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SEMI-CLASSICAL ESTIMATES FOR NON-SELFADJOINT

OPERATORS
∗
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Dedicated to Professor Salah Baouendi on his seventieth birthday

Abstract. This is a survey paper on the topic of proving or disproving a priori L2
estimates

for non-selfadjoint operators. Our framework will be limited to the case of scalar semi-classical

pseudodifferential operators of principal type. We start with recalling the simple conditions following

from the sign of the first bracket of the real and imaginary part of the principal symbol. Then

we introduce the geometric condition (ψ) and show the necessity of that condition for obtaining a

weak L2
estimate. Considering that condition satisfied, we investigate the finite-type case, where one

iterated bracket of the real and imaginary part does not vanish, a model of subelliptic operators. The

last section is devoted partly to rather recent results, although we begin with a version of the 1973

theorem of R.Beals and C.Fefferman on solvability with loss of one derivative under condition (P );

next, we present a 1994 counterexample by N.L. establishing that (ψ) does not ensure an estimate

with loss of one derivative. Finally, we show that condition (ψ) implies an estimate with loss of

3/2 derivatives, following the recent papers by N.Dencker and N.L. Our goal is to provide a general

overview of the subject and of the methods; we do not enter in the details of the proofs, although we

provide some key elements of the arguments, in particular in the last section.
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1. Presentation of the problem.

1.1. A few basic facts on pseudodifferential operators. We recall a few

basic facts on pseudodifferential operators, focusing our attention on the semi-classical

case.

Definition 1.1.1. Symbol classes. Let n ≥ 1 be an integer and m ∈ R.

We shall say that a function a : Rn × Rn × (0, 1] −→ C is in Sm
scl if the functions

(x, ξ) 7→ a(x, ξ, h) are C∞
for all h ∈ (0, 1] and are such that for all multi-indices α, β,

sup

Rn×Rn×(0,1]

|(∂α
x ∂

β
ξ a)(x, ξ, h)|h−|β|+m

= γαβ(a) <∞. (1.1.1)

A typical example of such a symbol is a function p(x, hξ)h−m
where p ∈ C∞

b (R2n
)

(C∞
functions bounded as well as all their derivatives). We define S−∞

scl = ∩m∈RS
m
scl.

If Ω is some open subset of R2n
, the set Sm

scl(Ω) is defined as the set of functions

c : Rn×Rn×(0, 1] −→ C such that c ∈ SN
scl for someN and sup

Ω×(0,1] |(∂α
x ∂

β
ξ c)(x, ξ, h)|

h−|β|+m <∞. Accordingly the set S−∞
scl (Ω) stands for ∩m∈RS

m
scl(Ω).

We recall the definition of the Weyl quantization: to a ∈ Sm
scl we associate an
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operator aw
, bounded on L2

(Rn
) and given by the formula

1

(
awu

)
(x) =

∫∫
e2iπ(x−y)·ξa

(x+ y

2
, ξ, h

)
u(y)dydξ. (1.1.2)

The standard quantization formula is

(a(x,D, h)u)(x) =

∫
e2iπx·ξa(x, ξ, h)û(ξ)dξ, (1.1.3)

where the Fourier transform û is given by û(ξ) =
∫
e−2iπxξu(x)dx. One pleasant fact

about the Weyl quantization is that real-valued symbols are quantized in formally

selfadjoint operators and more generally that the adjoint of aw
is simply (ā)w

. The

composition formula is awbw = (a♯b)w
with

(a♯b)( X︸︷︷︸
(x,ξ)

) = 2
2n

∫∫

R2n×R2n

e−4iπ[X−Y,X−Z]a(Y )b(Z)dY dZ, (1.1.4)

where the symplectic form [, ] is given for X = (x, ξ), Y = (y, η) ∈ Rn × Rn
, by

[X,Y ] = [(x, ξ), (y, η)] = ξ · y − η · x. (1.1.5)

It is convenient to give an asymptotic version of these compositions formulae: one has

for a ∈ Sm1

scl
and b ∈ Sm2

scl
, the expansion

(a♯b)(x, ξ, h) =

∑

0≤k<N

2
−k

∑

|α|+|β|=k

(−1)
|β|

α!β!
Dα

ξ ∂
β
xa D

β
ξ ∂

α
x b+ rN (a, b), (1.1.6)

with rN (a, b) ∈ Sm1+m2−N
scl

, D = ∂/2iπ. The beginning of this expansion is thus

ab+
1

4iπ
{a, b},

where {a, b} =
∑

1≤j≤n ∂ξja∂xjb − ∂xja∂ξjb is the Poisson bracket. The sums inside

(1.1.6) with k even are symmetric in a, b and skew-symmetric for k odd. We note in

particular that, for a, b as above

a♯b+ b♯a ≡ 2ab mod Sm1+m2−2

scl , a♯b− b♯a ≡ 1

2iπ
{a, b} mod Sm1+m2−3

scl .

(1.1.7)

Remark 1.1.2. We note that if Ω is an open set of R2n
, c ∈ Sm1

scl (Ω), ψ ∈ Sm2

scl

with suppψ ⊂ Ω, we have c♯ψ and ψ♯c ∈ Sm1+m2

scl since c belongs to some SN
scl so that

c♯ψ ∈ SN+m2

scl and from (1.1.6), for all nonnegative integers M ,

c♯ψ =

∑

0≤k<M

ωk(c, ψ) + rM , ωk(c, ψ) ∈ Sm1+m2−k
scl , rM ∈ SN+m2−M ,

1
The formula (1.1.2) does not obviously make sense, and one should introduce the Wigner

function H(u, v)(x, ξ) =
R
e−2iπzξu(x+

z
2
)v̄(x− z

2
)dz which belongs to S(R2n

) for u, v ∈ S(Rn
) (and

to L2
(R2n

) for u, v ∈ L2
(Rn

)) to define

〈awu, v〉L2(Rn) = 〈a,H(u, v)〉S′(R2n),S(R2n).

It is then possible (but not trivial) to prove that if a is a smooth function bounded as well as all its

derivatives, then aw
is indeed bounded on L2

(Rn
).
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so that choosing M ≥ N −m1 gives the answer. As a consequence, if c ∈ S−∞
scl (Ω),

ψ ∈ Sm
scl with suppψ ⊂ Ω, we have c♯ψ and ψ♯c ∈ S−∞

scl : from the previous argument

we know that c♯ψ and ψ♯c belong to Sm1+m
scl for any real m1, i.e. to S−∞

scl .

When p belongs to C∞
b (R2n

), one may use the formalism developed in [Ro] and

introduce the semi-classical Weyl quantization

pwh = p(x, hξ)w, so that (pwhu)(x) = h−n

∫∫
e2iπh−1

(x−y)ξp(
x+ y

2
, ξ)u(y)dy.

(1.1.8)

For p, q ∈ C∞
b (R2n

), we note that (1.1.7-8) give quite conveniently

pwhqwh + qwhpwh = 2(pq)wh + h2rw , r ∈ S0

scl, (1.1.9)

[pwh , qwh ] =
~

i
{p, q}wh

+ h3sw, s ∈ S0

scl, ~ = h/(2π).
(1.1.10)

Since the mapping a ∋ S0

scl 7→ aw ∈ L(L2
(Rn

)) is continuous, a consequence of the

previous formulae is that

pwhqwh + qwhpwh = 2(pq)wh +O(h2

), (1.1.11)

[pwh , qwh ] =
~

i
{p, q}wh

+O(h3

), (1.1.12)

where the O(hκ
) is to be understood in L(L2

(R
n
)). In the sequel of this paper, we

shall stick to the original Weyl formula (1.1.2) without parameter and use the notation

(1.1.8) pwh occasionally as an abbreviation.

We shall also need some asymptotic version of our classes of symbols with the

following definition.

Definition 1.1.3. Let n ≥ 1 be an integer and m ∈ R. We shall say that a

function a : Rn ×Rn × (0, 1] −→ C is in Sm
psc if there exists a sequence pj ∈ C∞

b (R2n
)

such that

hma(x, ξ, h) ∼
∑

j≥0

hjpj(x, hξ), pj ∈ C∞
b (R

2n
), (1.1.13)

i.e. for all N ∈ N, hma(x, ξ, h) −
∑

0≤j<N

hjpj(x, hξ) ∈ S−N
scl .

Note that Sm
psc ⊂ Sm

scl and also that, given a family (pj)j∈N of functions of C∞
b (R2n

),

there exists a ∈ Sm
psc such that (1.1.13) is satisfied; the function p0 above is called the

principal symbol of the operator aw
.

Note that the sequence (pj) is uniquely determined by the equality (1.1.13) since

the identity 0 ∼ ∑
j≥0

hjpj(x, hξ) implies p0(x, hξ) ∈ S−1

scl and in particular we obtain

the inequality sup
(x,ξ,h)∈Rn×Rn×(0,1] |p0(x, hξ)|h−1 <∞ so that p0 = 0.

For future reference, we also need to recall the definition of the semi-classical wave-

front set, similar to the usual wave-front set and well adapted to the semi-classical

framework that we follow here.

Definition 1.1.4. Let h0 ∈ (0, 1] and (uh)0<h≤h0
be a family of functions with

L2
norms smaller than 1. The semi-classical wave-front set of the family (uh), denoted
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by WFsc(uh), is a subset of R2n
whose complement is the set of points (x0, ξ0) ∈ R2n

such that there exists a function χ0 ∈ C∞
b (R2n

) with

χ0(x0, ξ0) = 1, ‖χ0(x, hξ)
wuh‖L2

(Rn
)
= O(h∞). (1.1.14)

1.2. A priori estimates. We want to check under which classical conditions

on the function p ∈ C∞
b (R

2n
) we can prove or disprove an estimate of the following

type: there exists µ ≥ 0, C > 0, h0 > 0, for all h ∈ (0, h0] and all u ∈ L2
(Rn

),

hµ ‖u‖L2
(Rn

)
≤ C ‖pwhu‖L2

(Rn
)
. (1.2.1)

In the sequel, we limit our attention to microlocal estimates: we know the behaviour of

the symbol p near some point (x0, ξ0), and we want to prove the following modification

of (1.2.1): there exists a neighborhood V0 of (x0, ξ0), there exists µ ≥ 0 such that for

all χ0 ∈ C∞
b (R2n

) with suppχ0 ⊂ V0, there exists C > 0 and r ∈ S−∞
scl (V h

0
), such that

for all u ∈ L2
(R

n
),

hµ ‖χwh
0
u‖L2

(Rn
)
≤ C ‖pwhu‖L2

(Rn
)
+ ‖rwu‖L2

(Rn
)
, (1.2.2)

with

V h
0

= {(x, ξ) ∈ R
2n, (x, hξ) ∈ V0}. (1.2.3)

We shall say that the above estimate is loosing µ derivatives.

The elliptic case. As a matter of fact, if p is elliptic at (x0, ξ0), i.e. p(x0, ξ0) 6= 0,

the semi-classical symbol a(x, ξ, h) = p(x, hξ) belongs to S0

scl and |a| ≥ ǫ0 > 0 on

V h
0

(see (1.2.3)) where V0 is some neighborhood of (x0, ξ0). Standard arguments of

symbolic calculus ensure that there exists b ∈ S0

scl such that

b♯a = 1 + r, r ∈ S−∞
scl (V h

0
) ∩ S0

scl.

As a consequence, for a function χ0 ∈ C∞
b (R2n

) supported in V0, we have

χwh
0

+ χwh
0
rw

= χwh
0
bwaw,

entailing from the remark 1.1.2, χwh
0

= cwpwh + rw
1
, c ∈ S0

scl, r1 ∈ S−∞
scl so that with

L2
norms, ‖χwh

0
u‖ ≤ C ‖pwhu‖ + ‖rw

1
u‖ , which is indeed (1.2.2) with µ = 0.

Remark 1.2.1. Note that a consequence of (1.2.2) is hµ ‖χwh
0
u‖ ≤ C ‖pwhu‖ +

γNh
N ‖u‖ and if we assume furthermore that the function u is somehow “concen-

trated” near (x0, ξ0), e.g. ‖u‖ ≤ C ‖χwh
0
u‖ , we get for h small enough the estimate

hµ ‖u‖ ≤ C ‖pwhu‖ , which is indeed (1.2.1) for this class of u.

What happens at the characteristic points, p(x0, ξ0) = 0 ? We shall always

assume that p is principal type, i.e.

dp 6= 0 at p = 0. (1.2.4)

When p is real-valued, it is easy to get (1.2.2) with µ = 1. As a matter of fact,

thanks to (1.2.4), one can solve with a ∈ C∞
c

(R2n
), real-valued, supported on some

neighborhood V0 of γ0 = (x0, ξ0)

Hp(a) = {p, a} = χ2

0
− χ2

1
, (1.2.5)

where χ0 ∈ C∞
c

(R2n
) is supported in a neighborhood W0 ⊂ V0 of γ0 and χ1 ∈

C∞
c

(R2n
) is supported in a neighborhood W1 ⊂ V0 of γ1 = (x1, ξ1), with (x0, ξ0) 6=
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(x1, ξ1) on the same integral curve of Hp (bicharacteristic of p). Quantifying with

the h-Weyl formula (1.1.8) the equality (1.2.5), one can even get some propagation

estimates.

Remark 1.2.2. Even for Dx1
, no better estimate than with µ = 1 is true: in fact

with L2
-norms, it is not possible to do better than

T ‖hD1u‖ ≥ ~ ‖u‖ , suppu ⊂ {(x1, x
′
), 0 ≤ x1 ≤ T }. (1.2.6)

Although semi-global or global estimates may be difficult to obtain for real-principal

type operators, it is not the case of the microlocal estimates, which can essentially be

reduced to (1.2.6).

Some motivations and examples. What happens to these microlocal estimates for

a nonelliptic principal-type complex-valued symbol ? There are several reasons to get

interested in this problem. First of all, it is certainly a natural question to look at

complex-valued symbols. Next, complex non-singular (i.e. nonvanishing) vector fields

are basic geometrical objects and for instance the Hans Lewy operator

L0 = ∂x1
+ i∂x2

+ i(x1 + ix2)∂x3
is not locally solvable (1.2.7)

nor is ∂x1
+ix1∂x2

whereas ∂x1
+ix2

1
∂x2

is indeed locally solvable (the latter models were

studied by S.Mizohata in [Mi] and by L.Nirenberg and F.Treves in [NT1]). What is

the geometric explanation? Nonelliptic boundary value problems, such as the oblique-

derivative problem (see e.g. [L2] and the references therein) are also natural problems

of interest: take Ω a smooth open subset of Rn
and try to find u such that ∆u = 0 in

Ω and, with T tangent vector field to the boundary, and ∂/∂ν the exterior normal,

Xu = Tu+ α
∂u

∂ν
= f on ∂Ω.

When α 6= 0 it is an elliptic problem but when α vanishes and T 6= 0 it is a nonselfad-

joint principal type problem: if G is the Green kernel for the Dirichlet problem, we get

XGw = f , where XG is a (nonlocal) pseudodifferential operator on the boundary. A

more recent topic of interest in nonselfadjoint problems comes from the study of the

pseudospectrum: the spectrum of nonnormal operators is generically very unstable,

since the resolvent may be large far away from the spectrum and the spectrum of a

perturbation A + ǫR may be far from the spectrum of the nonnormal A. Some re-

cent work by L.Boulton [Bo], E.Davies [Da1], [Da2], N.Dencker-J.Sjöstrand-M.Zworski

[DSZ], M.Hager [Ha], K.Pravda-Starov [P1], [P2], L.Trefethen [TE] established a clear

link between the pseudospectrum and geometric properties of locally solvable pseudo-

differential operators. A remarkable point in these studies is that the pseudospectrum

was introduced by numerical analysts a long time ago to tackle large nonselfadjoint

matrices, and it is only recently that the key rôle of semi-classical estimates was iden-

tified for the determination of the pseudospectrum.

1.3. The first bracket. We consider now and in the sequel of this section a

complex-valued function p ∈ C∞
b (R2n

) and a point (x0, ξ0) ∈ R2n
such that p(x0, ξ0) =

0, dp(x0, ξ0) 6= 0. It turns out that a very simple study of the first bracket is leading

us at once to rather sharp results: the sign of the first bracket

{Re p, Im p} =
1

2
Im {p̄, p} =

1

2i
{p̄, p}
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will play a determinant rôle. If we assume now that this first bracket is negative at a

characteristic point (x0, ξ0):

p(x0, ξ0) = 0, {Re p, Im p}(x0, ξ0) < 0, (1.3.1)

then there exists a family of functions (uh) with L2
norm 1, andWFsc(uh) = {(x0, ξ0)}

such that

‖pwhuh‖ = O(h∞),

i.e. we can construct a quasi-mode. The proof is quite simple, once the apparatus of

microlocal analysis is in place. After multiplication by an elliptic factor, the microlocal

model for p is indeed ξ1 − ix1, quantized by hDx1
− ix1: we have

hDx1
− ix1 =

h

2iπ

(
∂x1

+ 2πh−1x1

)
,

(
∂x1

+2πh−1x1

)
(2

1/4h−1/4e−π
x2
1

h ) = 0,

and it is enough to multiply by a fixed cutoff function in the x′-variables to get the

quasi-mode

uh(x1, x
′
) = 2

1/4h−1/4e−π
x2
1

h w(x′), ‖w‖L2
(Rn−1

)
= 1.

Let us consider now the case in which the first bracket is positive, i.e.

p(x0, ξ0) = 0, {Re p, Im p}(x0, ξ0) > 0. (1.3.2)

After multiplication by an elliptic factor, the microlocal model for p is ξ1 + ix1, quan-

tized by hDx1
+ ix1: we have by a simple integration by parts, say for u ∈ S(R

n
),

‖hDx1
u+ ix1u‖2

= ‖hDx1
u‖2

+ ‖x1u‖2

+ 2 Re〈hDx1
u, ix1u〉︸ ︷︷ ︸

=~‖u‖2

≥ ~ ‖u‖2

an estimate which is easily seen as optimal in terms of power of h since

‖hDx1
u+ ix1u‖2

= ‖hDx1
u− ix1u‖2

+ 4 Re〈hDx1
u, ix1u〉 ≥

h

π
‖u‖2

(1.3.3)

and h/π is the best constant since

‖(hDx1
+ ix1)(e

−πx2

1
h−1

) = e−πx2

1
h−1

(2ix1)‖2

=

∫
4x2

1
e−2πx2

1
h−1

dx1 = 2
−1/2π−1h3/2,

2~‖e−πx2

1
h−1‖2

= ~h1/2

2
1/2

= h3/2

2
−1/2π−1.

The estimate (1.3.3) is (1.2.1) with µ = 1/2 (for u such that x1u, ∂x1
u ∈ L2

) that is an

estimate with loss of 1/2 derivatives. The situation with a nonvanishing first bracket

at a characteristic point is thus very simple: either it is negative and there exists a

quasi-mode, or it is positive and one can prove an estimate with loss of 1/2 derivative.

Remark 1.3.1. The geometric explanation of the Hans Lewy counterexample

([Lw]) (1.2.7) given by L.Hörmander ([H2], [H3]) showed that whenever the first

bracket is positive at some point (x0, ξ0) of the cotangent bundle where the homo-

geneous principal symbol q0 is vanishing (we leave the semi-classical symbols in this

remark to deal with smooth homogeneous symbols on the cotangent bundle of a man-

ifold: see the appendix 5.1), i.e.

{Re q0, Im q0} (x0, ξ0) > 0,
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then the operator q(x,D) ∈ Op(Sm
phg) is not locally solvable at x0: there exists some

C∞
right-hand-side f such that the equation q(x,D)u = f has no distribution solution

in any neighborhood of x0. On the other hand if the first bracket {Re q, Im q} is

negative at every characteristic point, the transposed operator q(x,D)
∗

is subelliptic

with loss of 1/2 derivative and thus the equation q(x,D)u = f is locally solvable with

a loss of 1/2 derivatives: for f ∈ Hs
loc, there exists u ∈ H

s+m− 1

2

loc (m is the order of the

operator) solving the equation in a neighborhood of x0. After a microlocalization and a

Littlewood-Paley decomposition, this results boils down to dealing with semi-classical

estimates as above.

1.4. The geometry: condition (Ψ). The elliptic points are well understood

as well as the characteristic points with a non vanishing first bracket. What happens

if somewhere p = {Re p, Im p} = 0?

Examples. Before dealing with a more geometrical setting, let us first check a

couple of examples. For k ∈ N, there exists Ck such that for all u ∈ S(Rn
),

Ck‖hDx1
u+ ix2k+1

1
u‖ ≥ h

2k+1

2k+2 ‖u‖ , (1.4.1)

that is an estimate with loss of
2k+1

2k+2
derivatives. We have proven this when k = 0

(and did comput the best constant in that case with (1.3.3)) by expanding the square.

Expanding the square is not enough if k ≥ 1, but it makes sense since the first bracket

is (2k + 1)x2k
1

, which is nonnegative. Note that for the operator

hDx1
− ix2k+1

1
, one can construct a quasi-mode, (1.4.2)

with a function e−αh−1x2k+2

1 with a positive α, a construction similar to the one follow-

ing (1.3.1). On the other hand, for k ∈ N, there exists C′
k such that for all u ∈ S(Rn

)

we have

C′
k

∥∥hDx1
u± ix2k

1
u
∥∥ ≥ h

2k
2k+1 ‖u‖ , (1.4.3)

an estimate with loss of
2k

2k+1
derivative which holds whatever is the sign ±. Note

that expanding the square does not make sense, even for k = 1: the first bracket is

2kx2k−1

1
, which may be negative. It is nevertheless a trivial matter to solve the ODE

∂x1
u∓ 2πh−1x2k

1
u = f2iπh−1

u(x1) =

∫ x1

±∞

e±
2π

h(2k+1)
(x2k+1

1
−y2k+1

1
)f(y1)dy12iπh

−1

so that the proof of (1.4.3) is reduced to the L2
-boundedness of the operator with

kernel

H(t− s)e−
2π

h(2k+1)
(t2k+1−s2k+1

)h−1+
2k

2k+1 ,

(H = 1R+ is the Heaviside function), which is unitarily equivalent to the operator

with kernel H(t − s)e−
2π

2k+1
(t2k+1−s2k+1

), the latter being trivially L2
-bounded by the

Schur criterion. These examples are ODE and their simplicity could be misleading.

Let us check a more involved example: for α ∈ C∞
b (R2

), we have

C‖hDx1
u+ ix1

(
x1 − α(x2, hDx2

)
)
2

u‖ ≥ h3/4 ‖u‖ . (1.4.4)

That example is a mixture of (1.4.1) and (1.4.3) (k = 0 if α is far from zero, k = 1

otherwise). Since α can be arbitrarily close to zero, one has to find a good multiplier
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and for instance compute Re〈hDx1
u+ ix1

(
x1 − α(x2, hDx2

)
)
2

u, i sign(x1)u〉, but the

complete proof is not so easy. Increasing the complexity without leaving operators

with a simple expression, we can prove

C‖hDx1
u+ ix2

1

(
hDx2

+ x1x
2

2

)
u‖ ≥ h9/10 ‖u‖ , (1.4.5)

where the operator involved is definitely not an ODE and the 9/10 is (very) hard to

get. To conclude with that short list of examples, it is possible to prove that

C‖hDx1
u+ ia(x1, x

′, hD′
)b(x1, x

′, hD′
)u‖ ≥ h3/2 ‖u‖ , whenever a ≥ 0, ∂1b ≥ 0,

(1.4.6)

with a, b ∈ C∞
b (R2n−1

), but the proof is rather tricky. Also it is not known if the 3/2

is optimal, i.e. smallest possible. Moreover, the estimate with loss of one derivative is

not true in general for these models.

Condition (ψ). L.Nirenberg and F.Treves proposed in 1971 ([NT2],[NT3],[NT4])

a geometric condition, the so-called condition (ψ), as an iff geometric condition for

local solvability.

Definition 1.4.1. Let p be a smooth complex-valued function on a symplectic

manifold. The function p is said to satisfy condition (ψ) if for all non-vanishing

complex-valued functions e, the imaginary part of ep does not change sign from − to

+ along the oriented bicharacteristic flow of the real part of ep: let γ̇(t) = H
Re(ep)

(γ(t))
be a (null) bicharacteristic curve of Re(ep) (integral curve of the Hamiltonian vector

field of Re(ep) along which p vanishes), then

Im(ep)(γ(t)) < 0, s > t =⇒ Im(ep)(γ(s)) ≤ 0.

We shall say that p satisfies condition (ψ) whenever p̄ satisfies condition (ψ).

Remark 1.4.2. Assuming (1.2.4), it is possible to prove that condition (ψ) is

satisfied in a neighborhood of a point whenever the above condition holds for e = 1

and e = i.

Remark 1.4.3. Assuming HRe p 6= 0 at a point, the complex-valued symbol p satis-

fies condition (ψ) in a neighborhood of this point means that for a null bicharacteristic

curve of the real part, γ̇(t) = HRe p(γ(t)),

Im
(
p(γ(t)

)
> 0 and s > t =⇒ Im

(
p(γ(s)

)
≥ 0. (1.4.7)

Remark 1.4.4. That condition is consistent with the propagation-of-singularities

result since the set {Im p ≥ 0} (resp. {Im p ≤ 0}) is a forward (resp.backward) region

in the sense that, if P is a classical pseudodifferential operator of order m, Pu ∈ Hs
,

I interval of R,

γ(I) ⊂ Int {Im p ≥ 0}, γ(t) ∈WFs+m−1u, s ≥ t, s, t ∈ I =⇒ γ(s) ∈ WFs+m−1u,

γ(I) ⊂ Int{Im p ≤ 0}, γ(t) ∈WFs+m−1u, s ≤ t, s, t ∈ I =⇒ γ(s) ∈ WFs+m−1u.

When HRe p 6= 0, one may give a more accurate definition of the forward R+ (resp.

backward R−) region with

R+ = ∪t≥0Φ
t
({Im p > 0}), R− = ∪t≤0Φ

t
({Im p < 0}), (1.4.8)
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where Φ stands for the bicharacteristic flow of Re p. Note that R+ (resp. R−) is

stable by the forward (resp. backward) flow and the condition (1.4.7) expresses the

fact that

R+ ∩R− = ∅. (1.4.9)

In fact, if X ∈ R+ ∩ R−, with t ≥ 0 ≥ s, we have Φ
s
(Z) = X = Φ

t
(Y ), Im p(Y ) >

0 > Im p(Z), and thus Im p(Y ) > 0 > Im p(Φt−s
(Y )), which contradicts (1.4.7) since

t− s ≥ 0. Conversely, if (1.4.7) is violated, it means that with s > t,

Im p(Φt
(X)) > 0 > Im p(Φs

(X)) = Im p(Φs−t
(Φ

t
(X)))

so that Φ
t
(X) ∈ R+ ∩ R−. The violation of condition (ψ) at a point X0 means that

in any neighborhood of X0, one can find a bicharacteristic of the real part such that,

with a < b
Im

(
p(γ(a))

)
> 0 > Im

(
p(γ(b))

)
.

In that case, we have with some c1 ≤ c2, Im
(
p(γ([a, c1))

)
> 0 > Im

(
p(γ((c2, b])

)
so

that the singularities are travelling from γ(a) to γ(c1) and from γ(b) to γ(c2) and are

somehow trapped there, e.g. at γ(c1) if c1 = c2.
Checking the examples (1.4.1), (1.4.3), (1.4.4), (1.4.5), (1.4.6), we see that they

are all of the form ξ1 +ia(x1, x
′, ξ′)b(x1, x

′, ξ′) with a ≥ 0 and ∂x1
b ≥ 0. The condition

(ψ) is thus satisfied since Hξ1
= ∂x1

and

Im p(x1, 0, x
′, ξ′) = a(x1, x

′, ξ′)b(x1, x
′, ξ′) > 0, y1 > x1 =⇒ b(x1, x

′, ξ′) > 0

=⇒ b(y1, x
′, ξ′) > 0 =⇒ a(y1, x

′, ξ′)b(y1, x
′, ξ′) = Im p(y1, 0, x

′, ξ′) ≥ 0.

Moreover, with with q = ab on the null bicharacteristic of q, we have −ξ̇1 = ∂x1
q(x1, x

′, ξ′)

and we already know that, at q = 0, we have ∂x1
q(x1, x

′, ξ′) ≥ 0 so that ξ̇1 ≤ 0 and

thus −ξ1 cannot change sign from + to −. On the other hand the example (1.4.2)

clearly violates condition (ψ) since the function x1 7→ −x2k+1

1
actually changes sign

from + to − for increasing x1.

2. The necessity of condition (ψ) for an priori estimate.

2.1. The Moyer-Hörmander result. The example (1.4.2) is providing a very

simple situation in which a quasi-mode can be constructed in a way which is not so

different of the operator hD1−ix1. Obviously for these examples (1.4.2), the condition

(ψ) is violated, but in a very particular way. We are willing here to formulate a semi-

classical result which implies that even the weakest form of estimate of type (1.2.1)

will imply that condition (ψ) is satisfied, that is the necessity of condition (ψ) for an

a priori estimate of type (1.2.1) to hold.

We consider a function p0 ∈ C∞
b (R2n

). We assume that there exists a nonvanish-

ing function q0 ∈ C∞
b (R

2n
) and a null bicharacteristic curve γ of Re(q0p0) such that

for some a < b we have

Im
(
(q0p0)(γ(a))

)
> 0 > Im

(
(q0p0)(γ(b))

)
. (2.1.1)

We define

L0 = inf{(t− s), a ≤ s < t ≤ b, Im(q0p0)(γ(s)) > 0 > Im(q0p0)(γ(t))}. (2.1.2)

When L0 > 0, one can find a0, b0 such that L0 = b0 − a0 and a ≤ a0 < b0 ≤ b;
moreover, for any neighborhood Va0

, Vb0 of a0, b0, with V −
a0

= Va0
∩ (−∞, a0[, V

+

b0
=
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Va0
∩]b0,+∞), we have from (2.1.2),

V −
a0

∩ {t ∈ [a, b], Im(q0p0)(γ(t)) > 0} 6= ∅,
V +

b0
∩ {t ∈ [a, b], Im(q0p0)(γ(t)) < 0} 6= ∅,

∀t ∈ [a0, b0], Im(q0p0)(γ(t)) = 0.

When L0 = 0, one has a0 = b0 and, using (2.1.2), we see that for any neigborhood

Va0
of a0, there exists a1 < b1 in Va0

such that

Im(q0p0)(γ(a1)) > 0 > Im(q0p0)(γ(b1)).

Note that when the change of sign occurs at a finite order, we have L0 = 0 and

Im(q0p0) > 0 (resp.< 0) on some V −
a0

(resp. V +

a0
). When the change of sign occurs at

an infinite order, we may possibly have some oscillation of the function Im(q0p0).

The following result is a semi-classical version of a theorem for homogeneous pseu-

dodifferential operators due in two dimensions to R.D.Moyer ([Mo]) and to L.Hörmander

in general ([H6], Theorem 26.4.7 in [H7]).

Theorem 2.1.1. Let a ∈ S0

psc with a principal symbol p0 (cf. definition 1.1.3).

Assume that there exists a nonvanishing function q0 ∈ C∞
b (R2n

) and a null bicharac-
teristic curve γ of Re(q0p0) such that (2.1.1) holds.

Then, using the above notations, for any open neighborhood V of the compact set
γ([a0, b0]) in R2n, there exists h0 > 0 and a family of functions (uh)0<h≤h0

of S(Rn
)

with L2
(Rn

) norms equal to 1, such that

‖awuh‖L2
(Rn

)
= O(h∞).

Moreover the semi-classical wave-front set (see def. 1.1.4) of (uh)0<h≤h0
is included

in V and V is a confinement-set for the family (uh) (see def. 5.2.1 in the appendix).

Comments 2.1.2: the necessity of condition (ψ) for an priori estimate. If p0(x0, ξ0)

= 0 and if the condition (ψ) is violated in any neighborhood V0 of (x0, ξ0), that is

if there exists a nonvanishing q0 ∈ C∞
b (R2n

) and a null bicharacteristic curve γ of

Re(q0p0) such that for some a < b we have with γ([a, b]) ⊂ V0,

Im(q0p0)(γ(a)) > 0 > Im(q0p0)(γ(b)),

then we can apply the theorem above and disprove the estimate (1.2.1), no matter

how large µ is chosen. On the other hand the estimate (1.2.2) cannot be true either

since it would imply, for all χ0 ∈ C∞
b (R2n

) supported in some neighborhood V0 of

(x0, ξ0), for all u ∈ L2
(Rn

),

hµ ‖χwh
0
u‖L2

(Rn
)
≤ C ‖pwh

0
u‖ + ‖rwu‖ , r ∈ S−∞

scl (V h
0

).

But we can choose a neighborhood V of (x0, ξ0) such that V ⋐ V0 in the theorem

2.1.1, since condition (ψ) is violated in any neighborhood of (x0, ξ0): we have then

a family of functions (uh), with L2
(Rn

) norms 1 such that ‖pwh
0
uh‖ = O(h∞). On

the other hand, V is a confinement-set for (uh), so that choosing χ0 ∈ C∞
c

(V0) with

χ0 = 1 near V , we get from the definition 5.2.1 that ‖(1 − χ0)
whuh‖ = O(h∞). Since
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r ∈ S−∞
scl (V h

0
), we get

hµ ‖χwh
0
uh‖ ≤ O(h∞) + ‖rwuh‖ ≤ O(h∞) + ‖

(
∈S−∞

scl︷ ︸︸ ︷
χ0(x, hξ)r(x, ξ, h)

)w
uh‖

+

∥∥(
(1 − χ0(x, hξ))r(x, ξ, h)

)w
uh

∥∥ .

The symbol (1 − χ0(x, hξ))r(x, ξ, h) = ω(x, hξ, h) with (x, ξ) 7→ ω(x, ξ, h) ∈ C∞
b (R2n

)

uniformly in h and ω is supported in the complement of a neighborhood of V , so we

get from the previous inequalities and the definition 5.2.1 that ‖χwh
0
uh‖ = O(h∞). As

a consequence, we obtain

1 = ‖uh‖ ≤ ‖χwh
0
uh‖ + ‖(1 − χ0)

whuh‖ = O(h∞)

which is impossible.

Comments 2.1.3. A direct proof of the semi-classical statement of the theorem

2.1.1 can be done by following the lines of the proof of Theorem 26.4.7′ in [H7], and

it was the path followed by K.Pravda-Starov in [P2]. The arguments needed to deal

with an homogeneous situation (like in [H7]) are slightly different at some points than

the required arguments to tackle a semi-classical setting. However, one can actually

deduce a semi-classical theorem in dimension n from the same statement in an homo-

geneous framework in n+ 1 dimensions: in n+ 1 dimensions, considering a positively

homogeneous symbol of degree m (i.e. in Sm
satisfying (5.1.2)), p(x, xn+1; ξ, ξn+1),

x ∈ R
n, xn+1 ∈ R, ξ ∈ R

n, ξn+1 ∈ R, one may assume that p is supported in a conic

neighborhood of (0, 0; 0, 1) where ξn+1 ≥ |ξ|, and by a Littlewood-Paley decomposi-

tion, we can check the symbol

p(x, xn+1; ξ, ξn+1)ϕ(ξn+12
−ν

)

where ϕ is supported in [1/2, 2]. Moreover, p can be assumed to be independent of

xn+1 and this symbol can be considered as a semi-classical symbol with h = 2
−ν

, acting

on functions u(x)⊗ θ(xn+1), where θ is a fixed function (say a Gaussian function), so

that we have indeed to deal with a semi-classical setting in n dimensions.

2.2. Notes on the proof. We shall not give here the details of the proof of the

theorem 2.1.1, but we explain some lines of the demonstration.

The simplest model. It is of course the already mentioned (1.4.2) which corre-

sponds to the semi-classical quantization of the symbol given in a neighborhood of the

origin in the symplectic R2
by

p0(t, τ) = τ − it2k+1, k ∈ N. (2.2.1)

There is in that case an explicit construction of a quasi-mode, which is not difficult

to perform and is outlined in section 1.3 when k = 0. There is indeed a geometric

description of the models (2.2.1): take a function p0 ∈ C∞
b (R2n

) such that at a point

(x0, ξ0) ∈ R2n
,

p0(x0, ξ0) = 0, dRe p0(x0, ξ0) 6= 0 (2.2.2)

and such that there exists a neighborhood V0 of (x0, ξ0), such that for all (x, ξ) ∈
V0 ∩ {Re p0 = 0}, if γ is the bicharacteristic of Re p0 starting at (x, ξ), the function

t 7→ Im p0(γ(t)) has a zero at 0 of order 2k + 1 with a change of sign from + to −.
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The theorem 21.3.5 in [H7] provides a choice of symplectic coordinates and an elliptic

factor e such that ep0 = ξ1 − ix2k+1

1
.

The finite type case. We can consider the more general case where (2.2.2) is

satisfied and, if γ0 is the bicharacteristic of Re p0 starting at (x0, ξ0), the function

t 7→ Im p0(γ0(t)) has a zero at 0 of order 2k + 1 with a change of sign from + to −.

This situation cannot be reduced in general to the previous one, except if k = 0, since

it is the case (with k = 1) of the two-dimensional

ξ1 − ix1(x1 − x2)
2.

When x2 = 0, Im p has a triple zero with a change of sign from + to −, but when

x2 6= 0, the zero where the change of sign occurs is simple. However this finite-type

assumption simplifies a great deal the construction and the obtention of a quasi-mode

is in fact quite close to the previous model.

The general case. In that case, we may assume (2.2.2), and that in any neigh-

borhood V of (x0, ξ0), we can find a null bicharacteristic curve γ of Re p0 such that

for some a < b we have with γ([a, b]) ⊂ V , Im p0(γ(a)) > 0 > Im p0(γ(b)). Using the

Malgrange-Weierstrass theorem, it is possible to assume that p0 = ξ1 + iq(x1, x
′, ξ′).

The idea is grounded on the use of a complex WKB method, which amounts to find

a quasi-mode of type

uh(x) = eih−1w(x)

∑

0≤j≤M

hjφj(x),

where the phase w is complex-valued with Imw ≥ 0 and satisfies approximately the

eiconal equation

∂x1
w + iq(x1, x

′, ∂x′w) = 0.

It is a quite technical matter whose details are explained in the section 26.4 of

[H7](pp.104–110), and since the function q is not analytic and w is complex-valued,

the meaning of the plain eiconal equation as written above has to be formulated in

a suitable approximate way. The determination of the amplitudes φj is following a

more classical course, analogous to the standard WKB method.

3. Finite type geometry. We have seen in section 2 that condition (ψ) is

necessary for obtaining any type of a priori estimate such as (1.2.2), so we assume

in the sequel of the paper that condition (ψ) is satisfied and we describe what type

of estimate we can get out of this assumption, possibly reinforced by some other

conditions. The first class of cases that we want to investigate is linked to some sort

of finite-type assumption, related to subellipticity. First we assume that one of the

iterated bracket of the real and imaginary part is not vanishing: we shall say that the

geometry is finite type.

3.1. Classical assumptions for subellipticity. We consider p = p1 + ip2 a

complex-valued function in C∞
b . We shall assume that (ψ) holds for p in a neighbor-
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hood V0 of a point (x0, ξ0) ∈ R2n
. Moreover, we define

p12 = {p1, p2} = −p21, Hj = Hpj , (3.1.1)

p112 = H2

1
(p2), p212 = −p221, p221 = H2

2
(p1), p121 = −p112,

for jk ∈ {1, 2}, pj1,...,jl+1
= Hj1 . . . Hjl

(pjl+1
), |(j1, . . . , jl)| = l.

(3.1.2)

We assume that one of these iterated brackets is nonzero and we define the integer k
so that

for all |J | ≤ k, pJ (x0, ξ0) = 0,

there exists |J | with |J | = k + 1 such that pJ(x0, ξ0) 6= 0.
(3.1.3)

Examples. Note that

|p| 6= 0 means k = 0, that is ellipticity,

p = 0, {p1, p2} > 0, means k = 1,

p = {p1, p2} = 0, H2

p1
(p2) 6= 0 or H2

p2
(p1) 6= 0, means k = 2.

We have already seen some of the simplest ODE-like models in section 1.4 such as

ξ1 + ixk
1
, k ∈ 2N + 1, ξ1 ± ixk

1
, k ∈ 2N.

Also the example (1.4.5) above is a special case of

ξ1 + ixs
1

(
ξ2 + V (x1, x2)

)
, s ∈ 2N, ∂x1

V ≥ 0,

where V is a nonzero polynomial. Let us check for instance that for (1.4.5), we have

indeed k = 9 at (0, 0): for p1 + ip2 = ξ1 + ix2

1
(ξ2 + x1x

2

2
), we have

1

6
H3

1
(p2) = x2

2
,

1

2
H2

1
(p2) = ξ2 + 3x1x

2

2
so that

1

24

{
H2

1
(p2), H

3

1
(p2)

}
= x2,

{
H2

1
(p2),

{
H2

1
(p2), H

3

1
(p2)

}}
6= 0 i.e.

0 6= H2

H2
1
(p2)

(
H3

1
(p2)

)
= H2

{p1,H1(p2)}

(
H3

1
(p2)

)

and since H{p1,H1(p2)} = [H1, [H1, H2]] we get

[H1, [H1, H2]]
2H3

1
(p2) 6= 0

which forces HI
(p2) 6= 0 with some |I| = 9. We leave for the reader to check that

pJ = 0 at (0, 0) for |J | ≤ 8.

3.2. Subellipticity under condition (P ): a coherent states method. The

general theory of subelliptic operators, as exposed in the chapter 27 of Hörmander’s

treatise [H7] is quite involved. However when a strengthened version of (ψ) is satisfied,

there is a great deal of simplifications: we shall essentially assume in the present section

that our symbol p satisfies condition (ψ) and condition (ψ), which means that when

dRe p 6= 0,

NO change of sign occurs for Im p along the bicharacteristic flow of Re p:
condition (P ).
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In general that does not imply that Im p should have a constant sign as shown

by the aforementioned degenerate CR operators. For D1 + ix2

1
D2, x1 7→ x2

1
ξ2 doesn’t

change sign for ξ2 fixed, although the function x2

1
ξ2 does not have a constant sign.

However, when the geometry is finite-type, one can get a microlocal reduction to a

model

hDt + iq(t, x, ξ)wh , q ≥ 0, ∂k
t q 6= 0, with k even.

With this reduction at hand, we can show that a coherent states method, based upon a

nonnegative quantization formula, provides a rather simple proof. This was observed

first by F.Treves in 1971 ([Tv]) and section 27.3 in [H7] is devoted to that case, much

simpler to handle. The plan of the proof is quite clear: first we prove an estimate for

an ODE with parameters, such as
d
dt −q(t, x, ξ), essentially with q as above, then using

a nonnegative quantization for the symbol q (a coherent states method) we show that

the ODE estimates can be transferred to the semi-classical level.

We begin with the introduction of our nonnegative quantization formula, which

will turn out to be useful also in some different contexts.

Definition 3.2.1. Let Y = (y, η) be a point in R2n
. The operator ΣY is defined

as
[
2

ne−2π|·−Y |2
]w

. This is a rank-one orthogonal projection: ΣY u = (Wu)(Y )τY ϕ
with

(Wu)(Y ) = 〈u, τY ϕ〉L2
(Rd

)
,

where ϕ(x) = 2
n/4e−π|x|2

and (τy,ηϕ)(x) = ϕ(x− y)e2iπ〈x− y
2

,η〉. Let a be in L∞
(R2n

).

The Wick quantization of a is defined as

aWick

=

∫

R2n

a(Y )ΣY dY. (3.2.1)

Proposition 3.2.2. Let a be in L∞
(R2n

). Then aWick
= W ∗aµW and 1

Wick
=

IdL2
(Rn

)
where aµ the operator of multiplication by a in L2

(R2n
). The operator

πH = WW ∗ is the orthogonal projection on a closed proper subspace H of L2
(R2n

).
Moreover, we have ∥∥aWick

∥∥
L(L2

(Rn
))
≤ ‖a‖L∞

(R2n
)
,

a(X) ≥ 0 for all X implies aWick ≥ 0,

aWick

= aw
+ rw , r(X) =

∫∫
1

0

(1 − θ)a′′(X + θY )Y 2

2
ne−2π|Y |2dY dθ.

The proof is standard and can be found e.g. in [L5].

The main result of this section is the following:

Theorem 3.2.3. Let n be an integer and q(t, x, ξ) be a real-valued symbol in
C∞

b (R2n
): q is defined on R × Rn × Rn, smooth with respect to t, x, ξ and such that,

for all multi-indices α, β, sup |(∂α
x ∂

β
ξ q)(t, x, ξ)| < +∞. Assume moreover that τ + iq

satisfies condition (ψ) and

q(t, x, ξ) = 0 =⇒ dx,ξq(t, x, ξ) = 0, (3.2.2)

for some k ∈ N, inf |∂k
t q(t, x, ξ)| > 0. (3.2.3)
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Then there exists some positive constants C, h0, such that, for h ∈ (0, h0], for any
u(t, x) ∈ C1

c (R, L2
(Rn

)),

C ‖hDtu+ iq(t, x, hξ)wu‖L2
(Rn+1

)
≥ h

k
k+1 ‖u‖L2

(Rn+1
)
. (3.2.4)

The above estimate will be called a subelliptic estimate with loss of k/(k+1) derivative,
consistently with (1.2.2).

Let us note right now that the condition (3.2.2) is satisfied by nonnegative (and

nonpositive) functions. However that condition may be satisfied by some functions

which may change sign such as

q = ta(t, x, ξ), a ≥ 0.

In fact, if a = 0 we have da = 0, so that dq = 0; at t = 0, we have dx,ξq = 0.
Going back to our operator hDt + iq(t, x, hξ)w, we shall first replace it by the

unitary equivalent hDt + iq(t, h1/2x, h1/2ξ)w
acting on C1

c (Rt;L
2
(Rn

)). Next, one can

check, using the proposition 3.2.2, that

q(t, h1/2x, h1/2ξ)w
= q(t, h1/2x, h1/2ξ)Wick

+O(h), in L(L2

(R
n
)).

Also, defining Φ(t) = Wu(t) ∈ L2
(R2n

) (see def.3.2.1), we are reduced to proving an

estimate for

P = hDt + iπHq(t, h
1/2X)πH ,

where the Toeplitz orthogonal projection πH = WW ∗
. Now we see that for Φ ∈

C1

c (Rt;H), with K = H⊥
, L2

(R2n
) norms,

‖(hDt + iq(t, h1/2X))Φ‖2

= ‖PΦ‖2

+ ‖πKq(t, h
1/2X)Φ‖2

= ‖PΦ‖2

+ ‖[πH , q(t, h
1/2·)]Φ‖2.

Handling the linear ODE P = hDt + iq(t, h1/2X) is a simple matter and we obtain

C ‖PΦ‖ ‖Φ‖ ≥ 〈|q(t, h1/2X)|Φ,Φ〉 + hk/k+1 ‖Φ‖2 .

The nasty term ‖[πH , q(t, h
1/2·)]Φ‖2

can be estimated by h‖∇q(t, h1/2·)Φ‖2, and thanks

to (3.2.2), we can prove

〈|∇q(t, h1/2X)|2Φ,Φ〉 ≤ 2〈|q(t, h1/2X)|Φ,Φ〉 sup |∇2q(t, ·)|,
yielding

〈|q(t, h1/2·)|Φ,Φ〉 + hk/k+1 ‖Φ‖2 ≤ C1 ‖PΦ‖ ‖Φ‖ + C1‖[πH , q(t, h
1/2·)]Φ‖ ‖Φ‖

≤ C1 ‖PΦ‖ ‖Φ‖ + C2〈|q(t, h1/2·)|Φ,Φ〉1/2h1/2 ‖Φ‖︸ ︷︷ ︸
can be absorbed in the lhs

.

3.3. Subellipticity under condition (ψ). The previous argument can be

generalized beyond condition (P ) and also in many non-finite type situations. We

should keep in mind that the most important point in the previous argument is a way

to handle the commutator [πH , q]. If we can control this commutator, the coherent

states method outlined above reduces the problem to a linear ODE with parameters, a

much more elementary problem. The conclusion of the theorem 3.2.3 still holds when

(3.2.2-3) are replaced by the existence of J with length k (see section 3.1) such that
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inf |pJ | > 0, p = τ + iq. A semi-classical version is given in proposition 27.6.1 of [H7]

but is much more difficult to reach than in the previous section.

Let us quote an excerpt of L.Hörmander’s contribution [H10] to the book Fields

medallists’ lectures: “For the scalar case, Egorov [Eg] found necessary and sufficient
conditions for subellipticity with loss of δ derivatives; the proof of sufficiency was
completed in [H5]. A slight modification of the presentation is given in [H7], but
it is still very complicated technically. Another approach which also covers systems
operating on scalars has been given by Nourrigat [No] (see also the book [HN] by Helffer
and Nourrigat), but it is also far from simple so the study of subelliptic operators may
not yet be in a final form.”

4. Non-finite type geometry. First of all, one should not think that it con-

cerns complicated operators. A simple analytic example is the degenerate Cauchy-

Riemann symbol ξ1 + ix2

1
ξ2. We have, using the notations of section 3.1,

p12 = {ξ1, x2

1
ξ2} = 2x1ξ2,

p112 = {ξ1, 2x1ξ2} = 2ξ2, p212 = {x2

1
ξ2, 2x1ξ2} = 0.

Assume that pJ = ξ2α(x, ξ) which is true for |J | = 2, 3. Then

{p1, pJ} = {ξ1, αξ2} = ξ2α
′
x1
, and {x2

1
ξ2, αξ2} = {x2

1
ξ2, α}ξ2,

so that all the iterated brackets are of the form ξ2α and thus vanish at ξ1 = 0 = ξ2 as

well as p.

4.1. Condition (P ), two dimensions. Let p a principal type complex-valued

semi-classical symbol such that p and p̄ satisfy (ψ), i.e. p satisfies condition (P ), i.e.

no change of sign occurs for Im p along the bicharacteristic flow of Re p. Note that

in the homogeneous case, that property is indeed a consequence of (ψ) for differential
operators since they have a symbol such that

p(x,−ξ) = (−1)
mp(x, ξ),

so that prohibit a change of sign from + to − is equivalent to forbid any change of

sign. Under this assumption, R.Beals and C.Fefferman ([BF]) and also under condition

(ψ) in the homogeneous 2D case (N.L. [L1]) and for the classical oblique derivative

problem (N.L., [L2]) , it is possible to prove an estimate with loss of one derivative,

the same estimate as for ∂x1
.

Theorem 4.1.1. Let n be an integer and q(t, x, ξ) be a real-valued symbol in
C∞

b (R2n
): q is defined on R × Rn × Rn, smooth with respect to t, x, ξ and such that,

for all multi-indices α, β, sup |(∂α
x ∂

β
ξ q)(t, x, ξ)| < +∞. Assume moreover that τ + iq

satisfies condition (ψ) and condition (ψ):

q(t, x, ξ)q(s, x, ξ) ≥ 0.

Then there exist some positive constants C, h0 and δ, such that, for h ∈ (0, h0], for
any u(t, x) ∈ C1

c ((−δ, δ), L2
(R

n
)),

C ‖hDtu+ iq(t, x, hξ)wu‖L2
(Rn+1

)
≥ h ‖u‖L2

(Rn+1
)
. (4.1.1)

The proof is not simple, but the steps are neatly identified.
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(1) Using the Malgrange-Weierstrass preparation theorem on normal forms and the

Egorov result on conjugation by Fourier integral operators, we get indeed a reduction

to

hDt + iq(t, xh1/2, ξh1/2

)
w. (4.1.2)

(2) Using a Calderón-Zygmund decomposition of the family of functions

(q(t, h1/2x, h1/2ξ))|t|≤1

and we can cut the R2n
x,ξ phase space via a new calculus of pseudodifferential. One

defines H(x, ξ) so that

1 ≤ H−1

(x, ξ) = max
(
sup

|t|≤1

h−1|q(t, h 1

2x, h
1

2 ξ)|, sup

|t|≤1

h−1|(∇x,ξq)(t, h
1

2x, h
1

2 ξ)|2, 1
)

≤ Ch−1.

This implies with a(t, x, ξ) = q(t, h
1

2x, h
1

2 ξ),

|a(t, x, ξ)| ≤ hH−1,

max
(
|∂xa(t, x, ξ)|, |∂ξa(t, x, ξ)|

)
≤ hH−1/2

= hH−1H1/2,

for |α| + |β| ≥ 2, |∂α
x ∂

β
ξ a(t, x, ξ)| ≤ Cαβh

1

2
(|α|+|β|) ≤ CαβhH

−1H
1

2
(|α|+|β|)

since the two first lines are obvious whereas in the last one |α| + |β| − 2 ≥ 0 and

h ≤ CH . The weight H(x, ξ) is shown to be slowly varying, i.e. there exists r > 0

such that for all (x, ξ), (y, η) ∈ R2n

|x− y| + |ξ − η| ≤ rH(x, ξ)−1/2

=⇒ r ≤ H(x, ξ)H(y, η)−1 ≤ r−1.

As a result, the symbol h−1q(t, h1/2x, h1/2ξ) behaves like a symbol in S1

scl with a new

small parameter H , so that the operator (4.1.2) is of type

hH−1
(
HDt + iQ(t,H1/2x,H1/2ξ)w

)

(3) Reduction to three models: the first two are HDt + iQ(t, xH1/2, ξH1/2
),±Q ≥ 0,

and quite simple to handle, and the last model is

HDt + ia(t, xH1/2, ξH1/2

)b(xH1/2, ξH1/2

), a ≥ 0. (4.1.3)

Although a factorization (4.1.3) can be obtained for differential operators with analytic

regularity satisfying condition (ψ), as shown in [NT3], such a factorization is not true

in the C∞
case, even microlocally in the standard sense, according to the remark 4.1.3

below.

The energy method introduced by Nirenberg and Treves in [NT3] can be applied

to this last model. The method of proof in [L1], [L2] is also based upon a factorization

analogous to (4.1.3) but where b(x, ξ) is replaced by β(t, x)|ξ| and β is a smooth

function such that t 7→ β(t, x) does not change sign from + to − when t increases.

Then a properly defined sign of β(t, x) appears as a non-decreasing operator and the

Nirenberg-Treves energy method can be adapted to this situation.

Remark 4.1.2. The Beals-Fefferman result mentioned above proved the local exis-

tence of Hs+m−1

loc solutions u to the equation Lu = f with a source f in Hs
loc, whenever

L is an operator of order m satisfying condition (P ); since the size of the neigbour-

hood where the equation is satisfied may depend on the index s, this is not enough
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to get C∞
solutions whenever f is smooth. The existence of C∞

solutions for C∞

sources was proved by L.Hörmander in [H4] for pseudodifferential equations satisfy-

ing condition (P ). We refer the reader to the papers [H9], [L6], for a more detailed

historical overview of this problem. On the other hand, it is clear that our interest

is focused on solvability in the C∞
category. Let us nevertheless recall that the suffi-

ciency of condition (ψ) in the analytic category (for microdifferential operators acting

on microfunctions) was proved by J.-M.Trépreau [Tr] (see also [H8], chapter VII).

Remark 4.1.3. Consider the C∞
function q defined on R3

by

q(t, x, ξ) =

{
(ξ − te−1/x

)
2

if x > 0,
ξ(ξ − e1/x

) if x < 0.

For every fixed (x, ξ), the function t 7→ q(t, x, ξ) does not change sign since we have

q(t, x, ξ)q(s, x, ξ) ≥ 0. Nevertheless one can show that it is not possible to find some

C∞
functions a, b such that a is nonnegative and b independent of t such that q = ab.

4.2. The estimate with loss 1 does not follow from (ψ). For many years,

repeated claims were made that condition (ψ) implies (1.2.2) with µ = 1, entailing

that solvability with loss of 1 derivative is a consequence of condition (ψ). It turned

out that these claims were wrong, as shown in [L3] by the following result (see also

section 6 in the survey [H9]).

Theorem 4.2.1. There exists a homogeneous principal type first-order pseudo-
differential operator L in three dimensions, satisfying condition (ψ), a sequence (uk)k≥1

of C∞
c functions with suppuk ⊂ {x ∈ R3, |x| ≤ 1/k} such that

‖uk‖L2
(R3

)
= 1, lim

k→+∞
‖L∗uk‖L2

(R3
)
= 0. (4.2.1)

As a consequence, for this L, there exists f ∈ L2
such that the equation Lu = f

has no local solution u in L2
. We shall now briefly examine some of the main features

of this counterexample, leaving aside the technicalities which can be found in the

papers quoted above. Let us try, with (t, x, y) ∈ R3
,

L = Dt − ia(t)
(
Dx +H(t)V (x)|Dy|

)
, (4.2.2)

with H = 1R+
, C∞

(R) ∋ V ≥ 0, C∞
(R) ∋ a ≥ 0 flat at 0. Since the function

q(t, x, y, ξ, η) = −a(t)
(
ξ +H(t)V (x)|η|

)

is the product of the non-positive function −a(t) by the non-decreasing function

t 7→ ξ +H(t)V (x)|η|,

the operator L satisfies condition (ψ) (and thus L∗
satisfies condition (ψ)).

To simplify the exposition, let us assume that a ≡ 1, which introduces a rather

unimportant singularity in the t-variable, let us replace |Dy| by a positive (large)

parameter h−1
, which allows us to work now only with the two real variables t, x and

let us set W = h−1V . We are looking for a non-trivial solution u(t, x) of L∗u = 0,

which means then

∂tu =

{
Dxu, for t < 0,(
Dx +W (x)

)
u, for t > 0.
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The operator Dx +W is unitarily equivalent to Dx: with A′
(x) = W (x), we have

Dx +W (x) = e−iA(x)Dxe
iA(x),

so that the negative eigenspace of the operator Dx +W (x) is {v ∈ L2
(R), supp êiAv ⊂

R−}. Since we want u to decay when t→ ±∞, we need to choose v1, v2 ∈ L2
(R), such

that

u(t, x) =

{
etDxv1, supp v̂1 ⊂ R+ for t < 0,

et(Dx+W )v2, supp êiAv2 ⊂ R− for t > 0.
(4.2.3)

We shall not be able to choose v1 = v2 in (4.2.3), so we could only hope for L∗u to be

small if ‖v2 − v1‖L2
(R)

is small. Thus this counterexample is likely to work if the unit

spheres of the vector spaces

E+

1
= {v ∈ L2

(R), supp v̂ ⊂ R+} and E−
2

= {v ∈ L2

(R), supp êiAv ⊂ R−}

are close. Note that since W ≥ 0, we get E+

1
∩ E−

2
= {0}: in fact, with L2

(R) scalar

products, we have

v ∈ E+

1
∩E−

2
=⇒ 0

v∈E+

1≤ 〈Dv, v〉
0≤W

≤ 〈(D +W )v, v〉
v∈E−

2≤ 0 =⇒ 〈Dv, v〉 = 0,

which gives v = 0 since v ∈ E+

1
. Nevertheless, the “angle” between E+

1
and E−

2
could

be small for a careful choice of a positive W . It turns out that W0(x) = πδ0(x) is

such a choice. Of course, several problems remain such as regularize W0 in such a way

that it becomes a first-order semi-classical symbol, redo the same construction with a

smooth function a flat at 0 and various other things.

Anyhow, these difficulties eventually turn out to be only technical, and in fine,
the actual reason for which the theorem 4.2.1 is true is simply that the positive

eigenspace of Dx (i.e. L2
(R) functions whose Fourier transform is supported in R+)

could be arbitrarily close to the negative eigenspace of Dx + W (x) for some non-

negative W , triggering nonsolvability in L2
for the three-dimensional model operator

Dt − ia(t)
(
Dx + 1R+

(t)W (x)|Dy |
)
, and the existence of a quasi-mode for the adjoint

operator

Dt + ia(t)
(
Dx + 1R+

(t)W (x)|Dy |
)
, (4.2.4)

where a is some non-negative function, flat at 0. This phenomenon is called the “drift”

in [L3] and could not occur for differential operators or for pseudodifferential operators

in two dimensions.

A more geometric point of view is that for a principal type symbol p, satisfying

condition (ψ), one may have bicharacteristics of Re p which stay in the set {Im p =

0}. This can even occur for operators satisfying condition (P ). However condition

(P ) ensures that the nearby bicharacteristics of Re p stay either in {Im p ≥ 0} or

in {Im p ≤ 0}. This is no longer the case when condition (ψ) holds, although the

bicharacteristics are not allowed to pass from {Im p > 0} to {Im p < 0}. The situation

of having a bicharacteristic of Re p staying in {Im p = 0} will generically trigger

the drift phenomenon mentioned above when condition (P ) does not hold. So the

counterexamples to solvability with loss of one derivative are in fact very close to

operators satisfying condition (P ).
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4.3. An estimate with loss of 3/2 derivatives follows from condition

(ψ). In the preprint [D2] and in the paper [D3], N.Dencker has proven that (ψ) implies

(1.2.2) with µ = 2, establishing as a consequence the Nirenberg-Treves conjecture on

local solvability of pseudodifferential operators, i.e. (ψ) ⇐⇒ local solvability. Later

on, in [D4], he proved that (ψ) implies (1.2.2) with µ = ǫ+3/2 for any ǫ > 0 and N.L.

([L7]) obtained that condition (ψ) implies (1.2.2) with µ = 3/2, erasing the ǫ.

4.3.1. Preliminary comments. One of the difficulty related to the handling of

(1.2.1) when the loss µ is > 1 is the following: condition (ψ) is only concerned

with the principal symbol, so that the estimate (1.2.1) should be preserved when

the principal-type P is perturbed by a pseudodifferential operator of order −1. How-

ever, the estimate (1.2.1) is too weak to absorb directly a perturbation of order −1 and

there is no way to avoid this situation under the sole condition (ψ) since an estimate

with loss of one derivative is not a consequence of condition (ψ)(section 4.2) (it could

be possible that the analyticity of the symbol and (ψ) imply a factorization of type

(4.1.3)). The method of proof used by N.Dencker is based upon an energy method,

rather classical in its principles, which was introduced by L.Nirenberg and F.Treves

and developed by R.Beals and C.Fefferman. But although these authors were able

to separate sharply the forward and backward regions of propagation for operators

satisfying condition (P ), N.Dencker defines these regions in the more general case of

condition (ψ) and construct a multiplier smoother than a sign function. Although

that smoothness forces a loss of derivatives larger than one, he can take advantage

of it to handle some calculus of pseudodifferential operators. A version of one of his

most striking arguments appears below as Lemma 4.3.10 and shows that the rigidity

of condition (ψ) entails strong regularity properties for the set where the key change

of sign occurs.

4.3.2. The geometry of condition (ψ). Here we shall consider that the phase space

is equipped with a symplectic quadratic form Γ (Γ is a positive definite quadratic form

such that Γ = Γ
σ
, see the definition 5.3.1(ii) in the appendix). It is possible to

find some linear symplectic coordinates (x, ξ) in R2n
such that Γ(x, ξ) = |(x, ξ)|2 =∑

1≤j≤n x
2

j + ξ2j . The running point of our Euclidean symplectic R2n
will be usually

denoted by X or by an upper-case letter such as Y, Z. The open Γ-ball with center

X and radius r will be denoted by B(X, r). Let q(t,X,Λ) be a smooth real-valued

function
2

defined on Ξ = R × R2n × [1,+∞), vanishing for |t| ≥ 1 and satisfying

∀k ∈ N, sup

Ξ

‖∂k
Xq‖ΓΛ

−1+
k
2 = γk < +∞, i.e. q(t, ·) ∈ S(Λ,Λ−1

Γ), (4.3.1)

s > t and q(t,X,Λ) > 0 =⇒ q(s,X,Λ) ≥ 0. (4.3.2)

Notation. The Euclidean norm Γ(X)
1/2

is fixed and the norms of the vectors and of

the multilinear forms are taken with respect to that norm. We shall write everywhere

|·| instead of ‖·‖Γ. Furthermore, we shall say that C is a “fixed” constant if it depends

only on a finite number of γk above and on the dimension n.

2
Since our semi-classical symbol q in this section is in fact of type h−1F (t, h1/2x, h1/2ξ) where

F belongs to C∞
b

(R2n+1
), we have preferred, to avoid confusion, using a large parameter Λ ≥ 1 and

symbols satisfying (4.3.1). A standard semi-classical result is given at the end of this section with

Theorem 4.3.22.
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We shall always omit the dependence of q with respect to the large parameter Λ

and write q(t,X) instead of q(t,X,Λ). The operator Q(t) = q(t)w
will stand for the

operator with Weyl symbol q(t,X). We introduce now for t ∈ R, following [H11],

X+(t) = ∪s≤t{X ∈ R
2n, q(s,X) > 0}, X−(t) = ∪s≥t{X ∈ R

2n, q(s,X) < 0}, (4.3.3)

X0(t) = X−(t)c ∩ X+(t)c. (4.3.4)

Thanks to (4.3.2), X+(t),X−(t) are disjoint open subsets of R
2n

; moreover X0(t),X0(t)∪
X±(t) are closed since their complements are open. The three sets X0(t),X±(t) are

two by two disjoint with union R2n
(note also that X±(t) ⊂ X0(t) ∪ X±(t) since

X0(t) ∪ X±(t) are closed). When t increases, X+(t) increases and X−(t) decreases.

The following three lemmas are easy and can be found as Lemmas 2.1.1-2-3 in [L7].

Lemma 4.3.1. Let (E, d) be a metric space, A ⊂ E and κ > 0 be given. We
define ΨA,κ(x) = κ if A = ∅ and if A 6= ∅, we define

ΨA,κ(x) = min
(
d(x,A), κ

)
.

The function ΨA,κ is valued in [0, κ], Lipschitz continuous with a Lipschitz constant
≤ 1. Moreover, the following implication holds: A1 ⊂ A2 ⊂ E =⇒ ΨA1,κ ≥ ΨA2,κ.

Lemma 4.3.2. For each X ∈ R2n, the function t 7→ ΨX+(t),κ(X) is decreasing and
for each t ∈ R, the function X 7→ ΨX+(t),κ(X) is supported in X+(t)c

= X−(t)∪X0(t).

For each X ∈ R2n, the function t 7→ ΨX−(t),κ(X) is increasing and for each t ∈ R, the
function X 7→ ΨX−(t),κ(X) is supported in X−(t)c

= X+(t) ∪ X0(t). As a consequence
the function X 7→ ΨX+(t),κ(X)ΨX−(t),κ(X) is supported in X0(t).

Lemma 4.3.3. For κ > 0, t ∈ R, X ∈ R2n, we define3

σ(t,X, κ) = ΨX−(t),κ(X) − ΨX+(t),κ(X). (4.3.5)

The function t 7→ σ(t,X, κ) is increasing and valued in [−κ, κ], the function X 7→
σ(t,X, κ) is Lipschitz continuous with Lipschitz constant less than 2; we have

σ(t,X, κ) =

{
min(|X − X−(t)|, κ) if X ∈ X+(t),
−min(|X − X+(t)|, κ) if X ∈ X−(t).

We have {X ∈ R2n, σ(t,X, κ) = 0} ⊂ X0(t) ⊂ {X ∈ R2n, q(t,X) = 0}, and

{X ∈ R
2n,±q(t,X) > 0} ⊂ X±(t) ⊂ {X ∈ R

2n,±σ(t,X, κ) > 0}
⊂ {X ∈ R

2n,±σ(t,X, κ) ≥ 0} ⊂ {X ∈ R
2n,±q(t,X) ≥ 0}. (4.3.6)

Definition 4.3.4. Let q(t,X) be as above. We define

δ0(t,X) = σ(t,X,Λ1/2

) (4.3.7)

and we notice that from the previous lemmas, t 7→ δ0(t,X) is increasing, taking its

values in [−Λ
1/2,Λ1/2

], satisfying

|δ0(t,X) − δ0(t, Y )| ≤ 2|X − Y |, (4.3.8)

3
If the distances of X to both X±(t) are less than κ, we have σ(t, X, κ) = |X − X−(t)| −

|X − X+(t)|.
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and such that

{X ∈ R
2n, δ0(t,X) = 0} ⊂ {X ∈ R

2n, q(t,X) = 0}, (4.3.9)

{X ∈ R
2n,±q(t,X) > 0} ⊂ {X,±δ0(t,X) > 0} ⊂ {X,±q(t,X) ≥ 0}. (4.3.10)

4.3.3. Some classes of symbols. The following lemma is elementary and is a good

introduction to the Calderón-Zygmund methods. This is lemma 2.1.5 in [L7]. The

general definition of the classes S(m, g) is given in the appendix 5.3.

Lemma 4.3.5. Let f be a symbol in S(h−m, hΓ) where m is a positive real number.
We define

λ(X) = 1 + max
0≤j<2m

j∈N

(
‖f (j)

(X)‖
2

2m−j

Γ

)
. (4.3.11)

Then f ∈ S(λm, λ−1
Γ) and the mapping from S(Λ

m,Λ−1
Γ) to S(λm, λ−1

Γ) is contin-

uous. Moreover, with γ = max 0≤j<2m
j∈N

γ
2

2m−j

j , where the γj are the semi-norms of f ,

we have for all X ∈ R
2n,

1 ≤ λ(X) ≤ 1 + γΛ. (4.3.12)

The metric λ−1
Γ is admissible (def.5.3.1), with structure constants depending only on

γ. It will be called the m-proper metric of f . The function λ above is a weight for the
metric λ−1

Γ and will be called the m-proper weight of f .

The following two lemmas are more involved and appear as lemmas 2.1.6-7 in

[L7].

Lemma 4.3.6. Let q(t,X) and δ0(t,X) be as above. We define, with 〈s〉 = (1 +

s2)1/2,

µ(t,X) = 〈δ0(t,X)〉2 + |Λ1/2q′X(t,X)| + |Λ1/2q′′XX(t,X)|2. (4.3.13)

The metric µ−1
(t, ·)Γ is slowly varying with structure constants depending only on

a finite number of semi-norms of q in S(Λ,Λ−1
Γ). Moreover, there exists C > 0,

depending only on a finite number of semi-norms of q, such that

µ(t,X) ≤ CΛ,
µ(t,X)

µ(t, Y )
≤ C(1 + |X − Y |2), (4.3.14)

and we have

Λ
1/2q(t,X) ∈ S(µ(t,X)

3/2, µ−1

(t, ·)Γ), (4.3.15)

so that the semi-norms depend only the semi-norms of q in S(Λ,Λ−1
Γ).

Lemma 4.3.7. Let q(t,X), δ0(t,X), µ(t,X) be as above. We define,

ν(t,X) = 〈δ0(t,X)〉2 + |Λ1/2q′X(t,X)µ(t,X)
−1/2|2. (4.3.16)

The metric ν−1
(t, ·)Γ is slowly varying with structure constants depending only on a

finite number of semi-norms of q in S(Λ,Λ−1
Γ). There exists C > 0, depending only

on a finite number of semi-norms of q, such that

ν(t,X) ≤ 2µ(t,X) ≤ CΛ,
ν(t,X)

ν(t, Y )
≤ C(1 + |X − Y |2), (4.3.17)
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and we have
Λ

1/2q(t,X) ∈ S(µ(t,X)
1/2ν(t,X), ν(t, ·)−1

Γ), (4.3.18)

so that the semi-norms of this symbol depend only on the semi-norms of q in S(Λ,Λ−1
Γ).

Moreover the function µ(t,X) is a weight for the metric ν(t, ·)−1
Γ.

We wish now to discuss the normal forms attached to the metric ν−1
(t, ·)Γ for

the symbol q(t, ·). In the sequel of this section, we consider that t is fixed.

Definition 4.3.8. Let 0 < r1 ≤ 1/2 be given. With ν defined in (4.3.16), we

shall say that

(i) Y is a nonnegative (resp. nonpositive) point at level t if

δ0(t, Y ) ≥ r1ν(t, Y )
1/2, (resp. δ0(t, Y ) ≤ −r1ν(t, Y )

1/2

).

(ii) Y is a gradient point at level t if

|Λ1/2q′Y (t, Y )µ(t, Y )
−1/2|2 ≥ ν(t, Y )/4 and δ0(t, Y )

2 < r2
1
ν(t, Y ).

(iii) Y is a negligible point in the remaining cases

|Λ1/2q′Y (t, Y )µ(t, Y )
−1/2|2 < ν(t, Y )/4 and δ0(t, Y )

2 < r2
1
ν(t, Y ).

Note that this implies ν(t, Y ) ≤ 1+r2
1
ν(t, Y )+ν(t, Y )/4 ≤ 1+ν(t, Y )/2 and thus

ν(t, Y ) ≤ 2.

Note that if Y is a nonnegative point, from (4.3.8) we get, for T ∈ R2n
, |T | ≤ 1, 0 ≤

r ≤ r1/4

δ0
(
t, Y + rν1/2

(t, Y )T
)
≥ δ0(t, Y ) − 2rν1/2

(t, Y ) ≥ r1
2
ν1/2

(t, Y )

and from (4.3.10), this implies that q(t,X) ≥ 0 on the ball B(Y, rν1/2
(t, Y )). Similarly

if Y is a nonpositive point, q(t,X) ≤ 0 on the ball B(Y, rν1/2
(t, Y )). Moreover if Y

is a gradient point, we have |δ0(t, Y )| < r1ν(t, Y )
1/2

so that, if Y ∈ X+(t), we have

min(|Y − X−(t)|,Λ1/2
) < r1ν(t, Y )

1/2
and if r1 is small enough, since ν . Λ, we get

that |Y − X−(t)| < r1ν(t, Y )
1/2

which implies that there exists Z1 ∈ X−(t) such that

|Y − Z1| < r1ν(t, Y )
1/2

. On the segment [Y, Z1], the Lipschitz continuous function is

such that δ0(t, Y ) > 0 (Y ∈ X+(t) cf. Lemma 4.3.3) and δ0(t, Z1) < 0 (Z1 ∈ X−(t));
as a result, there exists a point Z (on that segment) such that δ0(t, Z) = 0 and thus

q(t, Z) = 0. Naturally the discussion for a gradient point Y in X−(t), is analogous. If

the gradient point Y belongs to X0(t), we get right away q(t, Y ) = 0, also from the

lemma 4.3.3. The function

f(T ) = Λ
1/2q

(
t, Y + r1ν

1/2

(t, Y )T
)
µ(t, Y )

−1/2ν(t, Y )
−1

(4.3.19)

satisfies for r1 small enough with respect to the semi-norms of q and c0, C0, C1, C2

fixed positive constants, |T | ≤ 1, from (4.3.18),

|f(T )| ≤ |S − T |C0r1 ≤ C1r
2

1
, |f ′

(T )| ≥ r1c0, |f ′′
(T )| ≤ C2r

2

1
.

The standard analysis (see the appendix A.7 in [L7]) of the Beals-Fefferman metric

[BF] shows that, on B(Y, r1ν
1/2

(t, Y ))

q(t,X) = Λ
−1/2µ1/2

(t, Y )ν1/2

(t, Y )e(t,X)β(t,X), (4.3.20)

1 ≤ e ∈ S(1, ν(t, Y )
−1

Γ), β ∈ S(ν(t, Y )
1/2, ν(t, Y )

−1

Γ), (4.3.21)
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β(t,X) = ν(t, Y )
1/2

(X1 + α(t,X ′
)), α ∈ S(ν(t, Y )

1/2, ν(t, Y )
−1

Γ). (4.3.22)

Lemma 4.3.9. Let q(t,X) be a smooth function satisfying (4.3.1-2) and let t ∈
[−1, 1] be given. The metric gt on R2n is defined as ν(t,X)

−1
Γ where ν is defined in

(4.3.16). There exists r0 > 0, depending only on a finite number of semi-norms of q
in (4.3.1) such that, for any r ∈]0, r0], there exists a sequence of points (Xk) in R2n,
and sequences of functions (χk), (ψk) satisfying the properties in the lemma 5.3.3 such
that there exists a partition of N,

N = E+ ∪ E− ∪E0 ∪ E00

so that, according to the definition 4.3.8, k ∈ E+ means that Xk is a nonnegative
point, (k ∈ E−:Xk nonpositive point; k ∈ E0:Xk gradient point, k ∈ E00:Xk negligible
point).

This lemma is an immediate consequence of the definitions 4.3.8 and 5.3.1 and of

lemma 4.3.7, asserting that the metric gt is admissible.

4.3.4. Some lemmas on C3 functions. We give in this section a key result on the

second derivative f ′′
XX of a real-valued smooth function f(t,X) such that τ+if(t, x, ξ)

satisfies condition (ψ). The following claim gives a good qualitative version of what is

needed for our estimates. Although we shall not use that (very simple) result, proving

the following claim may serve as a good warm-up exercise for the more difficult sequel.

Claim. Let f1, f2 be two real-valued twice differentiable functions defined on an
open set Ω of RN and such that f−1

1
(R∗

+
) ⊂ f−1

2
(R+) (i.e. f1(x) > 0 =⇒ f2(x) ≥ 0).

If for some ω ∈ Ω, the conditions f1(ω) = f2(ω) = 0, df1(ω) 6= 0, df2(ω) = 0 are
satisfied, we have f ′′

2
(ω) ≥ 0 (as a quadratic form).

This claim has the following consequence: take three functions f1, f2, f3, twice

differentiable on Ω, such that, for 1 ≤ j ≤ k ≤ 3, fj(x) > 0 =⇒ fk(x) ≥ 0. Assume

that, at some point ω we have f1(ω) = f2(ω) = f3(ω) = 0, df1(ω) 6= 0, df3(ω) 6=
0, df2(ω) = 0. Then one has f ′′

2
(ω) = 0: indeed, the previous claim gives f ′′

2
(ω) ≥ 0

and it can be applied to the couple (−f3,−f2) to get −f ′′
2
(ω) ≥ 0.

Notation. The open Euclidean ball of RN
with center 0 and radius r will be denoted by

Br. For a k-multilinear symmetric form A on R
N

, we shall note ‖A‖ = max|T |=1
|AT k|

which is easily seen to be equivalent to the norm max|T1|=···=|Tk|=1
|A(T1, . . . , Tk)| since

the symmetrized T1 ⊗ · · · ⊗ Tk can be written a sum of kth
powers.

The next statement is a precise quantitative version of the previous claim and is

lemma 2.2.2 in [L7].

Lemma 4.3.10. Let R0 > 0 and f1, f2 be real-valued functions defined in B̄R0
.

We assume that f1 is C2, f2 is C3 and for x ∈ B̄R0
,

f1(x) > 0 =⇒ f2(x) ≥ 0. (4.3.23)

We define the non-negative numbers ρ1, ρ2, by

ρ1 = max
(
|f1(0)| 12 , |f ′

1
(0)|

)
, ρ2 = max

(
|f2(0)| 13 , |f ′

2
(0)| 12 , |f ′′

2
(0)|

)
, (4.3.24)

and we assume that, with a positive C0,

0 < ρ1, ρ2 ≤ C0ρ1 ≤ R0. (4.3.25)
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We define the non-negative numbers C1, C2, C3, by

C1 = 1 + C0‖f ′′
1
‖L∞

(
¯BR0

)
, C2 = 4 +

1

3
‖f ′′′

2
‖L∞

(
¯BR0

)
, C3 = C2 + 4πC1. (4.3.26)

Assume that for some κ2 ∈ [0, 1], with κ2C1 ≤ 1/4,

ρ1 = |f ′
1
(0)| > 0, (4.3.27)

max
(
|f2(0)|1/3, |f ′

2
(0)|1/2

)
≤ κ2|f ′′

2
(0)|, (4.3.28)

B(0, κ2

2
ρ2) ∩ {x ∈ B̄R0

, f1(x) ≥ 0} 6= ∅. (4.3.29)

Then we have
|f ′′

2
(0)−| ≤ C3κ2ρ2, (4.3.30)

where f ′′
2
(0)− stands for the negative part of the quadratic form f ′′

2
(0). Note that,

whenever (4.3.29) is violated, we get B(0, κ2

2
ρ2) ⊂ {x ∈ B̄R0

, f1(x) < 0} (note that
κ2

2
ρ2 ≤ ρ2 ≤ R0) and thus

distance
(
0, {x ∈ B̄R0

, f1(x) ≥ 0}
)
≥ κ2

2
ρ2. (4.3.31)

4.3.5. Inequalities for symbols. The next statement (theorem 2.3.1 in [L7]) is a

(not-so-easy) consequence of the previous lemmas. A slightly weaker version of this

theorem appeared for the first time in the Dencker’s preprint [D2] and is certainly one

of the main novelties brought forward by this author.

Theorem 4.3.11. Let q be a symbol satisfying (4.3.1-2) and δ0, µ, ν as defined
above in (4.3.7), (4.3.13) and (4.3.16). For the real numbers t′, t, t′′, and X ∈ R2n, we
define

N(t′, t′′, X) =
〈δ0(t′, X)〉
ν(t′, X)1/2

+
〈δ0(t′′, X)〉
ν(t′′, X)1/2

, (4.3.32)

R(t,X) = Λ
−1/2µ(t,X)

1/2ν(t,X)
−1/2〈δ0(t,X)〉. (4.3.33)

Then there exists a constant C0 ≥ 1, depending only on a finite number of semi-norms
of q in (4.3.1), such that, for t′ ≤ t ≤ t′′, we have

C−1

0
R(t,X) ≤ N(t′, t′′, X) +

δ0(t
′′, X) − δ0(t,X)

ν(t′′, X)1/2

+
δ0(t,X) − δ0(t

′, X)

ν(t′, X)1/2

. (4.3.34)

A differentiable function ψ of one variable is said to be quasi-convex on R if

ψ̇(t) does not change sign from + to − for increasing t (see [H8]). In particular, a

differentiable convex function is such that ψ̇(t) is increasing and is thus quasi-convex.

Definition 4.3.12. Let σ1 : R → R be an increasing function, C1 > 0 and let

ρ1 : R → R+. We shall say that ρ1 is quasi-convex with respect to (C1, σ1) if for

t1, t2, t3 ∈ R,

t1 ≤ t2 ≤ t3 =⇒ ρ1(t2) ≤ C1 max
(
ρ1(t1), ρ1(t3)

)
+ σ1(t3) − σ1(t1).

When σ1 is a constant function and C1 = 1, this is the definition of quasi-convexity.

Let σ1 : R → R be an increasing function and let ω : R → R+. We define

ρ1(t) = inf
t′≤t≤t′′

(
ω(t′) + ω(t′′) + σ1(t

′′
) − σ1(t

′
)

)
. (4.3.35)
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Then the function ρ1 is quasi-convex with respect to (2, σ1).

The following lemma (lemma 2.4.3 in [L7]) is due to L.Hörmander [H11].

Lemma 4.3.13. Let σ1 : R → R be an increasing function and let ω : R → R+.
Let T > 0 be given. We consider the function ρ1 as given in definition 4.3.12 and we
define

ΘT (t) = sup

−T≤s≤t

{
σ1(s) − σ1(t) +

1

2T

∫ t

s

ρ1(r)dr − ρ1(s)

}
. (4.3.36)

Then we have

2T∂t(ΘT + σ1) ≥ ρ1, and for |t| ≤ T , |ΘT (t)| ≤ ρ1(t). (4.3.37)

Definition 4.3.14. For T > 0, X ∈ R2n, |t| ≤ T , we define

ω(t,X) =
〈δ0(t,X)〉
ν(t,X)1/2

, σ1(t,X) = δ0(t,X), η(t,X) =

∫ t

−T

δ0(s,X)Λ
−1/2ds+ 2T,

(4.3.38)

where δ0, ν are defined in (4.3.7), (4.3.16). For T > 0, (t,X) ∈ R × R2n
, we define

Θ(t,X) by the formula (4.3.36),

Θ(t,X) = sup

−T≤s≤t

{
σ1(s,X) − σ1(t,X) +

1

2T

∫ t

s

ρ1(r,X)dr − ρ1(s,X)

}
, (4.3.39)

where ρ1 is defined by (4.3.35). We define also

m(t,X) = δ0(t,X) + Θ(t,X) + T−1δ0(t,X)η(t,X). (4.3.40)

The next statement is theorem 2.4.5 in [L7]. The reader may be interested in

checking that it is indeed the term η, defined above in (4.3.38), which allows us to cut

the loss of derivatives from 2 to 3/2.

Theorem 4.3.15. With the notations above for Θ, ρ1,m, with R and C0 defined
in Theorem 4.3.11, we have for T > 0, |t| ≤ T , X ∈ R2n,Λ ≥ 1,

|Θ(t,X)| ≤ ρ1(t,X) ≤ 2
〈δ0(t,X)〉
ν(t,X)1/2

, |σ1(t,X)| = |δ0(t,X)|, (4.3.41)

C−1

0
R(t,X) ≤ ρ1(t,X) ≤ 2T

∂

∂t

(
Θ(t,X) + σ1(t,X)

)
, (4.3.42)

0 ≤ η(t,X) ≤ 4T,
d

dt

(
δ0η

)
≥ δ2

0
Λ
−1/2, |η′X(t,X)| ≤ 4TΛ

−1/2, (4.3.43)

T
d

dt
m ≥ 1

2
ρ1 + δ2

0
Λ
−1/2 ≥ 1

2C0

R + δ2
0
Λ
−1/2 ≥ 1

23/2C0

〈δ0〉2Λ−1/2. (4.3.44)

4.3.6. Stationary estimates for the model cases.

Definition 4.3.16. Let T > 0 be given. With m defined in (4.3.40), we define

for |t| ≤ T ,

M(t) = m(t,X)
Wick

, (4.3.45)

where the Wick quantization is given in (3.2.1).
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Let T > 0 be given and Q(t) = q(t)w
given by (4.3.1-2). We define M(t) according

to (4.3.45). We consider

Re
(
Q(t)M(t)

)
=

1

2
Q(t)M(t) +

1

2
M(t)Q(t) = P (t). (4.3.46)

We have, omitting now the variable t fixed here,

P = Re

[
qw

(
δ0(1 + T−1η)

)
Wick

+ qw
Θ

Wick

]
. (4.3.47)

Following the section 3.2 in [L7], we discuss now the various model cases that could

occur for the symbol q(t,X) when t is fixed.

The gradient points. Let us assume first that

q = Λ
−1/2µ1/2ν1/2βe0

with β ∈ S(ν1/2, ν−1
Γ), 1 ≤ e0 ∈ S(1, ν−1

Γ) and δ0 = β. Moreover, we assume

0 ≤ T−1η ≤ 4, T−1|η′| ≤ 4Λ
−1/2, |Θ| ≤ C〈δ0〉ν−1/2.

Here Λ, µ, ν are assumed to be positive constants such that Λ ≥ µ ≥ ν ≥ 1. Af-

ter a rather simple but delicate discussion involving various properties of the Wick

quantization, we get

Re(QM) + S(Λ
−1/2µ1/2ν−1/2,Γ)

w ≥ 0. (4.3.48)

The nonnegative points. Let us assume now that

q ≥ 0, q ∈ S(Λ
−1/2µ1/2ν, ν−1

Γ), γ0ν
1/2 ≤ δ0 ≤ γ−1

0
ν1/2,

with a positive fixed constant γ0. Moreover, we assume 0 ≤ T−1η ≤ 4, T−1|η′| ≤
4Λ

−1/2
, |Θ(X)| ≤ C, Θ real-valued. Here Λ, µ, ν are assumed to be positive constants

such that Λ ≥ µ ≥ ν ≥ 1. We start over our discussion from the identity (4.3.47):

P = Re

[
qw

(
δ0(1 + T−1η) + Θ

)
Wick

]
. (4.3.49)

Some arguments of symbolic calculus and the Fefferman-Phong inequality ([FP]) yield

Re(QM) + S(Λ
−1/2µ1/2,Γ)

w ≥ 0. (4.3.50)

The discussion is analogous for the nonpositive points and the negligible points.

Following the section 3.3 in [L7], we get the following result as a consequence of

the previous discussion.

Lemma 4.3.17. Let p be the Weyl symbol of P defined in (4.3.46) and Θ̃ =

Θ∗ 2
n

exp−2πΓ, where Θ is defined in (4.3.39) (and satisfies (4.3.41)). Then we have

p(t,X) ≡ p0(t,X) = q(t,X)

(
δ0(1 + T−1η) ∗ 2

n
exp−2πΓ

)
+ q(t,X)Θ̃(t,X), (4.3.51)

modulo S(Λ
−1/2µ1/2ν−1/2〈δ0〉,Γ).

Now, we shall use a partition of unity 1 =
∑

k χ
2

k related to the metric ν(t,X)
−1

Γ

and a sequence (ψk) as in the lemma 5.3.3. We have, omitting the variable t, with p0
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defined in the previous lemma,

p0(X) =

∑

k

χk(X)
2q(X)

∫
δ0(Y )

(
1 + T−1η(Y )

)
2

n
exp−2πΓ(X − Y )dY

+

∑

k

χk(X)
2q(X)

∫
Θ(Y )2

n
exp−2πΓ(X − Y )dY.

We obtain, assuming δ0 = δ0k,Θ = Θk, q = qk on Uk, that

p0 =

∑

k

χ2

kqk
(
δ0k(1 + T−1η) ∗ 2

n
exp−2πΓ

)
+

∑

k

χ2

kqk
(
Θk ∗ 2

n
exp−2πΓ

)

+ S(Λ
−1/2µ1/2ν−∞,Γ). (4.3.52)

It is then rather straightforward to get the following lemma (cf. lemma 3.3.3 in [L7]).

Lemma 4.3.18. With Θ̃k = Θk∗2
n

exp−2πΓ, dk = δ0k(1+T−1η)∗2
n

exp−2πΓ

and qk, χk defined above, we have
∑

k

χk♯qkdk♯χk +

∑

k

χk♯qkΘ̃k♯χk = p0 + S(Λ
−1/2µ1/2ν−1/2〈δ0〉,Γ). (4.3.53)

From this, we can obtain the following result (cf. proposition 3.3.4 in [L7]).

Proposition 4.3.19. Let T > 0 be given and Q(t) = q(t)w given by (4.3.1-2).
We define M(t) according to (4.3.45). Then, with a partition of unity 1 =

∑
k χ

2

k

related to the metric ν(t,X)
−1

Γ we have

Re (Q(t)M(t)) =

∑

k

χw
k Re

(
qw
k d

w
k + qw

k Θ̃
w
k

)
χw

k + S(Λ
−1/2µ1/2〈δ0〉ν−1/2,Γ)

w

and Re (Q(t)M(t)) + S(Λ
−1/2µ1/2〈δ0〉ν−1/2,Γ)

w ≥ 0.

4.3.7. The multiplier method.

Theorem 4.3.20. Let T > 0 be given and Q(t) = q(t)w given by (4.3.1-2). We
define M(t) according to (4.3.45). There exist T0 > 0 and c0 > 0 depending only on a
finite number of γk in (4.3.1) such that, for 0 < T ≤ T0, with D(t,X) = 〈δ0(t,X)〉, (D
is Lipschitz continuous with Lipschitz constant 2, as δ0 in (4.3.8) and thus a Γ-weight),

d

dt
M(t) + 2 Re

(
Q(t)M(t)

)
≥ T−1

(D2

)
Wick

Λ
−1/2c0. (4.3.54)

Moreover we have with m defined in (4.3.40), m̃(t, ·) = m(t, ·) ∗ 2
n

exp−2πΓ,

M(t) = m(t,X)
Wick

= m̃(t,X)
w, with m̃ ∈ S1(D,D

−2

Γ) + S(1,Γ), (4.3.55)

where the set of symbols S1(D,D
−2

Γ) is defined as symbols c satisfying the estimates
of S1(D,D

−2
Γ) for the function and the first derivatives and such that c′′ ∈ S(1,Γ) .

We have also

m(t,X) = a(t,X) + b(t,X), |a/D| + |a′X | + |b| bounded, ṁ ≥ 0, (4.3.56)

a = δ0(1 + T−1η), b = Θ̃.
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This theorem is a direct consequence of the previous lemmas and propositions

and is Theorem 3.4.1 in [L7]. We shall not give its complete proof here, but we wish

to make a few points about the loss of derivatives in a semi-classical framework.

Remark 4.3.21. Let us check that this theorem gives an estimate with loss of 3/2

derivatives for

L = Dt + iQ(t). (4.3.57)

We compute for u ∈ C1

c (R, L2
(Rn

)), suppu ⊂ [−T0, T0], the quantity 〈Lu, iMu〉 and

we use (4.3.54):

2 Re〈Lu, iMu〉 = 〈Ṁu, u〉 + 2 Re〈Qu,Mu〉 ≥ c0T
−1

Λ
−1/2〈

(
1 + δ2

0
(t, ·)

)
Wick

u, u〉.
We get, for all positive α,

c0T
−1

Λ
−1/2〈

(
1 + δ2

0
(t, ·)

)
Wick

u, u〉 ≤ α−1‖Lu‖2

L2
(Rn+1

)
+ α‖Mu‖2

L2
(Rn+1

)

and from the lemma A.1.4 in [L7], with a positive fixed constant C1, we obtain

c0T
−1

Λ
−1/2〈

(
1 + δ2

0
(t, ·)

)
Wick

u, u〉 ≤ α−1‖Lu‖2

L2
(Rn+1

)
+ αC1〈

(
1 + δ2

0
(t, ·)

)
Wick

u, u〉.
Choosing now α =

c0

2C1TΛ
1/2 , we obtain

1

2
c0T

−1

Λ
−1/2〈

(
1 + δ2

0
(t, ·)

)
Wick

u, u〉 ≤ 2C1T

c0
Λ

1/2‖Lu‖2

L2
(Rn+1

)
(4.3.58)

and thus with a fixed positive constant c1, ‖Lu‖2

L2
(Rn+1

)
≥ c2

1
T−2

Λ
−1‖u‖2

L2
(Rn+1

)
,

yielding

‖Lu‖L2
(Rn+1

)
≥ c1T

−1

Λ
−1/2‖u‖L2

(Rn+1
)
, (4.3.59)

which is indeed an estimate with loss of 3/2 derivatives with respect to the elliptic

estimate ‖Lu‖ & Λ‖u‖. We can notice also, that in the region where 〈δ0〉 ∼ Λ
1/2

, the

estimate (4.3.58) looses just one derivative and is an L2 − L2
estimate.

The following result follows from theorem 4.1.9 in [L7].

Theorem 4.3.22. Let f(t, x, ξ, h) be a smooth real-valued function defined on
R × Rn × Rn × (0, 1], satisfiying (4.3.2) and

sup
t∈R

(x,ξ)∈R2n

|(∂α
x ∂

β
ξ f)(t, x, ξ, h)|h−|β|

= Cαβ <∞. (4.3.60)

Let f0(t, x, ξ, h) be a smooth complex-valued function defined on R×Rn ×Rn × (0, 1],
such that f0(t, x, ξ, h) satisfies (4.3.60). Then there exists T0 > 0, c0 > 0, h0 ∈ (0, 1]

depending on a finite number of seminorms of f, f0, such that, for all T ≤ T0, h ∈
(0, h0] and all u ∈ C∞

c

(
(−T, T );S(R

n
)
)

‖hDtu+ if(t, x, ξ, h)wu+ hf0(t, x, ξ, h)
wu‖L2

(Rn+1
)
≥ h3/2c0T

−1 ‖u‖L2
(Rn+1

)
.

Remark 4.3.27. The previous theorem is indeed a version of (1.2.1) with µ = 3/2.

However the deduction of a solvability result from this theorem is not completely

obvious, because of the complications triggered by the loss of derivatives strictly larger

than 1. The details are given in sections 4.2-3-4 of [L7].
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5. Appendix.

5.1. Homogeneous classes of pseudodifferential operators.

Definition 5.1.1. Let n ≥ 1 be an integer and m ∈ R. We shall say that a C∞

function a : Rn × Rn −→ C is in Sm
if for all multi-indices α, β,

sup

Rn×Rn

|(∂α
x ∂

β
ξ a)(x, ξ)|(1 + |ξ|)|β|−m

= γαβ(a) <∞. (5.1.1)

A function p : R2n −→ C will be said positively-homogeneous of degree k if,

for |ξ| ≥ 1, θ ≥ 1, p(x, θξ) = θkp(x, ξ). (5.1.2)

Definition 5.1.2. Let n ≥ 1 be an integer and m ∈ R. We shall say that a

function a : Rn × Rn −→ C is in Sm
phg if there exists a sequence (pj)j∈N of smooth

positively-homogeneous functions of degree m− j such that

a ∼
∑

j≥0

pj , (5.1.3)

i.e. for all N ∈ N, a−
∑

0≤j<N

pj ∈ Sm−N .

Note that Sm
phg ⊂ Sm

and also that, given a family (pj)j∈N of functions of C∞
functions

such that, for each j, pj ∈ Sm−j
, there exists a ∈ Sm

phg such that (5.1.3) is satisfied;

the function p0 above is called the principal symbol of the operator aw
.

5.2. Confinement-set and semi-classical wave-front set. The following

definition is taken from the thesis of K.Pravda-Starov ([P2], p.134).

Notation. Let h0 ∈ (0, 1] be given. When a family of functions
(
χ(·, ·, h)

)
0<h≤h0

is uniformly in C∞
b (R2n

), i.e. for all h ∈ (0, h0], (x, ξ) 7→ χ(x, ξ, h) is C∞
b (R2n

) and

for all α, β, we have supRn×Rn×(0,h0]
|∂α

x ∂
β
ξ χ(x, ξ, h)| < ∞, we shall still say that χ

belongs to C∞
b (R2n

).

Definition 5.2.1. Let F be a closed subset of R2n
. Let h0 ∈ (0, 1] and (uh)0<h≤h0

be a family of functions in L2
. We shall say that F is a confinement-set for the

family (uh) if for all open neighborhoods V of F , for all χ ∈ C∞
b (R2n

) such that

suppx,ξ χ ⊂ V c
, we have

‖χ(x, hξ, h)wuh‖L2
(Rn

)
= O(h∞). (5.2.1)

Remark 5.2.2. Note that if the family (uh) satisfies the requirements in the defi-

nition 1.1.4, and if F is a confinement-set for the family (uh) then

WFsc(uh) ⊂ F. (5.2.2)

In fact if (x0, ξ0) /∈ F , since F is closed, there exists a neighborhood V of F and

χ0 ∈ C∞
b (R

2n
), such that χ0(x0, ξ0) = 1 and suppχ0 ⊂ V c

so that (5.2.1) is satisfied

for χ0 and thus (1.1.14). The main reason for introducing that notion is the following

property. Take a family (uh)0<h≤h0
of functions in L2

(Rn
), p, q ∈ C∞

b (R2n
). Assume
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now that p = q on the support of a function ψ ∈ C∞
b (R2n

), so that ψ = 1 on a

neighborhood of a confinement-set F of (uh): then

‖p(x, hξ)wuh‖L2
(Rn

)
= O(hν

) ⇐⇒ ‖q(x, hξ)wuh‖L2
(Rn

)
= O(hν

). (5.2.3)

In fact, with ψ ∈ C∞
b (R2n

), ψ = 1 on V open ⊃ F , suppψ ⊂ {p = q}, supp(1 − ψ) ⊂
V c

, we have

p = ψp+ (1 − ψ)p = ψq + (1 − ψ)p = q + (1 − ψ)(p− q).

Since supp((1 − ψ)(p− q)) ⊂ V c
, we get that ‖((1 − ψ)(p− q))whuh‖L2

(Rn
)
= O(h∞)

and (5.2.3).

5.3. Some standard facts about metrics on the phase space.

Definition 5.3.1. Let g be a metric on R2n
, i.e. a mapping X 7→ gX from R2n

to the cone of positive definite quadratic forms on R2n
. Let M be a positive function

defined on R2n
.

(i) The metric g is said to be slowly varying whenever ∃C > 0, ∃r > 0, ∀X,Y, T ∈
R2n,

gX(Y −X) ≤ r2 =⇒ C−1gY (T ) ≤ gX(T ) ≤ CgY (T ).

(ii) The symplectic dual metric gσ
is defined as gσ

X(T ) = supgX (U)=1
[T, U ]

2, where

[, ] is the symplectic form (1.1.5). The parameter of g is defined as

λg(X) = inf
T 6=0

(
gσ

X(T )/gX(T )
)
1/2

and we shall say that g satisfies the uncertainty principle if infX λg(X) ≥ 1.

(iii) The metric g is said to be temperate when ∃C > 0, ∃N ≥ 0, ∀X,Y, T ∈ R2n,

gσ
X(T ) ≤ Cgσ

Y (T )
(
1 + gσ

X(X − Y )
)N
.

When the three properties above are satisfied, we shall say that g is admissible.

The constants appearing in (i) and (iii) will be called the structure constants of

the metric g.
(iv) The function M is said to be g-slowly varying if ∃C > 0, ∃r > 0, ∀X,Y ∈ R

2n,

gX(Y −X) ≤ r2 =⇒ C−1 ≤ M(X)

M(Y )
≤ C.

(v) The function M is said to be g-temperate if ∃C > 0, ∃N ≥ 0, ∀X,Y ∈ R2n,

M(X)

M(Y )
≤ C

(
1 + gσ

X(X − Y )
)N
.

When M satisfies (iv) and (v), we shall say that M is a g-weight.

Definition 5.3.2. Let g be a metric on R2n
andM be a positive function defined

on R2n
. The set S(M, g) is defined as the set of functions a ∈ C∞

(R2n
) such that, for

all l ∈ N, supX ‖a(l)
(X)‖gXM(X)

−1 < ∞, where a(l)
is the l-th derivative. It means

that ∀l ∈ N, ∃Cl, ∀X ∈ R2n, ∀T1, . . . , Tl ∈ R2n
,

|a(l)
(X)(T1, . . . , Tl)| ≤ ClM(X)

∏

1≤j≤l

gX(Tj)
1/2.
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We discuss now some basic facts about partitions of unity. We refer the reader

to the chapter 18 in [H7] for the basic properties of admissible metrics as well as for

the following lemma.

Lemma 5.3.3. Let g be an admissible metric on R2n. There exists a sequence
(Xk)k∈N of points in the phase space R2n and positive numbers r0, N0, such that the
following properties are satisfied. We define Uk, U

∗
k , U

∗∗
k as the gk = gXk

balls with
center Xk and radius r0, 2r0, 4r0. There exist two families of non-negative smooth
functions on R2n, (χk)k∈N , (ψk)k∈N such that

∑

k

χk(X) = 1, suppχk ⊂ Uk, ψk ≡ 1 on U∗
k , suppψk ⊂ U∗∗

k .

Moreover, χk, ψk ∈ S(1, gk) with semi-norms bounded independently of k. The overlap
of the balls U∗∗

k is bounded, i.e.
⋂

k∈N

U∗∗
k 6= ∅ =⇒ #N ≤ N0.

Also we have gX ∼ gk all over U∗∗
k (i.e. the ratios gX(T )/gk(T ) are bounded above

and below by a fixed constant, provided that X ∈ U∗∗
k ).

The next lemma in proved in [BC](see also lemma 6.3 in [L5]).

Lemma 5.3.4. Let g be an admissible metric on R2n and
∑

k χk(x, ξ) = 1 be
a partition of unity related to g as in the previous lemma. There exists a positive
constant C such that for all u ∈ L2

(Rn
)

C−1‖u‖2

L2
(Rn

)
≤

∑

k

‖χw
k u‖2

L2
(Rn

)
≤ C‖u‖2

L2
(Rn

)
,

where aw stands for the Weyl quantization of the symbol a.

The following lemma is proved in [BL].

Lemma 5.3.5. Let g be an admissible metric on R2n, m be a weight for g, Uk

and gk as in lemma 5.3.3. Let (ak) be a sequence of bounded symbols in S
(
m(Xk), gk

)

such that, for all non-negative integers l, N

sup

k∈N,T∈R2n

|m(Xk)
−1a

(l)
k (X)T l

(
1 + gσ

k (X − Uk)
)N
gk(T )

−l/2| < +∞.

Then the symbol a =
∑

k ak makes sense and belongs to S(m, g). The important
point here is that no support condition is required for the ak, but instead some decay
estimates with respect to gσ. The sequence (ak) will be called a confined-sequence in
S(m, g).
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