
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“line” is a subscheme of X with Hilbert polynomial P (t) = t + 1. Let R(X) be the
surface swept by the lines in X: R(X) =

⋃

v∈τ(X)

ℓv. Then the following statements

hold.
(i) τ(X) is a connected locally complete intersection curve of arithmetic genus 43,

isomorphic to the Brill–Noether locus W 1
5 (Γ).

(ii) If X is generic, then τ(X) is nonsingular and every line ℓ ⊂ X has normal
bundle Nℓ/X ≃ OP1(−1) ⊕OP1 .

(iii) If X is generic, then the generic line on X meets eight other lines and
R(X) ∈ |OX(7)|.

Proposition 2.2. Under the hypotheses of the previous proposition, let F(X)
denote the Hilbert scheme Hilb2t+1

X of conics on X (the “Fano surface” of X), where a
“conic” is a subscheme of X with Hilbert polynomial P (t) = 2t+1. Then the following
statements hold:

(i) A generic conic q is nonsingular and Nq/X ≃ OP1 ⊕OP1 .

(ii) F(X) is isomorphic to Γ(2), where Γ(2) denotes the symmetric square of Γ.
(iii) There are 24 conics passing through a generic point of X.

We will start by conics.
Proof of Proposition 2.2. For part (i), see [Isk-P], Proposition 4.2.5, Remark

4.2.8 and Theorem 4.5.10. Part (iii) was proved in [IM-3], Theorem 6.3 (f). We will
now prove (ii).

We are going to construct an isomorphism λ : F(X)−→∼ Γ(2). We will describe
the construction of λ(q) for a closed point q ∈ F(X); it is clear how one can extend
it to T -points of F(X) for any scheme T .

Since X is a linear section of Σ = Σ+ and does not contain planes, it does
not contain conics of the first type in the sense of Proposition 1.2. Hence to any
conic q ⊂ X we can associate a unique point p = p(q) =

⋂

x∈q

P4+
x ∈ Q8, so that

q = P2+(q) ∩ Q6+
p , where P2+(q) denotes the linear span 〈q〉 of q. We can rewrite it

as q = P8+(X)∩P7+
p ∩Σ+ ⊂ P15+, where P8+(X) = 〈X〉, P7+

p = 〈Q6+
p 〉 and P2+(q) =

P8+(X)∩ P7+
p . If we now pass to the orthogonal complements in (P15+)∨ = P15−, we

obtain:

P12−(q) := P2+(q)⊥ = 〈P8+(X)⊥, (P7+
p )⊥〉 = 〈P6−(Γ), P7−

p 〉,

where P6−(Γ) = 〈Γ〉. Thus P6−(Γ), P7−
p are not in general position, but intersect in a

line P1. The triple intersection P6−(Γ)∩P7−
p ∩Σ− can be seen as (P6−(Γ)∩P7−

p )∩Σ− =
P1 ∩ Σ−, or P6−(Γ) ∩ (P7−

p ∩ Σ−) = P6−(Γ) ∩ Q6−
p , or else as P7−

p ∩ (P6−(Γ) ∩ Σ−) =
P7−

p ∩ Γ. Hence it is a subscheme of length 2 contained in Γ, that is an element of

Γ(2). We define:

λ(q) := P6−(Γ) ∩ P7−
p ∩ Σ− ∈ Γ(2).

The inverse map is defined in exactly the same manner: by Proposition 1.2 (ii)
for k = 0, a subscheme ξ ⊂ Γ of length 2 is contained in a unique quadric Q6−

p and
we define:

λ−1(ξ) := P8+(X) ∩ P7+
p ∩ Σ+ ∈ F(X).
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Remark 2.3. Alexander Kuznetsov [Ku-2] proves the isomorphism F(X) ≃ Γ(2)

in a more algebraic way: he shows that the Fourier–Mukai transform associated to
an appropriate universal rank-2 vector bundle on X ×MX(2; 1, 5) sends the structure
sheaf Oq of a conic q ⊂ X to the sky-scraper sheaf Oξ on Γ = MX(2; 1, 5) for some
ξ ⊂ Γ of length 2.

Remark 2.4. According to Mukai, a generic K3 surface S of degree 12 is a transver-
sal linear section of the spinor tenfold: S = S+ = P7 ∩Σ+. Applying the same argu-
ments as above with P7 in place of P8+(X), we obtain a non-isomorphic K3 surface
S− = P7⊥ ∩ Σ− and an isomorphism λ : Hilb2(S+)−→∼ Hilb2(S−) (see also [Mu-3],
Example 4).

In our description of the birational transformation Ψq (see Diagram 2), we asso-
ciated a pair of points u + v of Γ to a generic conic q. This gives a rational map

F(X)−→Γ(2) , q 7→ u + v ,

which we will temporarily denote by f .

Lemma 2.5. λ = f .

Proof. By Proposiition 8.1, it suffices to prove that f is nonconstant. Then
f ◦ λ−1 is a nonconstant rational self-map of Γ(2); it is the identity for generic Γ, and
by continuity, this is true for any nonsingular Γ.

Let u + v ∈ Γ(2) be a generic degree-2 divisor. Let Γu,v be the curve of degree 10
in P4 obtained as the image of the canonical curve Γ ⊂ P6−(Γ) under the projection
from the line uv. It is contained in a unique quadric Q3. By [Mu-2], Theorem 8.1,
there is a Fano 3-fold X ′ = X ′

12, defined as the non-abelian Brill–Noether locus
MΓ(2, K, 3), and a smooth conic q ⊂ X ′, such that Γu,v together with its trisecants
is the indeterminacy locus of Ψ−1

q : Q3
99K X ′. Since a variety X12 is uniquely

determined by its orthogonal curve Γ, we have X ≃ X ′, so f is a dominant map, and
this ends the proof.

Proof of Proposition 2.1. By Shokurov’s Theorem on the existence of lines, see
4.4.13 in [Isk-P], and by ibid, Proposition 4.4.2, the scheme τ(X) is of pure dimension
1, and the normal bundle of a line is of type (0,−1) if and only if this line is represented
by a nonsingular point of τ(X). So (ii) is a consequence of (i) together with the
smoothness of W 1

5 (Γ) for a generic curve Γ of genus 7 ([ACGH], IV.4.4 and V.1.6).
Let us prove (i). The easiest way to construct a map from τ(X) to W 1

5 (Γ) is by
using either one of the birational maps Φx or Ψq with generic x or q. For example,
let us do it for Ψq.

Let ℓ be a line in X and q a generic conic. Then ℓ does not meet q and ℓ̃ = Ψq(ℓ) is
a conic. Recalculating the degree of ℓ, equal to 1, from the linear system that defines
Ψ−1

q , we see that ℓ̃ meets Γq in a scheme Z of length 5. Denoting by angular brackets

the linear span, we have 〈Z〉P4 = 〈ℓ̃〉P4 = P2, and if we pull back Z to the canonical
model Γ ⊂ P6 then we will have 〈Z + u + v〉P6 = P4. The latter linear span cannot be
smaller than P4, because Γ has no g3

7 (see [Mu-1]). Hence Z + u + v is an element of
a g2

7 and Dq = K −Z − u− v belongs to a g1
5 on Γ. Thus we have constructed a map

µq : τ(X)−→W 1
5 (Γ) , ℓ 7→ [Dq],

where the brackets denote the class of a divisor in the Picard group.
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Now let us verify that the inverse map µ−1
q is well defined. Take a point z ∈ W 1

5 (Γ)
representing a linear series g1

5(z). Then |K − z| is a g2
7 and we have two cases:

Case A. |K − z − u − v| is a single effective divisor Z.
Case B. |K − z − u − v| is a pencil g1′

5 = {Z(t)}t∈P1 .
In the case A, projecting down to P4, we get a single conic C0

2 (z) = 〈Z〉 ∩ Q3

meeting Γq in 5 points. Here we have two subcases: either C0
2 (z) is irreducible, or

it is a reducible conic ℓ′i ∪ m, where ℓ′i is one of the trisecant lines of Γq, and m is a
bisecant line. When C0

2 (z) is irreducible, we define µ−1
q at z by µ−1

q (z) = Ψ−1
q (C0

2 (z)),
where Ψ−1

q applied to a curve denotes the proper transform of this curve. In the other
subcase, ℓ′i is a flopping curve. It has no proper transform in X , so µ−1

q (z) should
be determined by considering a limit of the curves µ−1

q (w) when w → z. We use
the following general observation concerning any flop ϕ: when a member Cz of some
algebraic family of curves {Cw}w∈T acquires an irreducible component which is a
flopping curve, say ℓ′, then the limiting curve Dz = limw→z ϕ−1(Cw) of the flopped
family {Dw}w∈T does not contain the flopping curve ℓ, corresponding to ℓ′, and is
the proper transform of the remaining components of Cz :

Dz = lim
w→z

ϕ−1(Cw) = ϕ−1(Cz \ ℓ′).

Moreover, Dz meets ℓ in this case. Thus, when C0
2 (z) = ℓ′i ∪ m, we should put

µ−1
q (z) = Ψ−1

q (m).
Now we will eliminate Case B. Assume that |K − z − u − v| is a pencil. Then

we can associate to z a pencil of conics C0
2 (z, t) = 〈Z(t)〉 ∩ Q3, and a pencil of

lines ℓ(z, t) in X , so that µ−1
q is not defined at z. The pair u + v is determined as

the unique effective divisor in |K − z − Z(t)|. On the other hand, u + v = λ(q).
The generic point of W 4

10 = K − Γ(2) is not contained in the image of the sum map
W 1

5 (Γ)×W 1
5 (Γ)−→Pic10(Γ). By dimension reasons, to see this, it is sufficient to verify

that for any z ∈ W 1
5 (Γ) there are finitely many w ∈ W 1

5 (Γ) such that |K − z − w| is
effective. This is stated in the following lemma.

Lemma 2.6. For the generic z ∈ W 1
5 (Γ) there are exactly 8 distinct points w ∈

W 1
5 (Γ) such that |K − z − w| is effective.

Proof. The image Γ of Γ under the map given by the linear system g2
7 = |K − z|

is a plane septic without triple points. Hence Γ has exactly 8 double points, defining
8 linear subseries g1

5 in the given g2
7 .

Now we see that for a generic conic q, λ(q) cannot be represented as the sum of
two g1

5 ’s, hence Case B is impossible.
To compute the genus of τ(X), we will use the approach and the notation from §

8 of [RS].
Let M be the base of the family of lines ℓ ⊂ Σ on the spinor 10-fold Σ. By loc.

cit., the incidence family

G = {(x, L) : x ∈ L} ⊂ Σ × M

together with the natural projection pr1 : G → Σ is nothing else but the Grassman-
nization G = G(3,B) → Σ of the universal subbundle B → Σ ⊂ G(5, 10).

Let h be the class of the hyperplane section of Σ ⊂ P15 let bi = ci(B), i = 1, ..., 5
be the Chern classes of B, and let ui = ci(U), i = 1, 2, 3 be the Chern classes of
the universal subbundle U ⊂ BG on G = G(3,B); in particular −u1 = −c1(U) is
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the class of the hyperplane section of the Plücker embedding M ⊂ G(3, 10). Then
h10 = deg Σ = 12 ∈ Q = H20(Σ, Q),

H∗(Σ, Q) ∼= Q[h, b3]/(b2
3 + 8b3h

3 + 8h6, 6h5b3 + 7h8), (1)

and the cohomology ring H∗(G, Q) is generated as a H∗(Σ, Q)-algebra by u1 and u2:

H∗(G, Q) ∼= H∗(Σ, Q)[u1, u2]/(f, g), (2)

where

f = h4 − h2u2 −
1

2
u2

2 −
1

2
b3u1 + 2h3u1 − 2hu2u1 + 3h2u2

1 −
1

2
u2u

2
1 + 2hu3

1 +
1

2
u4

1

and

g = b3h
2 −

1

2
b3u2 + 2h3u2 − hu2

2 + b3hu1 + 3h2u2u1 − 2u2
2u1−

1

2
b3u

2
1 + 2h2u3

1 +
1

2
u2u

3
1 + 2hu4

1 +
1

2
u5

1.

In particular, the definition of the universal subbundle U → G = G(3,B) yields

u6
1h

10 = (−u1)
6h10 = deg G(3, 5) · deg Σ = 5 · 12 = 60 ∈ Q = H32(G, Q). (3)

The second projection pr2 : G → M is a projectivization of the rank-2 vector
bundle E = pr2∗ pr∗1 O(h), and

H∗(G, Q) ∼= H∗(M, Q)[h]/(h2 − c1h + c2)

where c1, c2 are the Chern classes of E . Thus c1 = −u1 and c2 = −h2−u1h. We have
also KM = 6u1.

Since τ(X) ⊂ M is the common zero locus of 7 general sections of E , then [τ(X)] =
c2(E)7 = (−h2 − u1h)7 and Kτ(X) = (KM + 7c1(E))|τ(X) = −u1|τ(X). Therefore
τ(X) ⊂ M ⊂ G(3, 10) is a canonical curve, and it remains to compute the degree

d = (−h2 − u1h)7(−u1)h ∈ H∗(G, Q)

of τ(X) with respect to the Plücker hyperplane class −u1. This is done by reducing
d modulo the relations specified in (1), (2), (3), and the answer is d = 84. Hence
τ(X) ⊂ G(3, 10) is a canonical curve of genus gτ(X) = 1

2d + 1 = 43.

To prove (iii), note that deg R(X) = deg τ(X) = 84, hence R(X) ∼ 7H . For any
line ℓ, degNℓ/X = −1, so the contribution of ℓ to the intersection number ℓ ·R(X) is
−1, hence ℓ meets R(X) in eight isolated points counted with multiplicities. As X is
generic, neither of the lines on X is a double curve of R(X) and the multiplicity of a
point of R(X) equals the number of lines passing through this point. Hence any line
ℓ meets exactly 8 other lines.



FANO 3-FOLD OF GENUS 7 437

3. Abel–Jacobi map. Let X = X12 be any transversal linear section P8∩Σ. Let
Jd(X) denote the set of classes of algebraic 1-cycles of degree d in X modulo rational
equivalence. It has a natural structure of a principal homogeneous space under J0(X),
and according to [BM], J0(X) = J(X) is nothing else but the intermediate Jacobian of
X . Either of the birational isomorphisms Φy, Ψq can be used to identify J(X) with the
Jacobian J(Γ) = Pic0(Γ). It is more convenient to use Ψq. With the notation from the
proof of Proposition 2.1, the identification goes as follows: J(Q3) = 0, and the passage
from Q3 to X consists in blowing up only one irrational curve Γq followed by blowups
of rational curves and their inverses. By [CG], only the blowup with nonrational
center modifies the intermediate Jacobian, therefore J(X) ≃ J(Q3) × J(Γq) ≃ J(Γ).
This isomorphism is induced by the map Γq−→Jd(X), u 7→ [Ψ−1

q (u)], where d =

deg Ψ−1
q (u). Here Ψ−1

q (u) is the image of the exceptional fiber σ−1
Q (u) ≃ P1 of σQ

over a point u ∈ Γq under the map σX ◦ ϕ−1, where ϕ is the flop (see Diagram 2).
It is irreducible for generic u and has a flopping curve as one of its components for a
finite set of values of u corresponding to the points of intersection of trisecants with
Γq. According to Theorem 5.5 of [IM-3], the curves Ψ−1

q (u) are the rational cubics
meeting q twice. Applying the Abel–Jacobi functors provides the desired isomorphism
a1

q : Pic1(Γ)−→∼ J3(X).

As in loc. cit., we use the symbol Cg
d [k]Z to denote the family of all the connected

curves of genus g and degree d meeting k times a given subvariety Z of a given variety
V . More precisely, let Z ⊂ V be a nonsingular curve (resp. a point). Then Cg

d [k]Z is
the closure in the Chow variety of V of the family of reduced connected curves C of
degree d such that length (OX/(IC + IZ)) = k (resp. multZ C = k) and pa(C̃) = g,
where C̃ is the proper transform of C in the blowup of Z in V .

We will summarize the above in the following lemma:

Lemma 3.1. Let q be a generic conic in X. Then for any k ∈ Z, there is a
natural isomorphism

ak
q : Pick(Γ)−→∼ J3k(X),

[

∑

niui

]

7→
[

∑

niΨ
−1
q (ui)

]

,

depending on q.

All the curves C ∈ C0
3 [2]q, except for finitely many of them, are irreducible and

their images Ψq(C) are points of Γq. This yields a map bq : C0
3 [2]q−→Pic1(Γ). With

the identification Pic1(Γ)−→∼ J3(X) given by a1
q, the map bq is the Abel-Jacobi map

of the family C0
3 [2]q.

Now we will study the Abel–Jacoby map of more general families of curves on
X . We will use without mention the identification of Jk(X) and Picd(Γ), which is
determined by Lemma 3.1 uniquely modulo a constant translation. Remark also that
J(X) = J(Q̃3) in a natural way.

Lemma 3.2. Let q be a generic conic in X. Let T be the base of an irreducible
family of curves on X whose generic member is a reduced curve which intersects
neither q, nor any of the flopping curves of Ψq. Assume that Ψq transforms the
family parameterized by T into a subfamily of Cg

d [k]Γq
on Q3. For generic C ∈ T ,

denote by ZC or Zq
C the intersection cycle Ψq(C)∩Γq considered as a degree-k divisor

on Γ. It can be defined by the formula ZC = σΓ∗(C̃ ·EQ), where C̃ = ϕσ−1
X (C) is the

image of C in Q̃3 and σΓ : EQ−→Γq is the restriction of σQ. Then the Abel–Jacobi
map for the family T is given, up to a constant translation, by C 7→ −[ZC ] ∈ Pic(Γ).
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Proof. As J(Q3) = 0, the Abel–Jacobi class of the pullback of any family of
curves on Q3 is a point. Hence the class of σ−1

Q Ψq(C) in J
q

(Q̃3) is a constant, say

c. If ZC =
∑

niui (ni ∈ N, ui ∈ Γ), then [σ−1
Q Ψq(C))] = [C] +

∑

ni[σ
−1
Q (ui)] and

[C] = c −
∑

ni[ui], as was to be proved.

Now we will invoke the exceptional curves of σX . By [IM-3], Theorem 5.5, their
images in Q3 are the elements of the family C0

3 [8]Γq
. Hence to each curve σ−1

X (x) with

x ∈ q we can associate a degree-8 divisor on Γ, defined by σQ ◦ ϕ(σ−1
X (x)) ∩ Γq. Its

class in Pic8(Γ) does not depend on x ∈ q, because q is rational. Denote it by dq
8.

Lemma 3.3. In the hypotheses of the previous lemma, assume that the generic
curve Ct of T is of degree d and does not meet q. Let C0 be a special member of T
such that the scheme-theoretic intersection C0 ∩ q = M is of length r. Let C̃t be the
pullback of Ct to X̃ for t 6= 0, and C̃0 the limit of C̃t as t → 0. Assume that C0 does
not meet any of the flopping curves. Then the flop ϕ is locally an isomorphism in the
neighbourhood of C̃0 and all the nearby curves C̃t, and the limit of [ZC ] when t → 0
is σΓ∗(ϕ(C̃0) · EQ). This coincides with [Zq

C0
] + rdq

8 in the case when neither of the

components of C̃0 is contracted by σQ.

Proof. Let M =
∑

nixi. Then C̃0 = C′
0 +

∑

niσ
−1
X (xi), where C′

0 is the proper

transform of C0. The result follows by applying σQ∗ to ϕ(C̃t) · EQ as t → 0.

Remark that σΓ∗(σ
−1
q (u) · EQ) = −u, so the Abel–Jacobi image of σ−1

Q (u) is [u],
which agrees with Lemma 3.1.

In the proof of Propositions 2.1 and 2.2, we introduced the maps
µq : τ(X)−→W 1

5 (Γ) and λ : F(X)−→Γ(2) = W 0
2 (Γ). They can be considered as

maps to Pic(Γ).

Lemma 3.4. The map µ = µq does not depend on the choice of a generic conic q
and is, up to a constant translation, the Abel-Jacobi map of the family of lines on X.

Proof. For generic X , µq is an isomorphism of two nonsingular curves of genus
43. A curve of genus ≥ 2 has only finitely many automorphisms, hence µq does not
depend on q for generic X . As we saw in the proof of Proposition 2.1, τ(X) remains
a l. c. i. curve and is a zero locus of a section of a vector bundle for all nonsingular
varieties X . Hence all of the components of τ(X) for the special (but still smooth)
3-folds X are in the limit of the family of curves τ(X) for nearby general 3-folds X .
Hence µq does not depend on q by continuity on the special X , too.

The Ψq-image of a line ℓ not meeting q is a conic meeting Γq in a degree-5 divisor
Zq

ℓ , and

µq(ℓ) = K − λ(q) − [Zq
ℓ ]. (4)

By Lemma 3.2, µq is, up to a constant translation, the Abel–Jacobi map of the family
of lines on X .

In the following definition we generalize the formula (4) to curves of any degree.

Definition 3.5. Let C ⊂ X be a curve of degree d, and q a sufficiently generic
conic in X . This means that q is not a component of C, Ψq exists and C does
not meet any of the flopping curves of Ψq. In this case the scheme-theoretic inverse

image C̃ = σ∗
X(C) is mapped isomorphically by the flop ϕ to a curve in Q̃3. Let
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length(C ∩ q) = r and Ψq(C) ∩ Γ = Zq
C . Define

AJ(C) = dK − dλ(q) − σΓ∗(ϕ(C̃) · EQ) =

d(K − λ(q)) − rdq
8 − [Zq

C ] ∈ Pic5d(Γ). (5)

We call AJ(C) the canonical Abel–Jacobi image of C in Pic5d(Γ).

Now we will determine the canonical Abel–Jacobi image of a conic.

Lemma 3.6. For a generic pair of conics q, q′ on X,

[Zq
q′ ] = K − 2λ(q) + λ(q′).

Proof. The Ψq-image of q′ in Q3 is a rational quartic Cq
4 (q′) ⊂ Q3 intersecting

Γq in a divisor Zq
q′ of degree 10. From the ideal sheaf sequence for Cq

4 (q′) ⊂ Q3 we
obtain

h0(IC
q
4 (q′),Q3(2)) ≥ h0(OQ3(2)) − h0(OC

q
4 (q′)(2)) = 14 − 9 = 5.

Therefore there exists a P4-family of quadric sections S(t) of Q3 through Cq
4 (q′).

Each of these S(t) intersects Γq in a divisor D20(t) ∼ 2K − 2λ(q) of degree 20 such
that D20(t) = Zq

q′ + D10(t) for an effective divisor D10(t) of degree 10 on Γ. There-

fore h0(D10(t)) ≥ 5. Since deg D10(t) = 10 (and Γ is non-hyperelliptic), we have
h0(D10(t)) ≥ 5 and D10(t) = K −D2(t) for some divisor D2(t) of degree 2. Again, as
Γ is non-hyperelliptic, D2(t) does not depend on t ∈ P4.

Therefore D2(t) = D2(q, q
′) depends only on q and q′, and Zq

q′ = 2H −D10(t) =
(2K − 2λ(q)) − (K − D2(q, q

′)) = K − 2λ(q) + D2(q, q
′).

If one regards q as a fixed conic and q′ as a general one, then the map q′ 7→ −[Zq
q′ ]

is, up to translation, the Abel–Jacobi map of the family of conics. It is obviously non-
constant. Indeed, assume the contrary. Then any two conics are rationally equivalent.
Hence the sums ℓ + m of intersecting lines are all rationally equivalent. This implies
that W 1

5 (Γ) is hyperelliptic and the curve F of pairs of intersecting lines is a g1
2 on it,

hence F is rational. This is absurd, for F ⊂ τ(X)(2) is mapped injectively into F(X)
and F(X) ≃ Γ(2) does not contain rational curves. Therefore the Abel–Jacobi map
of conics is nonconstant, and hence the map q′ 7→ D2(q, q

′) is nonconstant as well.
Thus the composition of this map with λ is a nonconstant self-map of Γ(2). By

Proposition 8.1, it is the identity. Hence D2(q, q
′) = λ(q′).

Corollary 3.7. The canonical Abel–Jacobi map AJ |F(X) of the family of conics
on X is given by the formula

AJ(q) = K − λ(q) ∀ q ∈ F(X).

Proposition 3.8. The map AJ defined by formula (5) does not depend on q,
hence AJ induces a canonical isomorphism Jd(X)−→∼ Pic5d(Γ) such that ak

q ◦ AJ is
the translation by a constant depending only on k, q, d. For any two curves C1, C2 on
X, we have

AJ(C1 + C2) = AJ(C1) + AJ(C2).
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Proof. By Lemma 3.4 and Corollary 3.7, the first statement of the proposition
is true for lines and conics. The statement on the additivity of AJ is an immediate
consequence of the definition, and we can use it to extend the first statement from
lines and conics to curves of all degrees.

The Abel-Jacobi image of Γ in J(Γ) (defined up to a translation) generates J(Γ),
hence the same is true for the Abel-Jacobi image of Γ(2). Hence the AJ-image of the
family of conics generates J(X) = J(Γ). This means that any algebraic 1-cycle on X
is rationally equivalent to a linear combination of conics, and we are done.

Lemma 3.9. For a generic conic q ⊂ X, the divisors of the linear system dq
8 on

Γ, defined by the intersections of the extremal rational cubics C3 ∈ C0
3 [8]Γq

with Γq,
belong to the linear system |K − 2λ(q)|.

Proof. We can assume Γ (or X) generic; the result for any Γ will follow by
continuity. Consider the curve Dq ⊂ F(X) of conics q′ in X intersecting q, defined
as the closure of the set {q′ ∈ F(X) | q ∩ q′ 6= ∅, #(q ∩ q′) < ∞}. Let q′ ∈ Dq.
Then Ψq(q

′) is generically a bisecant line to Γq, so that Zq
q′ is a pair of points. Using

Corollary 3.7, Proposition 3.8 and Lemma 3.3, we can express the canonical Abel
Jacobi image of q′ in two different ways:

AJ(q′) = K − λ(q′) = 2K − 2λ(q) − dq
8 − [Zq

q′ ],

where Zq
q′ ∈ Γ(2). Hence [Zq

q′ ] = c + λ(q′) for some constant c = c(q) ∈ Pic0(Γ) and
for generic q′ ∈ Dq.

Now extend this construction to the whole incidence 3-fold D, the closure in
F(X) × F(X) of the set {(q, q′) | q ∩ q′ 6= ∅, #(q ∩ q′) < ∞}. Then we obtain
the maps h : D−→Γ(2), (q, q′) 7→ Zq

q′ , and c : F(X)−→J(Γ), q 7→ c(q), such that

h(D) =
⋃

q∈F(X)

(c(q) + λ(Dq)) ⊂ Γ(2). Assume that c(q) 6= 0 for some q. Then

there is a one-parameter family of distinct representations of c(q) as the difference
w(t) − z(t) of points z(t), w(t) = z(t) + c(q) ∈ Γ(2), parameterized by t ∈ Dq. Hence
w(t)+z(t′) = w(t′)+z(t) in Pic4(Γ) for t, t′ moving in the same connected component
of Dq. This either implies the existence of a linear series g1

4 on Γ, or Dq = u + Γ,
c(q) = v − u for some u, v ∈ Γ. The first alternative is impossible, see [Mu-1]. The
second one is also false. Indeed, the lines spanned by the pairs Zq

q′ for q′ ∈ Dq are
secant lines of Γq contained in Q, but not all such secant lines pass through a given
point v ∈ Γq. Hence c(q) ≡ 0 and we are done.

Corollary 3.10. On the family C0
3 [2]q, the canonical Abel–Jacobi map is given

by

AJ(C) = K + λ(q) + [Ψq(C)] for generic q ∈ F(X) and C ∈ C0
3 [2]q.

Proof. In the notation of Proposition 3.8, C̃ = σ−1
X (x1) + σ−1

X (x2) + σ−1
Γ (u) for

some x1, x2 ∈ q, u ∈ Γq. Then σΓ∗(C̃ · EQ) = 2dq
8 − u. The result now follows from

Proposition 3.8 and Lemma 3.9.

This still holds for a special cubic C0
3 of the form q′0 + ℓ, where q, q′0, ℓ intersect

each other with multiplicity 1. Then ℓ is a flopping line of Ψq, and q′0 is a special
element of Dq (notation from the proof of Lemma 3.9). The flopping curve in Q3

corresponding to ℓ is a trisecant ℓ′ to Γq, and if ℓ′∩Γq = u1 +u2 +u3, then the image
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of q0 in Q̃3 is the exceptional curve σ−1
Q (ui) for one of the values of i = 1, 2, 3, say

i = 3. The limit of the proper transforms of the curves q′ ∈ Dq as q′ → q′0 is the

reducible curve σ−1
Q (u3) + ℓ̃′, so that AJ(q′0) is given by the same formula as above

with Zq

q′

0

= u1 + u2. This implies:

Corollary 3.11. If, in the above notation, q, q′0, ℓ intersect each other with
multiplicity 1, then AJ(ℓ) = u1 + u2 + u3 + λ(q) and AJ(q′0) = K − u1 − u2.

We can apply the results of this section to obtain some additional information on
lines, conics and the map Ψq. First, we can characterize the curve of reducible conics
in F(X).

Lemma 3.12. Let ℓ, m be two distinct lines in X. Then ℓ ∩ m 6= ∅ if and
only if |K − µ(ℓ) − µ(m)| is nonempty. In this case ℓ ∪ m is a reducible conic and
λ(ℓ ∪ m) = K − µ(ℓ) − µ(m).

Proof. This follows immediately from the existence of the canonical Abel–Jacobi
map AJ such that AJ(ℓ ∪ m) = AJ(ℓ) + AJ(m) and from Lemma 3.4 and Corollary
3.7.

The next lemma answers the question, which lines should be considered as lines
“intersecting themselves”.

Lemma 3.13. Let ℓ be a line in X. Then there is a double structure on ℓ making
it a conic in X if and only if ℓ is a singular point of τ(X).

Proof. Assume that the normal sheaf of ℓ is OP1 ⊕ OP1(−1). Let C be a plane
double structure on a line ℓ , that is, a double structure embeddable into P2. Any
Gorenstein doubling ℓ is given by Ferrand’s construction [F], [BanF] and is associated
to a surjective morphism of Oℓ-modules N ∨

ℓ/X−→L, where L is some invertible sheaf on

ℓ. The kernel of the surjection can be represented in the form J /I2
ℓ for an ideal sheaf

J ⊂ OX , and this ideal sheaf defines the Ferrand’s double structure C on ℓ: J = IC .
The dualizing sheaf of Ferrand’s double structure satisfies ωC |ℓ ≃ ωℓ ⊗L−1. Applying
this to our situation, we see that L ≃ Oℓ(k) for some k ≥ 0, hence ωC |ℓ ≃ Oℓ(−2−k),
which contradicts the property ωC |ℓ ≃ Oℓ(−1) verified for a plane doubling of ℓ.

For a line ℓ with normal sheaf OP1(1) ⊕OP1(−2), the surjection N ∨

ℓ/X
−→OP1(2)

defines a unique plane double structure on ℓ.

Corollary 3.14. Let ℓ be a generic line on X. Then there are exactly 8 distinct
lines ℓi such that ℓ + ℓi is a conic. They satisfy the condition K −µ(ℓ)−µ(ℓi) ∈ Γ(2).

If the normal bundle of ℓ is of type (0,−1), then the lines ℓi meet ℓ and are
different from ℓ.

If the normal bundle of ℓ is of type (1,−2), then K − 2µ(ℓ) ∈ Γ(2). In this case,
only one of the ℓi coincides with ℓ and the 7 others are distinct and different from ℓ.

Proof. This follows from Lemmas 2.6 and 3.12.

4. Rational normal curves in X. Let X = X12 = P8 ∩ Σ be a Fano 3-
dimensional linear section of the spinor tenfold Σ and Γ = X̌ its orthogonal curve.
We will use the symbol Cg

d(X), or simply Cg
d , to denote some families of degree-d

curves of genus g in X , whose precise definitions will be given in the context, and Cg
d

to denote a member of such a family. A rational normal curve of degree d in X is an
irreducible nonsingular curve C in X such that deg C = d and dim〈C〉 = d. Let C0

d

be the family of rational normal curves of degree d in X .
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Lemma 4.1. The family C0
3(X) of rational normal cubics in X is irreducible, 3-

dimensional and is birational to the symmetric cube Γ(3) of the curve Γ. The normal
bundle of a generic C0

3 ∈ C0
3(X) is OP1 ⊕OP1(1).

Proof. The family of rational normal cubics in X was studied in [Isk-P],
4.6.1–4.6.4. The authors determined the normal bundle and constructed the bira-
tional transformations ΨC0

3
associated to sufficiently general rational normal cubics

C0
3 ∈ C0

3(X). We will explain how the existence of these transformations implies the
irreducibility of C0

3(X). Theorem 4.6.4 in loc. cit. provides the inverse construction,
which permits to reconstruct C0

3 ⊂ X starting from any sufficiently general Γ7
9 ⊂ P3.

Recall that Γ7
9 is a projection of Γ ⊂ P6 from a unique triple of points u, v, w ∈ Γ.

Hence the open part of C0
3(X) consisting of those cubics C0

3 for which the map ΨC0
3

exists is birational to the symmetric cube Γ(3) and is irreducible.

Lemma 4.2. Let C be a connected Cohen–Macaulay curve of degree 4 in X. Then
the following assertions hold:

(i) dim〈C〉 = 4.
(ii) If C is reduced and irreducible, then it is a rational normal quartic.
(iii) If C is the union of two conics q∪q′ such that q∩q′ 6= ∅ and #(q∩q′) < ∞,

then q, q′ meet each other quasitransversely at a single point.
(iv) C has no singular points of multiplicity ≥ 3 and pa(C) = 0.

Proof. All the assertions are easy consequences of the fact that 〈C〉 = P4. The
latter follows from the non-existence of 2-planes that are 4-secant to X . Indeed,
assume that 〈C〉 = P3. Then for any plane P2 in this P3, P2 ∩ X contains at least
the 4 points of P2 ∩ C (counted with multiplicities). By Lemma 1.3, we obtain a
three-dimensional family of conics or lines in X , which is absurd. If 〈C〉 = P2, then
〈C〉∩X is an intersection of quadrics, hence coincides with 〈C〉 = P2. This is absurd,
as X does not contain planes. Hence 〈C〉 = P4.

Lemma 4.3. Let X be generic. Then the family C0
4(X) of rational normal quartics

in X is irreducible.

Proof. Consider the family I of all pairs (C0
4 , X), where X is a Fano 3-fold

section of the spinor 10-fold Σ and C0
4 ∈ C0

4(X). It has two natural projections
p : I−→C0

4(Σ) and q : I−→G(9, 16), q : X 7→ 〈X〉 =P8 ⊂ P15, where C0
4(Σ) is the

family of rational normal quartics in Σ. A nonempty fiber q−1(u) is the family C0
4(Xu),

where Xu = P8
u ∩ Σ, and p−1(C0

4 ) is an open subset of the Grassmannian G(4, 11)
parametrizing the subspaces P8 ⊂ P15 which contain P4 = 〈C0

4 〉. By a standard
monodromy argument, the irreducibility of the generic fiber q−1(u) will follow from
the following two facts: (1) I is irreducible; (2) simultaneously for all sufficiently
general u, one can choose in the fiber q−1(u) one distinguished irreducible component
depending rationally on u. As the fibers of p are irreducible, the first fact is equivalent
to the irreducibility of C0

4(Σ). The latter follows from [P-1], where the author proves
that the Hilbert scheme Hilbα

Σ of irreducible nonsingular rational curves of class α
in a complex projective homogeneous manifold Σ is smooth and irreducible when
dim Σ ≥ 3 and α is strictly positive. The last condition holds in our situation, because
PicΣ ≃ Z.

Now we will produce a distinguished component C0∗
4 of C0

4(X) for a fixed X . Let
C0

3 be a generic rational normal cubic in X . It intersects the surface R(X) swept by
the lines in X at a finite number of points. Hence there is at least one line ℓ in X
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meeting C0
3 . Such a line cannot intersect C0

3 in a scheme of length ≥ 2, for then the
quartic C0

3 ∪ ℓ will span P3, which is impossible by Lemma 4.2. Therefore the family
C0
3,1 of reducible quartics C0

4 = C0
3∪ℓ, where C0

3 ∈ C0
3 , ℓ is a line and length(C0

3∩ℓ) = 1,
is a finite cover of C0

3 . It is 3-dimensional. By the standard normal bundle sequence
for a reducible nodal curve, χ(NC0

4/X) = 4, so dim[C0
4 ] HilbX ≥ 4 and hence C0

4 can be

deformed into a smooth rational normal quartic. We define C0∗
4 to be the component

containing the smoothings of curves from C0
3,1, but for this we need to prove the

irreducibility of C0
3,1.

Let C0
3 ∈ C0

3 be sufficiently generic. Then the lines ℓ such that C0
3 ∪ ℓ ∈ C0

3,1 are
the flopping curves of ΨC0

3
(see Diagram 3 of Section 1). Hence they are in a bijective

correspondence with the quadrisecants of Γ7
9. Let u+v+w ∈ Γ(3) be the triple of points

of Γ associated to Γ7
9. Let L be a quadrisecant of Γ7

9 and L∩ Γ7
9 = u1 + u2 + u3 + u4.

Then the span of the divisor D = u1+u2+u3+u4+u+v+w in P6 is P4, hence D belongs
to a linear series g2

7 . Let us denote by Gr
d the subset of Γ(r) which is the union of all

the linear series g2
7 . As a generic Γ has no g3

7 , the natural map π : G2
7−→W 2

7 is a P2-
bundle over the smooth curve W 2

7 ≃ W 1
5 and the quadrisecants of Γ7

9 are in a bijective
correspondence with the elements of the subset {D ∈ G2

7 | D−u− v−w is effective}.
Let I(k) = {(F, D) ∈ Γ(k) × G2

7 | D − F is effective} (1 ≤ k ≤ 7), and let
qk : I(k)−→G2

7 be the natural projection. We have identified a dense open subset
of C0

3,1 with that of I(3). So we have to show that I(3) is irreducible. The map

q3 : I(3)−→G2
7 is a 35-sheeted covering obtained by applying the relative symmetric

cube to the 7-sheeted covering q1. Hence it suffices to prove that the monodromy
group M permuting the sheets of q1 is the whole of S7. This follows from two facts:
(a) M is transitive, that is I(1) is irreducible, and (b) M is generated by transpositions.

To verify (a), restrict q1 to the fiber P2 of π over a general g2
7 ∈ W 2

7 . An orbit of
length k of M gives rise to a k-valued multisection of q1|q−1

1 (P2), or equivalently, to a

map P2−→Γ(k). But Γ(k) does not contain rational curves for k < 5, since Γ has no
linear series of degree k < 5. If we assume that M is not transitive, then there is an
orbit of length k < 4 and the above map P2−→Γ(k) is constant, which immediately
leads to a contradiction. Hence M is transitive.

To verify (b), one can show that the ramification of q1|q−1
1 (P2) is simple in codi-

mension 1. This follows from the observation that all the divisors from the linear
series g2

7 are obtained as the intersections L ∩ Γ0, where Γ0 ⊂ P2 is the image of Γ
under the map given by the g2

7 and L runs over the lines in P2. The ramification
points of q1 correspond to the points of tangency of L to Γ0, and the ramification is
simple when L is a simple tangent to Γ0. But for g2

7 generic, Γ0 is a nodal septic of
genus 7 having only finitely many flexes or bitangents. Hence the ramification of q1

is simple in codimension 1.

Lemma 4.4. Let X be generic. Then the family C0
4(X) of rational normal quartics

in X is 4-dimensional and the normal bundle of a generic quartic C0
4 ∈ C0

4(X) is either
2OP1(1) or OP1 ⊕OP1(2).

Proof. Take a generic pair of intersecting conics q∪q′. Both q and q′ have normal
bundle 2O. The strong smoothability of q ∪ q′ is proved by a standard application
of the Hartshorne–Hirschowitz techniques [HH], so q ∪ q′ is represented by a smooth

point of the closure C
0

4 of C0
4 in HilbX and dim C0

4 = χ(Nq∪q′/X) = 4. For an example
of such argument see Lemma 1.2 of [MT-2].

From the semicontinuity of h1(NC/X) for C ∈ C
0

4 and the fact that
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h1(Nq∪q′/X(−x)) = 0 for a point x ∈ q r q′, we deduce that h1(NC/X(−x)) = 0
for generic C ∈ C0

4 and x ∈ C. This implies the assertion on the normal bundle.

Lemma 4.5. Let X and C0
4 ⊂ X be generic. Then NC0

4/X ≃ 2OP1(1).

Proof. Assume that NC/X ≃ OP1 ⊕OP1(2) for generic C = C0
4 . Let p ∈ C be a

generic point. Let H(p) ⊂ HilbX be the the closure of the family of rational normal
quartics in X passing through p. It can be identified with a closed subscheme of
HilbX̃ , where X̃ is the blowup of p in X . Let C̃ be the proper transform of C in X̃.
We have NC̃/X̃ ≃ OP1(−1)⊕OP1(1) and the tangent space to H(p) at [C] is identified

with H0(NC̃/X̃). Since H1(NC̃/X̃) = 0, H(p) is smooth at [C] of dimension 2, and

there is a unique component H(C, p) of H(p) containing C. By our assumption, the
proper transform C̃′ of a generic quartic C′ in H(C, p) has the same normal sheaf.
Let F be the universal family of curves C̃′ over H(C, p) and π : F−→X̃ the natural
map. For generic C′, considered as a fiber of F over the point [C′] ∈ H(C, p), we
have NC′/F ≃ 2O, and for its image C̃′ = π(C′) in X̃, NC̃′/X̃ ≃ O(−1) ⊕ O(1).

As any map from 2O to O(−1) ⊕ O(1) has its image in the second factor O(1), the
differential of π is degenerate at the points of C′, hence also at the generic point of
F . By the Sard theorem, π(F ) is a surface. Hence all the rational normal quartics in
H(C, p) sweep out a surface in X , say S(C, p).

Let p′ 6= p be another generic point of C. Then there is a 1-dimensional family
of rational normal quartics in S(p) passing through both p, p′. The curves of this
1-dimensional family cover an open set of S(C, p) and of S(C, p′). This implies that
S(C, p′) = S(C, p). We can also replace C by a generic curve C′ in H(C, p), then
take generic p′′ 6= p′ in C′ and see that S(C, p) = S(C′, p′) = S(C′, p′′). This implies,
in particular, that S(C, p) is generically smooth at p and that S(C, p) contains a 3-
dimensional family of rational normal quartics. The 4-dimensional family of rational
normal quartics in X is thus rationally fibered over some irreducible curve B into 3-
dimensional families Ht, t ∈ B, such that the curves parameterized by Ht for generic
t cover a surface St ⊂ X (St = S(C, p) for some p ∈ C, C ∈ Ht). The existence of a
three-dimensional covering family of rational curves implies the rationality of St for
generic t.

Let S = St for generic t ∈ B and T the minimal desingularization of S. We
have already seen that there are 1-dimensional families of rational normal quartics
passing through two generic points p, p′ of S. By the “bend and break argument”
([Kol-2], Corollary II.5.6), there is a reducible member in every such pencil. Thus S
is covered by conics. As it is a rational surface, there is a linear pencil of conics on
S. This contradicts the non-existence of rational curves in the symmetric square of Γ
and Proposition 2.2.

Lemma 4.6. Let X and C0
4 ⊂ X be generic. Then C0

4 is the scheme-theoretic
intersection P4 ∩ X, where P4 = 〈C0

4 〉 is the linear span of C0
4 .

Proof. If P4 ∩ X contains a point p of the secant 3-fold of C0
4 , then P4 ∩ X

contains also the secant line ℓ of C0
4 passing through p, because X is an intersection

of quadrics. But a generic C = C0
4 in X has no secant lines contained in X . Indeed,

if p, p′ are the points of ℓ ∩ C for a line ℓ ⊂ X , then the infinitesimal deformations of
C with fixed point p are given by H0(NC̃/X̃) in the notation of Lemma 4.5. We have

NC̃/X̃ ≃ 2O, so the infinitesimal deformations lift to algebraic ones and H0(NC̃/X̃)

generates NC̃/X̃ at p′, hence C can be moved off ℓ near p′ inside the family of quartics
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passing through p. The line ℓ cannot deform with C, for C meets the surface swept
by lines in a finite number of points, and there are only finitely many lines through p
(Proposition 4.2.2, (iv) of [Isk-P]).

Assume now that P4∩X contains a point p not on the secant threefold of C. Then
there is a 1-dimensional family of 3-secant planes P2

t to C through p, parameterized
by the points t of some curve B. These planes are 4-secant to X , hence, by Lemma
1.3, they contain conics qt lying in X and passing through p. All these conics lie
in P4 = 〈C〉 and sweep out a surface in X . But PicX ≃ Z, so the linear span of
a surface in X is at least P6. The obtained contradiction proves that P4 ∩ X = C
set-theoretically.

Assume now that P4∩X has an embedded component supported at z ∈ C. Then
there is a line L 6= TpC in P4 passing through z and tangent to X . Choose any
p ∈ L r {z}. Then there exists a 3-secant P2 to C passing through p and z. It is
4-secant to X , as the intersection of P2 with X at z is multiple. Hence P2 ∩ X is a
conic q passing through z in the direction of L. Then P4 ∩ X contains a point p′ of
q which does not lie in the secant variety of C, which contradicts to what we have
proved.

5. Elliptic sextics in X. An elliptic sextic in X is a nonsingular irreducible
curve C ⊂ X of genus 1 and of degree 6. We will also deal with degenerate “elliptic”
sextics, which we will call just quasi-elliptic sextics. A quasi-elliptic sextic is a locally
complete intersection curve C of degree 6 in X , such that h0(OC) = 1 and the
canonical sheaf of C is trivial: ωC = OC . A reduced quasi-elliptic sextic will be called
a good sextic.

Lemma 5.1. Let q be a generic conic on X. Then X contains a 2-dimensional
family of good sextics of the form C0

4 ∪ q, such that C0
4 is a rational normal quartic

and length(C0
4 ∩ q) = 2, that is C0

4 , q meet each other quasitransversely in 2 distinct
points or are mutually tangent at a single point. For a generic sextic of this form,
C0

4 ∩ q is a pair of distinct points.
If we let q vary, then the family C1

4,2 of good sextics of type C0
4 ∪ q is irreducible

and 4-dimensional.
For any good sextic C in X, 〈C〉 = P5.

Proof. Let q be a generic conic. Assume that there exists a reduced quartic
C0

4 passing through two distinct points x, y of q, or which is tangent to q at one
point x = y. We have l = length(C0

4 ∩ q) = 2, for if l ≥ 3, then deg Ψq(C
0
4 ) =

2 deg C0
4 −3l = 8−3l < 0, which is absurd. In fact, the only irreducible curves C ⊂ X

whose degree with respect to the linear system defining Ψq is negative are components
of the reducible members of the family C0

3 [2]q contracted by Ψq, so deg C ≤ 2.
The birational map Ψq transforms C0

4 into a conic meeting Γq at 4 points,
u1, u2, u3, u4. These points span a plane P2. As in the proof of Proposition 2.1,
consider Γq as the projection of the canonical curve Γ from the line uv ⊂ P6, where
λ(q) = u + v. Then 〈u1, u2, u3, u4, u, v〉 = P4 and, by the geometric Riemann–Roch
Theorem,

∑

ui + u + v ∈ G1
6 = G1

6(Γ), where Gr
d denotes the union of all linear

series gr
d on Γ; we keep the notation W r

d for the Brill–Noether locus of classes of such

divisors in Picd(Γ).
Assume that Γ (or equivalently, X) is generic. By [ACGH], G1

6 is a P1-bundle
over W 1

6 , both G1
6 and W 1

6 are nonsingular, irreducible, and dim W 1
6 = 3.

Thus we have constructed a map C0
4 [2]q−→Gq, where Gq ⊂ G1

6 is the subset of
divisors D with D − u − v effective. It is obvious that Gq is 2-dimensional. In fact,
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for generic k ≤ 4 points z1, . . . , zk ∈ Γ, the dimension of Gz1,...,zk
= {D ∈ G1

6 |
D −

∑

zi is effective} is equal to 4 − k.
It is easy to construct the inverse map: take a divisor D ∈ Gq and let D−u−v =

u1+u2+u3+u4. Then, after projecting to P4 from uv, we have 〈u1, u2, u3, u4〉P4 = P2.
As Q3 does not contain planes, P2∩Q3 is a conic, say C2, and C0

4 := Ψ∗
q(C2) ∈ C0

4 [2]q.
The scheme-theoretic intersection C0

4 ∩ q is either two distinct points, or one point
with multiplicity 2.

We have seen that C0
4 [2]q is nonempty, 2-dimensional and birational to Gq. Take

another generic conic q′, and let λ(q′) = u′ + v′. Then Gq ∩ Gq′ = Gu,v,u′,v′ is finite.
Hence the union of C0

4 [2]q when q runs over an appropriate open subset U ⊂ F(X) is
4-dimensional. This implies that the generic quartic from this union is irreducible, for
the family of reducible quartics in X is 3-dimensional. For the pairs of intersecting
conics, this follows from the fact that for a generic x ∈ X , there are only finitely many
(namely, 24) conics passing through x, see Section 1. For the pairs of type a cubic
plus a line, use Lemma 4.1.

We have seen that the family of good sextics of the form C0
4 + q is birational to

I(2), where I(k) = {(F, D) ∈ Γ(k) ×G1
6 | D − F is effective}. The irreducibility of I(2)

is proved in the same way as in Lemma 4.3. Denote by qk the natural projection to G1
6

and restrict to a generic pencil P1 = g1
6 ⊂ G1

6. The 6-sheeted covering q−1
1 (P1)−→P1

has only simple ramifications, hence its monodromy is the whole of S6 and all the I(k)

for k = 1, . . . , 6 are irreducible.
The fact that C0

4 ∩ q is generically a pair of distinct points follows from the
degeneration of C0

4 to a curve of the form C0
3 + ℓ, where length(C0

3 ∩ q) = 2, that is
C0

3 ∈ C0
3 [2]q in the notation of Section 3. But the family C0

3 [2]q is well understood:
all its members are smooth rational curves contracted by σQ, except for 14 reducible
members of the form qi + ℓi, where ℓi are the flopping lines of Ψq, and qi, ℓi are
unisecant to q. Hence the generic C0

3 ∈ C0
3 [2]q meets q at two distinct points, and the

same is true for a generic C0
4 ∈ C0

4 [2]q.

Now, let C be any good sextic in X . Assume that the linear span of C is strictly
smaller than P5. Let, for example, 〈C〉 = P4. Then the projection from a general
secant line < x, y >, x, y ∈ C sends C to a quartic curve C ⊂ P2 with at least
two double points giving rise to two 4-secant planes to C passing through < x, y >.
By Lemma 1.3, these planes meet X along two conics passing through x, y, which
contradicts Lemma 4.2, (iii).

Proposition 5.2. There is a distinguished 6-dimensional irreducible component
C1∗
6 (X) of the family of elliptic sextics in X satisfying the following properties:

(i) The closure C
1∗

6 (X) of C1∗
6 (X) in HilbX contains the 4-dimensional family C1

4,2

of reducible good sextics of the form C0
4 + q introduced in Lemma 5.1.

(ii) A generic good sextic of the form C0
4 + q is a smooth point of HilbX .

(iii) A generic good sextic of the form C0
4 + q can be partially smoothed to an

irreducible rational curve with only one node, and such partial smoothings fill a five-

dimensional subfamily of C
1∗

6 (X).

Proof. For C = C1 ∪ C2 with C1 = q, C2 = C0
4 , we have the following exact

sequences [HH]:

0 → NC/X →

2
⊕

i=1

NC/X |Ci

α
−→ NC/X |Z → 0, length(NC/X |Z) = 4,
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0 → NCi/X → NC/X |Ci

εi−→ T 1
Z → 0, i = 1, 2,

0 → NC/X |Ci
(−Z) → NC/X

Ri−−→ NC/X |C2−i
→ 0, i = 1, 2,

where Z = C1 ∩ C2, α is the difference map (s1, s2) 7→ (s2 − s1)|Z and T 1
Z is the

Schlesinger sheaf of infinetisimal deformations of singularities of C. For generic C, Z
is a pair of distinct points and T 1

Z is a sky-scraper sheaf with 1-dimensional fibers at
points of Z, so that length(T 1

Z) = 2.
A sufficient condition for the smoothness of HilbX at C is h1(NC/X) = 0. If it

is verified, then the smoothability of C is equivalent to the following condition: the
image of the composition

H0(NC/X)
H0Ri−−−→ H0(NC/X |C2−i

)
H0ε2−i
−−−−−→ H0(T 1

Z) (6)

generates the sheaf T 1
Z for at least one value of i. The property (iii) is equivalent

to saying that one can smooth by a small analytic deformation only one node in a
general curve of type C0

4 + q. A sufficient condition which assures the existence of
such a partial smoothing is the surjectivity of the map (6) for at least one value of i.

The three conditions are obviously verified if NC/X |Ci
≃ OP1(a) ⊕ OP1(b) with

a > 0, b > 0 for one value of i and a ≥ 0, b ≥ 0 for the other. The second exact
sequence, Proposition 2.2, (ii), and Lemma 4.5 imply that NC/X |C1

≃ OP1(1)⊕OP1(1)
or OP1 ⊕OP1(2) and NC/X |C2

≃ OP1(2)⊕OP1(2) or OP1(1)⊕OP1(3). This proves the
proposition.

Corollary 5.3. The family of elliptic sextics on a generic X = X12 is irre-
ducible: C1

6(X) = C1∗
6 (X).

Proof. The proof is similar to that of Lemma 4.3. A result of [P-2] is used, which
states that the family of elliptic curves C1

d(Σ) of given degree d ≥ 4 on the spinor
tenfold is irreducible.

Lemma 5.4. For generic C ∈ C1
6(X), 〈C〉 ∩ X = C scheme-theoretically.

Proof. Notice that this is definitely false for some special C, for there are elliptic
sextics in X having a secant line contained in X . But one can show that a generic
elliptic sextic from C1∗

6 (X) has no secant lines. Indeed, if we assume the contrary,
then the generic quasi-elliptic sextic of the form C0

4 + q has also a secant line, say ℓ.
This line is not a secant to C0

4 , because by Lemma 4.6, 〈C0
4 〉 ∩ X = C0

4 for a generic
quartic C0

4 . Hence ℓ is one of the 14 lines meeting q, which are the flopping curves of
Ψq. Degenerate now C0

4 to a curve of the form C0
3 + ℓ′, where C0

3 ∈ C0
3 [2]q and ℓ′ is

a unisecant to C0
3 . Then ℓ′ is movable, hence generically different from ℓ, and both

C0
3 and ℓ′ meet ℓ. This is absurd, for the generic member of C0

3 [2]q is an exceptional
curve of σQ which does not meet any of the flopping curves.

So, assume that C has no secant lines and there is a point p ∈ P5 ∩ X r C. The
3-secant planes P2 of C sweep over all the projective space 〈C〉 = P5, so there is a
3-secant P2 to C passing through p. By Lemma 1.3, there is a conic q in X passing
through the 4 points of C ∩ P2, so X contains the octic C + q of arithmetic genus 3.
Except for C, q, there are no other curves in 〈C〉∩X , for otherwise the residual curves
to 〈C〉 ∩ X in the linear sections P6 ∩ X through 〈C〉 ∩ X will form a rational net of
cubics, conics or lines in X , which is absurd. But in the case when the 1-dimensional
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locus of 〈C〉 ∩ X is C ∪ q, we also obtain a contradiction: the residual quartic curve
D in a generic P6-section of X through C + q satisfies length(D∩ (C + q)) = 5. As D
is reduced, it is a rational normal quartic, hence 〈D ∩ (C + q)〉 = 〈D〉 = P4, which is
absurd, as 〈C〉 ∩ 〈D〉 = P3.

The above argument works as well if p is an embedded component of 〈C〉 ∩ X
whose tangent space is not contained in the tangent space to the secant variety of C.
Hence C is a scheme-theoretic intersection 〈C〉 ∩ X for generic C.

6. The Abel–Jacobi map on elliptic sextics. Let X = X12 be a generic
linear section Σ10

12 ∩ P8. Exactly as in [IM-3] in the case of quasi-elliptic quintics, we
can associate to any quasi-elliptic sextic C ⊂ X a rank-2 vector bundle E = EC on X
with Chern classes c1(E) = H and c2(E) = 6[ℓ], where H is the class of a hyperplane
section and [ℓ] the class of a line. It is obtained as the middle term of the following
nontrivial extension of OX -modules:

0−→OX−→E−→IC(1)−→0 , (7)

where IC = IC/X is the ideal sheaf of C in X . One can easily verify (see [MT-1] for
a similar argument) that, up to isomorphism, there is a unique nontrivial extension
(7), thus C determines the isomorphism class of E . This way of constructing vector
bundles is called Serre’s construction. The vector bundle E has a section s whose
scheme of zeros is exactly C. Conversely, for any section s ∈ H0(X, E) such that
its scheme of zeros Cs = (s)0 is of codimension 2, the vector bundle obtained by
Serre’s construction from Cs is isomorphic to E . The normal sheaf NCs/X is naturally
isomorphic to E|Cs

. As det E ≃ OX(1), we have E ≃ E∨(1).

Let us denote by MX(2; m, n) the moduli space of stable rank-2 vector bundles
with fixed Chern classes ci ∈ H2i(X, Z): c1 = mH and c2 = n[ℓ]. Recall also some
notation from Section 5: C1

4,2(X), the 4-dimensional family of reducible good sextics
of the form C0

4 +q introduced in Lemma 5.1, and C1
6(X), the 6-dimensional irreducible

family of elliptic sextics in X .

Lemma 6.1. For generic C ∈ C1
6(X), the associated vector bundle EC is generated

by global sections.

Proof. By (7), it suffices to verify that IC(1) is generated by global sections, or
equivalently, that P5 ∩ X = C scheme-theoretically, where P5 = 〈C〉. This follows
from Lemma 5.4.

The following proposition is proved in the same way as similar statements for the
(quasi-)elliptic quintics and associated vector bundles in Section 3 of [IM-3].

Proposition 6.2. For any good sextic C ⊂ X, the associated vector bundle E
possesses the following properties:

(i) h0(E) = 4, hi(E(−1)) = 0 ∀ i ∈ Z, and hi(E(k)) = 0 ∀ i > 0, k ≥ 0.

(ii) E is stable and the local dimension of the moduli space of stable vector bundles
at [E ] is at least 3.

(iii) The scheme of zeros (s)0 of any nonzero section s ∈ H0(X, E) is a quasi-
elliptic sextic with linear span P5.

(iv) If s, s′ are two nonproportional sections of E, then (s)0 6= (s′)0. This means
that (s)0 and (s′)0 are different subschemes of X.
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(v) The following three conditions are equivalent:
(a) for some (and hence for any) nonzero section s′ ∈ H0(X, E), the Hilbert
scheme of curves HilbX is nonsingular and 6-dimensional at [C′], where C′ =
(s′)0 is the zero locus of s′;
(b) the moduli space of stable rank-2 vector bundles MX(2; 1, 6) is nonsingular
and 3-dimensional at E;
(c) for some (and hence for any) nonzero section s′ ∈ H0(X, E), h1(NC′/X) =
0, where C′ = (s′)0.

If, moreover, the zero loci (s)0 for s ∈ H0(X, E) have no base points, then (a), (b),
(c) are equivalent to:

(d) for some (and hence for any) nonzero section s′ ∈ H0(X, E), NC/X is a
nontrivial extension of OC by OC(1), that is, there is an exact triple

0−→OC−→NC/X−→OC(1)−→0

and NC/X 6≃ OC ⊕OC(1).

The Serre construction can be relativized to provide a rational map

C
1

6(X) //___ MX = MX(2; 1, 6), which we will call the Serre map. Let M0
X be

the image of the smooth locus of C1
6(X) in MX and CX its inverse image in C

1

6(X).
Propositions 5.2, 6.2 and Lemma 6.1 imply the following corollary:

Corollary 6.3. (i) CX , resp. M0
X is an open subset in the smooth locus of

C
1

6(X), resp. MX ; dim CX = 6 dimM0
X = 3, and the Serre map S : CX−→M0

X is a
locally trivial P3-bundle.

(ii) CX contains a 4-dimensional family C1
4,2 ∩ CX of reducible good sextics of the

form C0
4 + q.

(iii) The fiber S−1([E ]) ≃ PH0(X, E) is identified with the family of zero loci (s)0
of the sections s ∈ H0(X, E) and consists of quasi-elliptic sextics C satisfying the
condition h1(NC/X) = 0.

Let now Γ = Σ10
12 ∩ P6 be the dual curve of genus 7 associated to X . The Brill–

Noether locus W 1
6 of Γ is identified with the singular locus of the canonical theta

divisor Θ ⊂ Pic6(Γ) (see [GH], Riemann–Kempf Theorem, Section 2.7). Denote by
α : CX−→Pic30(Γ) the restriction of the canonical Abel–Jacobi map to CX , [C] 7→
AJ(C) (see Definition 3.5).

Theorem 6.4. The Abel–Jacobi map α : CX−→Pic30(Γ) factors through the
Serre map S, that is there exists a morphism β : M0

X−→Pic30(Γ) such that α = β ◦S.
The map β is a birational isomorphism of M0

X onto the singular locus of the divisor
3K − Θ ⊂ Pic30(Γ), where K = KΓ is the canonical class of Γ.

Proof. The fibers of S are projective spaces, so they are contracted to points by
the Abel–Jacobi map. Thus β exists as a set-theoretic map. The fact that it is a
morphism can be proved along the lines of the proof of Theorem 5.6 in [MT-1].

Consider the restriction of α to the reducible sextics from C1
4,2. In the proof of

Lemma 5.1, we described a birational isomorphism of C1
4,2 with I(2) = {(F, D) ∈ Γ(2)×

G1
6 | D − F is effective}, where G1

6 is the union of all the linear series g1
6 in Pic6(Γ).

Let C0
4 + q be a generic curve from C1

4,2, represented by a point (F, D) ∈ I(2). By
Lemma 3.3 and Proposition 3.8, AJ(C0

4 ) = 4K−4λ(q)− [Zq

C0
4

]−2dq
8. By construction,

Zq

C0
4

= D − F , λ(q) = [F ]. By Corollary 3.7 and Lemma 3.9, AJ(q) = K − λ(q) and
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dq
8 = K − 2λ(q). This implies that α(C0

4 + q) = AJ(C0
4 ) + AJ(q) = 3K − [D]. As D

runs over G1
6, the classes 3K− [D] fill the divisor 3K−W 1

6 = 3K−Sing Θ. The image
of α coincides with that of β, and hence is at most 3-dimensional, for dimM0

X = 3.
As dim W 1

6 = 3, α(C1
4,2 ∩ CX) is dense in M0

X and β is quasifinite.
It remains to prove that β is birational onto its image, or equivalently, that the

generic fiber of α is one copy of P3. As the 4-dimensional family C1
4,2 ∩ CX dominates

M0
X , the fibers P3 of S contain generically a 1-dimensional family of curves from C1

4,2.
So, if there were several fibers of S in one fiber of α, then the generic fiber of the
restriction C1

4,2∩CX−→3K−W 1
6 of α would be a disjoint union of several curves. But

we have seen in the proof of Lemma 5.1 that this fiber is an irreducible 15-sheeted
covering of P1, so the generic fiber of α is connected.

7. Irreducibility of MX(2; 1, 6). Let X = X12 be a Fano 3-dimensional linear
section of the spinor tenfold and MX = MX(2; 1, 6). We will prove that MX is
irreducible for generic X . This will follow from the irreducibility of the family of
elliptic sextics on a generic X as soon as we have proved that a generic E in any
component of MX is obtained by Serre’s construction from an elliptic sextic.

Lemma 7.1. Let E ∈ MX, S a generic hyperplane section of X, E = E|S the
restriction of E to S. Then the following assertions hold:

(i) χ(E) = 4, h3(E) = 0.
(ii) E is stable and the scheme of zeros Zs = (s)0 of any nonzero section s of

E is 0-dimensional and of length 6. E can be obtained by Serre’s construction on S
from a 0-dimensional subscheme Z ⊂ S of length 6:

0−→OS−→E−→IZ(1)−→0. (8)

For such a Z, dim〈Z〉 = 4 and 〈Z〉 = 〈Z ′〉 for any Z ′ ⊂ Z of length 5.
(iii) E is generated by global sections at the generic point of S.

Proof. (i) We have χ(E) = 4 by Riemann–Roch, and h3(E) = h0(E(−2)) = 0 by
stability.

(ii) E = E|S is slope-semistable by Theorem 3.1 of [Ma]. The semistabil-
ity implies the stability because Pic S = ZH and detE = O(H) is odd. Hence
h2(E) = h0(E(−1)) = 0 and χ(E) = 4 implies h0(E) ≥ 4. The zero locus (s)0 of
any non-zero section of E is finite, for otherwise it would be a curve from the linear
system |kH | and then h0(E(−k)) 6= 0, which is absurd. Hence it is a subscheme
Z of length equal to c2(E) = 6, and there is an exact triple (8) with the inclusion
OS−→E defined by s. We have h1(IZ(1)) = 5 − m, where m = dim〈Z〉. By Serre
duality, dim Exti(IZ(1),OS) = h2−i(IZ(1)), hence the triple (8) can be nonsplit only
if m ≤ 4. The values m ≤ 2 are impossible by Lemma 1.3. Hence m = 3 or 4.

Assume that m = 3. By Lemma 1.3, for any subscheme Z ′ ⊂ Z of length 5, we
have dim〈Z ′〉 = dim〈Z〉 = 3. Hence h1(IZ′ (1)) = 1, and there is a unique nontrivial
extension

0−→OS−→E′−→IZ′(1)−→0.

Again by Lemma 1.3, for any Z ′′ ⊂ Z ′ of length 4, 〈Z ′′〉 = 〈Z ′〉, which implies the
local freeness of E′ (see, for example, [Tyu], Lemma 1.2). Thus the Serre construction
applied to Z ′ provides a rank-2 vector bundle E′ with c1(E

′) = [H ], c2(E
′) = 5. It

is easy to see that E′ is stable. Indeed, if we assume that it is unstable, then any
destabilizing subsheaf should be of the form IW (k), where k > 0 and W is a 0-
dimensional subscheme of S. If we replace IW (k) by its saturate IW (k)∨∨ = OS(k),



FANO 3-FOLD OF GENUS 7 451

we get an inclusion OS(k) →֒ E′, which is absurd, since h0(OS(k)) ≥ h0(OS(1)) =
8 > h0(E′) = 5. By Corollary 5.8 of [IM-3], E′ is generated by global sections. From
Serre’s exact triple for E′, we conclude that IZ′ (1) is generated by global sections.
Hence 〈Z ′〉 ∩ S = Z ′ scheme-theoretically, which contradicts the equality 〈Z ′〉 = 〈Z〉.
Thus we have proved that m = 4, that is, 〈Z〉 ≃ P4.

Suppose now that there is a subscheme Z ′ ⊂ Z of length 5 with 〈Z ′〉 $ 〈Z〉.

Then dim〈Z ′〉 = 3. The exact triple 0 → IZ(1)
ι
−→ IZ′(1) → Cp → 0, where {p} is the

support of IZ′/IZ , and the local-to-global spectral sequence provide the commutative
diagram

Ext1(IZ(1),OS)
� � // H0(Ext1(IZ(1),OS))

Ext1(IZ′ (1),OS)
� � //

)
(

ι∗

OO

H0(Ext1(IZ′ (1),OS))
?�

OO

From its right column we see that the extension class of (8) does not generate the
stalk of Ext1(IZ(1),OS), which contradicts the local freeness of E at p by Serre’s
Lemma (see e. g. Lemma 5.1.2 in [OSS]). Hence 〈Z ′〉 = 〈Z〉 and we are done.

(iii) Let s1, s2 be two non-proportional sections of E. If they do not generate
E at any point of S, then there is a rank-1 subsheaf of E with at least 2 linearly
independent sections, which contradicts the stability.

Lemma 7.2. In the assumptions of Lemma 7.1, the following statements hold:
(i) h1(E(k)) = 0 for all k ∈ Z and χ(E(k)) = h0(E(k)) = h2(E(−k − 1)) =

12k(k + 1) + 4 for k ≥ 0.
(ii) hi(E(k)) = 0 for all k ∈ Z, i = 1, 2; χ(E(k)) = h0(E(k)) = h3(E(−k − 2)) =

4(k + 1)3 for k ≥ −1.

Proof. This is standard; use the exact triples

0−→OS(k)−→E(k)−→IZ(k + 1)−→0,

0−→IZ(k)−→OS(k)−→OZ(k)−→0,

0−→E(k − 1)−→E(k)−→E(k)−→0,

the Serre duality and the Kodaira vanishing h1(E(k)) = 0 for k ≪ 0.

Corollary 7.3. Let E ∈ MX , S any nonsingular hyperplane section of X,
E = E|S the restriction of E to S. Then the restriction map H0(E)−→H0(E) is an
isomorphism and the assertion (i) of Lemma 7.2 holds for the cohomology hi(E(k)).

If in addition Pic S = ZH, then E is stable and any two nonproportional sections
of E define distinct 0-dimensional length-6 subschemes of S.

Proof. The assertions on the restriction map and on hi(E(k)) are obvious. If
PicS = ZH , rkE = 2 and c1(E) = H , then the stability of E is equivalent to
h0(E(−1)) = 0. Hence E is stable. This imples that Hom(E, E) = H0(E⊗E(−1)) =
C. From the exact triple (8) tensored by E(−1), we deduce that H0(E ⊗ IZ) ≃
H0(E ⊗ E(−1)) = C, hence a section of E having Z as its zero locus is unique up to
proportionality.
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Proposition 7.4. Assume X generic, and let E ∈ MX . Then E is generated by
global sections at the generic point of X and can be obtained by Serre’s construction
from a quasi-elliptic sextic lying in the closure of the family of elliptic sextics in the
Hilbert scheme of X.

Proof. Let Cs denote the curve (s)0 of zeros of a nonzero section s ∈ H0(E). It
is a l. c. i. sextic curve with trivial canonical sheaf for any s 6= 0. Moreover, it is
connected, that is h0(OCs

) = 1, and NCs
≃ E|Cs

, so χ(NCs
) = 6. This implies that

the dimension of the Hilbert scheme of curves in X at the point {Cs} representing
Cs is at least 6. Moreover, the properties of being a l. c. i. curve and to have trivial
canonical sheaf are open, so any small deformation of a l. c. i. curve with trivial
canonical sheaf is of the same type. We will use this observation to show that Cs is
in the closure of the family of smooth elliptic sextics in X .

The outline of the proof is the following. First, we decompose Cs into the sum
of the fixed part F and the movable part Ms. Second, we show that deg Ms ≥ 4.
Finally, in assuming s generic, we examine the possible types of decomposition of Ms

and F in irreducible components to show that F + Ms deforms to a smooth sextic
curve.

By Lemma 7.2 and Corollary 7.3, the curves Cs form a family with base P3, and for
two nonproportional sections s, s′ of E , the curves Cs, Cs′ are distinct as subschemes
in X . Let F be the sum of the fixed components of this family, and Ms the movable
part, so that Cs = F +Ms as an algebraic cycle. By Bertini Theorem, both F and the
singular loci of Ms for generic s (if nonempty) are contained in the base locus BL(E)
of E , defined as the locus of points x ∈ X in which the stalk Ex is not generated by
H0(E). According to Lemma 7.1, (iii) and Corollary 7.3, BL(E) is a proper closed
subset of X , so Ms is reduced for generic s. Taking any 3 nonproportional sections
s1, s2, s3 of E and a generic point x ∈ X , we can find a nontrivial linear combination
s = λ1s1 + λ2s2 + λ3s3 vanishing at x. Hence the family {Ms}[s]∈P3 is a covering
family of curves on X : there is at least one curve Ms passing through a generic point
of x.

Let us show that the curves Ms are different for nonproportional sections s. If
Cs has multiple components, this does not follow directly from the above observation
that Cs, Cs′ are distinct whenever s 6∼ s′, for Cs, Cs′ may differ, a priori, by the
nilpotent structure along the multiple components whilst the associated algebraic
cycles F +Ms, F +Ms′ are the same. Thus, assuming that s 6∼ s′, we will verify that
the supports of Cs and Cs′ are distinct.

By the stability of E , the subsheaf OX · s + OX · s′ ⊂ E cannot be of rank 1.
Hence s, s′ are generically linearly independent and the section s ∧ s′ ∈ H0(det E) =
H0(OX(1)) is nonzero. As Pic X ≃ Z, the zero locus S = (s∧s′)0 is a possibly singular,
but reduced and irreducible surface from the linear series of hyperplane sections of
X . Obviously Cs ⊂ S, Cs′ ⊂ S. The restrictions σ = s|S , σ′ = s′|S are sections of
the rank-1 torsion-free sheaf L = OS · σ + OS · σ′ ⊂ E|S . They are nonproportional,
for if λσ + λ′σ′ = 0 for some nonzero constants λ, λ′ ∈ C, then λs + λ′s′ is a nonzero
section of E which vanishes exactly on S, and this is impossible by the stability of E .

If we assume that SuppCs = SuppCs′ , then all the nontrivial linear combinations
λs + λ′s′ have the same zero set. This is absurd, for if x ∈ S is generic, then the fiber
L(x) := L ⊗ C(x) is one-dimensional, so there exists a nontrivial linear combination
λs + λ′s′ vanishing at x and the curve Cλs+λ′s′ passes through x. This implies that
Mλs+λ′s′ is a movable curve, and hence Ms 6= Ms′ .

Since the family of lines is not covering for X and since the one of conics contains
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no rational subvarieties, we have deg Ms ≥ 3. Suppose that deg Ms = 3. Then we
get a 3-dimensional family of cubic curves M = {Ms}, bijectively parameterized by
P3 = PH0(E). Let s ∈ PH0(E) be generic. We have seen that then Ms is reduced.
Let us show that it is also irreducible. Indeed, if Ms is a line plus a conic, then
by projecting M to the families τ(X), F(X) of lines and conics in X , we get a
nonconstant rational map P3

99K τ(X)×F(X). But τ(X) is a smooth curve of genus
43, and F(X) ≃ Γ(2) for the orthogonal genus-7 curve Γ = X̌, so τ(X), F(X) do
not contain rational subvarieties. Further, if Ms is a union of three lines, we get a
generically injective rational map P3

99K τ(X)(3) which is also absurd, since τ(X)(3)

is irreducible and nonrational.

Thus Ms is a reduced and irreducible cubic curve in X for generic s. As X is an
intersection of quadrics, the span of Ms is P3 and Ms is nonsingular. We obtain a
family of rational normal cubics in X , bijectively parameterized by an open set of P3.
This contradicts Lemma 4.1, saying that C0

3(X) is irreducible and birational to Γ(3).

We have proved that deg Ms ≥ 4. From now on we assume s ∈ H0(E) generic.
We will treat several cases differing by the degree of M = Ms and the type of its
decomposition in irreducible components.

Case 1: deg M = 6, that is, F = 0. Then C = M is a good sextic.

Subcase 1.1: M is irreducible. Either it is an elliptic sextic, and we are done,
or it is a rational sextic with one double point whose contribution to the arithmetic
genus is 1, that is a node or a cusp. An argument as in the proof of Lemma 4.3 shows
that when X is generic, then all the components of the family of rational sextics in
X are 6-dimensional, and the singular rational sextics fill a codimension-1 locus. As
the local deformation space of C in X is at least 6-dimensional, we conclude that C
deforms to a smooth elliptic sextic in X .

Subcase 1.2: at least one of the components of M is a line. By the same argument
as we used for deg M = 3, the number of line components is ≥ 4. But then the
remaining component cannot be a conic, for then this conic should be fixed and
deg M = 4, which is absurd. So, M has to be a connected union of 6 lines. As any
line meets only finitely many lines in X , the dimension of the family of connected
unions of 6 lines in X is ≤ 1, but the family of different M ’s is 3-dimensional, so M
is not of this type.

Subcase 1.3: M has a conic component. Then, as above, M is a connected union
of three smooth conics, M = q1 ∪ q2 ∪ q3. The sextuples

∑

λ(qi) of points of Γ, where
λ : F(X)−→∼ Γ(2) was defined in the proof of Proposition 2.2, sweep out a unirational
3-dimensional subvariety of Γ(6). This is impossible, for Γ is a generic genus-7 curve
and hence it has no g3

6 (and even g2
6).

Subcase 1.4: M has a cubic component. Then it is a union of two rational normal
cubics C1 ∪C2 with length(C1 ∩C2) = 2. As dim C0

3(X) = 3 and two generic rational
normal cubics in X are disjoint, we see that the family of pairs of intersecting rational
normal cubics is at most 5-dimensional. Hence M deforms to an irreducible sextic,
and this reduces the problem to Subcase 1.1, which we have already settled.

Case 2: deg M = 5, then F = ℓ is a line. Similarly to the above, we can prove
that M is a smooth rational quintic and length(ℓ ∩ Ms) = 2. An argument as in the
proof of Lemma 4.3 shows that the rational quintics in a generic X fill a 5-dimensional
family, and those meeting a line twice lie in codimension 1. Hence ℓ + M deforms to
an irreducible good sextic, which brings us to Subcase 1.1.

Case 3: deg M = 4. We have two subcases.

Subcase 3.1: C = q + M , where q is a reduced conic. Then the result follows by
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the same argument as in Case 2.
Subcase 3.2: C = F + M , where F is a Cohen–Macaulay double structure on

a line ℓ. As before, we can prove that M is a rational normal quartic such that
length(F ∩ M) = 2. We have an exact triple

0−→OF (−Z)−→OC−→OM−→0,

where Z is the intersection scheme F ∩ M .
The Cohen–Macaulay double structures on a smooth curve are completely de-

scribed, for example, in [BanF]. They all are obtained by Ferrand’s construction as
in the proof of Lemma 3.13; one can think of F as ℓ together with a cross section ξ of
the projectivized normal bundle P(Nℓ/X) over ℓ. The multiplicity of the intersection

F ∩M can be interpreted via the relative position of the proper transform M̃ of M and
ξ on the blowup X̃ of X with center ℓ. We have the following three possibilities for
the intersection F ∩ M of total multiplicity 2: (1) ℓ intersects M quasi-transeversely
at one point p, and M̃ passes through ξp; (2) ℓ ∩ M = {p1, p2}, p1 6= p2, and M̃ does
not pass through any one of the points ξp1

, ξp2
; (3) M is simply tangent to ℓ at p and

M̃ does not pass through ξp. The singular points of C are analytically equivalent to
(x2, z) ∩ (x, y) in the case (2) and (x2, z) ∩ (x, z − y2) in the case (3). These singu-
larities are not Gorenstein, so the only possible case is (1). But in this case we have
ωF ≃ ωC |F (−Z) and ωC ≃ OC . Restricting ωF to ℓ, we obtain a contradiction as in
the proof of Lemma 3.13: on the one hand, ωF |ℓ = OF (−Z)|ℓ = Oℓ(−1), on the other
hand ωF |ℓ ≃ ωℓ ⊗ L−1, where L ≃ Oℓ(k) for some k ≥ 0, which is impossible. Thus
the Subcase 3.2 does not occur.

Corollary 7.5. If X is generic, then MX is irreducible.

Proof. This is an immediate consequence of Proposition 7.4 and Corollary 5.3.

8. Appendix: Maps from the symmetric square of a curve. Here we
prove the following assertion:

Proposition 8.1. Let Γ be a generic curve of genus g ≥ 4 and S = Γ(2) the
symmetric square of Γ. Then the following assertions hold:

(i) If g 6= 4, then for any nonrational irreducible curve C, there are no noncon-
stant rational maps ϕ : S 99K C.

(ii) Let ϕ : S 99K S be a nonconstant rational map. Then ϕ = idS.

We fix for the sequel the notations Γ and S for a generic curve of genus g and its
symmetric square respectively. The proposition follows from a sequence of lemmas.
Before stating them, we need to describe the Mori cone and the ample cone of S.

Let g ≥ 2. Let π : Γ × Γ−→S = Γ(2) be the quotient map and ∆ ⊂ Γ × Γ
the diagonal. The Neron–Severi group NS(S) contains 3 natural classes: the first
one is f , the class of a fiber π({x} × Γ), where x ∈ Γ is a point, the second one is
δ = 1

2π(∆), and the third one is Θ|S , the pullback of the theta-divisor via the Abel-
Jacobi map S−→J(X) defined up to translations. There is one relation among them,
δ = (g + 1)f − Θ|S , and NS(S) is freely generated by f and δ (see [ACGH], Sect. 5
of Ch. VIII, and [GH], Sect. 5 of Ch. II). We have also:

δ2 = 1 − g, δf = f2 = 1, KS = −δ + (2g − 2)f, K2
S = (2g − 3)2 − g,

c2(S) = (2g − 3)(g − 1), χ(OS) =
(g − 1)(g − 2)

2
.
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If g ≥ 3, then S contains no rational curves and K2
S > 0, so S is of general type,

and moreover, KS is ample.
Let N(S) be the real vector plane NS(S)⊗R, NE(S) ⊂ N(S) the smallest closed

cone containing the classes of effective curves (the Mori cone of S), and NA(S) the
dual cone with respect to the intersection product on N(S); this is the smallest closed
cone containing the classes of ample curves. In our case, the cones are just angles in
the plane. It is obvious that one of the rays bordering NE(S) is R+δ and the other
is of the form R+(−δ + kf) for some real k, 1 < k < g + 1. Similarly, NA(S) is
bordered by the rays R+(δ + (g − 1)f) and R+(−δ + lf) with k ≤ l = k+g−1

k−1 < g + 1
The following theorem, proved in [Kou], [CiKou], gives more precise estimates:

Theorem [Kouvidakis, Ciliberto–Kouvidakis]. Assume that Γ is a generic
curve of genus g ≥ 4. Then

√
g ≤ k ≤

√
g + 1 ≤ l ≤

g
√

g − 1
+ 1.

If
√

g ∈ Z, then k = l =
√

g + 1. If moreover g 6= 4, then there are no classes of
effective curves in the ray R+(−δ + (

√
g + 1)f).

Lemma 8.2. Let g ≥ 5, and let C be a nonsingular complete curve. Then there
are no nonconstant morphisms ϕ : S−→C. If moreover C is nonrational, then every
rational map ϕ : S 99K C is regular, hence constant.

Proof. The fiber of such a morphism would provide a rational numerically effective
class h = aδ + bf with h2 = 0, which implies b

a
= −1 ±

√
g. Hence

√
g ∈ Z.

In the interior of NA(S), h2 > 0, hence h is on the border and is proportional to
h0 = −δ +(

√
g +1)f . This contradicts the non-existence of effective curves in the ray

R+h0.

Remark 8.3. For g = 4, Γ has two g1
3’s. A g1

3 defines the following curve on S:

D = {x + y ∈ S | ∃z ∈ Γ : x + y + z ∈ g1
3}.

The two g1
3 ’s thus provide two curves D, D′ in S in the same numerical class −δ + 3f

such that D2 = D′2 = 0. Hence the border ray of NE(S) contains effective curves, and
to extend the previous lemma to g = 4, one has to show that dim |nD| = dim |nD′| = 0
for all n > 0.

Lemma 8.4. Let g ≥ 3, and let ϕ : S 99K S be a rational map of degree d > 0.
Then d = 1.

Proof. Since C is not hyperelliptic, ϕ is regular. By [Beau-2], Proposition 2,
if a compact complex manifold X admits an endomorphism of degree d > 1, then
κ(X) < dim X . But S is of general type, so it has no endomorphisms of degree > 1.

Lemma 8.5. Let g ≥ 4 and let ϕ : S 99K S be a birational map. Then ϕ = idS .

Proof. As S contains no rational curves, ϕ is biregular. The induced automor-
phism ϕ∗ of N(S) is given by an integer matrix in the basis δ, f . It preserves the
intersection product and the cones NE(S), NA(S). The canonical class KS is an
eigenvector of ϕ∗ with eigenvalue 1. Hence if ϕ∗ preserves both border rays of NE(S),
it is the identity map. As δ2 < 0, there is only one effective curve in the numerical
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class 2δ, the diagonal ∆′ = π(∆), so ∆′ is invariant under ϕ. But ∆′ ≃ Γ and Γ has
no nontrivial automorphisms, for it is a generic curve of genus g. Hence ϕ|∆′ = id.

Now, any of the curves Fx = π({x} × Γ), represented by the class f , is tangent
to ∆′ at a single point 2x = π(x, x). Hence its image ϕ(Fx) is also tangent to ∆′ at
2x and belongs to the same class f . Lifting it to Γ× Γ, one immediately verifies that
ϕ(Fx) = Fx and ϕ = id.

It remains to consider the second case, when ϕ∗ permutes the border rays of
NE(S). Then ϕ∗ is an orthogonal reflection with mirror RKS . We have

ϕ∗(v) = v − 2
(v, α)

(α, α)
α, α = −(2g − 3)δ + (3g − 3)f.

This gives ϕ∗(δ) = − 4g−3
4g−9δ + 12g−12

4g−9 f . The coefficient of δ is fractional for all g ≥ 4,
which contradicts the condition that ϕ∗ is integer in the basis δ, f . Hence the second
case is impossible.

Remark 8.6. The previous lemma does not extend to g = 3, because in this case
the formula ϕ : x + y 7→ KΓ − x − y defines an involution on S.
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[CTT] Coandă, I.; Tikhomirov, A.; Trautmann, G., Irreducibility and smoothness of the

moduli space of mathematical 5-instantons over P3, Internat. J. Math., 14 (2003),
pp. 1–45.

[D] Druel, S., Espace des modules des faisceaux semi-stables de rang 2 et de classes de

Chern c1 = 0, c2 = 2 et c3 = 0 sur une hypersurface cubique lisse de P
4, Internat.

Math. Res. Notices, 2000:19, pp. 985–1004.
[ES] Ellingsrud, G., Strømme, S. A., Stable rank-2 vector bundles on P3 with c1 = 0 and

c2 = 3, Math. Ann., 255 (1981), pp. 123–135.
[F] Ferrand, D., Courbes gauches et fibrés de rang 2, C. R. Acad. Sci. Paris, Sr. A-B,

281:10 (1975), Aii, A345–A347.
[GH] Griffiths, P. A., Harris, J., Principles of Algebraic Geometry, John Wiley & Sons,

New York, 1978.



FANO 3-FOLD OF GENUS 7 457

[GS] Gruson, L., Skiti, M., 3-instantons et rseaux de quadriques, Math. Ann., 298 (1994),
pp. 253–273.

[Ha] Hartshorne, R., Stable vector bundles of rank 2 on P
3, Math. Ann., 238 (1978), pp. 229–

280.
[HH] Hartshorne, R., Hirschowitz, A., Smoothing algebraic space curves, In: Algebraic

geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., 1124. Springer, Berlin-
New York, pp. 98–131 (1985).

[HN] Hirschowitz, A. and Narasimhan, M. S., Fibrés de t’Hooft spéciaux et applica-
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[M] Manolache, N., Rank 2 stable vector bundles on P

3 with Chern classes c1 = −1, c2 = 2,
Rev. Roum. Math. Pures Appl., 26 (1981), pp. 1203–1209 .

[Ma] M. Maruyama, Boundedness of semistable sheaves of small ranks, Nagoya Math. J., 78
(1980), pp. 65–94.

[MT-1] Markushevich, D., Tikhomirov, A. S., The Abel-Jacobi map of a moduli component

of vector bundles on the cubic threefold, J. Algebraic Geom., 10 (2001), pp. 37–62.
[MT-2] Markushevich, D., Tikhomirov, A. S., A parametrization of the theta divisor of the

quartic double solid, IMRN, 2003:51 (2003), pp. 2747–2778.
[Mu-1] Mukai, S., Curves and symmetric spaces. I, Amer. J. Math., 117 (1995), pp. 1627–1644.
[Mu-2] Mukai, S., Non-Abelian Brill–Noether theory and Fano 3-folds, M.Reid’s translation

from Sugaku Expositions, 49 (1997), pp. 1–24.
[Mu-3] Mukai, S., Vector bundles on a K3 surface, Proceedings of the International Congress

of Mathematicians, Vol. II (Beijing, 2002), 495–502, Higher Ed. Press, Beijing, 2002.
[OS] Ottaviani, G., Szurek, M., On moduli of stable 2-bundles with small Chern classes on

Q3, with an appendix by Nicolae Manolache, Ann. Mat. Pura Appl. (4), 167 (1994),
pp. 191–241.

[OSS] Okonek, C., Schneider, M., Spindler, H., Vector Bundles on Complex Projective

Spaces, Progress in Math., Bd. 3, Birkhäuser, 1980.
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math.AG/0409125.

[RS] Ranestad, K., Schreyer, F.-O., Varieties of sums of powers, J. Reine Angew. Math.,
525 (2000), pp. 147–181.
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