ROUGH SINGULAR INTEGRALS WITH KERNELS SUPPORTED BY SUBMANIFOLDS OF FINITE TYPE*

HUSSAIN AL-QASSEM[†], AHMAD AL-SALMAN[‡], AND YIBIAO PAN[§]

Key words. L^p boundedness, Singular integrals, Fourier transform, block spaces

AMS subject classifications. Primary 42B20; Secondary 42B15, 42B25

1. Introduction. Let $n \geq 2$, \mathbf{R}^n be the *n*-dimensional Euclidean space, and \mathbf{S}^{n-1} denote the unit sphere in \mathbf{R}^n equipped with the normalized Lebesgue measure $d\sigma$. For $d \in \mathbf{N}$, let B(0,1) be the unit ball centered at the origin in \mathbf{R}^n and $\Phi: B(0,1) \to \mathbf{R}^d$ be a C^{∞} mapping. Define the singular integral operator T_{Φ} and the related maximal operator \mathcal{M}_{Φ} by

$$T_{\Phi}f(x) = \text{p.v.} \int_{B(0,1)} f(x - \Phi(y)) \frac{\Omega(y)}{|y|^n} dy,$$
 (1.1)

$$\mathcal{M}_{\Phi}f(x) = \sup_{0 < r < 1} \frac{1}{r^n} \int_{|y| < r} |f(x - \Phi(y))| |\Omega(y)| dy$$
 (1.2)

for $f \in \mathcal{S}(\mathbf{R}^d)$. Here Ω is a homogeneous function of degree 0, integrable over \mathbf{S}^{n-1} and satisfies the vanishing condition

$$\int_{\mathbf{S}^{n-1}} \Omega(u) \, d\sigma(u) = 0. \tag{1.3}$$

The corresponding maximal truncated singular integral operator T_{Φ}^{*} is defined by

$$T_{\Phi}^* f(x) = \sup_{\varepsilon > 0} \left| \int_{\varepsilon \le |y| < 1} f(x - \Phi(y)) \frac{\Omega(y)}{|y|^n} dy \right|. \tag{1.4}$$

When $\Phi(y) \equiv y$, T_{Φ} is simply the localized version of a classical Calderón-Zygmund operator and we shall denote it by T. Our point of departure is the following L^p boundedness result from [St].

THEOREM 1.1. Let T_{Φ} and \mathcal{M}_{Φ} be given as in (1.1)-(1.3). Assume that:

- (i) Φ is of finite type at 0;
- (ii) $\Omega \in C^1(\mathbf{S}^{n-1})$.

Then for $1 there exists a constant <math>C_p > 0$ such that

$$||T_{\Phi}f||_{L^{p}(\mathbf{R}^{d})} \le C_{p} ||f||_{L^{p}(\mathbf{R}^{d})}$$
 (1.5)

and

$$\|\mathcal{M}_{\Phi}f\|_{L^{p}(\mathbf{R}^{d})} \le C_{p} \|f\|_{L^{p}(\mathbf{R}^{d})} \tag{1.6}$$

^{*}Received November 10, 2003; accepted for publication February 28, 2004.

[†]Department of Mathematics, Yarmouk University, Irbid-Jordan (husseink@yu.edu.jo).

[‡]Department of Mathematics, Yarmouk University, Irbid-Jordan (alsalman@yu.edu.jo)

[§]Department of Mathematics, University of Pittsburgh, PA 15260, U.S.A. (yibiao@pitt.edu).

for every $f \in L^p(\mathbf{R}^d)$.

Recently, the results in Theorem 1.1 were improved by Fan, Guo, and Pan in [FGP] who showed that the L^p boundedness of T_{Φ} and \mathcal{M}_{Φ} continues to hold if the condition $\Omega \in C^1(\mathbf{S}^{n-1})$ is replaced by the weaker condition $\Omega \in L^q(\mathbf{S}^{n-1})$ for some q>1. Also, the authors of [FGP] were able to establish the L^p boundedness of the maximal operator T_{Φ}^* under the condition $\Omega \in L^q(\mathbf{S}^{n-1})$ for some q > 1.

The main purpose of this paper is to present further improvements of the above results in which the condition $\Omega \in L^q(\mathbf{S}^{n-1})$ is replaced by a weaker condition $\Omega \in$ $B_a^{0,0}(\mathbf{S}^{n-1})$. It is worth pointing out that the authors of this paper were able in [AqAsP] to show that the condition $\Omega \in B_q^{0,0}(\mathbf{S}^{n-1})$ is the best possible for the L^p boundedness of the classical operator T to hold. Namely, the L^p boundedness of T may fail for any p if it is replaced by a weaker condition $\Omega \in B_q^{0,v}(\mathbf{S}^{n-1})$ for any -1 < v < 0 and q > 1. The definition of the block spaces $B_q^{0,v}(\mathbf{S}^{n-1})$ on the sphere will be recalled in Section 2.

Our main results can be stated as follows.

THEOREM 1.2. Let T_{Φ} and \mathcal{M}_{Φ} be given as in (1.1)-(1.3). Assume that:

(i) Φ is of finite type at 0; (ii) $\Omega \in B_q^{0,0}(\mathbf{S}^{n-1})$ for some q > 1.

$$||T_{\Phi}f||_{L^{p}(\mathbf{R}^{d})} \le C_{p} ||f||_{L^{p}(\mathbf{R}^{d})}$$
 (1.7)

and

$$\|\mathcal{M}_{\Phi}f\|_{L^{p}(\mathbf{R}^{d})} \le C_{p} \|f\|_{L^{p}(\mathbf{R}^{d})} \tag{1.8}$$

hold for all $1 and <math>f \in L^p(\mathbf{R}^d)$.

THEOREM 1.3. Let Ω and T_{Φ}^* be given as in (1.3)-(1.4). Assume that:

(i) Φ is of finite type at 0;

(ii) $\Omega \in B_q^{0,0}(\mathbf{S}^{n-1})$ for some q > 1. Then for $1 there exists a constant <math>C_p > 0$ such that

$$||T_{\Phi}^*f||_{L^p(\mathbf{R}^d)} \le C_p ||f||_{L^p(\mathbf{R}^d)}$$
(1.9)

for every $f \in L^p(\mathbf{R}^d)$.

2. Preliminaries. Let us begin with the definition of block functions on S^{n-1} .

Definition 2.1. (1) For $x'_0 \in \mathbf{S}^{n-1}$ and $0 < \theta_0 \le 2$, the set

$$B(x'_0, \theta_0) = \{x' \in \mathbf{S}^{n-1} : |x' - x'_0| < \theta_0\}$$

is called a cap on S^{n-1} .

- (2) For $1 < q \le \infty$, a measurable function b is called a q-block on \mathbf{S}^{n-1} if b is a function supported on some cap $I = B(x_0', \theta_0)$ with $||b||_{L^q} \le |I|^{-1/q'}$ where $|I| = \sigma(I)$ and 1/q + 1/q' = 1.
- (3) $B_q^{\kappa, \nu}(\mathbf{S}^{n-1}) = \{ \Omega \in L^1(\mathbf{S}^{n-1}) : \Omega = \sum_{\mu=1}^{\infty} c_{\mu} b_{\mu} \text{ where each } c_{\mu} \text{ is a complex } \}$ $number; \; each \; b_{{}_{\mu}} \; is \; a \; q-block \; supported \; on \; a \; cap \; I_{{}_{\mu}} \; on \; \mathbf{S}^{n-1}; \; and \; M^{\kappa, \upsilon}_q\left(\{c_{{}_{k}}\}, \{I_{{}_{k}}\}\right)$ $=\sum_{\mu=1}^{\infty} |c_{\mu}| (1 + \phi_{\kappa,\nu}(|I_{\mu}|)) < \infty\}, \text{ where }$

$$\phi_{\kappa,\upsilon}(t) = \chi_{(0,1)}(t) \int_{1}^{1} u^{-1-\kappa} \log^{\upsilon} (u^{-1}) du.$$
 (2.1)

One observes that

$$\phi_{\kappa,\upsilon}(t) \sim t^{-\kappa} \log^{\upsilon}(t^{-1}) \text{ as } t \to 0 \text{ for } \kappa > 0, \upsilon \in \mathbf{R},$$

 $\phi_{0,\upsilon}(t) \sim \log^{\upsilon+1}(t^{-1}) \text{ as } t \to 0 \text{ for } \upsilon > -1.$

The following properties of $B_q^{\kappa,v}$ can be found in [KS]:

(i)
$$B_a^{\kappa, v_2} \subset B_a^{\kappa, v_1}$$
 if $v_2 > v_1 > -1$ and $\kappa \ge 0$; (2.2)

$$\begin{array}{l} (i) \ B_q^{\kappa,\upsilon_2} \subset B_q^{\kappa,\upsilon_1} \ \ \text{if} \ \upsilon_2 > \upsilon_1 > -1 \ \text{and} \ \kappa \geq 0; \\ (ii) \ B_q^{\kappa_2,\upsilon_2} \subset B_q^{\kappa_1,\upsilon_1} \ \ \text{if} \ \upsilon_1,\upsilon_2 > -1 \ \text{and} \ 0 \leq \kappa_1 < \kappa_2; \end{array}$$

(iii)
$$B_{q_2}^{\kappa, \nu} \subset B_{q_1}^{\kappa, \nu}$$
 if $1 < q_1 < q_2$; (2.4)

(iv)
$$L^q(\mathbf{S}^{n-1}) \subset B_q^{\kappa,\upsilon}(\mathbf{S}^{n-1})$$
 for $\upsilon > -1$ and $\kappa \ge 0$. (2.5)

In their investigations of block spaces, Keitoku and Sato showed in [KS] that these spaces enjoy the following properties:

LEMMA 2.2. (i) If $1 , then for <math>\kappa > \frac{1}{p'}$ we have

$$B_q^{\kappa,\upsilon}(\mathbf{S}^{n-1}) \subseteq L^p(\mathbf{S}^{n-1})$$
 for any $\upsilon > -1$;

(ii)

$$B_q^{\kappa,\upsilon}(\mathbf{S}^{n-1}) = L^q(\mathbf{S}^{n-1})$$
 if and only if $\kappa \ge \frac{1}{q'}$ and $\upsilon \ge 0$;

(iii) for any v > -1, we have

$$\bigcup_{q>1} B_q^{0,v}(\mathbf{S}^{n-1}) \not\subseteq \bigcup_{q>1} L^q(\mathbf{S}^{n-1}).$$

For a q-block function b on \mathbf{S}^{n-1} supported in an interval with q>1 and $\|b\|_q\leq$ $\left|I\right|^{-1/q'},\,1/q+1/q'=1,$ we define the function \tilde{b} on \mathbf{S}^{n-1} by

$$\tilde{b}(x) = b(x) - \int_{\mathbf{S}^{n-1}} b(u)d\sigma(u). \tag{2.6}$$

Then one can easily see that \tilde{b} enjoys the following properties:

$$\int_{\mathbf{S}^{n-1}} \tilde{b}(u) d\sigma(u) = 0; \tag{2.7}$$

$$\|\tilde{b}\|_{q} \le 2|I|^{-1/q'};$$
 (2.8)

$$\left\|\tilde{b}\right\|_{1} \le 2. \tag{2.9}$$

To simplify matters, we shall call the function \tilde{b} the blocklike function corresponding to the block function b.

We shall need the following two lemmas from [FGP].

LEMMA 2.3. Let $\Phi: B(0,1) \to \mathbf{R}^d$ be a smooth mapping and Ω be a homogeneous function of degree 0. Suppose that Φ is of finite type at 0 and $\Omega \in L^q(\mathbf{S}^{n-1})$ for some q > 1. Then there are $N \in \mathbb{N}$, $\delta \in (0,1]$, C > 0 and $j_0 \in \mathbb{Z}_-$ such that

$$\left| \int_{2^{j-1} \le |y| < 2^j} e^{-i\xi \cdot \Phi(y)} \frac{\Omega(y)}{|y|^n} dy \right| \le C \|\Omega\|_q (2^{Nj} |\xi|)^{-\delta}$$
 (2.10)

for all $j \leq j_0$ and $\xi \in \mathbf{R}^d$.

LEMMA 2.4. Let $m \in \mathbb{N}$ and $R(\cdot)$ be a real-valued polynomial on \mathbb{R}^n with $\deg(R) \leq m-1$. Suppose that

$$P(y) = \sum_{|\alpha|=m} a_{\alpha} y^{\alpha} + R(y),$$

 Ω is a homogeneous function of degree zero, and $\Omega \in L^q(\mathbf{S}^{n-1})$ for some q > 1. Then there exists a constant C = C(m, n) > 0 such that

$$\left| \int_{2^{j-1} \le |y| < 2^j} e^{-iP(y)} \frac{\Omega(y)}{|y|^n} dy \right| \le C \left\| \Omega \right\|_q \left(2^{mj} \sum_{|\alpha| = m} |a_{\alpha}| \right)^{-\frac{1}{2qm}}$$

holds for all $j \in \mathbf{Z}$ and $a_{\alpha} \in \mathbf{R}$.

The proofs of our results will rely heavily on the following lemma from [AqP] which is an extension of earlier results of Duoandikoetxea-Rubio de Francia in [DR] and Fan-Pan in [FP].

LEMMA 2.5. Let $N \in \mathbf{N}$ and $\left\{\sigma_k^{(l)}: k \in \mathbf{Z}, 0 \leq l \leq N\right\}$ be a family of Borel measures on \mathbf{R}^n with $\sigma_k^{(0)} = 0$ for every $k \in \mathbf{Z}$. Let $\{a_l: 1 \leq l \leq N\} \subseteq \mathbf{R}^+/(0,2)$, $\{m_l: 1 \leq l \leq N\} \subseteq \mathbf{N}, \{\alpha_l: 1 \leq l \leq N\} \subseteq \mathbf{R}^+, \text{ and let } L_l: \mathbf{R}^n \to \mathbf{R}^{m_l} \text{ be linear transformations for } 1 \leq l \leq N$. Suppose that for all $k \in \mathbf{Z}$, $1 \leq l \leq N$, for all $\xi \in \mathbf{R}^n$ and for some C > 0, A > 1, $p_0 \in (2, \infty)$ we have the following:

$$(i) \left\| \sigma_k^{(l)} \right\| \le CA;$$

$$(ii)\left|\hat{\sigma}_{k}^{(l)}\left(\xi\right)\right| \leq CA\left|a_{l}^{kA}L_{l}\left(\xi\right)\right|^{-\frac{\alpha_{l}}{A}};$$

$$(iii)\left|\hat{\sigma}_{k}^{(l)}\left(\xi\right)-\hat{\sigma}_{k}^{(l-1)}\left(\xi\right)\right|\leq CA\left|a_{l}^{kA}L_{l}\left(\xi\right)\right|^{\frac{\alpha_{l}}{A}};$$

(iv)

$$\left\| \left(\sum_{k \in \mathbf{Z}} \left| \sigma_k^{(l)} * g_k \right|^2 \right)^{\frac{1}{2}} \right\|_{p_0} \le CA \left\| \left(\sum_{k \in \mathbf{Z}} |g_k|^2 \right)^{\frac{1}{2}} \right\|_{p_0}$$
 (2.11)

holds for all functions $\{g_k\}$ on \mathbb{R}^n .

Then for $p'_0 there exists a positive constant <math>C_p$ such that

$$\left\| \sum_{k \in \mathbf{Z}} \sigma_k^{(N)} * f \right\|_{L^p(\mathbf{R}^n)} \le C_p A \|f\|_{L^p(\mathbf{R}^n)}$$
 (2.12)

$$\left\| \left(\sum_{k \in \mathbf{Z}} \left| \sigma_k^{(N)} * f \right|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbf{R}^n)} \le C_p A \|f\|_{L^p(\mathbf{R}^n)}$$
 (2.13)

hold for all f in $L^p(\mathbf{R}^n)$. The constant C_p is independent of the linear transformations $\{L_l\}_{l=1}^N$.

We shall also need the following result from [DR] (see also [AqP]):

LEMMA 2.6. Let $\{\lambda_j : j \in \mathbf{Z}\}$ be a sequence of Borel measures in \mathbf{R}^n and let

 $\lambda^*(f) = \sup_{j \in \mathbf{Z}} ||\lambda_j| * f|$. Assume that

$$\|\lambda^*(f)\|_q \le B \|f\|_q \text{ for some } q > 1 \text{ and } B > 1.$$
 (2.14)

Then, for arbitrary functions $\{g_j\}$ on \mathbf{R}^n and $\left|\frac{1}{p_0} - \frac{1}{2}\right| = \frac{1}{2q}$, the following inequality holds

$$\left\| \left(\sum_{k \in \mathbf{Z}} |\lambda_k * g_k|^2 \right)^{\frac{1}{2}} \right\|_{p_0} \le \left(B \sup_{k \in \mathbf{Z}} \|\lambda_k\| \right)^{\frac{1}{2}} \left\| \left(\sum_{k \in \mathbf{Z}} |g_k|^2 \right)^{\frac{1}{2}} \right\|_{p_0}. \tag{2.15}$$

3. L^p boundedness of certain maximal functions. For given sequences $\{\mu_k\}_{k\in\mathbf{Z}}$ and $\{\tau_k\}_{k\in\mathbf{Z}}$ of nonnegative Borel measures on \mathbf{R}^n we define the maximal functions μ^* and τ^* by

$$\mu^*(f) = \sup_{k \in \mathbf{Z}} |\mu_k * f| \text{ and } \tau^*(f) = \sup_{k \in \mathbf{Z}} |\tau_k * f|.$$

We have the following lemma.

LEMMA 3.1. Let $\{\mu_k\}_{k\in\mathbf{Z}}$ and $\{\tau_k\}_{k\in\mathbf{Z}}$ be sequences of nonnegative Borel measures on \mathbf{R}^n . Let $L\colon \mathbf{R}^n\to\mathbf{R}^m$ be a linear transformation. Suppose that for all $k \in \mathbf{Z}, \, \xi \in \mathbf{R}^n$, for some $a \geq 2, \, \alpha, C > 0$ and for some constant B > 1 we have

- (i) $\|\mu_k\| \le B$; $\|\tau_k\| \le B$; (ii) $|\hat{\mu}_k(\xi)| \le CB(a^{kB} |L(\xi)|)^{-\frac{\alpha}{B}}$;
- $(iii) |\hat{\mu}_k(\xi) \hat{\tau}_k(\xi)| \le CB(a^{kB} |L(\xi)|)^{\frac{\alpha}{B}};$

$$\|\tau^*(f)\|_p \le B \|f\|_p \text{ for all } 1 (3.1)$$

Then the inequality

$$\|\mu^*(f)\|_p \le C_p B \|f\|_p$$
 (3.2)

holds for all 1 and <math>f in $L^p(\mathbf{R}^n)$ with a constant C_p independent of B and L.

Proof. By the arguments in the proof of Lemma 6.2 in [FP], we may assume that $m \leq n$ and $L\xi = \pi_m^n \xi = (\xi_1, \dots, \xi_m)$ for $\xi = (\xi_1, \dots, \xi_n)$. Now, choose and fix a $\theta \in \mathcal{S}(\mathbf{R}^m)$ such that $\hat{\theta}(\xi) = 1$ for $|\xi| \leq 1$ and $\hat{\theta}(\xi) = 0$ for $|\xi| \geq 2$. For each $k \in \mathbf{Z}$, let $(\theta_k)(\xi) = \hat{\theta}(a^{kB}\xi)$, and define the sequence of measures $\{\Upsilon_k\}$ by

$$\hat{\Upsilon}_k(\xi) = \hat{\mu}_k(\xi) - (\theta_k)(\pi_m^n \xi)\hat{\tau}_k(\xi). \tag{3.3}$$

By (i)-(iii) we get

$$\left|\hat{\Upsilon}_{k}\left(\xi\right)\right| \leq CB\left(a^{kB} \left|\pi_{m}^{n}\xi\right|\right)^{\frac{\alpha}{B}} \tag{3.4}$$

for $\xi \in \mathbf{R}^n$. Let

$$S_{\Upsilon}\left(f\right)\left(x\right) = \left(\sum_{k \in \mathbf{Z}} \left|\Upsilon_{k} * f(x)\right|^{2}\right)^{\frac{1}{2}} \text{ and } \Upsilon^{*}\left(f\right) = \sup_{k \in \mathbf{Z}} \left|\left|\Upsilon_{k}\right| * f\right|.$$

Then by using (3.3) we have

$$\mu^*\left(f\right)\left(x\right) \le S_{\tau}\left(f\right)\left(x\right) + C(\mathcal{M}_{\mathbf{R}^m} \otimes id_{\mathbf{R}^{n-m}})\left(\tau^*\left(f\right)\left(x\right)\right) \tag{3.5}$$

$$\Upsilon^*(f)(x) \le S_{\Upsilon}(f)(x) + 2C[(\mathcal{M}_{\mathbf{R}^m} \otimes id_{\mathbf{R}^{n-m}})](\tau^*(f)(x))$$
(3.6)

where $\mathcal{M}_{\mathbf{R}^d}$ is the classical Hardy-Littlewood maximal function on \mathbf{R}^d .

By (3.4) and Plancherel's theorem we obtain

$$||S_{\Upsilon}(f)||_{2} \le CB ||f||_{2}$$
 (3.7)

which when combined with the L^p boundedness of $\mathcal{M}_{\mathbf{R}^d}$, (3.1), and (3.6)-(3.7) gives that

$$\left\|\Upsilon^*(f)\right\|_2 \leq CB \left\|f\right\|_2 \tag{3.8}$$

with C independent of B. By using the fact $\|\Upsilon_k\| \leq CB$ together with Lemma 2.6 (for q=2) we get

$$\left\| \left(\sum_{k \in \mathbf{Z}} (|\Upsilon_k * g_k|^2)^{\frac{1}{2}} \right\|_{p_0} \le C_{p_0} B \left\| \left(\sum_{k \in \mathbf{Z}} |g_k|^2 \right)^{\frac{1}{2}} \right\|_{p_0}$$
(3.9)

if $1/4 = |1/p_0 - 1/2|$. Now, by (3.4), (3.9) and applying Lemma 2.5 we get

$$||S_{\tau}(f)||_{p} \le C_{p}B ||f||_{p} \text{ for } p \in (\frac{4}{3}, 4).$$
 (3.10)

Again, the L^p boundedness of $\mathcal{M}_{\mathbf{R}^d}$, (3.1), (3.6) and (3.10) imply that

$$\|\Upsilon^*(f)\|_p \le CB \|f\|_p \text{ for } p \in (\frac{4}{3}, 4).$$
 (3.11)

Reasoning as above, (3.4), (3.11), Lemma 2.5 and Lemma 2.6 provide

$$||S_{\Upsilon}(f)||_{p} \le C_{p}B ||f||_{p} \text{ for } p \in (\frac{8}{7}, 8).$$
 (3.12)

By successive application of the above argument we ultimately obtain that

$$||S_{\Upsilon}(f)||_{p} \le C_{p}B ||f||_{p} \text{ for } p \in (1, \infty).$$
 (3.13)

Therefore, by the L^p boundedness of $\mathcal{M}_{\mathbf{R}^d}$, (3.1), (3.5) and (3.13) we conclude that

$$\|\mu^*(f)\|_p \le C_p B \|f\|_p \text{ for } p \in (1, \infty).$$
 (3.14)

Finally, the inequality (3.2) holds trivially for $p = \infty$. This concludes the proof of our lemma.

DEFINITION 3.2. Let $\tilde{b}(\cdot)$ be a blocklike function defined as in (2.2) and Γ be an arbitrary function on \mathbf{R}^n . Define the measures $\{\sigma_{\Gamma,\tilde{b},j}: j \in \mathbf{Z}\}$ and the maximal operator $\sigma_{\Gamma,\tilde{b}}^*$ on \mathbf{R}^n by

$$\int_{\mathbf{R}^d} f \ d\sigma_{\Gamma,\tilde{b},j} = \int_{2^{j-1} < |u| < 2^j} f\left(\Gamma\left(u\right)\right) \frac{\tilde{b}\left(u\right)}{|u|^n} du; \tag{3.15}$$

$$\sigma_{\Gamma,\tilde{b}}^{*}\left(f\right) = \sup_{j \in \mathbf{Z}} \left| \left| \sigma_{\Gamma,\tilde{b},j} \right| * f \right|. \tag{3.16}$$

These measures will be useful only in the case $|I| \ge e^{-2}$ where I is the support of b. On the other hand, for the case $|I| < e^{-2}$ we need to define the following measures.

DEFINITION 3.3. Let $\tilde{b}(\cdot)$ be a q-blocklike function defined as in (2.2) and Γ be an arbitrary function on \mathbf{R}^n . We define the measures $\{\lambda_{\Gamma,\tilde{b},j}: j \in \mathbf{Z}\}$ and the maximal operators $\lambda_{\Gamma,\tilde{b}}^*$ on \mathbf{R}^n by

$$\int_{\mathbf{R}^d} f \ d\lambda_{\Gamma,\tilde{b},j} = \int_{\omega^{j-1} < |u| < \omega^j} f(\Gamma(u)) \frac{\tilde{b}(u)}{|u|^n} \ du; \tag{3.17}$$

$$\lambda_{\Gamma,\tilde{b}}^* f(x) = \sup_{j \in \mathbf{Z}} \left| \left| \lambda_{\Gamma,\tilde{b},j} \right| * f(x) \right|$$
 (3.18)

where $\omega = 2^{\lceil \log(|I|^{-1}) \rceil}$, $|I| < e^{-2}$ and $[\cdot]$ denotes the greatest integer function.

LEMMA 3.4. Let $\Phi: B(0,1) \to \mathbf{R}^d$ be a smooth mapping and for q>1 let \tilde{b} be a q-blocklike function defined as in (2.2). Suppose that Φ is of finite type at 0. If $|I| < e^{-2}$, then there are $N \in \mathbf{N}$, $\delta \in (0,1]$, C>0 and $j_0 \in \mathbf{Z}_-$ such that

$$\left|\hat{\lambda}_{\Phi,\tilde{b},j}(\xi)\right| \le C[\log(|I|)](\omega^{Nj}|\xi|)^{-\frac{\delta}{[\log(|I|-1)]}}$$
(3.19)

for all $j \leq j_0$, $\xi \in \mathbf{R}^d$ with C independent of j and $[\log(|I|^{-1})]$.

Proof. By (2.4), Lemma 2.3 and the definition of $\lambda_{\Phi \tilde{h} i}$ we get

$$\begin{split} \left| \hat{\lambda}_{\Phi,\tilde{b},j}(\xi) \right| &\leq \sum_{s=0}^{\lceil \log(|I|^{-1}) \rceil - 1} \left| \int_{\omega^{(j-1)} 2^s \leq |y| < \omega^{(j-1)} 2^{(s+1)}} e^{-i\xi \cdot \Phi(y)} \frac{\tilde{b}(y)}{|y|^n} dy \right| \\ &\leq \sum_{s=0}^{\lceil \log(|I|^{-1}) \rceil - 1} C |I|^{-\frac{1}{q'}} \left(\omega^{N(j-1)} 2^{N(s+1)} |\xi| \right)^{-\delta} \\ &\leq C |I|^{-\frac{1}{q'}} \omega^{\delta N} (\omega^{Nj} |\xi|)^{-\delta} (\frac{1 - \omega^{-\delta N}}{1 - 2^{\delta N}}) \\ &\leq C \omega^{\delta N} |I|^{-\frac{1}{q'}} (\omega^j |\xi|)^{-\delta}. \end{split}$$

By interpolating between this estimate and the trivial estimate

$$\left|\hat{\lambda}_{\Phi,\tilde{b},j}(\xi)\right| \le C[\log(|I|^{-1})]$$

we get the estimate in (3.19). This concludes the proof of our lemma.

By Lemma 2.4 and the argument used in the proof of Lemma 3.4 we get the following:

LEMMA 3.5. Let $m \in \mathbb{N}$, \tilde{b} be a q-blocklike function (for q > 1) defined as in (2.2) and $R(\cdot)$ be a real-valued polynomial on \mathbb{R}^n with $\deg(R) \leq m-1$. Suppose

$$P(y) = \sum_{|\alpha| = m} a_{\alpha} y^{\alpha} + R(y),$$

and $|I| < e^{-2}$. Then there exists a constant C = C(m,n) > 0 such that

$$\left|\int_{\omega^{j-1}\leq |u|<\omega^{j}}e^{-iP(y)}\frac{\tilde{b}(y)}{\left|y\right|^{n}}dy\right|\leq C[\log(\left|I\right|^{-1})](\omega^{mj}\sum_{|\alpha|=m}\left|a_{\alpha}\right|)^{-\frac{1}{2qm[\log(\left|I\right|^{-1})]}}$$

holds for all $j \in \mathbf{Z}$ and $a_{\alpha} \in \mathbf{R}$.

By Proposition 1 on page 477 of [St] it is easy to see that the following result holds.

LEMMA 3.6. Let $\mathcal{P} = (P_1, \dots, P_d)$ be a polynomial mapping from \mathbf{R}^n into \mathbf{R}^d . Let $\deg(\mathcal{P}) = \max_{1 \leq j \leq d} \deg(P_j)$. Suppose that $\tilde{b}(\cdot)$ is a blocklike function defined as in (2.2) and $\sigma_{\mathcal{P},\Omega}^*$ be given as in (2.16). Then for every $1 , there exists a constant <math>C_p$ independent of \tilde{b} and the coefficients of \mathcal{P} such that

$$\left\| \sigma_{\mathcal{P},\tilde{b}}^*(f) \right\|_p \le \left\| C_p \left\| f \right\|_p$$

for $f \in L^p(\mathbf{R}^d)$.

By the above lemma and the proof of Lemma 3.4 we obtain the following:

LEMMA 3.7. Let $\mathcal{P} = (P_1, \dots, P_d)$ be a polynomial mapping from \mathbf{R}^n into \mathbf{R}^d and \tilde{b} be a q-blocklike function defined as in (2.2). Let $\deg(\mathcal{P}) = \max_{1 \leq j \leq d} \deg(P_j)$. Suppose that $|I| < e^{-2}$. Then for every $1 , there exists a constant <math>C_p$ independent of \tilde{b} and the coefficients of \mathcal{P} such that

$$\left\| \lambda_{\mathcal{P},\tilde{b}}^{*}(f) \right\|_{p} \leq C_{p}[\log(|I|^{-1})] \left\| f \right\|_{p}$$

for $f \in L^p(\mathbf{R}^d)$.

Our next step is to prove the following result on maximal functions:

THEOREM 3.8. Let $\Phi: B(0,1) \to \mathbf{R}^d$ be a smooth mapping and for q>1 let \tilde{b} be a q-blocklike function defined as in (2.2). Suppose that Φ is of finite type at 0. Then for $1 and <math>f \in L^p(\mathbf{R}^d)$ there exists a positive constant C_p which is independent of \tilde{b} such that

$$\left\| \lambda_{\Phi,\tilde{b}}^*(f) \right\|_{L^p(\mathbf{R}^d)} \le C_p[\log(|I|^{-1})] \|f\|_{L^p(\mathbf{R}^d)} \quad \text{if } |I| < e^{-2}; \tag{3.20}$$

$$\left\| \sigma_{\Phi,\tilde{b}}^* \left(f \right) \right\|_{L^p(\mathbf{R}^d)} \le C_p \left\| f \right\|_{L^p(\mathbf{R}^d)} \quad \text{if } |I| \ge e^{-2}.$$
 (3.21)

Proof. Assume first that $|I| < e^{-2}$. Without loss of generality we may assume that $\tilde{b} \ge 0$. By Lemma 3.4, there are $N \in \mathbb{N}$, $\delta \in (0,1]$, C > 0 and $k_0 \in \mathbb{Z}_-$ such that

$$\left|\hat{\lambda}_{\Phi,\tilde{b},k}(\xi)\right| \le C[\log(|I|^{-1})](\omega^{Nk}|\xi|)^{-\frac{\delta}{[\log(|I|^{-1})]}}$$
(3.22)

for all $k \leq k_0$, $\xi \in \mathbf{R}^d$ with C independent of k and $[\log(|I|^{-1})]$ where $\omega = 2^{[\log(|I|^{-1})]}$. For $\Phi = (\Phi_1, \dots, \Phi_d)$ we let $\mathcal{P} = (P_1, \dots, P_d)$ where

$$P_{j}(y) = \sum_{|\beta| < N-1} \frac{1}{\beta!} \frac{\partial^{\beta} \Phi_{j}}{\partial y^{\beta}}(0) y^{\beta}, \quad 1 \le j \le d.$$

Then we have

$$\left| \hat{\lambda}_{\Phi,\tilde{b},k}(\xi) - \hat{\lambda}_{\mathcal{P},\tilde{b},k}(\xi) \right| \le C[\log(|I|^{-1})]\omega^{-N} \left(\omega^{Nk} |\xi| \right). \tag{3.23}$$

By (2.5) we have

$$\left| \hat{\lambda}_{\Phi,\tilde{b},k}(\xi) - \hat{\lambda}_{\mathcal{P},\tilde{b},k}(\xi) \right| \le C[\log(|I|^{-1})]. \tag{3.24}$$

By interpolating between this estimate and (3.23) we get

$$\left|\hat{\lambda}_{\Phi,\tilde{b},k}(\xi) - \hat{\lambda}_{\mathcal{P},\tilde{b},k}(\xi)\right| \le C[\log(|I|^{-1})] \left(\omega^{Nk} |\xi|\right)^{\frac{\delta}{\lceil\log(|I|^{-1})\rceil}}.$$
 (3.25)

Therefore, (3.20) follows from (3.22), (3.25), Lemma 3.1 and Lemma 3.7. The proof of the inequality (3.21) will be much easier. In fact, it follows from (2.4)-(2.5), Lemma 2.3, 3.1, and 3.6. We omit the details.

4. Proofs of the theorems. By assumption, Ω can be written as $\Omega = \sum_{\mu=1}^{\infty} c_{\mu} b_{\mu}$ where $c_{\mu} \in \mathbb{C}$, b_{μ} is a q-block with support on an ia cap I_{μ} on \mathbf{S}^{n-1} and

$$M_q^{0,0}(\{c_k\},\{I_k\}) = \sum_{\mu=1}^{\infty} |c_{\mu}| \left(1 + (\log|I_{\mu}|^{-1})\right) < \infty.$$
 (4.1)

For each $\mu=1,2,...$, let b_{μ} be the blocklike function corresponding to b_{μ} . By the vanishing condition on Ω we have

$$\Omega = \sum_{\mu=1}^{\infty} c_{\mu} \tilde{b}_{\mu} \tag{4.2}$$

and hence

$$||T_{\Phi}f||_{p} \le \sum_{\mu=1}^{\infty} |c_{\mu}| ||T_{\Phi,\tilde{b}_{\mu}}f||_{p},$$
 (4.3)

where

$$T_{\Phi,\tilde{b}_{\mu}}f(x) = \text{p.v.} \int_{B(0,1)} f(x - \Phi(u)) \frac{\tilde{b}_{\mu}(u')}{|u|^n} du.$$

Let δ , N, \mathcal{P} be given as in the proof of Theorem 3.8. For $1 \leq j \leq d$, let $a_{j,\beta} = \frac{1}{\beta!} \frac{\partial^{\beta} \Phi_{j}}{\partial y^{\beta}}(0)$. For $0 \leq l \leq N-1$ we define $Q^{l} = (Q_{1}^{l}, \dots, Q_{d}^{l})$ by

$$Q_j^l(y) = \sum_{|\beta| \le l} a_{j,\beta} y^{\beta}, \qquad j = 1, \dots, d$$
 (4.4)

when $0 \le l \le N-1$ and $Q^N = \Phi$. For each $0 \le l \le N$, let $\lambda^{(l)}_{\tilde{b}_{\mu},k} = \lambda_{Q^l,\tilde{b}_{\mu},k}$ and $\sigma^{(l)}_{\tilde{b}_{\mu},k}$ = $\sigma_{Q^l,\tilde{b}_{\mu},k}$. Then by (2.3)-(2.5), Lemma 2.4 we have

$$\left\| \sigma_{\tilde{b}_{u},k}^{(l)} \right\| \le C; \tag{4.5}$$

$$\left|\hat{\sigma}_{\tilde{b}_{\mu},k}^{(l)}(\xi)\right| \le C(2^{lk} \sum_{|\beta|=l} \left| \sum_{j=l}^{d} a_{j,\beta} \xi_{j} \right|)^{-\frac{1}{2q'l}};$$
 (4.6)

$$\left| \hat{\sigma}_{\tilde{b}_{\mu},k}^{(N)}(\xi) - \hat{\sigma}_{\tilde{b}_{\mu},k}^{(N-1)}(\xi) \right| \le C(2^{Nk} |\xi|); \tag{4.7}$$

$$\left| \hat{\sigma}_{\tilde{b}_{\mu},k}^{(l)}(\xi) - \hat{\sigma}_{\tilde{b}_{\mu},k}^{(l-1)}(\xi) \right| \le C(2^{lk} \sum_{|\beta|=l} \left| \sum_{j=l}^{d} a_{j,\beta} \xi_{j} \right|) \tag{4.8}$$

for $|I_{\mu}| \geq e^{-2}$, $\mu = 1, 2, \dots, 0 \leq l \leq N-1$, and $k \leq k_0$. Also, by (2.3)-(2.5), Lemma 3.5, and the same argument as in the proof (3.25) we have

$$\left\|\lambda_{\tilde{b}_{\mu},k}^{(l)}\right\| \le CA_{\mu};\tag{4.9}$$

$$\left| \hat{\lambda}_{\tilde{b}_{\mu},k}^{(l)}(\xi) \right| \le C A_{\mu} \left(2^{lA_{\mu}k} \sum_{|\beta|=l} \left| \sum_{j=l}^{d} a_{j,\beta} \xi_{j} \right| \right)^{-\frac{1}{A_{\mu} \cdot 2q'l}}; \tag{4.10}$$

$$\left| \hat{\lambda}_{\tilde{b}_{\mu},k}^{(l)}(\xi) - \hat{\lambda}_{\tilde{b}_{\mu},k}^{(l-1)}(\xi) \right| \le CA_{\mu} \left(2^{lA_{\mu}k} \sum_{|\beta|=l} \left| \sum_{j=l}^{d} a_{j,\beta} \xi_{j} \right| \right)^{\frac{1}{A_{\mu} 2q'l}}$$
(4.11)

where $A_{\mu} = [\log(\left|I_{\mu}\right|^{-1})], \left|I_{\mu}\right| < e^{-2}, \ \mu = 1, 2, \dots, \ k \le k_0, \ 0 \le l \le N-1.$ By (3.20)-(3.22), (3.25), (4.5)-(4.11), Theorem 3.8, Lemmas 2.5-2.6, and 3.6-3.7 we get

$$\left\| T_{\Phi,\tilde{b}_{\mu}} f \right\|_{p} = \left\| \sum_{j \in \mathbf{Z}_{-}} \lambda_{\tilde{b}_{\mu},k}^{(N)} * f \right\|_{p} \le C_{p} A_{\mu} \left\| f \right\|_{p} \text{ if } \left| I_{\mu} \right| < e^{-2}; \tag{4.12}$$

$$\left\| T_{\Phi,\tilde{b}_{\mu}} f \right\|_{p} = \left\| \sum_{j \in \mathbf{Z}_{-}} \sigma_{\tilde{b}_{\mu},k}^{(N)} * f \right\|_{p} \le C_{p} \left\| f \right\|_{p} \text{ if } \left| I_{\mu} \right| \ge e^{-2}, \tag{4.13}$$

for every $f \in L^p(\mathbf{R}^d)$, $\mu = 1, 2, ...$, and for all p, 1 . Hence, (1.7) follows from(4.1), (4.3) and (4.12)-(4.13). On the other hand, (1.8) follows from (3.20)-(3.21), (4.2) and the following inequality

$$\mathcal{M}_{\Phi}f(x) \le 4\sum_{\mu=1}^{\infty} \left| c_{\mu} \right| \sigma_{\Phi,\tilde{b}_{\mu}}^{*} \left(|f| \right) (x)$$

$$\leq 4 \sum_{\mu=1, |I_{\mu}| \geq e^{-2}}^{\infty} |c_{\mu}| \, \sigma_{\Phi, \tilde{b}_{\mu}}^{*} (|f|) (x) + 8 \sum_{\mu=1, |I_{\mu}| < e^{-2}}^{\infty} |c_{\mu}| \, \lambda_{\Phi, \tilde{b}_{\mu}}^{*} (|f|) (x). \tag{4.14}$$

This concludes the proof of Theorem 1.2.

Finally, the proof of Theorem 1.3 follows from the above estimates and the techniques in [AqP]. We omit the details.

REFERENCES

- [AqAsP] H. Al-Qassem, A. Al-Salman and Y. Pan, Singular integrals associated to homogeneous mappings with rough kernels, Hokkaido Math. J., 33(2004), pp. 551–569.
- [AqP] H. Al-Qassem and Y. Pan, L^p estimates for singular integrals with kernels belonging to certain block spaces, Revista Matemática Iberoamericana, (18) 3 (2002), pp. 701–730.
- [DR] J. DUOANDIKOETXEA AND J. L. RUBIO DE FRANCIA, Maximal functions and singular integral operators via Fourier transform estimates, Invent. Math., 84(1986), pp. 541–561
- [FGP] D. FAN, K. Guo, and Y. Pan, Singular integrals along submanifolds of finite type, Mich. Math. J., 45(1998), pp. 135–142.
- [FP] D. FAN AND Y. PAN, Singular integral operators with rough kernels supported by subvarieties, Amer J. Math., 119(1997), pp. 799–839.
- [KS] M. KEITOKU AND E. SATO, Block spaces on the unit sphere in \mathbb{R}^n , Proc. Amer. Math. Soc., 119(1993), pp. 453–455.
- [LTW] S. Lu, M. Taibleson and G. Weiss, Spaces Generated by Blocks, Beijing Normal University Press, 1989, Beijing.
- [So] F. Soria, Characterizations of classes of functions generated by blocks and associated Hardy spaces, Ind. Univ. Math. J., 34:3(1985), pp. 463–492.
- [St] E. M. Stein, Problems in harmonic analysis related to curvature and oscillatory integrals, Proc. Int l. Cong. Math., (1986), pp. 196–221.