
ASIAN J. MATH. c© 2005 International Press
Vol. 9, No. 3, pp. 401–406, September 2005 006

A CAVEAT ON THE CONVERGENCE OF THE RICCI FLOW FOR
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In his seminal paper [5], Hamilton initiated the Ricci flow method for finding
Einstein metrics on a closed smooth n-dimensional manifold Mn starting with an
arbitrary smooth Riemannian metric h on Mn. He considered the evolution equation

∂

∂t
h =

2

n
r h − Ric

where r =
∫

R dµ/
∫

dµ is the average scalar curvature (R is the scalar curvature)
and Ric is the Ricci curvature tensor of h. Hamilton then spectacularly illustrated
the success of this method by proving, when n = 3, that if the initial Riemannian
metric has strictly positive Ricci curvature it evolves through time to a positively
curved Einstein metric h∞ on M3. And, because n = 3, such a Riemannian metric
automatically has constant sectional curvature; hence (M3, h∞) is a spherical space-
form; i.e. its universal cover is the round sphere. Following Hamilton’s approach G.
Huisken [6], C. Margerin [7] and S. Nishikawa [9] proved that, for every n, sufficiently
pinched to 1 n-manifolds (the pinching constant depending only on the dimension)
can be deformed, through the Ricci flow, to a spherical-space form.

Ten years later R. Ye [10] studied the Ricci flow when the initial Riemannian
metric h is negatively curved and proved that a negatively curved Einstein metric
is strongly stable; that is, the Ricci flow starting near such a Riemannian metric
h converges (in the C∞ topology) to a Riemannian metric isometric to h, up to
scaling. (We introduce the notation h ≡ h′ for two Riemannian metrics that are
isometric up to scaling.) In [10] R. Ye also proved that sufficiently pinched to -1
manifolds can be deformed, through the Ricci flow, to hyperbolic manifolds, but the
pinching constant in his theorem depends on other quantities (e.g the diameter or
the volume). Ye’s paper was motivated by the problem on whether the Ricci flow can
be used to deform every sufficiently pinched to -1 Riemannian metric to an Einstein
metric (the pinching constant depending only on the dimension). We would also like
to mention the paper of Min-Oo about deforming almost Einstein metrics of negative
scalar curvature to Einstein metrics [8].

In this short note we show that our previous results [4] imply the existence of
pinched negatively curved metrics for which the Ricci flow does not converge in the
C2 topology (hence in the Ck topology, 2 ≤ k ≤ ∞) to a negatively curved Einstein
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metric.

It is a consequence of Ye’s paper [10] that the Ricci flow starting at some h
converges (in the C∞ topology) to a negatively curved Einstein metric if and only
if the Ricci flow, starting at h, eventually gets into a stable neighborhood of some
negatively curved Einstein metric h∞. By a stable neighborhood of h∞ we mean a
neighborhood for which any Ricci flow starting there converges to a metric isometric
(up to scaling) to h∞.

Remark. The stable neighborhoods above can be taken as (sufficiently small)
open sets just in the C2 topology. It follows that the Ricci flow converges in the C2

topology to a negatively curved Einstein metric if and only if it converges in the C∞

topology to a negatively curved Einstein metric.

Theorem. Given n > 10 and ǫ > 0 there is a closed smooth n-dimensional
manifold N such that

(i) N admits a hyperbolic metric

(ii) N admits a Riemannian metric h with sectional curvatures in [−1− ǫ,−1+ ǫ]
for which the Ricci flow does not converge in the C2 topology (hence in the Ck

topology, 2 ≤ k ≤ ∞) to a negatively curved Einstein metric.

Proof. Let n > 10 and ǫ > 0. From [4] we have the following.

There are closed smooth manifolds M0, M1, N , of dimension n, Riemannian
metrics g0, g1 on M0 and M1, respectively, and smooth finite covers p0 : N → M0,
p1 : N → M1 such that:

(1) M0 and M1 are homeomorphic but not PL-homeomorphic.

(2) g0 is hyperbolic

(3) g1 has sectional curvatures in [−1 − ǫ,−1 + ǫ].

(4) There is a C∞ family of C∞ Riemannian metrics hs on N , 0 ≤ s ≤ 1,
with h0 = p∗0g0, and h1 = p∗1g1, such that every hs has sectional curvatures in
[−1 − ǫ,−1 + ǫ].

Note that h0 is also hyperbolic. Now, since the Ricci flow preserves isometries
(see [5]) we have that if the Ricci flow for g1 does not converge in the C2 topology
to a negatively cuved Einstein metric, then the same happens to the Ricci flow for
h1 = p∗1g1, and we are done. Hence we assume that the Ricci flow for g1 converges
in the C∞ topology (see remark above) to a negatively cuved Einstein metric. Let
g1,t be the Ricci flow starting at g1,0 = g1, 0 ≤ t < ∞, converging to the negatively
curved Einstein metric g1,∞. Note that, by Mostow’ Rigidity Theorem and (1)
above, g1 and g1,∞ are non-hyperbolic. It follows that p∗1g1 and p∗1g1,∞ are also
non-hyperbolic.

If the Ricci flow does not converge in the C2 topology to a negatively cuved
Einstein metric for some hs, we are done. So, let us assume that the Ricci flow
converges in the C∞ topology to a negatively cuved Einstein metric, for all hs.
We will show a contradiction. Write hs,t, for the Ricci flow starting at hs,0 = hs,
0 ≤ t < ∞, converging to the negatively curved Einstein metric hs,∞. Then, from
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the form of the evolution equation we have that h1,t = p∗1g1,αt, for some constant
α > 0, and for all 0 ≤ t ≤ ∞.

Claim. (s, t) 7→ hs,t is continuous for 0 ≤ s ≤ 1, 0 ≤ t < ∞, where we consider
the space of Riemannian metrics with the C∞ topology.

To prove the claim we have to prove that the Ricci flow depends continuously on
the initial conditions. One way of doing this directly is by using Hamilton’s proof of
the local-in-time existence and uniqueness of the Ricci flow (see [5]). Let f0, f̄ , h̄ be
as in the the proof of theorem 5.1 of [5], p.263. Let f ′

0 be another initial condition.
If f ′

0 is close to f0 (in the C∞ topology) then we can find a f̄ ′ close to f̄ (f̄ ′ with
the same properties as f̄ , but with respect to f ′

0). Then h̄′ is close to h̄, where h̄′ is
defined in a similar way as h̄. Since the inverse function is continuous, it follows that
f ′ and f are close, where f ′ and f are the inverses of some h′ and h (which are cho-
sen close to h̄′ and h̄ and vanishing on some small interval [0, ǫ). This proves the claim.

Since h0 is hyperbolic we have that h0,t = h0 for all 0 ≤ t ≤ ∞. Since every
negatively curved Einstein metric is stable (see [1], p.357) we can assume that
all negatively curved Einstein metrics hs,∞ have neighborhoods Vs for which any
Ricci flow starting in Vs converges to a metric isometric (up to scaling) to hs,∞

(see [10], p.873) (in particular, hs,∞ ≡ h0, for sufficiently small s). It follows that
every s ∈ [0, 1] has an open neighborhood Is such that hs′,∞ ≡ hs,∞ for all s′ ∈ Is.
Then the map s 7→ [hs,∞] from [0,1] to MN/ ≡ is locally constant and hence
continuous. (Here [hs,∞] denotes the equivalence class of hs,∞ in the quotient space
MN/ ≡ of all isometry classes of Riemannian metrics on N .) This is a contradiction
because h0,∞ = h0 is hyperbolic and h1,∞ is not hyperbolic. This proves the theorem.

Recall that MP denotes the space of all Riemannian metrics on a smooth
manifold P . For ǫ > 0, let Mǫ

P denote the space of ǫ-pinched to -1 Riemannian
metrics on P . Also, EP ⊂ MP will denote the space of negatively curved Einstein
metrics on P . Recall that EP / ≡ is discrete, see [1], p.357.

Definition. Let ǫ > 0 and n be a positive integer. A negatively curved Einstein
correspondence Φ : Mǫ → E for n-dimensional manifolds is a family of maps
ΦP : Mǫ

P → EP , for every n-dimensional manifold P for which Mǫ
P is not empty.

For the sake of brevity we will call Φ simply an Einstein Correspondence. We say
that Φ is cover-invariant if Φ(p∗g) = p∗(Φ(g)) for every finite cover p : P → Q and
g ∈ Mǫ

Q, for which ΦQ is defined.

We say that Φ is continuous if each ΦP : Mǫ
P → EP is continuous. Here we

consider Mǫ
P with the C∞ topology and EP with the C2 topology.

Let h, h′ ∈ MP . Write h ≡0 h′ provided (P, h) is isometric to (P, h′), up to
scaling, via an isometry homotopic to idP . Notice that the fibers of EP / ≡0 → EP / ≡
are discrete; and hence EP / ≡0 is also discrete.

The following corollary is a direct consequence of the Theorem above.

Corollary 1. Suppose that there are ǫ > 0 and n > 10 for which there exists
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a cover-invariant Einstein correspondence Φ. Then there is a closed n-dimensional
Riemannian manifold N , with metric h ∈ Mǫ

N , for which the Einstein metric Φ(h)
is unreachable by the Ricci flow starting at h.

Corollary 2. Suppose that there are ǫ > 0 and n ≥ 6 for which there exists an
Einstein correspondence Φ. Then there is a closed n-dimensional manifold N that
admits, at least, two non-isometric negatively curved Einstein metrics. Moreover,
one metric can be chosen to be hyperbolic.

Proof. From [3] we have the following.

There are closed connected smooth manifolds M0, M1, N , of dimension n,
Riemannian metrics g0, g1 on M0 and M1, respectively, and smooth two-sheeted
covers p0 : N → M0, p1 : N → M1 such that:

(1) M0 and M1 are homeomorphic but not PL-homeomorphic.
(2) g0 is hyperbolic
(3) g1 has sectional curvatures in [−1 − ǫ,−1 + ǫ].

Then the two non-isometric negatively curved Einstein metrics on N are p∗0(g0)
and p∗1(Φ(g1)). This proves the corollary.

A comment of Rugang Ye motivated the following corollary.

Corollary 3. A cover-invariant Einstein correspondence cannot be continuous.

Remark. Note that we are not assuming that Φ fixes hyperbolic metrics. If
we assumed that Φ(hyperbolic metric) = (hyperbolic metric), the proof of the
corollary would be much easier.

Proof. We use the notation from the proof of the Theorem. Let us suppose that
there exists a continuous cover-invariant Einstein correspondence. We will show a
contradiction.

Let Gi ⊂ Diff (N), be (finite) subgroups of the group Diff (N), of all self-
diffeomorphisms of N , such that N/Gi = Mi, i = 0, 1. Note that Gi ⊂ Iso(N, Φ(hi)),
since Φ(hi) = p∗i (Φ(gi)), where Iso (N, Φ(hi)) ⊂ Diff (N) is the subgroup consisting
of all isometries of the negatively curved Einstein manifold (N, Φ(hi)). Let Top (N)
and Out (π1N) denote the group of all self-homeomorphisms of N and the group of
outer automorphisms of π1(N), respectively. Recall that Out(π1N) can be identified
with π0(E(N)), where E(N) is the H-space consisting of all self-homotopy equiva-
lences of N . (This is because N is aspherical.) We have the following diagram of
group homomorphisms

Diff (N)
α
→ Top (N)

β
→ Out (π1N)

where α is the inclusion, and β is the composition of the inclusion Top (N) → E(N)
and the quotient map E(N) → π0(E(N)). Write γ = βα.

It was shown in [3], [4], that G0 and G1 are conjugate in Top N , via a homeo-
morphism homotopic to idN ; hence γG0 = γG1.
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Now, since Φ continuous and EN/ ≡0 is discrete, the composition

[0, 1]
ht→ Mǫ

N

Φ
→ EN → EN/ ≡0

must be constant; hence Φ(h0) ≡0 Φ(h1). It follows that G1 is conjugate in Diff (N)
to a subgroup of Iso (N, Φ(h0)) via a diffeomorphism f homotopic to idN ; i.e.
f−1G1f ⊂ Iso (N, Φ(h0)). Note that γ(f−1G1f) = γ(G1) since f ∼ idN ; hence
γ(f−1G1f) = γ(G0). This implies that f−1G1f = G0 since both f−1G1f and G0 are
subgroups of Iso (N, Φ(h0)) and Borel-Conner-Raymond showed (see [2], p.43) that
γ restricted to compact subgroups of Diff (N) is monic. (Recall that N is aspherical
and the center of π1(N) is trivial.) It follows that f induces a diffeomorphism
between M0 = N/G0 and M1 = N/G1, which is a contradiction. This proves the
corollary.

The following is also a corollary of the proof of the Theorem above.

Corollary 4. Given n > 10 and ǫ > 0 there is a closed n-dimensional manifold
N that admits a hyperbolic metric h0 and a Riemannian metric ha, with sectional
curvatures in [−1 − ǫ,−1 + ǫ], that satisfies the following. Either the Ricci flow for
ha does not converge (in the C2 topology) or N supports a non-stable (hence not
negatively curved) Einstein metric h̃ satisfying:

(i) There is a C∞ family of C∞ Riemannian metrics hs on N , 0 ≤ s ≤ a, such that
every hs has sectional curvatures in [−1 − ǫ,−1 + ǫ] and:

(a) the Ricci flow, starting at hs, converges in the C∞ topology

to a metric isometric to the hyperbolic metric h0 provided 0 ≤ s < a.

(b) the Ricci flow, starting at ha, converges in the C∞ topology to

the non-stable not negatively curved Einstein metric h̃.

(ii) There is a sequence of metrics hn converging (in the C∞topology) to h̃ such the
the Ricci flow, starting at each hn, converges to a metric isometric to the hyperbolic
metric h0.

Proof. We use all notation from the proof of the Theorem. As before, if the Ricci
flow for g1 does not converge in the C2 topology, we are done. Let us assume then
that the Ricci flow for g1 and all hs converges (in the C∞ topology). Let

a = sup { s ∈ [0, 1] : hs′,∞ = h0, s′ ∈ [0, s] }.

Then 0 < a ≤ 1. It follows that ha,∞ is a non-stable (hence not negatively

curved) Einstein metric. Take h̃ = ha,∞. This proves part (i).

To prove (ii), note that we can choose a sequence sn with sn → a, sn < a, such
that hn = hsn,n → h̃. Then the Ricci flow, starting at hn, converges to hsn,∞ ≡ h0.
This proves the corollary.
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