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FOCAL LOCI IN G(1,N)∗

ENRIQUE ARRONDO†, MARINA BERTOLINI‡ , AND CRISTINA TURRINI§

Abstract. We introduce the different focal loci (focal points, planes and hyperplanes) of
(n-1)-dimensional families (congruences) of lines in P

n and study their invariants, geometry and
the relation among them. We also study some particular congruences whose focal loci have special
behavior, namely (n − 1)-secant lines to an (n − 2)-fold and (n − 1)-tangent lines to a hypersurface.
In case n = 4 we also give, under some smoothness assumptions, a classification result for these
congruences.
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1. Introduction. In a previous work (see [4]), we have done a thorough study
of the focal locus of a two-dimensional family of lines in P3, gathering old and new
results, both local and global, about the subject. For other families of linear spaces,
few is known about their focal locus (see for instance [6] for families of planes in P4).

In this paper we want to reconstruct most of the results in [4] for the focal locus of
(n−1)-dimensional families of lines in Pn (i.e. line congruences). The main difference
when considering arbitrary dimension n is that we do not have the self-duality of the
case n = 3, in which the dual of a line in P3 was still a line in P3∗

. This self-duality
implied a duality for the focal surface, in which the dual of the set of focal points was
the set of focal planes. So a first question is whether the natural generalization to
arbitrary n of focal planes is the notion of focal hyperplanes or the one of focal planes.
As we will see, in order to have some duality result, the notion of focal hyperplanes
is more natural, while in order to get easy (and natural) computations the notion of
focal planes works usually much better. One of the contributions of the paper is to
show that fortunately both notions are essentially equivalent, in the sense that from
each of them we can derive the other. This allows us to work at each moment with
the most convenient focal locus.

It is worth mentioning that our generalization to arbitrary dimension allows to
understand some behavior that looked strange for n = 3. There each line had two
pairs consisting of a focal point and a focal plane, but the tangent plane to the focal
locus at each point was the focal plane of the other pair, which a priori seems quite
unnatural. But we will see that, for arbitrary n, each line has n−1 pairs consisting of
a focal point and a focal plane. It is now natural that, if we want to get the tangent
hyperplane to the focal locus at each of the n − 1 focal points we use, instead of its
own plane, the span of the n− 2 others (see Theorem 3.1).

Let us give a sample comparing the advantages of using focal planes or hyper-
planes. It is clear that working with incident varieties is always very useful (see
Section 2). From this point of view it is thus necessary to work with focal planes,
since there is not a natural way of finding an incidence variety of focal points and
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Madrid, 28040 Madrid, Spain (enrique arrondo@mat.ucm.es).
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hyperplanes. But once we know that the tangent hyperplane to the focal locus is a
focal hyperplane or equivalently the span of n − 2 planes, in order to compute the
class of the focal locus is of course better to consider focal hyperplanes rather than
working with a variety parametrizing finite unions of planes (whose intersection ring
is very complicated). In this context, the fact that we do not have good incidence
varieties for focal hyperplanes will be the reason why we cannot compute for instance
the class of hyperplane sections of the focal locus, while for n = 3 it was not difficult.

Although we will work in arbitrary dimension n, in order to show how our methods
allow to obtain global formulae for the focal locus, we will often restrict ourselves to
the case n = 4 to obtain the precise formulae in this case. When the situation is
not essentially new with respect to the case n = 3, we sometimes omit details and
refer to the corresponding result in [4]. This is for example what happens when
analyzing possible pathologies of the focal hypersurface: these pathologies do not
depend essentially on n when considering (n − 1)-secant lines to a codimension-two
subvariety of Pn or (n−1)-tangent lines to a hypersurface in Pn (we even omit a study
of n-th order inflectional lines to a hypersurface, since these congruences would not
eventually exist when imposing smoothness).

The paper is distributed as follows: first we start with a section (Section 2)
of preliminaries, in which we introduce the different notions of focal points, planes
and hyperplanes, stating their main properties and their degrees (sometimes only for
n = 4). In Section 3 we get the first relations between the different focal loci that
we defined in the previous section. This is done in the general case, although we also
devote a subsection to study what happens in special situations. To complete the
study of this relation, we need local coordinates. We thus devote Section 4 to locally
study the focal loci, re-obtaining in local coordinates what we did globally, and proving
with this local analysis that the set of focal hyperplanes corresponds in general to the
dual of the focal hypersurface. Finally, Sections 5 and 6 are devoted respectively to
study two particular types of congruences: the congruence of (n − 1)-secant lines to
a codimension-two subvariety of Pn and the congruence of (n − 1)-tangent lines to
a hypersurface of Pn. In both cases we concentrate in the smooth case and obtain
classification results for n = 4.
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to acknowledge the extremely useful help that has been for us the extensive use we
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2. General Results and Preliminaries.

2.1. Preliminaries. The notation used in this work is mostly standard from
Algebraic Geometry, for instance the one in [8]. In particular, the functor P will
correspond to quotients of rank one. The ground field is always the field C of complex
numbers.

As usual we will view G = G(1, n) as embedded in a projective space under
the Plücker embedding. By a congruence X we shall mean an (n − 1)-dimensional
(irreducible) subvariety of G. The (arithmetic) sectional genus of a congruence is the
genus of its hyperplane section. We will usually denote it by g. We will write
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• Ω(I, J) the Schubert variety of lines in G meeting I and contained in J , where
I and J are linear subspaces of Pn such that I ⊂ J

• Ω(i, j) the class in the Chow ring of G of Ω(I, J), where i =dimI and j =dimJ
• (a0, . . . , am) for m = [n−1

2 ], the multidegree of X , where the class of X in
A∗(G) is

∑

i aiΩ(i, n− i) for 0 ≤ i ≤ [n−1
2 ]

• S, Q the universal subbundle of rank n− 1 and quotient bundle of rank two
of G appearing in the exact sequence

0 → Š → H0(Pn,OPn(1)) ⊗OG → Q → 0

(in general, for G(k, n) with k 6= 1 we will write Sk and Qk for the uni-
versal bundles, in order to avoid confusion). Observe that with this nota-
tion c1(Q) = Ω(n − 2, n) (which is the hyperplane section of G), c2(Q) =
Ω(n− 2, n− 1) and ci(S) = Ω(n− i− 1, n) for i = 1, . . . , n− 1.

Convention: In order to distinguish if we refer to a subspace as a subset of P
n

or to an element of the Grassmannian, we will use the following convention: small
letters l will represent points of G(k, n), while the corresponding capital letters L will
represent the subspace L ⊂ Pn. If l is a line, we shall also write Pl for the set of planes
containing L and P ∗

l for the set of hyperplanes containing L. Observe that both sets
can be regarded as Pn−2, linearly embedded in the Plücker embedding of G(2, n) or
in Pn

∗

respectively.
Following [3] we will say that a point x of Pn is a k-fundamental point of X if there

is a k-dimensional family of lines of X through x. A point x of P
n is a fundamental

point of X if it is k-fundamental for some k ≥ 1 . A curve C is a k-fundamental curve
for X if all its points are k-fundamental. Given a congruence X , we will denote

• a = a0 the number of lines of X passing through a general point in Pn

• b = a1 the number of lines of X contained in a general hyperplane H and
meeting a general line of H

Equivalently, using the formulas for the Chern classes of the universal bundles,
the above numbers can be written as a = cn−1(S|X), b = c2(Q|X)cn−3(S|X).

2.2. Focal points. Intuitively, a focal point of a congruence X is a point in Pn

through which there pass two infinitely close lines. A rigorous way of defining the
focal locus is the following.

Definition 1. Let I0
X ⊂ P

n ×X be the incidence variety consisting of the pairs
(x, L) for which l is a line of X and x is a point in the line L. And let q0 : I0

X → Pn

be the first projection, which has degree a. The focal locus of X will be the branch
locus F of q0, and the elements of F will be called focal points. If (x, L) is in the
ramification locus of q0 we will say that x is a focal point for the line L.

Since dim I0
X = dim P

n = n, the ramification locus R of q0 has a scheme structure
of pure dimension n − 1. One should expect the focal locus to be a hypersurface
of Pn. Of course there are examples in which it has smaller dimension (see Section
5 or, for very degenerate cases, Remark 3.4); for instance, if X is the set of lines
passing through a point x ∈ Pn, then F is just the point x. When F has the expected
dimension, their components of dimension n− 1 have a natural structure of scheme,
precisely the one given by q0∗(R). We will refer to it as the scheme structure of F .

Proposition 2.1. Let X ⊂ G(1, n) be a congruence of multidegree (a, b, . . .) and
let g′ be the genus of the curve of X consisting of all the lines meeting a general line
of Pn. Then
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(i) If a > 0, the degree of the focal locus is, as a scheme, 2a+ 2g′ − 2.
(ii) For any line l of X, the set of focal points for L are the points for which a

natural map ϕl : On−1
L → OL(1)n−1 has not maximal rank. In particular,

either all the points of L are focal for the line or the number of focal points
for L (counted with multiplicities) is n− 1.

Proof. For (i), if we restrict q0 to the pull-back of a line L, we first observe that
q−1
0 (L) is the set of pairs (x, L′) such that l′ is a line of X and x lies in both L and L′.

Therefore, for a general L, the set q−1
0 (L) is isomorphic to the curve of X consisting

of all the lines meeting L. A direct application of Hurwitz theorem to the restriction
of q0 to q−1

0 (L) (which is surjective since a > 0) gives (i).
If instead we take now l to be a line ofX , q−1

0 (L) decomposes into two components:
the set L̄ of pairs (x, L), with x a point in L and the (closure of the) set of pairs
(x, L′) with L′ 6= L a line of X and x a point in both L and L′. The restriction of the
ramification locus of q0 to L̄ will give the pairs (x, L) such that x is a focal point for
L. We thus consider the following natural commutative diagram of exact sequences
defining ϕl:

0 → TL̄ → TI0
X
|L̄ → NL̄,I0

X
→ 0

↓ ↓ dq0|L̄ ↓ ϕl
0 → q∗0TL → q∗0TPn|L → q∗0NL,Pn → 0

The first vertical arrow is an isomorphism because q0 defines an isomorphism between
L̄ and L. Therefore the degeneracy locus of dq0|L̄ (which gives the focal points for

L) coincides with the degeneration locus of ϕl. But now observe that L̄ is, inside the
incidence variety I0

X ⊂ Pn ×X , the fiber of a point in X under the second projection
(which endows X with a projective bundle structure). Therefore its normal bundle is
trivial (of rank n−1). On the other hand, the normal bundle of L in Pn is OL(1)n−1.
Hence ϕl can be interpreted as in the statement of (ii), and so the lemma is proved.

Remark 2.1. Observe that, if X smooth (in fact it would be enough to assume
it is smooth in codimension two) most of the previous lemma could have been proved
by computing the class of the ramification locus of q0 : I0

X → Pn (which is also
interesting by itself). We remark first, as observed in the previous proof, that I0

X

has a natural structure of projective bundle over X . More precisely I0
X = P(Q|X),

and the relative hyperplane section is the pull-back h of the hyperplane section of Pn.
This easily implies that the tangent bundle of I0

X has first Chern class 2h−H −K,
where H and K are the pull-back of the hyperplane and canonical classes of X (recall
that c1(QX) = H). This yields that the class of the ramification locus of q0 is
(n− 1)h+H +K. Hence, intersecting with the pull-back hn−1 of the class of a line
in Pn we thus get intersection product n − 1 + (H +K) · hn−1 = 2a + 2g′ − 2, thus
getting (i). On the other hand, intersecting with the pull-back of the class of a point
in X we will get the coefficient n − 1, which is thus the number of focal points for
a line. Observe however that this will not give the determinantal description of the
focal points on the line (when speaking about focal planes this kind of description will
be crucial). Also, it is not easy a priori to figure out that the intersection product
(H +K) · hn−1 involves g′.

2.3. Focal planes. Again intuitively, if x is a focal point for a line L of a
congruence X , this means that through x there pass two infinitely close lines of X .
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Since these should span a plane, this naturally yields to the notion of focal plane as a
plane containing two infinitely close lines of the congruence. Again we give a precise
definition.

Definition 2. Let I2
X ⊂ X ×G(2, n) be the incidence variety consisting of the

pairs (l, π) for which l is a line of X and Π is a plane containing the line L. And let
q2 : I2

X → G(2, n) be the second projection, which this time is not surjective if n ≥ 4.
The locus of focal planes of X will be the branch locus F2 of q2, and if (l, π) is in the
ramification locus of q2 we will say that Π is a focal plane for the line L.

We have that the degeneracy locus of dq2 has expected codimension n− 2 in I2
X

(which in turn has dimension 2n − 3), hence we again expect F2 to have dimension
n − 1. This coincides with the intuition that for a focal point there is a focal plane.
This also means that a general line of the congruence should contain a finite number
of focal planes for it (precisely n− 1, according to our philosophy), as we will prove
right away. However since F2 is now a subscheme of G(2, n) it has a multidegree (the
number of whose coefficients will depend on n) instead of just a degree. To compute
all of its coefficients it will be necessary to make a particular computation in each
case by knowing the class of the ramification locus of q2 in I2

X (see Remark 2.1). As a
sample, we will do it for n = 4 (the case n = 3 is classical and can also be obtained by
duality), which shows how complicated the formula becomes in general. We collect
all these results in the following.

Proposition 2.2. Let X be a congruence in G(1, n) of multidegree (a, b, . . .).
Then

(i) If n = 4, and F2 has dimension three, then its bidegree in G(2, 4) (as a three-
dimensional scheme) (a′, b′) = (2b + 4g′′ − 4, 8b − 2a + 6g′ + 6g′′ + 2K2

H −
12χ(OH) − 12), where g′′ is the genus of the curve of X consisting of all the
lines contained in a general hyperplane of P4 and H is a general hyperplane
section of X. Here a′ is the number of planes of F2 contained in a general
hyperplane of P4 and b′ is the number of planes passing through a point and
meeting along a line a general fixed plane through that point.

(ii) If l is a line of the congruence and Pl is the set of planes of Pn containing
L, identifying Pl with Pn−2, then the planes of Pl focal for X are those for
which a natural map ψl : On−1

Pl
→ TPl

(−1)2 is not injective.
(iii) If the set of focal planes for L has dimension zero (the expected one), then

they form a scheme of length n− 1 whose span is a hyperplane of Pn.

Proof. For (i), we use the same technique as in Remark 2.1, in this case with
the map q2 : I2

X → G(2, 4). Now I2
X = P(Š|X), or equivalently it is the Grassmann

bundle of rank-two quotients of S|X . As a Grassmann bundle, its universal rank-two

quotient bundle E (which is TI2
X
/X(−1) if we see it as the projective bundle P(Š|X))

is naturally isomorphic to q∗2Q2. One next checks that the class of the ramification
locus of q2 is K2 +2KH+2Kc1(E)+H2 +3c1(E)H+ c1(E)2− c2(TX)+2c2(E)+2C′′,
where C′′ is the (pull-back from X of the) curve of X consisting of the lines contained
in a general hyperplane of P4. Intersecting this class with c3(O

5
I2

X

−Ě) and c1(E)c2(E)

we get respectively a′ and b′.

For (ii) we proceed as in Proposition 2.1 by considering the following commutative
diagram of exact sequences (defining ψl) in which we also identified Pl with the subset
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of I2
X of pairs (l, π), with π ∈ Pl (i.e. with the first factor fixed)

0 → TPl
→ TI2

X
|Pl

→ NPl,I2X
→ 0

|| ↓ dq2|Pl





y
ψl

0 → TPl
→ TG(2,n)|Pl

→ NPl,G(2,n) → 0

It is clear now that the degeneracy locus of dq2|Pl
is the degeneracy locus of ψl. We

observe immediately that the normal bundle NPl,IX
2 is a trivial bundle (whose fiber

is canonically isomorphic to the tangent space of X at the point represented by L). In
order to identify NPl,G(2,n), we observe that Pl, as a subvariety of G(2, n), is defined

as the zero locus of two sections of the universal bundle S2, so that NPl,G(2,n) ≃ S2
2
|Pl

.
On the other hand, the restriction of the universal quotient bundle Q2 of G(2, n) to
Pl is the rank 3 bundle O2

Pl
⊕OPl

(1). This shows that S2|Pl
≃ TPl

(−1) and hence we

are interested in the degeneracy locus of a map ψl : On−1
Pl

→ TPl
(−1)2, which proves

(ii).
We see then that the expected degeneracy locus of ψl is a zero-dimensional scheme

Z of length n− 1. If the degeneracy locus has the expected dimension, then it is easy
to see from this description that the scheme Z is not degenerate in Pl, i.e. the focal
planes are in general position. A fast way of seeing this is to observe that, if we
consider the Euler sequence on Pl summed with itself

0 → OPl
(−1)2 → O2n−2

Pl

ψ
−→TPl

(−1)2 → 0

then the map ψl necessarily factorizes through ψ. The induced map OPl
(−1)n−1 →

O2n−2
Pl

is necessarily injective since ϕ is. The degeneracy locus of ψl is thus the

degeneracy locus of OPl
(−1)2 → O2n−2

Pl
/On−1

Pl
≃ On−1

Pl
. But this morphism provides

a resolution for the ideal sheaf of Z that immediately shows that Z is not contained in
any hyperplane of Pl (for instance, consider Pl as a hyperplane in Pn−1, and represent
the map OPl

(−1)2 → On−1
Pl

to Pn−1 by a suitable matrix of linear forms; then Z is a
hyperplane section of a rational normal curve, hence nondegenerate).

2.4. Focal hyperplanes. Finally, if we want to find the duality that occurs for
n = 3 (in which the focal planes are precisely the tangent planes to the focal surface)
we will need to introduce the notion of focal hyperplane. The only possible definition
does not seem a priori much natural, since it has not a nice geometric interpretation.

Definition 3. Let X be a congruence of lines in P
n and consider the incidence

variety In−1
X ⊂ X×Pn

∗

consisting of pairs (l, h) such that the hyperplane H contains
the line L. Let qn−1 : In−1

X → Pn
∗

be the second projection, which has no finite fibers
for n ≥ 4. The locus of focal hyperplanes Fn−1 is the branch locus of qn−1. If (L,H)
is in the ramification locus of qn−1 then we will say that H is a focal hyperplane for
the line L.

Observe that now the ramification locus is the scheme in which the differential
map dqn−1 is not surjective, but anyway it still has expected codimension n−2 in In−1

X ,
i.e. expected dimension n− 1. As for the other focal loci we can prove immediately
some numerical results. However, even if this time Fn−1 is a hypersurface in Pn

∗

, it
is not easy to give a general formula for its degree, so that again we will do it only
for n = 4.

Proposition 2.3. Let X be a congruence in G(1, n) of multidegree (a, b, . . .).
Then
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(i) If n = 4 and F3 has dimension three, then its degree as a subscheme of P4∗

is 4g′′ − 4 + 12χ(OH) −K2
H , where H is a hyperplane section of X.

(ii) Let l be a line of the congruence and let P ∗
l be the set of hyperplanes containing

L, which we will identify with Pn−2. Then the focal hyperplanes for L are
those for which a natural map ξl : On−1

P∗

l
→ OP∗

l
(1)2 is not surjective.

(iii) If the set of focal hyperplanes for a line l of X has (the expected) dimension
zero, then it is a scheme of length n− 1 which is nondegenerate in P ∗

l .

Proof. For (i) we proceed in the same way as in the cases of points and planes,
now using the map q3 : I3

X → G(3, 4) ∼= P4∗. We can regard I3
X as the projective

bundle P(S|X), and in this case the tautological hyperplane section is the pull-back

of the hyperplane section h∗ of P4∗. We check thus that the degeneracy locus of dq3
has class H2 + 3Hh∗ +KH+ 3h∗2 + 2h∗K −C′′ + c2(TX). Intersecting now with h∗3

we get the wanted degree.
For (ii) and (iii) we proceed as in Propositions 2.1 and 2.2. Identify P ∗

l with the
subset of In−1

X consisting of the pairs of the form (l, h) with H ∈ P ∗
l . Then we have

the following commutative diagram of exact sequences

0 → TP∗

l
→ TIn−1

X
|P∗

l
→ NP∗

l
,In−1

X
→ 0

|| ↓ dqn−1|P∗

l





y

ξl

0 → TP∗

l
→ T

Pn∗ |P∗

l
→ NP∗

l
,Pn∗ → 0

As in the previous lemmas, the degeneracy locus of dqn−1|P∗

l
is the set of pairs (l, h)

for which H is focal for L, and it coincides with the degeneracy locus of ξl. And also
NP∗

l
,In−1

X
is trivial of rank n− 1 and NP∗

l
,Pn∗ is isomorphic to OP∗

l
(1)2. This proves

(ii), and (iii) is then an immediate consequence of (ii).

3. Relation among the different focal loci.

3.1. General results. We consider now the incidence variety I0,2
X ⊂ Pn ×X ×

G(2, n) of triples (x, l, π) such that x ∈ L ⊂ Π and consider the projection q0,2 :

I0,2
X → I0,2, where I0,2 ⊂ Pn×G(2, n) is the flag variety of pairs (x, π) with x ∈ Π. It

is natural to consider now the branch locus of q0,2 and compare with F and F2. The
first remark is that it has expected dimension n− 1. We have the following.

Proposition 3.1. Let X be a congruence of lines in P
n and let F0,2 be the branch

locus of q0,2.
(i) For any line L of the congruence, let Pl be the set of planes containing L.

Then the set of pairs (x, π) ∈ L × Pl for which (x, l, π) is in the ramifica-
tion locus of q0,2 is the degeneracy locus of a natural map αl : On−1

L×Pl
→

q∗02NL×Pl,I0,2 induced by ϕl and ψl.
(ii) If there are finitely many pairs as above, then they form a zero-dimensional

scheme of length n− 1.
(iii) If there are infinitely many such pairs, then the projection from them to L is

surjective, and therefore all the points of L are focal for L.

Proof. The first part (i) is completely analogous to Propositions 2.1, 2.2 and 2.3,
the only –but not significant– difference being that the projection from I0,2

X to X
does not give a structure of projective bundle, but of (P1 × Pn−2)-bundle (the fibers
being L× Pl). In particular, the ramification locus of q0,2 is the degeneracy locus of
a natural map αl : NL×Pl,I

0,2
X

→ q∗02NL×Pl,I0,2 and it holds NL×Pl,I
0,2
X

∼= On−1
L×Pl

.
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To relate αl with ϕl and ψl, observe now that we have an exact sequence of normal
bundles

0 → NL×Pl,I0,2

α
−→NL×Pl,Pn×G(2,n)

β
−→NI0,2,Pn×G(2,n)|L×Pl

→ 0.

We have natural isomorphisms

NL×Pl,Pn×G(2,n)
∼= pr∗1NL,Pn ⊕ pr∗2NPl,G(2,4)

∼= OL×Pl
(1, 0)n−1 ⊕ TPl

(0,−1)2

(where OL×Pl
(a, b) stands for pr∗1OL(a)⊕pr∗2OPl

(b), pr1 and pr2 being the projections
from L× Pl to L and Pl respectively, and we identify TPl

with its pull-back by pr2),
and

NI0,2,Pn×G(2,n)|L×Pl

∼= TPl
(1,−1)

(for the latter observe that I0,2 is the zero locus in P
n ×G(2, n) of a natural section

of the tensor product of the pull-backs of OPn(1) by the first projection and the
rank-(n− 2) bundle S2 by the second projection).

With these identifications, a diagram chase shows that the composition of αl with
q∗02α is nothing but (ϕl, ψl), which completes the proof of (i).

We have also a natural decomposition of the exact sequence of normal bundles
into the following commutative diagram of exact sequences

0 0
↓ ↓

0 → OL×Pl
(1,−1) → OL×Pl

(1, 0)n−1 → TPl
(1,−1) → 0

↓ ↓ ||
0 → NL×Pl,I0,2

α
−→ OL×Pl

(1, 0)n−1 ⊕ TPl
(0,−1)2

β
−→ TPl

(1,−1) → 0
↓ ↓

TPl
(0,−1)2 = TPl

(0,−1)2

↓ ↓
0 0

The expected codimension of the dependency locus of n− 1 sections of NL×Pl,I0,2 is
n − 1, hence the expected dimension is zero. And since the degree of the (n − 1)-th
Chern class of this normal bundle is n− 1, we get (ii).

If instead n−1 sections of NL×Pl,I0,2 are dependent along a set of positive dimen-
sion, assume for contradiction that the image of that set in L is not the whole line.
This means that this dependency locus contains a subset of the form {x}×Y for some
Y ⊂ Pl of positive dimension. These n−1 sections of NL×Pl,I0,2 induce n−1 sections
of TPl

(−1)2, whose dependency locus is precisely the set of focal planes for L. We are
assuming that there is a non-trivial linear combination of the n−1 sections producing
a section of TPl

(−1)2 vanishing at Y . Thus the first column of the previous diagram
indicates that this provides on {x}×Y a section of the restriction of OL×Pl

(1,−1), in
other words, a section of OY (−1), which is absurd. This proves that the dependency
locus of the n− 1 sections of NL×Pl,I0,2 dominates L, just proving (iii).

We have the following equivalent description of focal points and planes in terms
of the tangent space of the congruence (see [7], Lemma 4.4, for n = 3).

Lemma 3.1. Let X be a line congruence in Pn. A point x ∈ Pn is focal if and only
if there exists a line l of the congruence, with x ∈ L, such that the embedded tangent
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(n − 1)-plane of X at l meets the Schubert variety Ω(x,Pn) in at least a line (i.e. a
pencil of lines of Pn). Similarly, a plane Π ⊂ Pn is focal if and only if there exists a
line l of the congruence, with L ⊂ Π, such that the embedded tangent (n− 1)-plane of
X at l meets the Schubert variety Ω(L,Π) in at least a line.

Proof. This just comes from the observation that a pair (x, π) belongs to F0,2

if and only if the pencil Ω(x,Π) contains L with multiplicity at least two, i.e. it is
contained in the embedded tangent space of X at l.

This implies the following (see also [2] or a proof in coordinates in Subsection
4.1).

Theorem 3.1. Let X be a line congruence in P
n and let l be a line of X with

exactly n−1 pairs (x1, π1), . . . , (xn−1, πn−1) such that (xi, L, πi) is in the ramification
locus of q0,2. Then L is tangent to the focal locus F at x1, . . . , xn−1 (provided they
are smooth for the focal locus, as a scheme) and moreover each Πi is tangent to F at
the points x1, . . . , xi−1, xi+1, . . . , xn−1. In particular, the tangent hyperplane to F at
xi is generated by Π1, . . . ,Πi−1,Πi+1, . . . ,Πn−1.

Proof. We have by assumption that in Ω(xi,Πi) there is an infinitesimally close
line to l in X . On the other hand, this infinitesimally close line will contain a focal
point infinitesimally close to each of x1, . . . , xn−1 (at least if xi is a smooth point of
the focal locus). But it is clear that the direction in which xi is approached by its
infinitesimally close focal point is necessarily the direction of L, so that L is indeed
tangent to the focal locus at xi. Instead, each other xj is approached in a direction
different from L (but contained in Πi). Since as we just proved L is tangent to F at
xj , we find at xj two different directions tangent to F and contained in Πi. Hence
Πi is contained in the tangent space to F at xj . By Proposition 2.2, the planes
Π1, . . . ,Πi−1,Πi+1, . . . ,Πn−1 span a hyperplane, so that this must be necessarily the
tangent hyperplane to F at xi.

Remark 3.2. The hypothesis that the points are smooth for the focal locus means
in particular that we are assuming the focal locus to have the expected dimension
n − 1, otherwise the points on the corresponding scheme structure are not smooth.
For instance, the congruence of bisecants to a twisted cubic in C ⊂ P3 has as focal
locus exactly C, but of course the previous lemma does not hold.

Of course the next natural step would be to show that the tangent hyperplanes
we have found correspond exactly to the n− 1 focal hyperplanes containing L. Even
if this is true, it is not possible to prove it now (we will need the local coordinates
introduced in the next section). The reason is that, due to the different nature of the
definition of focal planes and hyperplanes, taking an incidence diagram putting them
together does not work.

3.2. Special cases. Most of what we have done so far does not work if all the
points of a line are focal to it. So we want to analyze this special case.

Definition 4. A focal line of a congruence X is a line L whose points are all
focal.

From Lemma 3.1, a line L is focal if and only if the embedded tangent space of
X at l meets in a pencil all the varieties Ω(x,Pn) with x ∈ L.

The following proposition is a characterization of the focal lines.
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Proposition 3.2. A line L of a congruence X in Pn is focal if and only if the
focal planes for L are not in general position, i.e. they are all contained in a common
hyperplane of Pn.

Proof. The if part is an easy consequence of Propositions 2.2 and 3.1. If the
focal planes for L are not in general position, then they cannot be a finite number
(Proposition 2.2). But then the focal points corresponding to the infinitely many focal
planes fill up the whole L (Proposition 3.1).

We prove now the only if part. So assume L is a focal line, and hence for each
x ∈ L we have a focal plane Π ⊃ L such that the pencil Ω(x,Π) is contained in the
tangent space to X at l. This provides a map ϕ : L → Pl, where again Pl is the
(n − 2)-projective space of all the planes in Pn containing L, and we want to prove
that its image is degenerate.

Consider the projective space P2n−3 of all the tangent directions of G(1, n) at the
point represented by L. The set of those tangent directions corresponding to pencils
are thus identified with the Segre embedding of L × Pl. The above set of pencils is
therefore given by the image of L

id×ϕ
−→L × Pl ⊂ P2n−3, and we know that this image

is contained in a linear space of dimension n− 2, namely the set of tangent directions
of X at the point represented by L.

Choosing homogeneous coordinates t0, t1 for L, the map ϕ will be defined by
(t0 : t1) 7→ (f0 : . . . : fn−2), where f0, . . . , fn−2 are homogeneous polynomials in t0, t1
of the same degree. Assume by contradiction that the image of ϕ is nondegenerate.
This means that f0, . . . , fn−2 are linearly independent forms. But then it is easy to
see that the homogeneous polynomials t0f0, . . . , t0fn−2, t1f0, . . . , t1fn−2 span a linear
space of dimension at least n. But this is absurd, since these polynomials define the
map L → P2n−3, and, as we remarked, its image is contained in a linear space of
dimension n− 2.

Let X0 be the open set of non-focal lines of a congruence X and consider the map
q0 : I0

X = p−1
2 (X) → Pn, where p2 is the second projection of IX ⊂ Pn × X . Then

the restriction of the second projection p−1
2 (X0) → X0 to the ramification locus of q0

is finite (typically of degree n− 1, but it could happen a priori that any line contains
less focal points counted with multiplicity). Hence, the branch locus of this restriction
has at most n− 1 components.

Definition 5. We will call the strict focal locus of a congruence X the closure
F0 of the reduced structure of the branch locus of p−1

2 (X0) → Pn. To distinguish from
this, we usually refer to the focal locus F (as a scheme) as the total focal locus.

We will now analyze some special behaviors of X0 and F0.
First of all, X0 could be empty and this means that all the lines of X are focal

lines. This case is characterized in the following theorem.

Theorem 3.3. For a given congruence X in Pn, all the lines of X are focal if
and only if the union of all the lines of X is a proper subvariety of Pn (i.e. if a = 0).

Proof. If the union of all the lines of X is the whole Pn, this means that the
morphism q0 : I0

X → P
n is generically finite, so that a general point P

n (which is a
general point in a general line of X) is not in the branch locus of q0, i.e. it is not
focal. Reciprocally, if the union of all the lines of X is a proper subvariety V ⊂ Pn,
then for any point in a line of X (i.e. a point in V ) the fiber of q0 is not finite, and
therefore these points are fundamental and hence focal.

Remark 3.4. For a general congruence, F0 is a hypersurface.
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The cases in which F0 has a very low dimension are easy to describe.
If F0 is a point x, then X is Ω(x,Pn).
If F0 is a curve, then it is an (n−1)-fundamental curve, (i.e. all lines of X intersect

F0). Smooth congruences with an (n− 1)-fundamental curve are classified in [3].

Remark 3.5. It is not superfluous to take the reduced structure in the definition
of F0. As we have seen for n = 3 in [4] (and we will see in the sequel), the focal locus
can appear with high multiplicity, for instance for congruences of (n − 1)−tangents
to an (n− 1)-fold in Pn (see Section 6).

Remark 3.6. Also the total focal locus could have more components different
from F0, for example for the congruences of (n − 1)−secants to a (n − 2)-fold in Pn

(see [4] for the case n = 3 or Section 5).

4. Local description of the focal loci and duality. The goal of this section
is to show that the focal hyperplanes of a congruence of lines in Pn are tangent to the
focal hypersurface. To this purpose, we will need to use local coordinates for the focal
loci, which we will also allow to recover some of the results we have already proved.

4.1. Local coordinates. We first want to give local coordinates for the inci-
dence variety I0,2

X of triples (x, l, π) such that l ∈ X . We fix first a triple (x, l, π) in I0,2
X .

We first choose homogeneous coordinates (x0 : x1 : . . . : xn) in Pn such that the point
x has coordinates (1 : 0 : . . . : 0), the line L has equations x2 = x3 = . . . = xn = 0 and
the plane π has equations x3 = . . . = xn = 0. We can thus take u1, . . . , un−1 to be
a system of parameters of X at l and assume that near l the lines of the congruence
are given by the span of the rows of the matrix

(1)

(

1 0 f2 f3 . . . fn
0 1 g2 g3 . . . gn

)

where fi and gj are regular functions on the variables u1, . . . , un−1 in a neighborhood
of l such that f2(0, . . . , 0) = . . . = fn(0, . . . , 0) = g2(0, . . . , 0) = . . . = gn(0, . . . , 0) =
0. Hence our choice of coordinates of I0,2

X near (x, l, π) will be the following: the
coordinates (λ, u1, . . . , un−1, v3, . . . , vn) will represent the triple (x, l, π) in which l is
the line corresponding to u1, . . . , un−1 (i.e. the one spanned by the rows of the above
matrix), x is the point x = (1 : λ : f2 + λg2 : . . . : . . . : fn + λgn) (i.e. the first row
plus λ times the second row of the matrix) and Π is the plane given by the following
equations:

(2) Π :











(x3 − f3x0 − g3x1) + v3(x2 − f2x0 − g2x1) = 0
...

(xn − fnx0 − gnx1) + vn(x2 − f2x0 − g2x1) = 0

Observe that if we take only coordinates (λ, u1, . . . , un−1) we have a local parame-
trization of I0

X near (x, l), while if we take coordinates (u1, . . . , un−1, v3, . . . , vn) we
get a parametrization of I2

X near (l, π).

Now we want to study the injectivity of the differential map of q0,2 : I0,2
X → I0,2.

It will be easier (as we did in fact in Proposition 3.1) to consider the map as a map
from I0,2

X to Pn × G(2, n), i.e. to study its two components q′0 : I0,2
X → Pn and

q′2 : I0,2
X → G(2, n). We first choose affine coordinates for Pn and G(2, n) around
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x and π. Of course for Pn we just consider the open set x0 6= 0 and take affine
coordinates x1, . . . , xn.

A local expression for q′0 is given by

(λ, u1, . . . , un−1, v3, . . . , vn) 7→ (λ, f2 + λg2, . . . , fn + λgn).

About G(2, n), we consider the affine set of the planes not meeting the space
x0 = x1 = x2 = 0. Then the coordinates a3, . . . , an, b3, . . . , bn, c3, . . . , cn will represent
the plane of equations











x3 = a3x0 + b3x1 − c3x2

...
xn = anx0 + bnx1 − cnx2

.

With this choice, a local expression for q′2 is given by

(λ, u1, . . . , un−1, v3, . . . , vn) 7→

(f3 + v3f2, . . . , fn + vnf2, g3 + v3g2, . . . , gn + vng2, v3, . . . , vn).

The Jacobian matrix A of the map (q′0, q
′
2) without considering the first row and

the first column is of the form:

A =





1 g 0 0 0
0 B C1 C2 0
0 0 f2In−2 g2In−2 In−2





where the blocks B, C1 and C2 are respectively the following (where fij stands for
∂fi

∂uj
and similarlygij stands for ∂gi

∂uj
):

B =











f21 + λg21 f31 + λg31 . . . fn1 + λgn1

f22 + λg22 f32 + λg32 . . . fn2 + λgn2

...
...

. . .
...

f2,n−1 + λg2,n−1 f2,n−1 + λg2,n−1 . . . fn,n−1 + λgn,n−1











C1 =











f31 + v3f21 . . . fn1 + vnf21
f32 + v3f22 . . . fn2 + vnf22

...
. . .

...
f3,n−1 + v3f2,n−1 . . . fn,n−1 + vnf2,n−1











C2 =











g31 + v3g21 . . . gn1 + vng21
g32 + v3g22 . . . gn2 + vng22

...
. . .

...
g3,n−1 + v3g2,n−1, . . . gn,n−1 + vng2,n−1











.
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Notice that, with these notations and coordinates, the Jacobian matrix of
q0 : I0

X → Pn is

(

1 g
0 B

)

.

Hence, for fixed values of the (n − 1)-tuple (u1, . . . , un−1) (i.e. for a fixed line L of
the congruence), the determinant of B vanishes at the values of λ that give the focal
points for L. Observe that this determinant is expected to be a polynomial of degree
n− 1 in λ, hence we just verified locally Proposition 2.1 (in fact, B can be regarded
as the matrix of ϕl).

Similarly, the Jacobian matrix of q2 : I2
X → G(2, n) is

(

C1 C2 0
f2In−2 g2In−2 In−2

)

.

Hence, again for fixed values of u1, . . . , un−1, the values of the (n−2)-tuple (v3, . . . , vn)
for which the rank of the (n − 1) × 2(n − 2) matrix C = (C1|C2) is less than n − 1
correspond to the focal planes for the given line. Now a priori it is not clear that we
expect n− 1 solutions, but again C can be regarded as the matrix of ψl.

Putting both parts together, a focal point and a focal plane correspond to each
other if and only if they are in the ramification locus of the map (q0, q2), hence if and
only if (B|C) (the matrix of α ◦ αl), has rank less than n− 1 at the pair.

Now we want to use these coordinates to re-prove Theorem 3.1, i.e. to describe
the tangent hyperplane at x to F in terms of the focal planes at the other focal points
for l. For simplicity we assume that l contains exactly n − 1 distinct focal points
x, y1, . . . , yn−2 and is contained in n − 1 focal planes π, π1, . . . , πn−2. We want to
verify that each of the πj (but not in general π) is tangent to F at x. Observe that a
local parametrization of F near x is given by

(3) (u1, . . . , un−1) 7→ (λ, f2 + λg2, . . . , fn + λgn)

where λ is implicitly parametrized in terms of u1, . . . , un−1 from the equation detB =
0 and we take the branch for which λ(0, . . . , 0) = 0.

Substituting these parametrization in equations (2), it follows that the plane
defined by these equations is tangent at x if and only if the matrix D given by the
first n−2 columns of the matrix C has rank less than n−2. We know that C has rank
less than n− 1 at the values of the (n− 2)-tuple (v3, . . . , vn) that correspond to the
focal planes π, π1, . . . , πn−2. We have now two possibilities for each of these values.
One of them is that the rank of D is less than n− 2 and therefore the corresponding
focal plane is tangent at x, as wanted. If instead D has rank n− 2, then the columns
of D are independent and any other column of C depends linearly on them. Let λ be
the value that gives the corresponding focal point to the focal plane. For this λ the
whole matrix (B|C) is not of maximal rank. In particular each column of B depends
on the columns of D. This gives the only solution λ = 0, hence the corresponding
focal point is exactly x, i.e. the focal plane for this solution was Π, which does not
need to be tangent to F . We thus recovered Theorem 3.1.
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4.2. Focal points and focal hyperplanes: a duality result. In this section
we will parametrize locally Fn−1 at a smooth hyperplane H. This will allow us to
prove a duality result, i.e. to show that, for general congruences, the focal variety
Fn−1 is dual to the focal variety F0. The precise result we will prove in this section
is the following:

Theorem 4.1. Let X be a congruence of lines in P
n. Let l be a line of X with

exactly n− 1 focal points for it. Then each tangent hyperplane to each of these points
is focal. In particular, if l is contained in exactly n− 1 focal hyperplanes for it, they
are exactly the n− 1 tangent hyperplanes to F0 at the focal points for l.

Proof. We choose coordinates as in Section 4.1, but now assuming also that
H : Xn = 0 is a focal hyperplane for l : x2 = . . . = xn = 0. Following the no-
tations of Section 2.4, we need to study the rank of the Jacobian matrix at (l, H)
of the map qn−1 : In−1

X → G(n − 1, n). For this we choose local parameters
u1, . . . , un−1, δ2, . . . , δn−1 for In−1

X near (l, H) to represent the pair (l,H), where l
is the line generated by the rows of the matrix (1) of Section 4.1 and H is the hyper-
plane of equation

xn − fnx0 − gnx1 + δ2(x2 − f2x0 − g2x1) + . . .+ δn−1(xn−1 − fn−1x0 − gn−1x1) = 0.

On the other hand, we can take affine coordinates d0, . . . , dn−1 in Pn
∗

to represent
the hyperplane xn = d0x0 + d1x1 − d2x2 − . . .− dn−1xn−1

With these coordinates, a local expression for qn−1 is given by

(u1, . . . , un−1, δ2, . . . , δn−1) 7→

(fn + δ2f2 + . . .+ δn−1fn−1, gn + δ2g2 + . . .+ δn−1gn−1, δ2, . . . , δn−1).

Hence the Jacobian matrix A′ of qn−1, is:

A′ =

(

B′ 0
C′ In−2

)

where the blocks B′ and C′ are respectively the following:

B′ =











fn1 + δ2f21 + . . .+ δn−1fn−1,1 gn1 + δ2g21 + . . .+ δn−1gn−1,1

fn2 + δ2f22 + . . .+ δn−1fn−1,2 gn2 + δ2g22 + . . .+ δn−1gn−1,2

...
...

fnn + δ2f2n + . . .+ δn−1fn−1,n gnn + δ2g2n + . . .+ δn−1gn−1,n











C′ =











f2 g2
f3 g3
...

...
fn−1 gn−1











.
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It is now immediate to see that the points of the focal variety Fn−1 are the
hyperplanes given by the coordinates δ2, . . . , δn−1 for which the two first columns of
A′ are dependent.

In order to prove the theorem, we now consider a hyperplane H ′ of Fn−1 contain-
ing l and want to see when it is tangent to F0 at the point x. The equation for H ′

has the form

δ2x2 + . . .+ δn−1xn−1 + xn = 0.

Substituting in the equation of the hyperplane H ′ the parametrization (3) of F0

near x given in Section 4.1 we obtain

δ2(f2 + λg2) + . . .+ δn−1(fn−1 + λgn−1) + fn + λgn = 0.

The partial derivatives of the above expression with respect to the coordinates
(u1, u2, . . . , un−1) evaluated at (u1, u2, . . . , un−1) = (0, . . . , 0) are

δ2f2i + . . .+ δn−1fn−1,i + fni, i = 1, . . . , n− 1.

Hence H ′ is tangent to F at x if and only if all these partial derivatives vanish,
i.e. the first column of A′ vanish. This proves that any tangent hyperplane to F at
each of the n− 1 focal points for l is a focal hyperplane.

We also deduce from Theorem 3.1 and Proposition 2.2 that the n − 1 tangent
hyperplanes at the n− 1 focal points for l are different (the span of two of them must
be the span of the focal planes for the line, which is P

n). Hence, if there are exactly
n− 1 focal hyperplanes for l, then they are the tangent hyperplanes.

Remark 4.2. A classical example confirming the above duality is the following.
Consider in G(2, 4) the family Y ∗ of trisecant planes to a rational normal curve Γ.
Since Y ∗ is parametrized by the set of effective divisors of degree three of Γ, it follows
that it is isomorphic to P3. A precise isomorphism can be obtained any time we fix a
point P ∈ Γ, if we identify P3 with the set of hyperplanes passing through P : to any
plane in Y ∗ defined by the divisor D on Γ we associate the hyperplane spanned by the
divisor D + P . So if we fix two points P,Q ∈ Γ, we get in this way an isomorphism
between the set of hyperplanes through P and the set of hyperplanes throughQ. With
this setting, each plane of Y ∗ is obtained as the intersection of a hyperplane through
P and its corresponding hyperplane through Q. Dualizing, we get two hyperplanes
in P4, an isomorphism between them and a congruence Y ⊂ G(1, 4) consisting of
the lines joining pairs of corresponding points of both hyperplanes. This is nothing
that the embedding of P3 in G(1, 4) by the vector bundle OP3(1) ⊕OP3(1), which in
fact comes projected from G(1, 7) (see [1]), i.e. a Veronese variety after the Plücker
embedding. We thus get a = 4, b = 2, g′ = 0, g′′ = 0, χ(OH) = 1,K2

H = 8.
We then get from our formulas that F has degree 6, while F2 has bidegree (0, 0)

and F3 has degree 0. The geometric explanation is easy. A focal point for Y corre-
sponds in the dual space to a hyperplane that is tangent to Γ. In other words, F is
the dual hypersurface of Γ, hence of degree 6 and of course with class 0. Similarly,
a focal plane to Y corresponds by duality to a bisecant line to Γ. Therefore F2 has
dimension two, hence bidegree (0, 0) as a threefold. And finally a focal hyperplane to
Y corresponds by duality to a point in Γ, hence F3 has dimension one, therefore its
degree as a hypersurface is 0.
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5. Congruences of (n − 1)-secants to an (n − 2)-fold in Pn. When the
expected focal locus in not a hypersurface, any (n− 1)-dimensional component of the
focal locus is special. This is what happens for a congruence of (n− 1)-secants to an
(n− 2)-fold, in which one expects the (n− 2)-fold to be the only focal locus. We will
devote this section to show that, as it happens in the case n = 3, one should also
expect some (n − 1)-dimensional part of the focal locus, which we will analyze, at
least in the smooth case. We will also see that, imposing that both the (n − 2)-fold
and the congruence are smooth implies for n = 4 that there is only a finite number
of families.

5.1. General study. Throughout this section Σ will be a smooth irreducible
(n− 2)-fold in Pn, not contained in a hyperplane, and we will denote by X ⊂ G(1, n)
the set of the (n − 1)-secants to Σ. We will also assume that X has the expected
dimension and it is irreducible, i.e. it is a congruence. We will study the tangent
space of X at a sufficiently general line, so that from Theorem 3.1 we can understand
the focal locus of X .

Lemma 5.1. Let Σ be as above and let Z ⊂ G(1, n) be the Chow complex of lines
intersecting Σ. Let x be a point in Σ, consider a line l passing through x, and denote
by tx ⊂ Pn the tangent (n− 2)-plane to Σ at x. Then

(i) The branch of Z corresponding to x is smooth at l if and only if l is not
contained in tx.

(ii) In the situation of (i), the embedded tangent space of this branch of Z at l
is spanned by the Schubert cycle Ω(x,Pn) (of lines passing through x) and by
the tangent space at l to the Schubert variety Ω(n− 2, Tx) (of lines contained
in the hyperplane Tx ⊂ Pn generated by L and tx).

(iii) The intersection of G(1, n) with the embedded tangent space of the branch of
Z at l is exactly the union of Ω(x,Pn) and the Schubert cycle Ω(L, Tx) of lines
in Tx meeting L (which coincides with the tangent space at l to Ω(n−2, Tx)).

Proof. This is a local computation. Choose coordinates z0, z1, . . . , zn in P
n so

that the point x becomes (1 : 0 : . . . : 0) and the line L has equations z2 = . . . =
zn = 0. Choose local parameters α1, . . . , αn−2 of Σ at x such that we have a local
parametrization of Σ at x

(4) (α1, . . . , αn−2) 7→ (1 : f1 : . . . : fn)

where f1, . . . , fn vanish at (α1, . . . , αn−2) = (0, . . . , 0).
We can find now a parametrization ϕ of Z near l by associating to the parameters

α1, . . . , αn−2, β2, . . . , βn the line passing through (1 : f1 : . . . : fn) and (0 : 1 : β2 :
. . . : βn). Since we can take affine coordinates for the open set p01 6= 0 of G(1, n) such
that (a2, . . . , an, b2, . . . , bn) represents the line generated by (1 : 0 : a2 : . . . : an) and
(0 : 1 : b2 : . . . : bn), the above parametrization ϕ can be written as

(5) (α1, . . . , αn−2, β2, . . . βn) 7→ (f2 − β2f1, . . . , fn − βnf1, β2, . . . , βn).

Notice that in this parametrization the point l corresponds to the image of the origin.
An easy verification on the Jacobian matrix shows that the corresponding branch of
Z at l is smooth if and only if the Jacobian matrix of (f2, . . . , fn) with respect to
α1, . . . , αn−2 has maximal rank n− 2, i.e. if and only if L is not contained in tx. This
proves (i).

To prove (ii) we first can assume that in our system of coordinates tx has equations
x1 = x2 = 0. Accordingly, the parametrization (4) can be taken in such a way that
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f3 = α1, . . . , fn = αn−2 and f1, f2 has all their derivatives at (0, . . . , 0) equal to
zero. Putting this condition in the parametrization (5) of Z we immediately see that
the embedded tangent space of Z at l is the one defined by the Plücker coordinates
p01, . . . , p0n, p13, . . . , p1n, i.e. the linear subspace in which p12 and any pij with 2 ≤
ı < j ≤ n vanish.

Now the Schubert cycle of the lines passing through x is the projective space
defined by the parameters p01, . . . , p0n, i.e. the linear subspace in which all the pij ’s
with 1 ≤ i < j ≤ n vanish. And on the other hand, the Schubert cycle of the lines
contained in Tx (which is the hyperplane x1 = 0 in our coordinates) has equations
p12 = p02 = 0 and p2j = 0 for j = 3, . . . , n (i.e. any Plücker coordinate with 2 as a
subindex is zero). The tangent space of this cycle at l (the point with all coordinates
zero except p01) is therefore the linear space in which p12, p02 and all the Plücker
coordinates without 0 or 1 as subindex are zero, i.e. the space defined by the Plücker
coordinates p01, p03 . . . , p0n, p13, . . . , p1n. Hence the span of this and the Schubert
cycle of lines passing through x is exactly the embedded tangent space of Z at l,
which concludes the proof of (ii).

The proof of (iii) is an immediate consequence of the previous computations.

Indeed, if we have a line l′ ∈ P
(n+2)(n−1)

2 (the Plücker space for G(1, n)) for which
p12 and any pij with 2 ≤ i < j ≤ n vanish, we have two possibilities depending on
whether p02 vanishes or not. If p02 = 0, then clearly l is a line contained in Tx and
meeting L. If p02 6= 0, then the Plücker equations p01p2j − p02p1j + p0jp12 = 0 for
j = 3, . . . , n imply that p1j = 0; hence l represents a line passing through x, and this
completes the proof.

From this result can easily decide when an (n−1)-secant line represents a smooth
point for the congruence X of (n − 1)-secants to Σ and also to compute its tangent
space. We will give the result in a more general context, since we will need it later
on.

Lemma 5.2. . Let X be the congruence of lines in Pn and let l be a line of X such
that locally around l the congruence is the complete intersection of n− 1 hypersurface
branches B1, . . . , Bn−1 ⊂ G(1, n). Assume that, for i = 1, . . . , n−1, the tangent space
at l of the branch Bi is generated by Ω(xi,P

n) and Ω(L, Ti), for some point xi ∈ L
and some hyperplane Ti ⊃ L. Then

(i) The element l represents a smooth point in X if and only if the points
(x1, T1), . . . , (xn−1, Tn−1) are in general position after the Segre embedding
of L× Pl.

(ii) If n = 4 and the points x1, x2, x3 are all different, the above condition is
equivalent to the fact that T1, T2, T3 are not all equal.

(iii) The condition of (i) is satisfied if T1, . . . , Tn−1 are in general position. In this
case, the tangent space to X at l is generated by the pencils Ω(x1,Π1), . . . ,
Ω(xn−1,Πn−1), where Πi := T1 ∩ . . .∩Ti−1 ∩Ti+1 ∩Tn−1. In particular, each
pair (xi, πi) is focal for L.

Proof. Following the ideas of the previous proof, we choose coordinates in Pn such
that L is the line z2 = . . . = zn = 0. Then the span of Ω(xi,P

n) and Ω(L, Ti) will

be a hyperplane of the linear space A ⊂ P
(n+2)(n−1)

2 defined by the equations pjk = 0
for 2 ≤ j < k ≤ n. We can thus regard the tangent space to Bi at l as a hyperplane
in the projective space A of coordinates p01, . . . , p0n, p12, . . . , p1n. More precisely, if
xi = (ai : bi : 0 : . . . : 0) and Hi : ci2z2 + . . .+ cinzn = 0, then this tangent space will
have equation bi(ci2p02 + . . . + cinp0n) = ai(ci2p12 + . . . + cinp1n). The congruence
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will be smooth at l if and only if these n− 1 hyperplanes are independent, i.e. if the
matrix







b1c12 . . . b1c1n a1c12 . . . a1c1n
...

. . .
...

...
. . .

...
bn−1cn−1,2 . . . bn−1cn−1,n an−1cn−1,2 . . . an−1cn−1,n







has maximal rank, i.e. if and only if the points (x1, T1), . . . , (xn−1, Tn−1) are in general
position after the Segre embedding of L× Pl. This proves (i), while (ii) and (iii) are
now an immediate consequence of it.

Now we know how the tangent space is made, we can say when an (n− 1)-secant
line to Σ is focal and deduce from it that there are extra components of the focal
locus coming from focal lines, as it happens for n = 3 with the stationary bisecants
to a curve (see [4]). The correct generalization to arbitrary dimension will be the
following.

Definition 6. Let L be a line having exactly n − 1 intersection points
x1, . . . , xn−1 with the (n − 2)-fold Σ ⊂ Pn. We will say that L is a stationary line if
there are tangent lines L1, . . . , Ln−1 to Σ respectively at x1, . . . , xn−1 such that all of
them are coplanar.

Proposition 5.1. For any congruence X of (n−1)-secants of Σ ⊂ Pn, a station-
ary line L is focal. Hence, if the union of the stationary lines of X has (as expected)
dimension n−1, it produces at least one component of the focal locus F of X different
from F0 (in fact F0 is Σ).

Proof. Following the notations of Lemma 5.1, it is clear that L is stationary if
and only if the intersection of all the Txi

’s is (or contains) a plane Π. Let us consider
the Schubert variety Ω(1,Π) of all the lines contained in Π. From Lemma 5.1, it
follows that Ω(1,Π) is contained in the tangent of X at l. Taking any point x ∈ L,
we thus see that the pencil Ω(x,Π) is also contained in the tangent of X at l. Now
from Theorem 3.1 , we deduce that L is a focal line. For the last assertion, observe
first that the family of stationary lines (if proper and not empty) has dimension n−2,
since the dependence of the Txi

imposes one condition on the lines of the congruence.

5.2. The case n = 4. We want to explain the general situation described in the
previous section in the first new case, i.e. n = 4. This will also give us the possibility
of giving concrete examples to which apply the formulae we obtained in Section 2.

The first important remark is that, if we want to work with smooth congruences,
we should expect a finite number of cases. Indeed, with the reasoning of the above
section, it is easy to see that if a line L is k-secant (with k ≥ 4) to Σ, then X has
(

k
3

)

branches at l, and hence it is singular at l. Therefore, we will confine ourselves to
consider the case of surfaces Σ with no quadrisecant lines and in the following we will
moreover assume that Σ has at most ordinary singularities (in the classical sense, as
in [12]).

We recall from [5] the list of such surfaces. For the description of these surfaces
we refer also to the known classification of surfaces of small degree (e.g.[10]).

Proposition 5.2. Let S be a surface in P4 with no quadrisecant lines. Then the
surface S is one of the following:

i) the projected Veronese surface S1;
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ii) the smooth complete intersection S2 = V (2, 2) of two quadrics;
iii) the Castelnuovo surface S3 = Blq,p1,...,p7(P

2) of degree 5, which is the blowing-
up of P2 in eight points embedded by H = 4l−2q−p1− . . .−p7, i.e. by plane
quartics with a given double point and other seven base points;

iv) the smooth complete intersection S4 = V (2, 3) of a quadric and a cubic hy-
persurface;

v) the Bordiga surface S5 = Blp1,...,p10(P
2) of degree 6, embedded by H = 4l −

p1 − . . .− p10, i.e. by plane quartics with ten base points;
vi) the inner projection S6 = Blp(K3) of the complete intersection V (2, 2, 2) of

three quadric hypersurfaces in P5 from a point in it;
vii) the smooth complete intersection S7 = V (3, 3) of two cubic hypersurfaces;
viii) the elliptic quintic scroll S8 ;
ix) the rational normal scroll S9 of degree 4.

In the following theorem we study each of the congruences of trisecants to the
above surfaces, in order to establish their smoothness and to compute their invariants.

Theorem 5.1. The only smooth congruences X of trisecant lines to a surface S
in P3 (with at most ordinary singularities) are those listed in the following, where we
use the notation as in Propositions 5.2, 2.1, 2.2 and 2.3.

i) the congruence of trisecants to S1, which is the hyperplane section of G(1, 4)
and has bidegree (1, 2) and sectional genus 1.

ii) the congruence of trisecants to S3, which is the dependency locus of two sec-
tions of Q2 and has bidegree (0, 2) and sectional genus 0.

iii) the congruence of trisecants to S4, which is the zero locus of section of Sym2Q
and has bidegree (0, 4) and sectional genus 1.

iv) the congruence of trisecants to S5, which is the dependency locus of four
sections of Q3 and has bidegree (1, 8) and sectional genus 10.

v) the congruence of trisecants to S6, which is the dependency locus of three
sections of Q⊕ Sym2Q and has bidegree (2, 15) and sectional genus 33.

vi) the congruence of trisecants to S7, which is the dependency locus of two sec-
tions of Sym3Q and has bidegree (6, 42) and sectional genus 181.

Proof. Notice that the bidegree (a, b) of the congruence X of trisecant lines to a
given surface S in P4 is given respectively by the number a of trisecants to S passing
through a general point in P4 and by the number b of trisecants to a hyperplane section
C = S

⋂

H of S intersecting a given general line of H . Hence one can compute (a, b)
for each surface in Proposition 5.2 using Le Barz’s formulas ([11]). We skipped the case
of S2, since a line is trisecant to a complete intersection of two quadrics if and only if
it is contained in this complete intersection, hence we do not get a three-dimensional
family of lines. In the cases of S3, S4 these surfaces are contained in one quadric,
and therefore any trisecant line to any of them is contained in the quadric. We are
thus in the situation of Theorem 3.3, in which all the lines are focal (or equivalently
a = 0). Similarly the trisecants to the quintic elliptic scroll S8 are contained in a
one-dimensional family of planes, so that again a = 0. On the other hand, the surface
S9 has no trisecants, since it has minimal degreee.

Observe also that the geometric description of each congruence as the set of trise-
cants to a known surface yields the construction of each congruence as a degeneracy
locus, and these constructions imply the smoothness of the congruences (and should
also give the computation of some invariants). More explicitly, recalling that a section
of OP4(k) corresponds in G(1, 4) to a section of SymkQ, the description of each con-
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gruence follows from the description of the corresponding surface in P4. For example
the surface S7 = V (3, 3) is the zero locus of a section of OP4(3)2 and hence a line in
P4 is a trisecant to S if and only if it is contained in one of the cubic hypersurfaces
of the pencil trough S7 i.e. if and only if it is a point in G(1, 4) contained in the
degeneracy locus of two sections of Sym3Q. The other cases follow from the construc-
tion of S6 = Blp(K3) as degeneracy locus of three sections of OP4(1) ⊕ OP4(2) and
of S5 = Blp1,...,p10(P

2) as three sections of OP4(1)4. For instance, in the first case S6

is defined by the three minors of a matrix with a row of linear forms and a row of
quadratic forms; a line is a trisecant to S6 if and only if (after the choice of a suitable
base) there is one column of the matrix which vanishes on it.

Remark 5.2. In the first example of Theorem 5.1 the invariants can be easily
computed; they are the following : g′ = g′′ = 0,K2

H = 5 and χ(OH)=1. These
invariants give degF = 0, (a′, b′) = (0, 0) and degF3 = 3. It could look strange
that in this example we get an apparently empty focal locus, at least since F and F2

have their degree and bidegree zero, while F3 has positive degree. The reason is that
F is the Veronese surface S1 itself (hence with degree zero as a hypersurface), and
the focal planes are exactly the planes containing the conics of S1 (hence again with
dimension one less than expected), while F3 is exactly the dual of S1, hence an actual
hypersurface in P4∗

. This is because through a general point x ∈ S1 there passes only
one plane Π containing a conic C ⊂ S1 such that x 6∈ C. The lines of the congruence
through x are exactly those in the pencil Ω(x,Π). We thus get that Π is the focal
plane corresponding to x. If L is a general line of the pencil Ω(x,Π) and x1, x2 are
the other focal points for L (i.e. they are the intersection of L and C) denote by Π1

and Π2 to the respective corresponding focal planes for x1 and x2. Thus the span of
Π1 and Π2 is clearly tangent to S1 at x (because Π1 and Π2 are) and it is a focal
hyperplane (we thus get that Theorem 4.1 is also valid in this degenerate case). Since
the dual of the Veronese surface in P4 is a hypersurface of degree three, this explains
why this last focal degree was not zero.

A similar kind of computation is meaningless in the second and third cases of
Theorem 5.1 since the congruences have a = 0. Indeed in these cases our formula
gives a negative degree for F3.

6. Congruences of (n−1)-tangents to an (n−1)-fold in Pn. In this section
we consider the other general case in which one should expect some components of
the focal locus outside F0, i.e. the case of congruences of (n − 1)-tangent lines to a
hypersurface in Pn. The difference now is that the hypersurface itself is a component
of the focal locus of the congruence (in fact it is F0 counted with some multiplicity).
As in the previous section, we will study first the general case and will concentrate
afterwards in the case n = 4, the first new case after [4].

6.1. General theory. Throughout this section Θ will be a smooth irreducible
hypersurface of degree d in Pn and X will be the set of (n − 1)-tangent lines to Θ,
which we will assume to be a congruence.

In order to apply Lemma 5.2 we will need to study first the tangent space to the
set of tangent lines to Θ. This is done in the following lemma.

Lemma 6.1. Let Θ be as above and let T be the variety of lines of Pn tangent to
Θ. Let x be a point in Θ, consider a line L tangent at x and denote by Tx the tangent
hyperplane of Θ at x. Then

(i) The corresponding branch of T is smooth at the point represented by L if and
only if the intersection multiplicity of L and Θ at x is exactly two.
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(ii) In the situation of (i), the embedded tangent space of this branch of T at L
is generated by the Schubert cycle Ω(x,Pn) and by the tangent space to the
Schubert variety Ω(n− 2, Tx).

Proof. We choose homogeneous coordinates z0, . . . , zn in Pn such that x is the
point (1 : 0 : . . . : 0), L is the line z2 = . . . = zn = 0 and Tx is the hyperplane zn = 0.
We can also choose a local system of parameters u1, . . . , un−1 for Θ near x, such that
we have a local parametrization of Θ at x given by (u1, . . . , un−1) 7→ (1 : u1 : . . . :
un−1 : f), where f and all its first derivatives vanish at (u1, . . . , un−1) = (0, . . . , 0).

We take thus a parametrization ϕ of T near l by associating to the parameters
u1, . . . , un−1, λ2, . . . , λn−1 the line passing through (1 : u1 : . . . : un−1 : f) and (0 : 1 :
λ2 : . . . : λn−1 : f1 +λ2f2 +λn−1fn−1) (where each fi stands for the partial derivative
of f with respect to ui). Taking the affine coordinates (a2, . . . , an, b2, . . . , bn) for the
open set p01 6= 0 of G(1, n) that we used in Lemma 5.1, the above parametrization ϕ
becomes























































a2 = u2 − λ2u1

...
an−1 = un−1 − λn−1u1

an = f − u1(f1 + λ2f2 + λn−1fn−1)
b2 = λ2

...
bn−1 = λn−1

bn = f1 + λ2f2 + λn−1fn−1

.

Notice that in this parametrization the point l corresponds once more to the
image of the origin. Computing the Jacobian matrix of the above parametrization at
the origin, it follows that the corresponding branch of Θ at l is smooth if and only if
the second partial derivative of f with respect to u1 is not zero. This is equivalent to
say that the intersection multiplicity at x of L and Θ is exactly two, which proves (i).
Part (ii) is now identical to the one of Lemma 5.1.

We have thus that Lemma 5.2 applies, and we have thus a precise description of
the tangent space and focal points and planes at a sufficiently general (n−1)-tangent
line. In order to find special components of F outside F0 we can now give the following
definition.

Definition 7. Let L be a line having exactly n − 1 intersection points
x1, . . . , xn−1 with Θ. Then we will say that L is a stationary (n − 1)-tangent to
Θ if there is a plane Π that is tangent to Θ at x1, . . . , xn−1.

Exactly in the same way as in Proposition 5.1 we can prove now the following.

Proposition 6.1. For a given congruence X of (n− 1)-tangent lines to a hyper-
surface Θ ⊂ Pn, a stationary line L is focal. Moreover the family of stationary lines
of X, if filling a hypersurface of Pn, produces at least one component of the focal locus
F of X different from F0.

Remark 6.1. We have now an extra phenomenon (we will study it in more detail
in the next subsection for n = 4, see Proposition 6.2): the strict component is not
reduced. Indeed, given a point in Θ, there is a finite number N (becoming very high
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for d >> 0) of tangent lines to Θ at that point and that are tangent at other n − 2
points of Θ. This produces that Θ counts multiplicity N as a component of the focal
locus.

6.2. The case n = 4. As in the case of n − 1 secants to an (n − 2)-fold, we
will find here that, imposing smoothness to the congruence, we will find finitely many
cases (one in fact). The difference is that now it will be (relatively) easy to find all
the numerical invariants of the congruence. The main result we will prove, following
the same steps as for the case n = 3 in [4] is the following.

Theorem 6.2. The congruence X of tritangents to a general smooth hypersurface
Θ ⊂ P4 of degree d is smooth only for d = 6. In general, this congruence has invariants

(a, b) = (
1

6
d(d− 1)(d− 2)(d− 3)(d− 4)(d− 5),

1

3
d(d− 3)(d− 4)(d− 5)(d2 + 3d− 2))

g′ = 1 +
1

6
d(d− 4)(d− 5)(6d4 − 13d3 − 132d2 + 365d− 330)

g′′ = 1 +
1

6
d(d− 4)(d− 5)(3d4 + 5d3 − 57d2 − 301d+ 606)

χ(OH) =
1

24
d(d− 5)(31d6 − 137d5 − 652d4 − 921d3 + 32261d2 − 74130d+ 36792)

K2
H =

1

6
d(d− 5)(60d6 − 276d5 − 1207d4 − 1670d3 + 61863d2 − 143610d+ 71928)

Proof. (see [4] for more details in case n = 3). First of all, we can assume that Θ
does not contain lines, since any line contained in Θ will automatically be a singular
point of the congruence (see [4] Lemma 3.4 for n = 3). We will use the subset of
the Hilbert scheme T ⊂ Hilb3

P4 parametrizing (unordered) triples of collinear points
of P4 in order to find there the subset of those that produce a tritangent line to Θ.
There is a map q : T → G(1, 3) assigning to each triple the line containing the points.
The map q endows T with a projective bundle structure T = P(Sym3Q∗). In this
projective bundle we have the universal cubic form given by the bundle inclusion

(6) OT (−1) →֒ q∗Sym3Q

which assigns at each couple of points the cubic form (defined on the line spanned
by them) vanishing on those points. We can similarly construct from this a bundle
inclusion

OT (−2) →֒ q∗Sym6Q

which corresponds for every couple to the sextic forms vanishing doubly at each of
the points of the triple. The multiplication of (d − 6)-forms by this universal form
determines then another bundle inclusion i which defines the bundle R as a cokernel:

0 → q∗Symd−6Q⊗OT (−2)
i

−→q∗SymdQ→ R → 0.
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A hypersurface Θ ⊂ P4 of degree d corresponds to a section OG(1,4) → SymdQ,
and we are interested in the locus at which the pull-back of this section lies in the
image of i. In other words, the zero locus of the corresponding section of R (obtained
as the composition OT → q∗SymdQ → R) is the set X̃ of triples of points of Θ such
that the line defined by them is tangent at those points. The congruence X is the
isomorphic image by q of X̃. We can thus compute the invariants of X by using
that X̃ is defined as the zero locus of the rank-six vector bundle R, of which we can
compute its Chern classes from the exact sequence defining it. In particular we obtain
the bidegree of the statement, and from it the double-point formula

a2 + b2 − c3(N) = d(d− 6)(5d10 − 72d9 + 359d8 − 774d7 + 1027d6 − 6108d5 +

56345d4 − 5190d3 − 1746280d2 + 5757600d− 5040000)

which implies that X is smooth only if d = 6 (of course the actual reason why this is so
is that for d ≥ 7 there are always singular points of the congruence corresponding to
trisecant lines with multiplicity at least three at one of the tangency points; however
finding this number will require a lot of computations that we preferred to skip).

The following result requires to improve the techniques of [4].

Proposition 6.2. The hypersurface Θ counts with multiplicity 1
2 (d − 4)(d −

5)(d2 + 3d+ 6) inside the focal locus of its congruence of tritangents.

Proof. Continuing with the construction in the proof of Theorem 6.2, we want
now to consider the incidence variety I ⊂ X̃ × P4 of pairs (t, x), where t is a triple of
X̃ and x is one of the points of the triple. If we succeed in finding such a variety, we
will have a map p : I → P

4 consisting of the second projection, whose image will be
Θ, and the degree of p will be precisely the wanted multiplicity.

We first consider the projective bundle Z := P(q∗Q)
φ

−→X̃ , which consists of pairs
(t, x) such that the point x is in the line of the triple t. We have there a tautological
inclusion OZ(−1) →֒ φ∗q∗Q̌ (and the universal OZ(1) defines the projection p to
P4). Dualizing its third symmetric power we get a map φ∗q∗Sym3Q → OZ(3), whose
composition with the pull-back of the inclusion (6) is zero at the pairs (t, x) of I.
Therefore our incidence variety is the zero locus in Z of a natural section of the line
bundle φ∗OT (1) ⊗OZ(3). From this we get that the degree of the pull-back by p to
I of a line in P4 is 1

2d(d− 4)(d − 5)(d2 + 3d+ 6). Since Θ has degree d, we conclude
the proof.

Remark 6.3. From the invariants computed in Theorem 6.2, one can compute
the (expected) invariants of the different focal loci, by using the formulae given in
Propositions 2.1, 2.2 and 2.3. But observe that for instance the formula that we obtain
for the degree of F3 cannot be at all the degree of the dual of the focal hypersurface,
because the strict focal hypersurface appears with a nonreduced structure. On the
other hand, the degree of the total focal locus 2

3d(d − 5)(d − 4)(3d4 − 6d3 − 69d2 +
188d− 168) contains d times the multiplicity of Θ inside the focal locus. This leads a
rest of 1

6d(d− 4)(d− 5)(12d4− 24d3− 279d2 + 743d− 690) for the special components
of the focal locus. As it happens in the case n = 3 (see [4]), the singularities produce
more components of the focal locus. But at least in the case d = 6 we can say that
we have a component of degree 8184 consisting of the union of the stationary lines.
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Mathématique, 33 (1987), pp. 1–66.


