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1. Introduction. Let n > 2, R™ be the n-dimensional Fuclidean space, and
S™~! denote the unit sphere in R™ equipped with the normalized Lebesgue measure
do. For d € N, let B(0,1) be the unit ball centered at the origin in R™ and @ :
B(0,1) — R? be a C*™ mapping. Define the singular integral operator T and the
related maximal operator Mg by

- . Q(y)
%ﬂ@—p-émmf( B(y) T 10 dy. (1.1)
Mof@) = sip — [ |f(z— @) 12)| dy (1.2)

0<r<1 T Jiy|<r

for f € S(R?). Here Q is a homogeneous function of degree 0, integrable over S"~!
and satisfies the vanishing condition

/ Q(u)do (u) = 0. (1.3)
gn—1

The corresponding maximal truncated singular integral operator T3 is defined by

] Ay
Tif(@) =su| [ fla- o) R (14
>0 | Je<y|<1 |yl
When ®(y) = y, To is simply the localized version of a classical Calderén-

Zygmund operator and we shall denote it by T'. Our point of departure is the following
L? boundedness result from [St].

THEOREM 1.1. Let Ty and Mg be given as in (1.1)-(1.3). Assume that:
(i) @ is of finite type at O;

(ii) Q € CH(S"1).

Then for 1 < p < oo there ezists a constant Cp, > 0 such that

||T<I>fHLp(Rd) <Gy ”f”Lp(Rd) (1.5)
and
||M<I>fHLp(Rd) <Gy HfHLp(Rd) (1.6)
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for every f € LP(RY).

Recently, the results in Theorem 1.1 were improved by Fan, Guo, and Pan in
[FGP] who showed that the L? boundedness of Tg and Mg continues to hold if the
condition ) € C'(S"™!) is replaced by the weaker condition € L9(S"™!) for some
g > 1. Also, the authors of [FGP] were able to establish the L” boundedness of the
maximal operator Tj under the condition Q € L(S"~!) for some ¢ > 1.

The main purpose of this paper is to present further improvements of the above
results in which the condition Q € L(S"~!) is replaced by a weaker condition Q €
Bg’o(Sn_l). It is worth pointing out that the authors of this paper were able in
[AqAsP] to show that the condition © € B)(S"~') is the best possible for the L?
boundedness of the classical operator T to hold. Namely, the LP boundedness of T
may fail for any p if it is replaced by a weaker condition Q € Bg’”(Sn_l) for any
—1 < v < 0 and g > 1.The definition of the block spaces Bg’”(Sn_l) on the sphere
will be recalled in Section 2.

Our main results can be stated as follows.

THEOREM 1.2. Let Ty and Mg be given as in (1.1)-(1.3). Assume that:
(i) @ is of finite type at O;

(ir) Q € BYO(S"™1) for some q > 1.

Then

||T<I>f||Lp(Rd) <Gy ”f”Lp(Rd) (1.7)

and

||M‘1>f||LP(Rd) <G Hf”LP(Rd) (1-8)

hold for all 1 <p < oo and f € LP (Rd).
THEOREM 1.3. Let Q and T§ be given as in (1.3)-(1.4). Assume that:
(i) @ is of finite type at O;
(it) @ € BYO(S"1) for some q > 1.
Then for 1 < p < oo there ezists a constant C, > 0 such that

T3 fll Lo may < Collfll o ey (1.9)

for every f € LP(RY).
2. Preliminaries. Let us begin with the definition of block functions on S»~1.

DEFINITION 2.1. (1) For z{, € S"™! and 0 < 0y < 2, the set
B(x},00) = {2/ € S ' : |2’ — xf| < 6o}

is called a cap on S™ 1.

(2) For 1 < q < oo, a measurable function b is called a q—block on S™~ ' if b is a
function supported on some cap I = B(xg, Oy) with ||b]| 4 < |I|71/q, where |I| = o(I)
and 1/q+1/¢" = 1.

(3) Bfv(S" 1) ={Q e L'(S""): Q= >one1 ¢,b, where each c, is a complex
number; each b, is a q—block supported on a cap I, on S™~'; and M} ({c,},{I,})

= ZTLOZI |CM‘ (1 + (bn,v(‘lu‘)) < OO}7 U)hETe

1
G () = X0 (1) / W log” (uY) d (2.1)
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One observes that

G () ~t " log (t™ 1) ast — 0 for k > 0,v € R,
bo,0 (t) ~log"* (t71) ast — 0 for v > —1.

The following properties of B»¥ can be found in [KS]:

(i) By"> C Byt if vg > w1 > —1 and & > 0; (2.2)
(i3) By>"> C By»¥t if v1,v2 > —1 and 0 < k1 < kg; (2.3)
(iti) BEY C BEV 1< gy < go; (2.4)
(iv) LI(S™ 1) C B;““(S"il) for v > —1 and x > 0. (2.5)

In their investigations of block spaces, Keitoku and Sato showed in [KS] that
these spaces enjoy the following properties:

LEMMA 2.2. (i) If 1 <p < q < o0, then for k > % we have
BpU(S™1) € LP(S™ 1) for any v > —1;
(i)
B(’;’”(S"_l) = L9(S" 1) if and only if x > 5 and v > 0;
(791) for any v > —1, we have

U a1B3¥ (™) L goalo(s™7).

For a g-block function b on S"~! supported in an interval with ¢ > 1 and o, <
|I|_1/q/ ,1/q+1/¢ =1, we define the function b on 8"~ ! by

b(z) = b(x) — /S  bw)do(u). (2.6)
Then one can easily see that b enjoys the following properties:
/S () do () = 0 2.7)
‘MLg2m*W; (2.8)
ngz (2.9)

To simplify matters, we shall call the function b the blocklike function corresponding
to the block function b.
We shall need the following two lemmas from [FGP].

LEMMA 2.3. Let @ : B(0,1) — R? be a smooth mapping and Q be a homogeneous
function of degree 0. Suppose that ® is of finite type at 0 and Q € LI(S™~ 1) for some
g > 1. Then there are N € N, 6 € (0,1], C > 0 and jo € Z_ such that

[ ey <ol @) (2.10)
2i-1<|y|<2i lyl
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for all j < jo and € € R

LEMMA 2.4. Let m € N and R(-) be a real-valued polynomial on R™ with
deg(R) < m — 1. Suppose that

= > ay +R@)

|a]=m

Q) is a homogeneous function of degree zero, and Q € L1(S"~1) for some ¢ > 1. Then
there exists a constant C' = C(m,n) > 0 such that

/ —zP (y) Q( )
251 <[y|<2) Tyl™

holds for all j € Z and a, € R.

; 1
yl<clel, @™ Y o)

la|=m

The proofs of our results will rely heavily on the following lemma from [AqP]
which is an extension of earlier results of Duoandikoetxea-Rubio de Francia in [DR]
and Fan-Pan in [FP].

LEmMMA 2.5. Let N € N and {a,(gl) tkeZ,0<I< N} be a family of Borel

measures on R™ with ol(co) =0 for every k € Z. Let {a; : 1 <1< N} C R%/(0,2),
{m:1<I<N}CN, {:1<I<N}CRT, and let L; : R® — R™ be linear
transformations for 1 <1 < N. Suppose that for all k € Z, 1 <1 < N, for all £ € R"
and for some C >0, A > 1,py € (2,00) we have the following:

(@) ||| < ca
(i1) |60 (©)] < cAlaf AL )] 5
(iid) |6 (¢) — oV (@) < ca L) 7
(i)
Z‘ok *gk’ 7| <CA (Z|Qk|2)% (2.11)
kez o k€Z o
holds for all functions {gr} on R™.
Then for py < p < po there exists a positive constant C, such that
N
> oo < CoA S gy (2.12)
kez LrP(R™)
2\ %
> [o 1) < oAl (2.13)
kGZ LP(R"™)

hold for all f in LP(R™). The constant Cy, is independent of the linear transformations
N

{Ll}l:1 :
We shall also need the following result from [DR] (see also [AqP]):

LEMMA 2.6. Let {\; : j € Z} be a sequence of Borel measures in R™ and let
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X (f) =sup||Aj| * f]. Assume that
JEZ

(A" (H)l, < BIlfll, for some ¢ > 1 and B > 1. (2.14)

1 _ 1 _ 1
Po 2| 7 2

Then, for arbitrary functions {g;} on R™ and the following inequality

holds

2

(> w)é (215)

keZ

()

3. L? boundedness of certain maximal functions. For given sequences
{ur} pez and {7x} oy of nonnegative Borel measures on R™ we define the maximal
functions p* and 7* by

1
H < (Bsup ||Ael])”
keZ
Po

Po

w* (f) = sup|pg * f| and 77 (f) = sup |7 * f|.
kEZ kEZ

We have the following lemma.

LEMMA 3.1. Let {pn} peq and {7x} o5 e sequences of nonnegative Borel mea-
sures on R"™. Let L: R™ — R™ be a linear transformation. Suppose that for all
keZ, e R, for some a > 2, a,C >0 and for some constant B > 1 we have

() [kl < Bs |17ell < B;

(i6) | ()| < CB(a*P |L(©)])

E) [k (§)—1(€)| < CB(a"” |L(€))

)

e

wle

7" (ll, < BIlfll, forall 1 <p<ooand f e L(R"). (3.1)
Then the inequality

e (P, < CoBIILI, (3.2)

holds for all 1 < p < oo and f in LP(R™) with a constant C), independent of B and L.

Proof. By the arguments in the proof of Lemma 6.2 in [FP], we may assume
that m <n and L& = 7€ = (&1,...,&m) for £ = (&1,...,&,). Now, choose and fix a
6 € S(R™) such that (&) =1 for || < 1 and 6(¢) = 0 for |£] > 2. For each k € Z,
let (61)(€) = 0(a*P¢), and define the sequence of measures { Y} by

Ty (6) = k(&) = (On) (77, 6) 7w (E)- (3-3)

By (i)-(iii) we get

wle

T4 ()] < CBE@ I (3.4)

for £ € R™. Let

Se () (@)= (D 1T «J@))? and 17 () = 21611;||Tk| * f.

keZ
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Then by using (3.3) we have

w* (f) () < 8¢ (f) (@) + C(Mrom @ idgn—n) (7" (f) (x)) (3-5)
T (f) () < Sy (f) (2) + 2C[(Mrem @ idpn-—m)) (77 (f) (2)) (3.6)

where Mga is the classical Hardy-Littlewood maximal function on R
By (3.4) and Plancherel’s theorem we obtain

155 (Hlly < CBI|fll, (3.7)

which when combined with the L? boundedness of Mga, (3.1), and (3.6)-(3.7) gives
that

(Nl < CBIf]l; (3.8)

with C independent of B. By using the fact ||| < C'B together with Lemma 2.6
(for ¢ = 2) we get

Qo (wxgel*)3|| < CpoB||(D_ lowl*)? (3.9)
kez o keZ o
if 1/4 =11/po — 1/2|. Now, by (3.4), (3.9) and applying Lemma 2.5 we get
4
152 (Hll, < CpB |I£]l, forp & (3,4). (3.10)
Again, the L? boundedness of Mga, (3.1), (3.6) and (3.10) imply that
* 4
(NI, < CBIIfIl, forp & (5.4). (3.11)
Reasoning as above, (3.4), (3.11), Lemma 2.5 and Lemma 2.6 provide
8
15x (D, < CoBIfll, forpe (,8). (3.12)
By successive application of the above argument we ultimately obtain that
1S5+ (DI, < GBIl fl, for p e (1,00). (3.13)

Therefore, by the LP boundedness of Mya, (3.1), (3.5) and (3.13) we conclude that

[ (NI, < CoBIIfIl, for p € (1, 00). (3.14)
Finally, the inequality (3.2) holds trivially for p = co. This concludes the proof of our

lemma.

DEFINITION 3.2. Let b(-) be a blocklike function defined as in (2.2) and T be
an arbitrary function on R™. Define the measures {op. RRVAS Z} and the mazimal
operator ol’il; on R™ by

- b,
/R Jdoyg, = / o T iR (3.15)

*f‘. (3.16)

or; (f) = sup ’UF,B,J‘

JEZ



ROUGH SINGULAR INTEGRALS 25

These measures will be useful only in the case |I| > e~2 where I is the support
of b. On the other hand, for the case |I| < e~2 we need to define the following
measures.

DEFINITION 3.3. Let b(-) be a g-blocklike function defined as in (2.2) and T be an
arbitrary function on R™. We define the measures {)‘F,B,j :j € Z} and the mazimal
operators /\;B on R™ by

o b,
/R T, = /w o, T (3.17)

* f(x)‘ (3.18)

A;;f (z) = SUP‘ /\F,E,j
JEZ

where w = 2M8UI1"D] 1 |I| < e=2 and [-] denotes the greatest integer function.

LEMMA 3.4. Let @ : B(0,1) — R? be a smooth mapping and for q¢ > 1 let b
be a g-blocklike function defined as in (2.2). Suppose that ® is of finite type at 0. If
|I| < e™2, then there are N € N, 6 € (0,1], C > 0 and jo € Z_ such that

5\(1)7;”(5)‘ < Cllog(|T))] (w7 |§|)7[log<\§\*l)] (3.19)

for all § < jo, € € R with C independent of j and [log(|I|™")].
Proof. By (2.4), Lemma 2.3 and the definition of Apj; We get

log (|1~ )] -1

. —ig- l;(y)
A@,E,j(é)} < Z / e {)(y)Wdy
s=0 (G-1)28 < |y|<w@=12(s+1)

flog(]7]~1)]-1 . ‘
<) Ol (@NUTNEH g
s=0
_ 1 . s 1 —w N
< CHI™7 WM (WM ) J(W)

< CWM I (W e

By interpolating between this estimate and the trivial estimate

So,55(6)] < Cllog(111 ™)

we get the estimate in (3.19). This concludes the proof of our lemma.

By Lemma 2.4 and the argument used in the proof of Lemma 3.4 we get the
following:

LEMMA 3.5. Let m € N, b be a g-blocklike function (for q¢ > 1) defined as in
(2.2) and R(-) be a real-valued polynomial on R™ with deg(R) < m — 1. Suppose

P(y)= Y a.y +R(y),

lo|=m
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and |I| < e2. Then there exists a constant C' = C(m,n) > 0 such that

/ e P00y < Cllog(1 ™)™ Y Jo, ) TR
wi—1< |u|<wi |yl

lee|=m

holds for all j € Z and a, € R.

By Proposition 1 on page 477 of [St] it is easy to see that the following result
holds.

LEMMA 3.6. Let P = (Py,..., Py) be a polynomial mapping from R™ into R,
Let deg(P) = maxi<;<qdeg(P;). Suppose that b(-) is a blocklike function defined as
in (2.2) and 0%, o be given as in (2.16). Then for every 1 < p < oo, there exists a

constant C), independent of b and the coefficients of P such that

o5 (N < ol
for f € LP(RY).

By the above lemma and the proof of Lemma 3.4 we obtain the following:

LEMMA 3.7. Let P = (Pi,...,Pa) be a polynomial mapping from R™ into R¢
and b be a g-blocklike function defined as in (2.2). Let deg(P) = maxi<;<qdeg(F;).
Suppose that |I| < e 2. Then for every 1 < p < oo, there exists a constant C,

independent of b and the coefficients of P such that

|

Xos (D] < Collos1I 71111,
for f € LP(RY).

Our next step is to prove the following result on maximal functions:

THEOREM 3.8. Let ® : B(0,1) — RY be a smooth mapping and for q > 1 let
b be a ¢-blocklike function defined as in (2.2). Suppose that ® is of finite type at 0.
Then for 1 < p < oo and f € LP(R?) there exists a positive constant C, which is
independent of b such that

|
|

Proof. Assume first that [I| < e~2. Without loss of generality we may assume
that b > 0. By Lemma 3.4, there are N € N, § € (0,1], C > 0 and ko € Z_ such that

—1 . —
oy < Colom (I Iy 11 <™ (3:20)

; -2
Lr(R4) <G ||fHLp(Rd) if [I] =z e~ (3.21)

Xy ()
o35 ()]

S ()] < Cllos(1]™)] (¥ fel)~ w1 (3.22)
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for all k < ko, £ € R% with C independent of k and [log(|I|")] where w = 20es(I 117,
For ® = (®y,...,P4) welet P = (Py,..., Py) where

pizm—1 00U
Then we have
No k(€)= Ap s (6)] < Cllog(I1] ™)™ (N ) (3.23)
By (2.5) we have
R0 5.4(6) = Ap s 1(6)] < Cllog(111 7)) (3.24)

By interpolating between this estimate and (3.23) we get

)
log(J11~ 1]

R (6) = A s 1(6)] < Clog(IT17)] (V" I¢]) . (3.25)

Therefore, (3.20) follows from (3.22), (3.25), Lemma 3.1 and Lemma 3.7. The
proof of the inequality (3.21) will be much easier. In fact, it follows from (2.4)-(2.5),
Lemma 2.3, 3.1, and 3.6. We omit the details.

4. Proofs of the theorems. By assumption, {2 can be written as Q) = Zzo:l c,b,

where ¢, € C, b, is a g-block with support on an ia cap I, on S”~! and

oo

MY ({e b AL = Y fe,] (1+ (og |1 ™)) < oo. (4.1)

p=1

For each p = 1,2,..., let l;u be the blocklike function corresponding to b,. By the
vanishing condition on 2 we have

Q=>cb, (4.2)
p=1
and hence
17ofl, < 3 leu|||Tos, 7| (4.3)
pn=1 P
where
l;u (u')

T@yéuf(x) =p.v. /B(o y flz — ®(u)) Pl du.

Let 6, N, P be given as in the proof of Theorem 3.8. For 1 < j < d, let a;3 =
s

éaay?(O). For 0 <1< N — 1 we define Q' = ( l17---7Q£1) by

Q)= apy’, j=1...d (4.4)

1BI<i
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when 0 <1 < N —1and QN = &. For each 0 <1 < N, let )\(l L= Agig, and ol
= 0414, 5 Then by (2.3)-(2.5), Lemma 2.4 we have '
l
Joi? < e (4.5)
l d 1
’&1‘53,;@(5) <CE* DY agpg))w (4.6)
81=t | =1
s - V(o] < cM ey (4.7)
2%l IZ8)
. d
A (-1
6y (&) =6y O] <% Y D a8 (4.8)
B1=t | =1

for ’Iu’ >e 2 u=1,2,...,0<I<N-—1,and k < ko. Also, by (2.3)-(2.5), Lemma
3.5, and the same argument as in the proof (3.25) we have

0 _
H)\E#,k‘ <CA; (4.9)
N d __ 1
)‘z%:,k(f) < CA, (28 3 1Y Tajpg)) e (4.10)
|B]=l | 3=l
<) L(1-1) d .
LS I S (9] CA, (245 37> a5 202" (4.11)
|B]=l | 3=l
WhereA :].Og}l} )7’Iu’<e 7M_17277k§k070§l§N—1
By ( 20)-(3.22), (3.25), (4.5)-(4.11), Theorem 3.8, Lemmas 2.5-2.6, and 3.6-3.7
we get
N . _
Tas f| = |32 XY | <A, i 1] <e  (@12)
JEZ_ ,
N . _
[Fast], = || X ot s|| <Coll, it 11| 2 e (1.13)
JEZ_
p

for every f € LP(RY), u=1,2,..., and for all p, 1 < p < oo. Hence, (1.7) follows from
(4.1), (4.3) and (4.12)-(4.13). On the other hand, (1.8) follows from (3.20)-(3.21),
(4.2) and the following inequality

Maf(z <4zyc \%b (£ (

<4 > edons D (@) + oo e (D) @), (4.14)
H:1,|1M|2672 pn= 1,|IM|<6*2

This concludes the proof of Theorem 1.2.
Finally, the proof of Theorem 1.3 follows from the above estimates and the tech-
niques in [AqP]. We omit the details.
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