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THE CUT LOCUS OF A TORUS OF REVOLUTION∗

JENS GRAVESEN† , STEEN MARKVORSEN†, ROBERT SINCLAIR‡ , AND

MINORU TANAKA§

Abstract. We determine the structure of the cut locus of a class of tori of revolution, which
includes the standard tori in 3-dimensional Euclidean space.
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1. Introduction. Let (M, g) be a complete Riemannian manifold and γ :
[0, t0] → M a minimal geodesic segment emanating from a point p := γ(0). The
endpoint γ(t0) of the geodesic segment is called a cut point of p along γ if any ex-
tended geodesic segment γ̃ : [0, t1] → M of γ, where t1 > t0, is not a minimizing arc
joining p to γ̃(t1) anymore. The cut locus Cp of the point p is defined by the set of
the cut points along all geodesic segments emanating from p. It is known that the cut
locus of a point p on a complete 2-dimensional Riemannian manifold is a local tree
(see [5] or [13]), i.e., for any q ∈ Cp and any neighborhood U around q in M, there
exists an open neighborhood V ⊂ U around q such that any two points in V ∩ Cp

can be joined by a unique rectifiable Jordan arc in V ∩ Cp. Here a Jordan arc is an
arc homeomorphic to the interval [0, 1]. A standard torus in 3-dimensional Euclidean
space defined by

(1.1) (
√

x2 + y2 − R)2 + z2 = r2 (R > r > 0)

has the following two properties.
(1) The surface is symmetric with respect to the (x, y)-plane.
(2) The Gaussian curvature of the surface is monotone decreasing from the point

(R + r, 0, 0) to the point (R − r, 0, 0) along the meridian defined by y = 0.
The monotonic decline of the Gaussian curvature along a meridian is a very useful
property for determining the structure of the cut locus of the standard torus. In
fact, the structure of the cut locus of a class of surfaces of revolution containing all
2-sheeted hyperboloids of revolution and paraboloids of revolution was determined by
making use of the monotonic decline of the Gaussian curvature in [2] (see also [16]).
Let T 2 := (S1 ×S1, dt2 +m(t)2dθ2) denote a torus with warped product Riemannian
metric dt2 + m(t)2dθ2, where dt2 and dθ2 denote the Riemannian metric of a circle
with length 2a > 0, 2b > 0 respectively and m denotes a positive-valued C∞ warping
function on R satisfying the following two properties.

(1.2) m(−t) = m(t) = m(t + 2a) for any real number t.

∗Received May 20, 2003; accepted for publication June 28, 2004.
†Department of Mathematics, Matematiktorvet, Building 303, Technical University of Denmark,

DK-2800 Kgs. Lyngby, Denmark (J.Gravesen@mat.dtu.dk; S.Markvorsen@mat.dtu.dk).
‡Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara

City, Okinawa Pref., 903-0213, Japan (sinclair@math.u-ryukyu.ac.jp).
§Department of Mathematics, Tokai University, Hiratsuka City, Kanagawa Pref., 259-1292 Japan

(m-tanaka@sm.u-tokai.ac.jp). The work of this author was partially supported by the Grant-in-Aid
General Scientific Research, No. 14540091.

103



104 J. GRAVESEN, S. MARKVORSEN, R. SINCLAIR AND M. TANAKA

(1.3)
m′′(t)

m(t)
is monotone non-increasing on [0, a].

The Gaussian curvature K at a point q of T 2 is given by

(1.4) K(q) = −m′′(t(q))

m(t(q))
.

Thus by (1.3), the Gaussian curvature is monotone non-decreasing along a meridian
from the point on t = 0 to the point on t = a. If we define m(t) = R− r cos t

r
, a = πr,

and b = π, then the torus (S1 ×S1, dt2 +m(t)2dθ2) is isometric to the standard torus
defined by (1.1). Thus the class of tori defined above contains the standard tori in
3-dimensional Euclidean space.

Our aim in this article is to determine the structure of the cut loci of a torus
(S1 × S1, dt2 + m(t)2dθ2) of revolution, where m is a positive-valued C∞-function
satisfying (1.2) and (1.3). There are classical results on tori. In 1903, Bliss ([1])
investigated the behavior of geodesics on the standard torus and in 1930 Kimball ([8])
determined the conjugate locus of a point on a torus in 3-dimensional Euclidean space
satisfying (1.2) and (1.3). The example constructed by Gluck and Singer ([3]) shows
that one cannot impose any strong restriction on the structure of the cut locus of a
point on a surface S, even if S is assumed to be a surface of revolution with positive
Gaussian curvature. The conditions (1.2) and (1.3) are thus reasonable and yet quite
flexible in the sense that they are satisfied for a large family of tori of revolution,
which contains all tori Kimball treated in [8]. By Theorems 3.2 and 4.1, which will
be proved in this paper, we may state the structure of the cut loci of a standard torus
defined by (1.1) as follows. The cut locus of a point p = (x0, 0, z0) with x0 > 0 on the
torus is the union of

(i) the opposite meridian y = 0, x < 0,
(ii) a (piecewise C1) Jordan curve which intersects the opposite meridian at a

single point and is freely homotopic to each parallel,
(see Figure 1 in Section 5) and, if p is sufficiently far from the inner equator, i.e., if
x0 > c2 for some positive constant c2(> R − r),

(iii) a pair of subarcs of the parallel z = −z0, each with a conjugate point of p as
one endpoint and joining

• only the Jordan curve of (ii) if c2 < x0 < c1 for some c1, (see Figure 2
in Section 5)

• both of the above if x0 = c1 (see Figure 3 in Section 5) or
• only the meridian of (i) if c1 < x0, (see Figure 4 in Section 5)

at their other endpoint.

2. Preliminaries. We refer to [11] for basic tools in Riemannian geometry and
[17] for some properties of geodesics on a surface of revolution.

Let T 2 := (S1×S1, dt2 +m(t)2dθ2) be the torus defined in the introduction. The
parameter curves t = c and θ = c on the torus are called parallels and meridians
respectively. By (1.2), we get m′(na) = 0 for any integer n. Thus the two parallels
t = 0 and t = a are periodic geodesics on the torus T 2. The parallel t = 0 (respectively
t = a) is called the inner equator (respectively outer equator). Since the structure of
the cut locus of a flat torus is well-known, we assume the Gaussian curvature of T 2

is non-zero hereafter.
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Lemma 2.1. The derivative function m′(t) of m is positive on (0, a).

Proof. Let µ : [0, 2a] → T 2 be a meridian emanating from a point µ(0) on t = 0.
We get by (1.4),

(2.1) m′′(t) + K ◦ µ(t)m(t) = 0.

Since K◦µ is monotone non-decreasing on [0, a], it follows from (1.2) that K◦µ attains
a minimum at t = 0 and a maximum at t = a. From the Gauss-Bonnet theorem, we

have
∫ 2a

0
K ◦ µ(t)m(t)dt = 0. Since K ◦µ is non-zero, the minimum K ◦ µ(0) of K ◦µ

is negative and the maximum K ◦ µ(a) of K ◦ µ is positive. From the intermediate
value theorem and the monotonicity of K ◦µ on [0, a] there exists a number c ∈ (0, a)
such that K ◦ µ(t) ≤ 0 on [0, c] and K ◦ µ(t) ≥ 0 on [c, a]. Hence by (2.1), we have
m′′(t) ≥ 0 on [0, c], m′′(t) ≤ 0 on [c, a] and moreover m′′(0) > 0, m′′(a) < 0. This
implies that 0 = m′(0) < m′(t) for any t ∈ (0, c] and m′(t) > m′(a) = 0 for any
t ∈ [c, a). Therefore m′(t) is positive on (0, a).

Let M̃ := (R2, dx2 + m(x)2dy2) denote the universal Riemannian covering man-
ifold of the torus T 2, where (x, y) denotes the canonical coordinates of R2. Without

loss of generality, we may assume that t ◦ π = x, and θ ◦ π = y, where π : M̃ → T 2

denotes the covering projection. For each real number c ∈ R, the arc x = c is called
a parallel arc on M̃ and the arc y = c is called a meridian, which is a geodesic.
Since m′(na) = 0 for each integer n, the parallel arc x = na is a geodesic. Let

γ(s) = (x(s), y(s)) be a unit speed geodesic on M̃. There exists a constant ν such
that

(2.2) m(x(s))2y′(s) = m(x(s)) cos η(s) = ν

holds for any s, where η(s) denotes the angle made by γ̇(s) := dγt(
∂
∂s

) and ( ∂
∂y

)γ(s).
This relation is a well-known formula, which is called the Clairaut relation. The
constant ν is called the Clairaut constant of γ. Since g(γ̇(s), γ̇(s)) = 1, we have by
(2.2),

(2.3) x′(s) = ±
√

m(x(s))2 − ν2

m(x(s))
.

In particular x′(s) = 0 if and only if m(x(s)) = |ν|. It follows from (2.2) and (2.3) that
for a unit speed geodesic γ(s) = (x(s), y(s)), s1 ≤ s ≤ s2, with the Clairaut constant
ν,

(2.4) y(s2) − y(s1) = ε(x′(s))

∫ x(s2)

x(s1)

ν

m(x)
√

m(x)2 − ν2
dx,

holds if x′(s) 6= 0 on (s1, s2) and moreover the length L(γ) of γ equals

(2.5) L(γ) = ε(x′(s))

∫ x(s2)

x(s1)

m(x)√
m(x)2 − ν2

dx

if x′(s) 6= 0 on (s1, s2), where ε(x′(s)) denotes the sign of x′(s). Since

m√
m2 − ν2

=

√
m2 − ν2

m
+

ν2

m
√

m2 − ν2,
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we have

(2.6) L(γ) = ε(x′(s))

∫ x(s2)

x(s1)

√
m(x)2 − ν2

m(x)
dx + ν(y(s2) − y(s1)),

if x′(s) 6= 0 on (s1, s2).

Lemma 2.2. If γ : [0, s1] → M̃ is a geodesic segment with (x ◦ γ)′(s) 6= 0 on
[0, s1), then for each t ∈ (0, s1] γ(t) is not conjugate to γ(0) along γ. Hence if the
absolute value of the Clairaut constant ν of a unit speed geodesic segment α is not
greater than m(0), then α has no conjugate point of α(0).

Proof. The first claim is clear from the equation (1.12) in [17], where Jacobi fields
along a geodesic on a surface of revolution were computed. Suppose that (x◦α)′(s0) =
0 for some s0. By (2.3), m(x(s0)) = |ν| = m(0). Thus, by Lemma 2.1, x(s0) = 2na
for some integer n and α is tangent to the parallel arc x = 2na, which is a geodesic.
Therefore α must coincide with x = 2na. Since the Gaussian curvature is negative on
x = 2na, α has no conjugate point of α(0).

For each ν ∈ [0, m(a)] let γν(s) denote the unit speed geodesic emanating from
(a, 0) = γν(0) such that (x ◦ γν)′(0) ≤ 0 and the angle ∠(γ̇ν(0), ( ∂

∂y
)(a,0)) made by

γ̇ν(0) and ( ∂
∂y

)(a,0) is arccos ν
m(a) . If ν ∈ (m(0), m(a)), then γν is tangent to the

parallel arc x = ξ(ν) at a point γν(t1(ν)), where ξ(ν) denotes the inverse function of
m|(0, a), and intersects the geodesic x = a again at γν(t0(ν)), where

t0(ν) := min{ t > 0 ; x(γν(t)) = a}.
By (2.4), we get

(2.7) y(γν(t0(ν))) = 2(y(γν(t1(ν))) − y(γν(0))) = ϕ(ν),

where ϕ : (m(0), m(a)) → R is the function defined by

(2.8) ϕ(ν) := 2

∫ a

ξ(ν)

ν

m(t)
√

m(t)2 − ν2
dt.

Lemma 2.3. Let ν ∈ (m(0), m(a)). For any t ∈ R,

γν(t + t0(ν)) = Tν(γν(t))

holds, where Tν(x, y) := (2a − x, y + ϕ(ν)).

Proof. Since Tν is an isometry on M̃ by (1.2), γν(t) := Tν(γν(t)) is a geodesic on

M̃. It is clear that γν(0) = γν(t0(ν)) and γ̇ν(0) = γ̇ν(t0(ν)). Thus, by the uniqueness,
γν(t) = γν(t + t0(ν)) for any real number t. Therefore the equation above is clear.

Lemma 2.4. Let q1 = (c, y1) and q2 = (c, y2) be two points on a parallel arc
x = c. If y1 > y2 > 0, then d(q, q1) > d(q, q2) for any point q on the meridian y = 0,

where d denotes the Riemannian distance function of M̃.

Proof. Let q(t) := (c, t) be a point on the parallel arc x = c. For each t > 0, let

αt : [0, d(q, q(t))] → M̃ be a unit speed minimal geodesic segment joining q to q(t).
Since the angle made by α̇t(d(q, q(t))) and ( ∂

∂y
)αt(d(q,q(t))) is less π

2 by (2.2), it follows

from the first variational formula that d(q, q(t)) is strictly monotone increasing on
[0,∞). Thus the claim of Lemma 2.4 is clear.
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3. The cut loci of the torus and its universal covering manifold.

Lemma 3.1. There is no cut point of the point (a, 0) on M̃ in the domain (0, a)×
(0,∞).

Proof. Suppose that there exists a cut point of p := (a, 0) in the domain (0, a) ×
(0,∞). Since R2 is simply connected, the cut locus Cp of p is a tree, i.e., a local tree
which does not contain a circle. Hence this tree has an endpoint q, which is conjugate
to p along any minimal geodesic segment joining p to q. Let γ : [0, d(p, q)] → M̃ denote
a unit speed minimal geodesic segment joining p = γ(0) to q. Let c : [0, δ] → Cp be
a unit speed rectifiable Jordan arc emanating from q = c(0) (see [5] or [13]). Choose
a positive number δ0 < δ such that 0 < x(c(δ0)) < a and c(δ0) is a normal cut point
of p, i.e., c(δ0) is not conjugate to p along any minimal geodesic segment joining p
to c(δ0) and there exist exactly two minimal unit speed geodesic segments α and β
joining p = α(0) = β(0) and c(δ0) (see [4] or [12]). Thus the geodesic segments α
and β bound a relatively compact domain D(α, β). There exists an endpoint q1 in
D(α, β), since the cut locus Cp of p is a tree. Thus q1 is conjugate to p along any
minimal geodesic segments joining p to q1. We do not know whether D(α, β) contains
γ(0, d(p, q)] or not, but if we consider that γ is a minimal geodesic segment joining p

to q1, then we may assume that D(α, β) contains γ(0, d(p, q)]. Since M̃ is symmetric
with respect to the parallel arc x = a, the geodesic segments α and β joining p to
c(δ0) do not meet the arc x = a again. Thus D(α, β) is contained in the domain in
(0, a)× (0,∞). Since d(p, c(t)) is a Lipschitz function, it follows from the Rademacher
theorem ([10]) that the function is differentiable for almost all t and

(3.1) d(p, c(δ0)) − d(p, q) =

∫ δ0

0

d

dt
d(p, c(t)) dt

holds. For each normal cut point c(t) on the curve, there exists a pair of
two minimal unit speed geodesic segments αt, βt joining p to c(t). The angle
∠(α̇t(d(p, c(t)), β̇t(d(p, c(t))) is less than π, since (y◦αt)

′(s) and (y◦βt)
′(s) are always

positive by (2.2). Furthermore, it follows from Proposition 5.6 in [4] that the curve
c bisects the angle ∠(α̇t(d(p, c(t)), β̇t(d(p, c(t))) at c(t) for each normal cut point c(t)
and hence d

dt
d(p, c(t)) is positive for any normal cut points c(t). Therefore, by (3.1),

we get d(p, c(δ0)) > d(p, q), i.e., γ is shorter than β. Notice that c(t) is a normal cut
point for almost all t (see [4], [6] or [18]). Since the geodesic segment γ lies in the
domain D(α, β), without loss of generality, we may assume that

(3.2) ∠(β̇(0), (
∂

∂y
)p) < ∠(γ̇(0), (

∂

∂y
)p) < ∠(α̇(0), (

∂

∂y
)p).

Thus the number s0 := max{ s ∈ [0, L(γ)] ; x(γ(t)) ≤ x(β(t)) for any t ∈ [0, s]} is
positive. By supposing s0 < L(γ), we will get a contradiction. Since (x ◦ γ)(t) − (x ◦
β)(t) is continuous,

(3.3) x(γ(s0)) = x(β(s0)).

Hence, by Lemma 2.4, we have

(3.4) y(γ(s0)) = y(β(s0)),

since d(p, γ(s0)) = d(p, β(s0)) = s0. By (3.3) and (3.4), we get γ(s0) = β(s0), which
is impossible. Therefore s0 = L(γ), i.e.,

(3.5) x(γ(s)) ≤ x(β(s))
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for any s ∈ [0, L(γ)]. It follows from (1.3), (1.4) and (3.5) that

(3.6) G(γ(s)) ≤ G(β(s))

for any s ∈ [0, L(γ)]. Here G denotes the Gaussian curvature of M̃. Thus, by the Rauch
comparison theorem or the Sturm comparison theorem, there exists a conjugate point
β(t1), t1 ∈ (0, L(γ)], of p along β. This contradicts the minimality of β. Therefore
there is no cut point of p in the domain (0, a) × (0,∞).

Proposition 3.1. The function ϕ, which we defined in (2.8), is monotone de-
creasing on (m(0), m(a)) and strictly monotone decreasing on the interval (m(0), ν0)
if ϕ(ν0) > ϕ(m(a)) := limν→m(a)− ϕ(ν).

Proof. Choose any two numbers ν1 < ν2 from the interval (m(0), m(a)). Since
arccos ν2

m(a) < arccos ν1

m(a) , it follows from Lemma 3.1 and (2.2) that the geodesic

segment γν1
|[0,t0(ν1)] does not enter the domain bounded by γν2

[0, t0(ν2)] and the
geodesic segment {a} × [0, y(γν2

(t0(ν2)))]. Thus ϕ(ν1) ≥ ϕ(ν2) by (2.7). Therefore
there exists a unique limit ϕ(m(a)) := limν→m(a)− ϕ(ν). Furthermore suppose that
ϕ(ν1) = ϕ(ν2). This means the two geodesics γν1

and γν2
meet at q0 := γν1

(t0(ν1)).
From Lemma 3.1, for each ν ∈ [ν1, ν2], the geodesic γν passes through the point
q0. This implies that q0 is a conjugate point of the point (a, 0) along γν for each
ν ∈ [ν1, ν2]. By repeating the proof of the equation (3.5) for the pair γν1

and γν2
,

we get the inequality x(γν1
(t)) < x(γν2

(t)) for any t ∈ (0, t0(ν1)). Thus by (1.3) and
(1.4), G(γν1

(t)) ≤ G(γν2
(t)) for any t ∈ [0, t0(ν1)]. Here G denotes the Gaussian

curvature of M̃. Since the point q0 is a conjugate point of (a, 0) along γν for each
ν ∈ [ν1, ν2], it follows from the Rauch comparison theorem that G(γν1

(t)) = G(γν2
(t))

for any t ∈ [0, t0(ν1)]. Thus from (1.3) and (1.4), G is constant on x−1(It), where
It := [x(γν1

(t)), x(γν2
(t))] for each t ∈ (0, t0(ν1)). Choose any t1 ∈ (0, t0(ν1)). Since

x(γν1
(t)) and x(γν2

(t)) are continuous at t = t1, It ∩ It1 is non-empty for any t,
which is sufficiently close to t1. Therefore G is constant on x−1[ξ(ν1), a]. Notice
that min{x(γν1

(t)); t ∈ [0, t0(ν1)]} = ξ(ν1) by (2.3). This implies ϕ is constant
on [ν1, m(a)], and hence ϕ(ν1) = ϕ(m(a)). Thus we have proved that ϕ is strictly
monotone decreasing on (m(0), ν0) for any ν0 ∈ (m(0), m(a)) with ϕ(ν0) > ϕ(m(a)).

Proposition 3.2. The cut locus of the point (a, 0) is {a} × ([ϕ(m(a)),∞)) ∪
(−∞,−ϕ(m(a))]).

Proof. Since M̃ is symmetric with respect to x = a and meridian y = 0 re-
spectively by (1.2), it follows from Lemma 3.1 that there is no cut point of (a, 0) in
(0, a)× (R\ 0)∪ (a, 2a)× (R\ 0). Since γm(0) is obtained as the limit geodesic of min-
imal geodesic segments γν |[0,t0(ν)] as ν goes to m(0), γm(0) is a ray, i.e., any subarc of
γm(0) is a minimizing arc joining their endpoints. Hence γm(0) has no cut point of the
point (a, 0). We will prove that there is no cut point of (a, 0) in the unbounded domain
D bounded by γm(0) and γ−

m(0) containing the origin (0, 0), where γ−
m(0) denotes the

ray emanating from (a, 0) which is reflectionally symmetric to γm(0) with respect to
y = 0. Let γ be a unit speed geodesic segment emanating from (a, 0) to a point q in
the the domain D. Since γ does not meet γm(0) or γ−

m(0) except (a, 0), it follows from

(2.2) that the absolute value of the Clairaut constant of γ is not greater than m(0).
From Lemma 2.2 there is no conjugate point of (a, 0) along γ. Thus, the cut locus

of (a, 0) is a subset of the parallel arc x = a. Since M̃ is symmetric with respect to
x = a, for each ν ∈ (m(0), m(a)) the point (a, ϕ(ν)) is joined by two minimal geodesic
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segments, which are symmetric with respect to x = a. Thus the point (a, ϕ(ν)) is a
cut point of (a, 0) for each ν ∈ (m(0), m(a)), i.e., {a}× [ϕ(m(a)),∞) is a subset of the
cut locus Cp of p. Moreover it is clear that the point (a, ϕ(m(a))) is an endpoint of
the cut locus, since the geodesic segment γν [0, t0(ν)] converges to the subarc of x = a

as ν tends to m(a). Since M̃ is symmetric with respect to y = 0, the cut locus of (a, 0)
is {a} × ([ϕ(m(a)),∞) ∪ (−∞,−ϕ(m(a))]).

Proposition 3.3. The cut locus of the origin p̃(0) := (0, 0) is empty. Moreover
for each u ∈ (0, a), the cut locus of p̃(u) := (u, 0) is {2a − u} × ((−∞,−ϕ(m(u))] ∪
[ϕ(m(u)),∞)). Hence the cut locus of p̃(u + 2a) is {4a − u} × ((−∞,−ϕ(m(u))] ∪
[ϕ(m(u)),∞)).

Proof. By (2.2), the absolute value of the Clairaut constant of any unit speed
geodesic emanating from p̃(0) is not greater than m(0). It follows from Lemma 2.2
that there does not exist a conjugate point of p̃(0) along any geodesic emanating from
the point. Thus the cut locus of the point p̃(0) is empty. Let a number u ∈ (0, a) be

fixed. For each ν ∈ [m(0), m(u)), let αν , βν : [0,∞) → M̃ be two unit speed geodesics
emanating from p̃(u) such that

∠(α̇ν(0), (
∂

∂y
)p̃(u)) = ∠(β̇ν(0), (

∂

∂y
)p̃(u)) = arccos

ν

m(u)
,

(x ◦ αν)′(0) < 0 and (x ◦ βν)′(0) > 0.

Let ν ∈ (m(0), m(u)) be fixed and t1 a parameter value of γν satisfying (x◦γν)(t1) = u,
and (x ◦ γν)′(t1) < 0. Since the geodesic defined by γ(t) := γν(t + t1) − (0, y(γν(t1)))
satisfies

γ(0) = αν(0), γ̇(0) = α̇ν(0),

we have

γν(t + t1) − (0, y(γν(t1))) = γ(t) = αν(t)

by the uniqueness. From Lemma 2.3, it is clear that

(3.7) (2a − u, ϕ(ν)) = Tν(αν(0)) = αν(t0(ν)).

Similarly we get

(3.8) (2a − u, ϕ(ν)) = Tν(βν(0)) = βν(t0(ν)).

By (3.7) and (3.8), both geodesics αν and βν meet at the same point (2a − u, ϕ(ν))
again. For any point q := (2a− u, y) on {2a− u} × (ϕ(m(u)),∞) there exist at most
two geodesic segments αν1

|[0,d(p̃(u),q)], βν1
|[0,d(p̃(u),q)], where ν1 = ϕ−1(y), joining p̃(u)

and q, which have the same length t0(ν1) by Proposition 3.1, (3.7) and (3.8). Thus
these two geodesic segments must be minimal. Therefore any point q on {2a − u} ×
[ϕ(m(u)),∞) is a cut point of p̃(u). Since αν |[0,d(p̃(u),q] and βν |[0,d(p̃(u),q)] converge
to αm(0) and βm(0) respectively as ν ∈ (m(0), m(a)) tends to m(0), they are rays.

Here a geodesic γ : [0,∞) → M̃ is called a ray if any subarc of γ is a minimal
arc joining both endpoints. Then the two rays bound an unbounded domain D1
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containing {2a − u} × [ϕ(m(u)),∞). It is trivial that there is no cut point of p̃(u)
in D1 \ {2a − u} × [ϕ(m(u)),∞). Suppose that there exists a cut point q of p̃(u) in

{p ∈ M̃ ; y(p) ≥ 0, p /∈ D1}. By Lemma 2.2 and (2.2), the point q is not conjugate along
any minimal segment joining p̃(u) to q. Thus, there exists a disc domain D bounded by
two minimal geodesic segments α, β joining p̃(u) to q. The domain D has a cut point
q0 of p̃(u), which is an endpoint of the cut locus. The point q0 is a conjugate point
of p̃(u) along any minimal geodesic segment joining p̃(u) to q0. By Lemma 2.2 and
(2.2), q0 is not conjugate to p̃(u) along any minimal geodesic segments joining these

two points. This is a contradiction. Thus, the cut locus of p̃(u) in {p ∈ M̃ ; y(p) ≥ 0}
is {2a−u}× [ϕ(m(u)),∞). Since M̃ is symmetric with respect to the meridian y = 0,
the cut locus of p̃(u) is {2a − u} × ((−∞,−ϕ(m(u))] ∪ [ϕ(m(u)),∞). The last claim
is clear from (1.2).

Let Ẽ(u) denote the set

Ẽ(u) := {q ∈ M̃ ; d(p̃(u), q) = d(p̃(u + 2a), q)}

for each u ∈ [0, a]. It is clear from (1.2) that Ẽ(0) = {a} × R and Ẽ(a) = {2a} × R.

Since the proofs of our main theorems (Theorems 3.1 and 3.2) need many lemmas
to prove, we now give an overview of the steps leading up to them. For each point
p on the torus T 2 defined in the introduction, it is clear from the symmetry of T 2

that the opposite meridian of p is a subset of the cut locus of p. Moreover, from a
topological point of view, the cut locus of the point p contains a Jordan curve which
is freely homotopic to each parallel. If p = π(p̃(u)) for some u, where π denotes the

covering projection from M̃ onto T 2, then the Jordan arc in question is the closure of

E(u) := {π(q); q ∈ Ẽ(u), |y(q)| < b}.

The inner equator and the closure of E(u) divide T 2 into two domains T0(u) and
T1(u). The precise definitions of these domains will be stated later. The structure of

the cut locus is determined in each domain in Lemmas 3.3 and 3.4. If Cp̃(u) and Ẽ(u)
have no common point in the fundamental domain (0, 2a)× (−b, b) for any u ∈ (0, a),
then T 2 is said to be of non-standard type, otherwise it is said to be of standard type.
In Lemma 3.6, a necessary and sufficient condition for T 2 to be of standard type is
stated and its proof is given. By making use of Lemma 3.6, it is proven in Theorem
4.1 that all standard tori in Euclidean space are of standard type. Lemma 3.7 is for
describing the case where the cut locus of a point looks like Figure 4 in Section 5.
Lemmas 3.8 and 3.9 concern the cases where the cut loci of a point look like Figures
1 and 2 in Section 5, respectively.

Lemma 3.2. For each u ∈ (0, a), Ẽ(u) is a continuous curve in (a, 2a) × R and

each compact subarc of Ẽ(u) is a Jordan arc.

Proof. Let u ∈ (0, a) and y ∈ R be fixed. We will prove f(a) < 0 < f(2a), where
f(t) := d(p̃(u), (t, y))−d(p̃(u+2a), (t, y)). Since the minimal geodesic joining p̃(u+2a)
to (a, y) intersects x = 2a at a point q1, it follows from (1.2) that d(p̃(2a + u), (a, y))
equals the length of the broken geodesic combined by the minimal geodesic segment
joining p̃(2a − u) to q1 and the minimal one joining q1 to (a, y). Thus,

(3.9) d(p̃(u + 2a), (a, y)) > d(p̃(2a − u), (a, y)).
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By (1.2),

(3.10) d(p̃(2a − u), (a, y)) = d(p̃(u), (a, y)).

Combining (3.9) and (3.10), we obtain f(a) < 0. By the similar argument as above,
we get f(2a) > 0. By Proposition 3.3, f(t) is C∞ on (a, 2a − u) ∪ (2a − u, 2a). It
is sufficient to prove that f ′(t) is positive on (a, 2a − u) ∪ (2a − u, 2a), because by
the intermediate value theorem, η(y) ∈ (a, 2a) is uniquely determined by the equation

f(η(y)) = 0. Thus it is clear that any compact subarc of Ẽ(u) is a Jordan arc. If y = 0,
then it is trivial that f ′(t) is positive on (a, 2a). Thus we may assume y 6= 0. Choose
any t ∈ (a, 2a− u) ∪ (2a − u, 2a). Let γt be the unit speed minimal geodesic segment
joining p̃(u) = γt(0) to (t, y) = γt(L(γt)). By (2.2), γt intersects R × {y} exactly
once. Therefore we get the closed domain Ft :=

⋃
0≤s≤L(γt)

[x(γt(s)),∞)×{y(γt(s))}.
It is clear that p̃(2a + u) ∈ Ft. Let βt denote the minimal geodesic segment joining
p̃(2a + u) to (t, y). Since βt lies in Ft,

∠(−γ̇t(L(γt)), (
∂

∂x
)(t,y)) > ∠(−β̇t(L(βt)), (

∂

∂x
)(t,y)).

Therefore, by the first variation formula, f ′(t) is positive and hence f is strictly
monotone increasing on (a, 2a).

Remark. For each u ∈ [0, a], Ẽ(u) is piecewise C1.

By Lemma 3.2, Ẽ(u), u ∈ [0, a) divides the open rectangle (0, 2a) × (−b, b) into two

domains T̃0(u) and T̃1(u) ∋ (a
2 , 0).

Lemma 3.3. Let u ∈ [0, a] be fixed. For each geodesic segment α̃ : [0, l] → M̃

emanating from p̃(u) with α̃(0, l) ⊂ T̃1(u), α̃ is minimal if and only if α := π ◦ α̃ is

minimal, where T̃1(a) := (0, 2a)× (−b, b). Hence Cp(u) ∩ π(T̃1(u)) = π(Cp̃(u) ∩ T̃1(u))
for any u ∈ [0, a]. Here p(u) := π(u, 0).

Proof. It is trivial that if α is minimal, then α̃ is minimal. Thus, by supposing that
α̃ is minimal and α is not minimal, we will get a contradiction. Since α is not minimal,
α|[0,l0] is not minimal and α̃(0, l0] ⊂ T̃1(u) for some l0 ∈ (0, l). Thus, there exists a
minimal geodesic segment β : [0, l1] → T 2 joining p(u) to α(l0), where l1 ∈ (0, l).

Let β̃ : [0, l1] → M̃ be the lifted geodesic segment of β, i.e., π ◦ β̃ = β, β̃(0) = p̃(u).

Since β is minimal, β̃ is minimal and does not meet Ẽ(u). Thus β̃(l1) = α̃(l0), which
contradicts the minimality of α̃. The latter claim is a consequence of the first one.

It is trivial that any point on the meridian θ = b is a cut point of p(u) = π(u, 0)
for any u ∈ [0, 2a]. By Lemma 3.3, any point on the set

E(u) := {π(q); q ∈ Ẽ(u), |y(q)| < b}

is also a cut point of p(u) for each u ∈ [0, a]. Hence, for any u ∈ [0, a], the cut locus
of p(u) contains E(u) ∪ {q ∈ T 2 ; θ(q) = b }.

Definition 3.1. The torus T 2 is called of standard type if Cp̃(u)∩Ẽ(u)∩((0, 2a)×
(−b, b)) is non-empty for some u ∈ [0, a].

Lemma 3.4. For each u ∈ [0, a), Cp(u) ∩ T0(u) = ∅, where T0(u) := π(T̃0(u)).

Furthermore if Cp̃(u) ∩ Ẽ(u) has an element (2a − u, y0) in (0, 2a) × [−b, b] for some

u ∈ (0, a), then Cp̃(u) ∩ T̃1(u) = {2a− u} × ([ϕ(m(u)), |y0|) ∪ (−|y0|,−ϕ(m(u))]).
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Proof. At first we prove Cp(u) ∩ T0(u) = ∅ for any u ∈ [0, a). Suppose that there
exists a cut point π(q) of p(u) in T0(u). Let α : [0, l] → T 2 be a minimal geodesic
segment joining p(u) to π(q). Since E(u) is a subset of the cut locus of p(u), α does
not intersect E(u). Since π(q) ∈ T0(u), α intersects the inner equator. Thus α̃(l) is

a point in T̃0(u), where α̃ : [0, l] → M̃ denotes the lifted geodesic segment of α with
α̃(0) = p̃(u + 2a). Since α(l) is not a conjugate point of p(u) along α by Lemma
2.2 and (2.2), there exists another minimal geodesic segment β joining p(u) to π(q).
Then p̃(u + 2a) and α̃(l) can be joined by two distinct minimal geodesic segments α̃
and the lifted geodesic segment of β. Therefore α̃(l) is a cut point of p̃(u + 2a). By
Proposition 3.3 the point α̃(l) is not a cut point of p̃(u + 2a). This is a contradiction.
Thus, Cp(u) ∩ T0(u) is empty. The second claim is clear from Proposition 3.3 and the
following lemma.

Lemma 3.5. For each u ∈ (0, a],

d

dt
d(p̃(u), c̃(t)) >

d

dt
d(p̃(u + 2a), c̃(t))

holds on (ϕ(m(u)),∞), where c̃(t) := (2a − u, t). Furthermore the function

F (t, u) := d(p̃(u), c̃(t)) − d(p̃(u + 2a), c̃(t))

is C1 on {(t, u) ; t > ϕ ◦ m(u), u ∈ (0, a) }.
Proof. Choose any u ∈ (0, a], t ∈ (ϕ(m(u)),∞) and fix them. It follows from

the proof of Proposition 3.3 that there exist exactly two unit speed minimal geodesic
segments α̃ν(t), β̃ν(t) : [0, l1(t)] → M̃ joining p̃(u) to c̃(t). Here ν(t) := ϕ−1(t). It is
clear that the domain Dt bounded by these two minimal geodesic segments contains
{2a − u} × [ϕ(m(u)), t) and that any minimal geodesic segment joining p̃(u + 2a) to
c̃(t) does not meet Dt. Thus we have

∠(− ˙̃c(t),− ˙̃
βν(t)(l1(t))) < ∠(− ˙̃c(t),− ˙̃γt(l0(t)))

for each t ∈ (ϕ(m(u)),∞). Here γ̃t : [0, l0(t)] → M̃ denotes the minimal geodesic
segment joining p̃(u+2a) to c̃(t). Therefore it follows from the first variational formula
that

d

dt
d(p̃(u), c̃(t)) >

d

dt
d(p̃(u + 2a), c̃(t))

holds on (ϕ(m(u)),∞). It follows from (1.2), (2.4) and (2.5) that for any u ∈ (0, a)
and t > ϕ ◦ m(u), d(p̃(u), c̃(t)) = d(p̃(a), (a, t)) holds. By Proposition 3.1, the
function ν(t) = ϕ−1(t) is continuous on (ϕ ◦ m(a),∞). Thus the angle θ(t) :=
∠(γ̇ν(t)(lt), (

∂
∂y

)(a,t)) is continuous on (ϕ ◦ m(a),∞), where lt := d(p̃(a), (a, t)). It

follows from the first variational formula (see Lemma 2.1 in [7]) that

d

dt
d(p̃(a), (a, t)) = cos θ(t).

Thus d(p̃(u), c̃(t)) = d(p̃(a), (a, t)) is C1 on {(t, u) ; t > ϕ ◦ m(u), u ∈ (0, a) }. It is
clear from Proposition 3.2 that the function d(p̃(u + 2a), c̃(t)) is C∞ on {(t, u) ; t >
ϕ ◦ m(u), u ∈ (0, a) }. Therefore the function F is C1.

By Lemmas 3.3, 3.4 and Proposition 3.3, we have
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Theorem 3.1. Let T 2 := (S1 × S1, dt2 + m(t)2dθ2) denote a torus with Rie-
mannian metric dt2 + m(t)2dθ2, where dt2 and dθ2 denote the Riemannian metric
of a circle with length 2a > 0, 2b > 0 respectively and m is a C∞-function on R

satisfying the equations (1.2) and (1.3). Then the cut locus Cp(u) of p(u) := π(u, 0)
is E(u)∪{q ∈ T 2; θ(q) = b} for each u ∈ [0, u0], where u0 := min({a}∪ (ϕ◦m)−1(b)).
Furthermore, if T 2 is of non-standard type, then E(u) ∪ {q ∈ T 2; θ(q) = b} ∪ {q ∈
Pu; ϕ(m(u)) ≤ θ(q) ≤ 2b−ϕ(m(u))} is the cut locus of p(u) for each u ∈ (u0, a]. Here
Pu denotes the parallel t = 2a − u.

Remark. Suzuki proved in his thesis ([15]) that for any sufficiently small u ∈
[0, a], the cut locus of p(u) is E(u)∪ {q ∈ T 2; θ(q) = b}. If we divide a standard torus
by a finite group of rotations around the z-axis, we can get a torus with ϕ(m(a)) < b,
which is of non-standard type.

Let B0(u) (respectively B1(u)) denote the distance between p̃(u+2a) (respectively
p̃(u)) and (2a−u, b). Suppose ϕ(m(a)) < b. By Lemma 2.1 and Proposition 3.1, there
exists a unique solution u = u∗ ∈ (0, a) of ϕ ◦ m(u) = b. It follows from (2.4) and
(2.6) that

(3.11) B0
′(u) = 2

√
m(u)2 − ν2

0

m(u)
, B1(u) = B1(a)

for any u ∈ (0, a) and u ∈ [u∗, a] respectively, where ν0 ∈ (0, m(0)) is the number
satisfying

(3.12) b = 2

∫ u

0

ν0

m(t)
√

m(t)2 − ν0
2

dt.

Lemma 3.6. The torus T 2 is of standard type if and only if ϕ(m(a)) < b and
B0(u∗) < B1(u∗).

Proof. Suppose T 2 is of standard type. Hence, by Proposition 3.3, there exist
numbers u0 ∈ (0, a), y0 ∈ (−b, b) such that (2a − u0, y0) ∈ Cp̃(u0) ∩ Ẽ(u0). It is clear
that ϕ(m(u0)) ≤ |y0| < b by Proposition 3.3. Hence by Proposition 3.1 and Lemma
2.1, we get ϕ(m(a)) < b. Supposing B0(u∗) ≥ B1(u∗), we will get a contradiction.
By (3.11), for any u ∈ (u∗, a), B0(u) > B0(u∗) ≥ B1(u). Hence by Lemma 3.5,

Cp̃(u)∩Ẽ(u)∩(0, 2a)×(−b, b) is empty for any u > u∗. By Lemma 2.1 and Proposition

3.1, ϕ(m(u)) ≥ ϕ(m(u∗)) = b for any u ∈ [0, u∗]. Thus, Cp̃(u) ∩ Ẽ(u)∩ (0, 2a)× (−b, b)
is empty for any u ∈ [0, a]. This is a contradiction. Suppose ϕ(m(a)) < b and

B0(u∗) < B1(u∗). Since M̃ is symmetric with respect to x = 2a, B0(a) equals the
length of the broken geodesic of two minimal geodesics, the minimal geodesic joining
p̃(a) and (2a, b

2 ), and the one joining (2a, b
2 ) and (a, b). Thus it is clear that B1(a) =

d(p̃(a), (a, b)) < B0(a). From the intermediate value theorem, it follows that there
exists u0 ∈ (u∗, a) such that B0(u0) = B1(u0). By Proposition 3.1 and Lemma 2.1,

ϕ(m(u0)) < ϕ(m(u∗)) = b. Thus Cp̃(u0) ∩ Ẽ(u0) ∩ (0, 2a) × (−b, b) has an element
(2a − u0, ϕ(m(u0))) Therefore T 2 is of standard type.

Lemma 3.7. If T 2 is of standard type, then there exists a unique solution u =
u1 ∈ (u∗, a) of B0(u) = B1(u)(= B1(u∗)) such that for any u ∈ (u1, a],

T̃1(u) ∩ Cp̃(u) = {2a − u} × ([ϕ(m(u)), b) ∪ (−b,−ϕ(m(u)))]).
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Proof. By Lemma 3.6, B0(u∗) < B1(u∗). As we observed in the proof of Lemma
3.6, B1(a) < B0(a) holds. Hence it follows from the intermediate value theorem that
there exists a solution u = u1 ∈ (u∗, a) of B0(u) = B1(u∗) = B1(u). Choose any
u ∈ (u1, a]. By Lemma 2.1, Proposition 3.1 and (3.11), we get B0(u) > B0(u1) =
B1(u1) = B1(u) and ϕ(m(u)) < ϕ(m(u∗)) = b. Therefore, by Proposition 3.3 and
Lemma 3.5,

Cp̃(u) ∩ T̃1(u) = {2a− u} × ([ϕ(m(u)), b) ∪ (−b,−ϕ(m(u))]).

Lemma 3.8. If T 2 is of standard type, then there exists a unique solution u =
u2 ∈ (u∗, u1) of d(p̃(u + 2a), ϕ̃(u)) = d(p̃(u), ϕ̃(u)), where ϕ̃(u) := (2a − u, ϕ ◦ m(u)),
such that for any u ∈ [0, u2],

T̃1(u) ∩ Cp̃(u) = ∅.

Proof. For simplicity, we set

Φ0(u) := d(p̃(u + 2a), ϕ̃(u)), Φ1(u) := d(p̃(u), ϕ̃(u)).

First, we will prove that Φ0 − Φ1 is strictly monotone increasing on (u∗, a). Choose
any number u ∈ (u∗, a) and fix it. By (1.2), (2.4) and (2.6),

Φ0(u) = 2

∫ u

0

√
m(t)2 − ν2

0

m(t)
dt + ν0ϕ(m(u)),

Φ1(u) = 2

∫ a

u

√
m(t)2 − m(u)2

m(t)
dt + m(u)ϕ(m(u)),

where ν0 ∈ (0, m(0)) denotes the number (depending on u) such that

ϕ(m(u)) = 2

∫ u

0

ν0

m(t)
√

m(t)2 − ν2
0

dt.

Hence we have

Φ0
′(u) = f(ν0), Φ1

′(u) = f(m(u)),

where

f(t) := 2

√
m(u)2 − t2

m(u)
+ t(ϕ ◦ m)′(u), 0 ≤ t ≤ m(u).

From Proposition 3.1 and Lemma 2.1, the function f is strictly monotone decreasing
on (0, m(u)). Thus, we have Φ0

′(u) > Φ1
′(u). This implies Φ0−Φ1 is strictly monotone

increasing on (u∗, a). By Lemmas 3.5 and 3.7, we get

0 = B1(u1) − B0(u1) > Φ1(u1) − Φ0(u1).

Hence

(3.13) Φ0(u1) > Φ1(u1).
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On the other hand, by Lemma 3.6,

(3.14) Φ0(u∗) = B0(u∗) < B1(u∗) = Φ1(u∗).

By (3.13) and (3.14), there exists a solution u = u2 ∈ (u∗, u1) of Φ0(u) = Φ1(u).
Choose any u ∈ (u∗, u2] and fix it. Since Φ0 − Φ1 is strictly monotone increasing on

(u∗, a), we get (Φ0 − Φ1)(u) ≤ (Φ0 − Φ1)(u2) = 0. Thus, (2a − u, ϕ(m(u))) ∈ T̃0(u).

By Lemma 3.5, Cp̃(u)∩ T̃1(u) = ∅. On the other hand, for any u ∈ [0, u∗], ϕ(m(u)) ≥ b
and hence

Cp̃(u) ∩ (0, 2a) × (−b, b) = ∅.

Therefore for any u ∈ [0, u2], Cp̃(u) ∩ T̃1(u) is empty.

Lemma 3.9. If T 2 is of standard type, then there exists a C1-function b(u) on
(u2, u1) such that

Cp̃(u) ∩ T̃1(u) = {2a− u} × ([ϕ(m(u)), b(u)) ∪ (−b(u),−ϕ(m(u))])

for each u ∈ (u2, u1).

Proof. Since Φ0 −Φ1 is strictly monotone increasing on (u∗, a) as we observed in
the proof of Lemma 3.8,

Φ0(u) − Φ1(u) > Φ0(u2) − Φ1(u2) = 0

for any u > u2. Thus,

(3.15) Φ0(u) > Φ1(u)

for any u ∈ (u2, a). From (3.11), B0 − B1 is strictly monotone increasing on (u∗, a).
Thus we get 0 = B0(u1) − B1(u1) > B0(u) − B1(u), i.e.,

(3.16) B0(u) < B1(u)

for any u ∈ (u∗, u1). Choose any u ∈ (u2, u1) and fix it. By Lemma 3.5 ∂F
∂t

(t, u) is
positive for any t and u ∈ (0, a) with t > ϕ(m(u)), where F (t, u) := d(p̃(u+2a), (2a−
u, t)) − d(p̃(u), (2a − u, t)). Furthermore we have F (b, u) < 0 < F (ϕ(m(u)), u) by
(3.15) and (3.16). From the intermediate value theorem, there exists a number b(u) ∈
(ϕ◦m(u), b) such that F (b(u), u) = 0. It follows from the implicit function theorem and

Lemma 3.5 that the function b(u) is C1 on (u2, u1). Since (2a−u, b(u)) ∈ Ẽ(u)∩Cp̃(u)

for each u ∈ (u2, u1), it follows from Lemma 3.4 that

Cp̃(u) ∩ T̃1(u) = {2a− u} × ([ϕ(m(u)), b(u)) ∪ (−b(u),−ϕ(m(u))])

for each u ∈ (u2, u1).

By Lemmas 3.3, 3.4, 3.7, 3.8 and 3.9, we have,

Theorem 3.2. Let T 2 := (S1 × S1, dt2 + m(t)2dθ2) denote a torus with Rie-
mannian metric dt2 + m(t)2dθ2, where dt2 and dθ2 denote the Riemannian metric
of a circle with length 2a > 0, 2b > 0 respectively and m is a C∞-function on R

satisfying the equations (1.2) and (1.3). If T 2 is of standard type, then the cut locus
Cp(u) of p(u) has the following structure.
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(1) Cp(u) = F (u) for each u ∈ [0, u2], where

F (u) := E(u) ∪ {q ∈ T 2; θ(q) = b}.

(2) Cp(u) = F (u)∪{q ∈ Pu; ϕ(m(u)) ≤ θ(q) ≤ b(u)}∪{q ∈ Pu; 2b−b(u) ≤ θ(q) ≤
2b − ϕ(m(u))} for each u ∈ (u2, u1).

(3) Cp(u) = F (u)∪{q ∈ Pu; ϕ(m(u)) ≤ θ(q) ≤ 2b−ϕ(m(u))} for each u ∈ [u1, a].
Here Pu := {q ∈ T 2; t(q) = 2a − u}.

4. Tori of elliptical cross-section. Finally, we prove that each torus Te defined
by

(4.1)
(√

x2 + y2 − R
)2

+
(z

e

)2

= r2 (R > r > 0, 1 ≥ e > 0)

is of standard type. Note that the Riemannian metric of the torus Te satisfies (1.3).
It is clear that Te is isometric to the torus (S1 × S1, dt2 + m(t)2dθ2) with a warped
product metric dt2 +m(t)2dθ2, where dt2 and dθ2 denote the Riemannian metric of a

circle with length 2a := r
∫ 2π

0

√
sin2 θ + e2 cos2 θdθ and 2π respectively, and m is the

solution of the differential equation

m′(t)2 =
r2 − (m(t) − R)2

r2 + (e2 − 1)(m(t) − R)2

with initial condition m(0) = R − r. It is easy to check that the function m satisfies
(1.2) and (1.3) for any constants R > r > 0, e ∈ (0, 1].

Lemma 4.1. For each torus Te defined by (4.1), ϕ◦m(a
2 ) < π. Hence the number

u∗ is less than a
2 .

Proof. By definition,

ϕ ◦ m(
a

2
) = 2

∫ a

a

2

m(a
2 )

m(t)
√

m(t)2 − m(a
2 )2

dt.

Setting x = 1
r
(m(t) − R), we get

(4.2) ϕ ◦ m(
a

2
) = 2

√
ξ

∫ 1

0

√
1 + (e2 − 1)x2

(1 + ξx)
√

x(1 − x)
√

1 + x
√

2 + ξx
dx,

where ξ := r
R

∈ (0, 1). Note that m(a
2 ) = R and m(a) = R + r. Since 1√

1+x
≤

√
2√

2+ξx

and
√

1 + (e2 − 1)x2 ≤ 1,

(4.3) ϕ ◦ m(
a

2
) ≤ 2

√
2ξ

∫ 1

0

1

(1 + ξx)
√

x(1 − x)(2 + ξx)
dx.

Since
∫

dx

(1 + ξx)(2 + ξx)
√

x(1 − x)
=

−2√
1 + ξ

tan−1

√
1 − x

x(1 + ξ)
+

√
2

2 + ξ
tan−1

√
2(1 − x)

x(2 + ξ)
,
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we have

(4.4)

∫ 1

0

dx

(1 + ξx)(2 + ξx)
√

x(1 − x)
=

(
2√

1 + ξ
−

√
2

2 + ξ

)
π

2
.

By (4.3) and (4.4), we get

(4.5) ϕ ◦ m(
a

2
) ≤

√
2ξ

(
2√

1 + ξ
−

√
2

2 + ξ

)
π.

Since the function
√

x
(

2√
1+x

−
√

2
2+x

)
is monotone increasing on [0, 1], we get

ϕ ◦ m(
a

2
) < 2(1 − 1√

3
)π < π.

The latter claim follows from Proposition 3.1 and Lemma 2.1.

Theorem 4.1. Each torus Te defined by (4.1) is of standard type.

Proof. It follows from Lemmas 3.6, 4.1 and (3.11) that it is sufficient to prove
that

(B0(u∗) <)B0(
a

2
) < B1(

a

2
)(= B1(u∗)).

By (2.6),

(4.6) B1(
a

2
) = 2

∫ a

u∗

√
m(t)2 − m(u∗)2

m(t)
dt + πm(u∗).

Setting

f(u) := 2

∫ a

u

√
m2 − m(u)2

m
dt + πm(u), u ∈ [0, a],

we have

f ′(u) = −2m′(u)

∫ a

u

m(u)

m
√

m2 − m(u)2
dt + πm′(u) = (−ϕ ◦ m(u) + π)m′(u).

Thus, by Lemma 2.1 and Proposition 3.1, f attains a maximum at u = u∗. Hence, by
(4.6),

(4.7) B1(
a

2
) = f(u∗) > f(

a

2
) > πm(

a

2
) = πR.

Since B0
′(u) < 2 by (3.11), it follows from the mean value theorem that

B0(
a

2
) − B0(0) < a.

Therefore

(4.8) B0(
a

2
) < a + d(p̃(2a), (2a, π)) = a + m(0)π ≤ πR.

By (4.7) and (4.8), we have B0(
a
2 ) < B1(

a
2 ).
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5. Illustrations. We provide illustrations (Figures 1 to 4) for the case of the
torus defined by (1.1) with R = 2 and r = 1, i.e. the surface given by

(√
x2 + y2 − 2

)2

+ z2 = 1,

for which we find that u∗ ≈ 0.63514, u2 ≈ 2.43309 and u1 ≈ 2.98009.
We have applied standard numerical and symbolic methods and the software tool

Loki [14] to the methods of this paper. Loki computes cut loci from points on surfaces
via an approximation to the exponential map by a piecewise polynomial defined upon
the universal covering. Inverting this approximation to the exponential map gives the
global information necessary to approximate cut points.
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Fig. 1. Cp(u∗) (u∗ < u2)

Fig. 2. Cp(2.7) (u2 < 2.7 < u1)
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Fig. 3. Cp(u1)

Fig. 4. Cp(3.0) (u1 < 3.0 < a)


