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Abstract

In this article, we study a coupled Cahn-Hilliard-Navier-Stokes model with delays in a
two-dimensional domain. The model consists of the Navier-Stokes equations for the velocity,
coupled with a Cahn-Hilliard model for the order (phase) parameter. We prove the existence of
an attractor using the theory of pullback attractors.
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1 Introduction

It is well accepted that the incompressible Navier-Stokes (NS) equation governs the motions of
single-phase fluids such as air or water. On the other hand, we are faced with the difficult prob-
lem of understanding the motion of binary fluid mixtures, that is fluids composed by either two
phases of the same chemical species or phases of different composition. Diffuse interface models
are well-known tools to describe the dynamics of complex (e.g., binary) fluids, [9]. For instance,
this approach is used in [1] to describe cavitation phenomena in a flowing liquid. The model consists
of the NS equation coupled with the phase-field system, [2, 9, 8, 10]. In the isothermal compressible
case, the existence of a global weak solution is proved in [7]. In the incompressible isothermal case,
neglecting chemical reactions and other forces, the model reduces to an evolution system which
governs the fluid velocity v and the order parameter φ. This system can be written as a NS equa-
tion coupled with a convective Allen-Cahn equation, [9]. The associated initial and boundary value
problem was studied in [9] in which the authors proved that the system generated a strongly contin-
uous semigroup on a suitable phase space which possesses a global attractor. They also established
the existence of an exponential attractor. This entails that the global attractor has a finite fractal
dimension, which is estimated in [9] in terms of some model parameters. The dynamic of simple
single-phase fluids has been widely investigated although some important issues remain unresolved,
[17]. In the case of binary fluids, the analysis is even more complicate and the mathematical studied
is still at it infancy as noted in [9].
As noted in [8], the mathematical analysis of binary fluid flows is far from being well understood.
For instance, the spinodal decomposition under shear consists of a two-stage evolution of a homo-
geneous initial mixture: a phase separation stage in which some macroscopic patterns appear, then
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a shear stage in which these patters organize themselves into parallel layers (see, e.g. [16] for ex-
perimental snapshots). This model has to take into account the chemical interactions between the
two phases at the interface, achieved using a Cahn-Hilliard approach, as well as the hydrodynamic
properties of the mixture (e.g., in the shear case), for which a Navier-Stokes equations with surface
tension terms acting at the interface are needed. When the two fluids have the same constant den-
sity, the temperature differences are negligible and the diffuse interface between the two phases has
a small but non-zero thickness, a well-known model is the so-called ”Model H” (cf. [11]). This is
a system of equations where an incompressible Navier-Stokes equation for the (mean) velocity v is
coupled with a convective Cahn-Hilliard equation for the order parameter φ, which represents the
relative concentration of one of the fluids.
In [4, 5, 6], the authors studied the NS equations in which the forcing term contains some hereditary
features. The model can be used for instance to control a system by applying a force which takes
into account not only the present state of the system, but also the history of the solutions. The
existence and uniqueness of solutions to the 2D NS equations with delays was investigated in [4]
and the asymptotic behavior of the solutions is studied in [5]. The existence of attractors for the 2D
NS equations with delays is proved in [6]. In [3], the authors studied the existence of an attractor for
the 3D Lagrangian averaged Navier-Stokes α− (3D LAN-α) model with delays. Instead of working
directly with the 3D LAN-α model, they proved the existence of attractors for an abstract delay
model and then applied the result to the 3D LAN-α model.
In this article, we study an CH-NS model with delays. We prove the existence of an attractor when
the external force contains some delays following some ideas of [6, 3]. Let us note that the coupling
between the Navier-Stokes and the Cahn-Hilliard systems makes the analysis more involved.
The article is divided as follows. In the next section, we introduce the AC-NS model with delays
and its mathematical setting. The main result appear in the third section.

2 The CH-NS model and its mathematical setting

2.1 Governing equations

In this article, we study a 2D Cahn-Hilliard-Navier-Stokes system with delays. More precisely, we
assume that the domainM of the fluid is a bounded domain in<2. Then, we consider the system

∂v
∂t − ν∆v+ (v · ∇)v+∇p−Kµ∇φ = g(t)+G(t,ut),

div v = 0,

∂φ
∂t + v · ∇φ−∆µ = 0,

µ = −ε∆φ+α f (φ),

(2.1)

inM× (0,+∞).
In (2.1), the unknown functions are the velocity v = (v1,v2) of the fluid, its pressure p and the
order (phase) parameter φ. The quantity µ is the variational derivative of the following free energy
functional

F (φ) =
∫
M

(
ε

2
|∇φ|2+αF(φ)

)
ds, (2.2)

where, e.g., F(r) =
∫ r

0
f (ζ)dζ. Here, the constants ν > 0, ε > 0 and K > 0 correspond to the kine-



34 T. Tachim Medjo

matic viscosity of the fluid, the mobility constant and the capillarity (stress) coefficient respectively.
Here ε, α > 0 are two physical parameters describing the interaction between the two phases. In
particular, ε is related with the thickness of the interface separating the two fluids, [8].
A typical example of potential F is that of logarithmic type (see [8]). However, this potential is
often replaced by a polynomial approximation of the type F(r) = γ1r4 −γ2r2, γ1,γ2 being positive
constants. As noted in [8], (2.1)1 can be replaced by

∂v
∂t
− ν∆v+ (v · ∇)v+∇p̃ = −Kdiv (∇φ⊕∇φ)+Q(t−τ(t), (v,φ)(t−τ(t))), (2.3)

where p̃ = p−K( ε2 |∇φ|
2 +αF(φ)), since Kµ∇φ =K( ε2 |∇φ|

2 +αF(φ))−Kdiv (∇φ⊕∇φ). The stress
tensor ∇φ⊕∇φ is considered the main contribution modeling capillary forces due to surface tension
at the interface between the two phases of the fluid.
Regarding the boundary conditions for these models, as in [8] we assume that the boundary condi-
tions for φ are the natural no-flux condition

∂ηφ = ∂ηµ = 0, on ∂M× (0,∞), (2.4)

where ∂M is the boundary ofM and η is the outward normal to ∂M. These conditions ensure the
mass conservation. In fact, from ∂ηµ = 0 on ∂M× (0,∞), we have the conservation of the following
quantity

〈φ(t)〉 =
1
|M|

∫
M

φ(x, t)dx, (2.5)

where |M| stands for the Lebesgue measure ofM. More precisely, we have

〈φ(t)〉 = 〈φ(0)〉, ∀t ≥ 0. (2.6)

Concerning the boundary condition for u, we assume the Dirichlet (no-slip) boundary condition

v = 0, on ∂M× (0,∞). (2.7)

Therefore we assume that there is no relative motion at the fluid-solid interface.
The initial condition is given by

u(τ) = (v,φ)(τ) = u0 = (v0,φ0),

u(t) = (v,φ)(t) = ϑ(t) = (ϑ1,ϑ2)(t) t ∈ (τ−h, τ),
(2.8)

where u0 = (v0,φ0) and ϑ are given initial data at t = τ and in the interval (−h,0) respectively, and
h > 0 is a fixed time.
The terms g(t) and G(t,ut) are the external forcing depending eventually on the the history of the
solution u = (v,φ).

2.2 Mathematical setting

We first recall from [8] a weak formulation of (2.1)-(2.8). Hereafter, we assume that the domainM
is bounded with a smooth boundary ∂M (e.g., of class C2). We also assume that f ∈ C3(<) satisfies

lim
|r|→+∞

f
′

(r) > 0,

| f i(r)| ≤ c f (1+ |r|k−i+1), ∀r ∈ <, i = 0,1,2,3,

(2.9)
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where c f is some positive constant and k ∈ [2,+∞) is fixed.
If X is a real Hilbert space with inner product (·, ·)X , we will denote the induced norm by | · |X , while
X∗ will indicate its dual. We set

V1 = {u ∈ C∞c (M) : div u = 0 inM}.

We denote by H1 and V1 the closure of V1 in (L2(M))2 and (H1
0(M))2 respectively. The scalar

product in H1 is denoted by (·, ·)L2 and the associated norm by | · |L2 . Moreover, the space V1 is
endowed with the scalar product

((u,v)) =
2∑

i=1

(∂xiu,∂xiv)L2 , ‖u‖ = ((u,u))1/2.

We now define the operator A0 by

A0v = P∆v, ∀v ∈ D(A0) = H2(M)∩V1,

where P is the Leray-Helmotz projector in L2(M) onto H1. Then, A0 is a self-adjoint positive
unbounded operator in H1 which is associated with the scalar product defined above. Furthermore,
A−1

0 is a compact linear operator on H1 and |A0 · |L2 is a norm on D(A0) that is equivalent to the
H2−norm.
Hereafter, we set

H2 = L2(M), V2 = H1(M), H = H1×H2, V = V1×V2. (2.10)

We will denote by λ1 > 0 a positive constant such that

λ|w|2L2 ≤ ‖w‖2 ∀w ∈ V1, λ1‖ψ‖
2 ≤ |ANψ|

2
L2 ∀ψ ∈ H2(M). (2.11)

Then we introduce the linear nonnegative unbounded operator on L2(M)

ANφ = −∆φ, ∀φ ∈ D(AN) = {φ ∈ H2(M), ∂ηφ = 0, on ∂M}, (2.12)

and we endow D(AN) with the norm |AN · |L2 + |〈 · 〉|L2 , which is equivalent to the H2−norm. Also we
define the linear positive unbounded operator on the Hilbert space L2

0(M) of the L2− functions with
null mean

BNφ = −∆φ, ∀φ ∈ D(BN) = D(AN)∩L2
0(M). (2.13)

Note that B−1
N is a compact linear operator on L2

0(M). More generally, we can define Bs
N for any

s ∈ <, noting that |Bs/2
N · |L2 , s > 0, is an equivalent norm to the canonical Hs− norm on D(Bs/2

N ) ⊂
Hs(M)∩ L2

0(M). Also note that AN = BN on D(BN). If φ is such that φ− 〈φ〉 ∈ D(Bs/2
N ), we have

that |Bs/2
N (φ−〈φ〉)|L2 + |〈φ〉|L2 is equivalent to the Hs−norm. Moreover, we set H−s(M) = (Hs(M))∗,

whenever s < 0.
We introduce the bilinear operators B0, B1 (and their associated trilinear forms b0,b1) as well as the
coupling mapping R0, which are defined from D(A0)×D(A0) into H, D(A0)×D(AN) into L2(M),
and L2(M)× (D(AN)∩H3(M)) into H1, respectively. More precisely, we set

(B0(u,v),w) =
∫
M

[(u · ∇)v] ·wdx = b0(u,v,w), ∀u,v,w ∈ D(A0),

(B1(u,φ),ρ) =
∫
M

[(u · ∇)φ]ρdx = b1(u,φ,ρ), ∀u ∈ D(A0), φ,ρ ∈ D(AN),

(R0(µ,φ),w) =
∫
M

µ[∇φ ·w]dx = b1(w,φ,µ), ∀w ∈ D(A0), φ ∈ D(AN)∩H3(M), µ ∈ L2(M).

(2.14)
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Note that
R0(µ,φ) = Pµ∇φ.

We recall that B0, B1 and R0 satisfy the following estimates

|B0(u,v)|V∗1 ≤ c|u|1/2
L2 ‖u‖

1/2‖v‖, ∀u,v ∈ V1,

|B0(u,v)|L2 ≤ c|u|1/2
L2 ‖u‖

1/2‖v‖1/2|A0v|1/2
L2 , ∀u ∈ V1, v ∈ D(A0),

(2.15)

|B1(u,φ)|V∗2 ≤ c|u|1/2
L2 ‖u‖

1/2‖φ‖, ∀u ∈ V1,φ ∈ V2,

|B1(u,φ)|L2 ≤ c|u|1/2
L2 ‖u‖

1/2‖φ‖1/2|ANφ|
1/2
L2 , ∀u ∈ V1, φ ∈ D(AN),

(2.16)

|R0(ANφ,ρ)|V∗1 ≤ c|ANφ|
1/2
L2 |φ|

1/2
H3 ‖ρ‖, ∀φ ∈ D(AN), ρ ∈ V2,

|R0(ANφ,ρ)|L2 ≤ c‖ρ‖1/2|ANρ|
1/2
L2 |ANφ|

1/2
L2 |φ|

1/2
H3 , ∀φ ∈ D(AN),ρ ∈ D(A3/2

N ).
(2.17)

We recall that (due to the mass conservation) we have

〈φ(t)〉 = 〈φ(0)〉 = M0, ∀t > 0. (2.18)

Thus, up to a shift of the order parameter field, we can always assume that the mean of φ is zero a
the initial time and, therefore it will remain zero for all positive times. Hereafter, we assume that

〈φ(t)〉 = 〈φ(0)〉 = 0, ∀t > 0. (2.19)

We set
Y = H1×D(B1/2

N ). (2.20)

The space Y is a complete metric space with respect to the norm

|(v,φ)|2Y =K
−1|v|2L2 + ε|∇φ|

2
L2 . (2.21)

We define the Hilbert space V by
V = V1×D(BN), (2.22)

endowed with the scalar products whose associated norm is

‖(v,φ)‖2V = ‖v‖
2+ |BNφ|

2
L2 . (2.23)

Now we make the following assumptions on the external force G. Hereafter, for a given Banach
space X, we denote by CX , L2

X and MX respectively the spaces

CX = C
0(−h,0; X), L2

X = L2(−h,0; X), MX = X×L2
X . (2.24)

The space MX is endowed with the norm

‖(u,ϑ)‖2MX
= ‖u‖2X +

∫ 0

−h
‖ϑ(s)‖2Xds. (2.25)

First for T > τ, u : (τ−h,T ) −→ Y and t ∈ (τ,T ), we denote by ut the function defined on (−h,0) by

ut(s) = u(t+ s) for s ∈ (−h,0). (2.26)
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We suppose that
G :<×CH1 −→ H1 (2.27)

satisfies
for any v ∈ CH1 , t ∈ < 7−→ G(t,v) is measurable, (2.28)

for any t ∈ <, G(t,0) = 0, (2.29)

∃Lg > 0, s.t. ∀t ∈ <, ∀u,v ∈ CH1 ,

|G(t,u)−G(t,v)|L2 ≤ Lg‖u− v‖CH1
,

(2.30)

∃m0 > 0,Cg > 0, s.t. ∀m ∈ [0,m0], τ ≤ t ≤ T, u,v ∈ C0(τ−h,T ; H1)∫ t

τ
ems|G(s,us)−G(s,vs)|2L2 ≤Cg

∫ t

τ−h
ems|u(s)− v(s)|2L2ds,

(2.31)

For u ∈ C0(τ−h,T ; H1) we define the mapping Gu by

Gu : [τ,T ] −→ H1

t 7−→ Gu(t) = G(t,u).
(2.32)

Note that
Gu is measurable and Gu ∈ L∞(τ,T ; H1). (2.33)

Now we define the mapping G̃ by

G̃ : C0(τ−h,T ; H1) −→ L2(τ,T ; H1)

u 7−→ Gu,

(2.34)

which has a unique extension to a uniformly continuous mapping G̃ defined from L2(τ− h,T ; H1)
into L2(τ,T ; H1).
Hereafter we will denote G(t,ut)= G̃(u)(t) for u ∈ L2(τ−h,T ; H1). Therefore, ∀t ∈ [τ,T ],u,v ∈ L2(τ−
h,T ; H1), we have ∫ t

τ
|G(s,us)−G(s,vs)|2L2ds ≤C2

g

∫ t

τ−h
|u(s)− v(s)|2L2ds. (2.35)

We assume that
u0 = (v0,φ0) ∈ Y, ϑ ∈ L2

Y, g ∈ L2
loc(<;V∗1 )

and G :<×CH1 → H1 satisfies (2.27)-(2.31).
Using the notations above, we rewrite (2.1), (2.4), (2.7)-(2.5) as (see [8] for the details)

dv
dt + νA0v+B0(v,v)−KR0(εANφ,φ) = g(t)+G(t,vt),

dφ
dt +ANµ+B1(v,φ) = 0, µ = εANφ+α f (φ),

(v,φ)(τ) = (v0,φ0) (v,φ)(t) = ϑ(t) = (ϑ1,ϑ2)(t), t ∈ (τ−h, τ).

(2.36)
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Remark 2.1. In the weak formulation (2.36), the term µ∇φ is replaced by εAN∇φ. This is justified
since f

′

(φ)∇φ is the gradient F(φ) and can be incorporated into the pressure gradient, see [8] for
details. For the sake of convenience, as in [8] we will replace µ in (2.36)3 by µ̄ = µ− 〈µ〉, that is
µ̄ = εANφ+α f (φ)−α〈 f (φ)〉, a.e. inM× (0,+∞). Obviously we have 〈µ̄(t)〉 = 0 ∀t > 0.

Definition 2.2. A pair (v,φ) is called a weak solution to (2.36) if

(v,φ) ∈ C([τ,T );Y)∩L2([τ,T );V),
dv
dt
∈ L1([τ,T );V∗1 ),

dφ
dt
, µ ∈ L1([τ,T );V∗2 ) (2.37)

and (v,φ) satisfies (2.36)1 and (2.36)3 in V∗1 and V∗2 respectively.
For (v0,φ0) ∈ V, a weak solution (v,φ) is called a strong solution on the time interval [0,T ] if in
addition to (3.51), it satisfies

v ∈ C([τ,T );V1)∩L2(τ,T ; D(A0)), φ ∈ C([τ,T ); D(AN))∩L2(τ,T ; D(AN)∩H3(M)). (2.38)

In the case when the delay terms τ and G are zero, the weak formulation of (2.36) was proposed
and studied in [9, 8], and the existence and uniqueness of solution was proved. The CH-NS with
delay is studied in [15], where the author proved the existence and uniqueness of weak and strong
solutions. In particular, the following result can be proved as Theorem 3.1 in [15].

Theorem 2.3. Let u0 = (v0,φ0) ∈ Y, ϑ ∈ L2
Y, g ∈ L2

loc(<;V∗1 ) and assume that G :<×CH1 → H1
satisfies (2.27)-(2.31). Then, for each τ ∈ <,
(1) there exists a unique solution u = (v,φ) to (2.36) that belongs to the space C([τ,+∞);Y).
(2) If g ∈ L2

loc(<; H1) and u0 = (v0,φ0) ∈ V, then the solution u = (v,φ) is a strong solution. In
particular, if ϑ ∈ CV and u0 = (v0,φ0) = ϑ(0), then u = (v,φ) ∈ C([τ−h,+∞);V).

Proof. See [15]. �

Hereafter, to simplify the notation, we set K = 1.

3 Existence of an attractor

3.1 Preliminaries on pullback attractors

We first recall some results on the theory of pullback attractors as developed in [12, 13]. For more
details, the reader is referred to [6, 3, 12, 13].
It is well known that for non-autonomous differential equations, the initial time is as important as
the final one. Therefore the classical semigroup property of autonomous dynamical systems is no
longer available. Instead of a one time-dependent map S (t), we need to use a two-parameter process
U(t, τ) on a complete metric space X. Hereafter U(t, τ)ψ denotes the value of the solution at the time
t which was equal to the initial value ψ at the time τ.

Definition 3.1. Let X be a complete metric space. A family of mappings {U(t, τ), t, τ ∈ <, t ≥ τ} ⊂
C0(X,X) is said to be a process (or a two-parameter semigroup) in X if

U(t, τ)U(τ,r) = U(t,r) for all t ≥ τ ≥ r,

U(τ,τ) = Id for all τ.
(3.1)

The process U(·, ·) is said to be continuous if the mapping (t, τ) 7→U(t, τ)x is continuous for all x ∈ X.
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As in the standard theory of attractors, we are interested to invariant sets. Since the system is
non-autonomous, these sets also depend on the time. Hereafter, if A,B ⊂ X, dist(A,B) denotes the
Hausdorf semi-distance between the subsets A and B defined by:

dist(A,B) = sup
a∈A

inf
a∈B

d(a,b). (3.2)

Definition 3.2. The family of subsets {B(t)}t∈< ⊂ X is said to be (pullback) absorbing with respect
to the process U if, for all t ∈ < and all D ⊂ X bounded, there exists TD(t) > 0 such that

U(t, t− s)D ⊂ B(t) for all s ≥ TD(s). (3.3)

The absorption is said to be uniform if TD(t) does not depend on the variable t.

Definition 3.3. A family of compact sets {A(t)}t∈< is said to be a (global) pullback attractor for the
process U if, for all τ ∈ <, it satisfies:

U(t, τ)A(t) =A(t) for all t ≥ τ,

lims→∞ dist(U(t, t− s)D,A(t)) = 0 for all bounded subsets D ⊂ X.
(3.4)

The pullback attractor {A(t)}t∈< is said to be uniform if the attraction property is uniform in time,
i.e;

lim
s→∞

sup
t∈<

dist(U(t, t− s)D,A(t)) = 0 for all bounded subsets D ⊂ X. (3.5)

Definition 3.4. A family of compact sets {A(t)}t∈< is said to be a (global) forward attractor for the
process U if, for all τ ∈ <, it satisfies:

U(t, τ)A(t) =A(t) for all t ≥ τ,

lims→∞ dist(U(t, τ)D,A(t)) = 0 for all bounded subsets D ⊂ X.
(3.6)

The forward attractor {A(t)}t∈< is said to be uniform if the attraction property is uniform in time,
i.e;

lim
s→∞

sup
τ∈<

dist(U(t+τ,τ)D,A(t)) = 0 for all bounded subsets D ⊂ X. (3.7)

The following result is given in [6, 3].

Theorem 3.5. Let U(t, τ) be a two-parameter process such that U(t, τ) : X → X is continuous for
all t ≥ τ. If there exists a family of compact (pullback) absorbing sets {B(t)}t∈<, then there exists a
pullback attractor {A(t)}t∈<, andA(t) ⊂ B(t) for all t ∈ <. Furthermore,

A(t) =
⋃

D ⊂ X
bounded

∧
(D, t), (3.8)

where ∧
(D, t) =

⋂
n∈ℵ

⋃
s≥n

U(t, t− s)D. (3.9)
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3.2 Construction of the associated processes

For τ ∈<, u0 = (v0,φ0) ∈Y and ϑ ∈ L2
Y, hereafter we will denote by u(.;τ, (u0,ϑ)) ≡ (v,φ)(.;τ, (u0,ϑ))

the unique solution to (2.36), which belongs to

L2(τ,T ;V)∩L2(τ−h,T,Y)∩C0(τ,T ;Y), ∀T > τ. (3.10)

To study the long-time behavior of (2.36), we define the processes U = U(t, τ) and S = S (t, τ) as
follows.
For τ ≤ t, U(t, τ) and S (t, τ) are given by:

U(t, τ) : CY −→ CY

ϑ 7−→ U(t, τ) = ut(.;τ, (ϑ(0),ϑ)).
(3.11)

S (t, τ) : MY −→MY

(u0,ϑ) 7−→ S (t, τ)(u0,ϑ) = (u(t;τ, (u0,ϑ)),ut(.;τ, (u0,ϑ))).
(3.12)

For τ ≤ t, we define the mappings Ũ(t, τ) by:

Ũ(t, τ) : MY −→ L2
Y

(u0,ϑ) 7−→ Ũ(t, τ)(u0,ϑ) = ut(.;τ, (u0,ϑ)).
(3.13)

Then it is clear that for τ ≤ t, we have

U(t, τ)φ = Ũ(t, τ)(ϑ(0),ϑ), ∀ϑ ∈ CY,

S (t, τ)(u0,ϑ) = (u(t;τ, (u0,ϑ)), Ũ(t, τ)(u0,ϑ)), ∀(u0,ϑ) ∈MY.
(3.14)

Remark 3.6. If we define the mapping j by

j : CY −→ Y×CY

ϑ 7−→ j(ϑ) = (ϑ(0),ϑ),
(3.15)

then
S (t, τ)(u0,ϑ) = j(Ũ(t, τ)(u0,ϑ)), ∀(u0,ϑ) ∈MY, t ≥ τ+h. (3.16)

Note that for (u0,ϑ) ∈MY, Ũ(t, τ)(u0,ϑ) ∈ CY provided that t ≥ τ+h.

Lemma 3.7. Let (u0,ϑ), (ũ0, ϑ̃) ∈MY be two initial data for (2.36), where u0 = (v0,φ0), ũ0 = (ṽ0, φ̃0).
Let (v,φ)(·)= u(·)= u(·, τ, (u0,ϑ)), (ṽ, φ̃)(·)= ũ(·)= ũ(·;τ, (ũ0, ϑ̃)) be the corresponding solutions given
by Theorem 2.3. Then for all t ≥ τ, we have

|u(t)− ũ(t)|2Y ≤
(
C2

g‖ϑ− ϑ̃‖
2
L2
Y

+ |u0− ũ0|
2
Y

)
× exp

(∫ t

τ
(C2

g +Υ(s))ds
)
, (3.17)

where

Υ(t) = c‖v‖2+ c(1+ ‖φ‖2)|ANφ|
2
L2 + c|ṽ|2L2‖ṽ‖2+Q1(|φ|H1 , |φ̃|H1)(1+ |ANφ|

2
L2 + |AN φ̃|

2
L2),

c > 0 is a constant and Q1 ≡ Q1(·, ·) monotone non decreasing function independent of the time and
the initial data. Moreover for all t ≥ τ+h, we have

‖ut − ũt‖
2
CY
≤

(
C2

g‖ϑ− ϑ̃‖
2
L2
Y

+ |u0− ũ0|
2
Y

)
× exp

(∫ t

τ
(C2

g +Υ(s))ds
)
. (3.18)
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Proof. Let us set (w,ψ) = (v,φ)− (ṽ, φ̃), µ̃ = εANψ+α( f (φ1)− f (φ2)). Then (w,ψ) satisfies

dw
dt + νA0w+B0(v,w)+B0(w, ṽ)−R0(εANψ,φ)−R0(εAN φ̃,ψ)

= G(t,vt)−G(t, ṽt),

dψ
dt +AN µ̄+B1(w,φ)+B1(ṽ,ψ) = 0, µ̄ = µ̃−〈µ̃〉.

(3.19)

Multiplying (3.19)1 by w, (3.19)3 and (3.19)2 respectively by AN µ̄+ εξANψ (with ξ > 0 sufficiently
small to be selected in the sequel) and εANψ, respectively, we derive as in [14, 9] that

dy
dt
+ ν‖w‖2+ (1− cξ)‖µ̃‖2+

ε2ξ

2
|ANψ|

2
L2 ≤ Υ(t)y(t)+ c|G(t,vt)−G(t, ṽt)|2L2 , (3.20)

where c = cM is a constant that depends only onM and

y(t) = |(w,ψ)|2Y,

Υ(t) = c‖v‖2+ c(1+ ‖φ‖2)|ANφ|
2
L2 + c|ṽ|2

L2‖ṽ‖2

+Q1(|φ|H1 , |φ̃|H1)(1+ |ANφ|
2
L2 + |AN φ̃|

2
L2).

(3.21)

It follows from (2.31) that (for t ≥ τ) (with ξ small enough such that 1− cξ > 0)

y(t) ≤
(
C2

g‖ϑ− ϑ̃‖
2
L2
Y

+ |u0− ũ0|
2
Y

)
× exp

(∫ t

τ
(C2

g +Υ(s))ds
)
, (3.22)

and (3.17) is proved. Note that
∫ t

τ
Υ(s)ds <∞.

Now we assume that t ≥ τ+h. Then for ζ ∈ [−h,0], we have

y(t+ ζ) ≤
(
C2

g‖ϑ− ϑ̃‖
2
L2
Y

+ |u0− ũ0|
2
Y

)
× exp

(∫ t+ζ

τ
(C2

g +Υ(s))ds
)

≤

(
C2

g‖ϑ− ϑ̃‖
2
L2
Y

+ |u0− ũ0|
2
Y

)
× exp

(∫ t

τ
(C2

g +Υ(s))ds
)
.

(3.23)

Therefore

‖ut‖
2
CY
≤

(
C2

g‖ϑ− ϑ̃‖
2
L2
Y

+ |u0− ũ0|
2
Y

)
× exp

(∫ t

τ
(C2

g +Υ(s))ds
)
, (3.24)

and (3.18) is proved. �

We now prove that U(., .) and S (., .) are continuous processes.

Lemma 3.8. The mappings U and S are processes. Moreover, U(t, τ) : CY −→ CY and S (t, τ) :
MY −→MY are continuous for t ≥ τ.

Proof. We proceed as in [6, 3]. From the uniqueness of solutions to (2.36), we conclude that U and
S are processes. To prove the second part of the lemma, we consider two solutions u(·) and ũ(·) to
(2.36) corresponding to the initial data (ϑ(0),ϑ) and (ϑ̃(0), ϑ̃) respectively. Then from (3.17), we
have

|u(t)− ũ(t)|2Y ≤ (C2
gh+1)‖ϑ− ϑ̃‖2CY × exp

(∫ t

τ
(C2

g +Υ(s))ds
)
, (3.25)
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for all t ≥ τ.
For τ−h ≤ t ≤ τ, we also have

u(t)− ũ(t) = ϑ(t−τ)− ϑ̃(t−τ), (3.26)

which gives

|u(t)− ũ(t)|2Y ≤ (C2
gh+1)‖ϑ− ϑ̃‖2CY × exp

(∫ t

τ−h
(C2

g +Υ(s))ds
)
, (3.27)

for all t ≥ τ−h.
Finally we obtain

‖ut − ũt‖
2
CY
≤ (C2

gh+1)‖ϑ− ϑ̃‖2CY × exp
(∫ t

τ−h
(C2

g +Υ(s))ds
)
, (3.28)

for all t ≥ τ, which shows that U(t, τ) is continuous.
For the continuity of S we note that for t ≥ τ+ h, if (u0,ϑ), (ũ0, ϑ̃) ∈ MY, and u(.) and ũ(.) are the
corresponding solutions, then for t ≥ τ+h, we have (see (3.18))

‖ut − ũt‖
2
L2
Y

=

∫ 0

−h
|u(t+ ζ)− ũ(t+ ζ)|2Ydζ

≤

∫ 0

−h
sup

s∈[−h,0]
|u(t+ s)− ũ(t+ s)|2Ydζ

≤ h
(
C2

g‖ϑ− ϑ̃‖
2
L2
Y

+ |u0− ũ0|
2
Y

)
× exp

(∫ t

τ
(C2

g +Υ(s))ds
)
.

(3.29)

For τ ≤ t ≤ τ+h, we also have

‖ut − ũt‖
2
L2
Y

=

∫ 0

−h
|u(t+ ζ)− ũ(t+ ζ)|2Ydζ

≤

(
(C2

gh+1)‖ϑ− ϑ̃‖2
L2
Y

+h|u0− ũ0|
2
Y

)
× exp

(∫ t

τ
(C2

g +Υ(s))ds
)
.

(3.30)

Then for t ≥ τ we derive

‖ut − ũt‖
2
L2
Y

≤

(
(C2

gh+1)‖ϑ− ϑ̃‖2L2
Y

+h|u0− ũ0|
2
Y)

)
× exp

∫ t

τ
(C2

g +Υ(s))ds (3.31)

and the continuity of S follows from (3.17). �

Lemma 3.9. The mappings U(t, τ) : CV −→ CV and S (t, τ) :MV −→MV are continuous for t ≥ τ.

Proof. The proof is similar to that of Lemma 3.3. �

3.3 Absorbing set in CY andMY
In this part, we prove that for ν large enough, there exists a family of absorbing sets in CY andMY
for the processes U(., .) and S (., .).
We first recall from [6, 3] the following result.
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Lemma 3.10. Assume that the family of bounded sets {B(t)}t∈< in CY is absorbing (resp. attracting)
for the family of mappings {U(t, τ), t ≥ τ}. Then
1) the family {B(t)}t∈< is absorbing (resp. attracting) for the process U(., .),
2) the family of bounded sets j(B(t))t∈< in Y×CY is absorbing (resp. attracting) for the process
S (., .).

Proof. See [6, 3]. �

Theorem 3.11. We assume that (2.27)-(2.34) are satisfied. For ν large enough such λ1α1 > Cg,

where α1 is defined in (3.39) below and λ1 > 0 is the constant defined in (2.11). Then, there ex-
ists a family {B(t)}t∈< of bounded absorbing sets in CY for the family of mappings {Ũ(t, τ), t ≥ τ}.
Moreover, B(t) = B0 ∀t ∈ <, where B0 ⊂ CY is bounded.

Proof. We set µ̄= µ−〈µ〉. By multiplying (2.36)1 by v, (2.36)3 by 2ξφ, ξ > 0 and adding the resulting
equations, we derive as in [9] that

dE
dt
+ κE(t) = ∧1(t), (3.32)

where
E(t) = |(v,φ)(t)|2Y+2α(F(φ(t)),1)L2 +Ce, (3.33)

and
∧1(t) = −2ν‖v‖2+ κ|v|2

L2 −2|∇µ|2
L2 − (2ξ− κ)ε|∇φ)|2

L2

+2α
[
κ(F(φ)− f (φ)φ,1)L2 − (ξ− κ)( f (φ)φ,1)L2

]
+2ξ(µ,φ)L2

+2〈v,g(t)+G(t,vt)〉+ κ|φ(t)|2
L2 + κCe.

(3.34)

Here Ce = 2ααCF |M| > 0, where CF is a constant large enough in order to ensure thatE is nonneg-
ative (note that F is bounded from below by a constant independent of α and ε) From (3.61), we
have

c∗| f (y)|(1+ |y|) ≤ 2 f (y)y+ c f ,

F(y)− f (y)y ≤ c
′

f y
2+ c

′′

f ,

2ξ(µ̄,φ)L2 ≤ |∇µ̄|2L2 + ξ
2CM|M||∇φ|2L2 ,

(3.35)

for any y ∈ <, where c f ,c∗,c
′

f and c
′′

f are positive, sufficiently large constants that depend only on
f .
From [9], we also note that

∧1(t) ≤ − (ν− κCm|M|)‖v(t)‖2− |∇µ(t)|2
L2 − c∗α(ξ− κ) (| f (φ(t))|,1+ |φ(t)|)L2

−[ξ(2− ξCm|M|ε
−1)− κ(1+2αε−1c

′

f |M|)]ε|∇φ|
2
L2

+σ−1|g|2
L2 +σ|v|2L2 +C−1

g |G(t,vt)|2L2 +Cg|v|2L2 + c1,

(3.36)

where Cm depends on the shape ofM, but not its size and c1 is given by

c1 = 2καCF |M|+2αc
′′

f |M|+ c fα(ξ− κ)|M|. (3.37)

Let us choose κ ∈ (0,1) as

κ =min
{
ν(2Cm|M|)−1, ε(2CM|M|)−1, ξ(1+2αε−1Cm|M|c

′

f )
−1

}
. (3.38)
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From now on, ci will denote a positive constant independent on the initial data and on time. Let us
set

α1 = ν− κCm|M|, α2 = [ξ(2− ξCm|M|ε
−1)− κ(1+2αε−1c

′

f |M|)]ε. (3.39)

As
α1λ1 > 2Cg,

we can choose σ > 0 such that
α1λ1 > 2Cg+σ.

Then from (3.33)-(3.38), we derive that

dE
dt + κE(t)+α1‖v(t)‖2+α2‖φ(t)‖2+ c3(| f (φ(t)|,1+ |φ(t)|)L2

+2|∇µ(t)|2
L2 ≤ σ

−1|g|2
L2 +σ|v|2L2 +C−1

g |G(t,vt)|2L2 +Cg|v|2L2 + c1.

(3.40)

Let D̃ ⊂MY be bounded and let d̃ > 0 such that

|(v0,φ0)|2Y+ ‖ϑ‖
2
L2
Y

≤ d̃, ∀((v0,φ0),ϑ) ∈ D̃.

Let ((v0,φ0),ϑ) ∈ D̃ and τ ∈ <. Let us set u(.) = u(.;τ, (u0,ϑ)),u0 = (v0,φ0). Then from (3.40), we
have

dE
dt ≤ −(α1λ1− (σ+Cg))|v|2

L2 +σ
−1|g|2

L2 +C−1
g |G(t,vt)|2L2 + c1. (3.41)

Now let m ∈ [0,m0] such that
α1λ1 > 2Cg+σ+m. (3.42)

Then
d
dt

(
emtE(t)

)
= memtE(t)+ emt dE(t)

dt ≤ emtσ−1|g|2
L2

+emt
(
(m− (α1λ1− (σ+Cg)))|v|2

L2 +C−1
g |G(t,vt)|2L2

)
+ emtc1.

(3.43)

Therefore (using (2.31) and (3.42))

emtE(t)− emτE(τ) ≤
∫ t

τ
ems(σ−1|g|2L2 + c1)ds

+

∫ t

τ
ems

(
(m− (α1λ1− (σ+Cg)))|v|2L2 +C−1

g |G(t,vt)|2L2

)
ds

≤ emt

m (σ−1|g|2
L2 + c1)+Cg

∫ τ

τ−h
ems|ϑ(s−τ)|2Yds

+

∫ t

τ
ems

(
m+Cg− (α1λ1− (σ+Cg))|v|2L2

)
ds

≤ emt

m (σ−1|g|2
L2 + c1)+Cgemτ

∫ τ

−h
|ϑ(s)|2Yds,

(3.44)

which gives

E(t) ≤
emt

m
(σ−1|g|2L2 + c1)+ (Q0(d̃2)+Cgd̃2)e−mtemτ, ∀t ≥ τ. (3.45)
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Note that E(τ) ≤ Q0(|(v0,φ0)|Y) ≤ Q0(d̃2).
Now, for t ≥ τ+h and s ∈ [−h,0] we have

E(t+ s) ≤ emt

m (σ−1|g|2
L2 + c1)+ (Q0(d̃2)+Cgd̃2)e−mt−msemτ

≤ emt

m (σ−1|g|2
L2 + c1)+ (Q0(d̃2)+Cgd̃2)e−mtemτemh,

(3.46)

which gives

‖ut‖
2
CY
≤

emt

m
(σ−1|g|2L2 + c1)+ (Q0(d̃2)+Cgd̃2)e−mtemτemh, ∀t ≥ τ+h. (3.47)

Finally we derive that

‖Ũ(t, t− s)(u0,ϑ)‖2CY = ‖ut‖
2
CY
≤σ−1m−1|g|2L2+c1m−1+(Q0(d̃2)+Cgd̃2)e−mtemτemh, ∀t, s≥ h. (3.48)

Let

ρ̃2
Y = 2

emt

m
(σ−1|g|2L2 + c1). (3.49)

Then, there exists T̃D̃(t) (= T̃D) ≥ h such that for s ≥ T̃D̃(t) and (u0,ϑ) ∈MY, we have

‖Ũ(t, t− s)(u0,ϑ)‖CY ≤ ρ̃Y. (3.50)

Therefore, the balls B(t) = BCY(0, ρ̃Y) form an absorbing family for the mappings Ũ(t, τ). �

Corollary 3.12. The assumptions are the same as in Theorem 3.11. There exists a family {B(t)}t∈<
of bounded absorbing sets in CY for the process U(., .), which is given by B(t) = B0 = BCY(0, ρ̃Y) for
all t ∈ <. Moreover, if B(t) = BY(0, ρ̃Y)×BL2

Y
(0,h1/2ρ̃Y) ⊂MY for all t ∈ <, then {B(t)}t∈< forms a

family of bounded absorbing sets for the process S (., .).

Proof. The first part follows from Theorem 3.11 and Lemma 3.10. For the second part, we proceed
as in [6, 3]. Since

‖w‖2L2
Y

≤ h‖w‖2CY (3.51)

and
j(B(t)) = {(ϑ(0),ϑ), φ ∈ BCY(0, ρ̃Y)}, (3.52)

we have
j(B(t)) ⊂ BCY(0, ρ̃Y)×BL2

Y
(0,h1/2ρ̃Y) ≡ B(t). (3.53)

This implies that {B(t)}t∈< is absorbing for the process S (., .). �

3.4 Absorbing set in CV
In this part, we prove that for ν large enough, there exists a family of absorbing sets in CV for the
family of mappings {Ũ(t, τ), t ≥ τ}.

Theorem 3.13. The assumptions are the same as in Theorem 3.11. For D ⊂ CY, let TD = T̃ j(D),

where T̃ j(D) is the absorbing time corresponding to the set B0 in Theorem 3.6. There exist ρ̃2
V, β̃1, β̃2

such that for any bounded set D̃ ⊂MY, we have

‖Ũ(t, t− s)(u0,ϑ)‖2
CV
= max
ζ∈[−h,0]

‖u(t+ ζ, t− s, (u0,ϑ))‖2V ≤ ρ̃
2
V,

∫ t+t2

t+t1
(|A0v(σ, t− s, (u0,ϑ)|2L2 + |A2

Nφ(σ, t− s, (u0,ϑ)|2L2 + |A
5/2
N φ(σ, t− s, (u0,ϑ)|2L2)dσ

≤ β̃1|t2− t1|+ β̃2,

(3.54)



46 T. Tachim Medjo

for all s ≥ T̃D̃+1+h, t ∈ <, (u0,ϑ) ∈ D̃, t1, t2 ∈ [−h,0].

Proof Let D̃ ⊂MY be a bounded set and let d̃ > 0 such that

‖(u0,ϑ)‖MY ≤ d̃, ∀(u0,ϑ) ∈ D̃. (3.55)

For (u0,ϑ) ∈ D̃, let u(·) = u(.; t0− s, (u0,ϑ)) where t0 ∈ < is fixed and s ≥ T̃D̃.

We derive from (3.40) that (by integrating between t and t+1, for t ≥ 0 and s ≥ T̃D)

E(t+1)−E(t)+ κ
∫ t+1

t
E(r)dr+ (α1− (σ+Cg)λ−1

1 )
∫ t+1

t
‖v(r)‖2dr

+

∫ t+1

t
|∇µ(r)|2L2dr ≤ σ−1|g|2L2 + c1+C−1

g

∫ t+1

t
|G(t,vt)|2L2dr

≤ σ−1|g|2
L2 + c1+

1
Cg

C2
g

∫ t+1

t−h
|v(r)|2L2dr

≤ σ−1|g|2
L2 + c1+Cg

∫ t

t−h
|v(r)|2L2dr+Cg

∫ t+1

t
|v(r)|2L2dr,

(3.56)

which gives

(α1− (σ+2Cg)λ−1
1 )

∫ t+1

t
|v(r)|2L2dr+

∫ t+1

t
|∇µ̄(r)|2L2dr

≤ σ−1|g|2
L2 + c1+Cg

∫ t

t−h
|(v(r)|2L2dr+E(t)

≤ σ−1|g|2
L2 + c1+Cg

∫ t

t−h
‖ur‖

2
CY

dr+E(t)

≤ σ−1|g|2
L2 + c1+Cghρ̃2

Y+Q0(ρ̃2
Y).

(3.57)

Therefore if ν is large enough such that

α1− (σ+2Cg)λ−1
1 > 0, (3.58)

then ∫ t+1

t
(‖v(r)‖2+ |∇µ̄(r)|2L2)dr ≤ J̃V, ∀t ≥ t0, (3.59)

where
J̃V = κ−1

1

(
σ−1|g|2L2 + c1+Cghρ̃2

Y+Q0(ρ̃2
Y)

)
, (3.60)

and
κ1 =min(1,α1− (σ+2Cg)λ−1

1 ).

From µ = εANφ+α f (φ), we also have (for t ≥ t0 )

ε2
∫ t+1

t
|A3/2

N φ(r)|2L2dr ≤ c
∫ t+1

t
(|∇µ(r)|2L2 +α|A

1/2
N f (φ)(r)|2L2)dr

≤ c
∫ t+1

t
(|∇µ̄(r)|2L2 +Q0(ρ̃2

Y))dr,

(3.61)
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which gives ∫ t+1

t
|A3/2

N φ(r)|2L2dr ≤ cJ̃V+Q0(ρ̃2
Y). (3.62)

It follows from (3.59) and (3.62) that∫ t+1

t
(‖v(r)‖2+ |A3/2

N φ(r)|2L2)dr ≤ ĨV, ∀t ≥ t0, (3.63)

where ĨV = cĨV+Q0(ρ̃2
Y).

Note that (3.58) implies that we can choose m ∈ [0,m0] such that (3.42) is satisfied.
For r ≥ t0, taking the inner product in H1 of (2.36)1 with 2A0v, the inner product in L2(M) of (2.36)2
and (2.36)3 with 2A2

N µ̄+2ζB3
Nφ (ζ > 0 small enough) and 2εA2

Nφ respectively. Adding the resulting
equalities gives (see [8] for the details)

dY
dt +2ν|A0v|2

L2 +2ζε|A2
Nφ|

2
L2 +2|BN µ̄|

2
L2 = 2K(R0(εANφ,φ),A0v)L2

−2α〈AN( f (φ)−〈 f (φ)〉),BN µ̄〉−2〈B1(u,φ),A2
Nφ〉

−2(B0(v,v),A0v)L2 + (g+G(t,ut),A0v)L2 +2ζ〈BN µ̄,A2
Nφ〉

+2αζ(BN( f (φ)−〈 f (φ)〉),A2
Nφ)L2 ,

(3.64)

where
Y(t) = ‖v(t)‖2+ ε|ANφ(t)|2L2 , ∀t ≥ t0.

Using the estimates of [8] for the nonlinear terms appearing in (2.36), we can check that Y(t)
satisfies

dY
dt + ν|A0v|2

L2 +
ζε
4 |B

2
Nφ|

2
L2 + [2− (4ε−1+α)ζ]|BN µ̄|

2
L2

≤ Ψ(t)Y(t)+Π(t),
(3.65)

where
Ψ(t) = c(|∇φ|2

L2 |ANφ|
2
L2 + |v|2L2‖v‖2+Q1(|φ|H1)(1+ |ANφ|

2
L2),

Υ(t) = c(1+ |v|2
L2 + |∇φ|

2
L2 + |g|2L2 + |G(t,vt)|2L2).

(3.66)

We note that ∫ t+1

t
Ψ(s)ds ≡ a1 <∞,

∫ t+1

t
Υ(s)ds ≡ a

′

2 <∞,

∫ t+1

t
Y(s)ds ≡ a3 = ĨV,<∞,

(3.67)

and ∫ t+1

t
|G(s,vs)|2L2ds ≤ L2

g

∫ t+1

t−h
|v(r)|2L2dr

≤ L2
g

∫ t

t−h
|v(r)|2L2dr+L2

g

∫ t+1

t
|v(r)|2L2dr

≤ L2
g

∫ t

t−h
‖ur‖

2
CY

dr+L2
g

∫ t+1

t
|v(r)|2L2dr

≤ hL2
gρ̃

2
Y+L2

gρ̃
2
Y ≡ a

′′

2 .

(3.68)
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Therefore
Y(t) ≤ (a3+a2)ea1 ≡ ρ̃2

V , ∀t ≥ t0+1, (3.69)

where
a2 = a

′

2+a
′′

2 + c|g|2L2 . (3.70)

Letting
u(·) = u(·; t− s, (u0,ϑ)), (3.71)

we obtain
‖ut‖

2
CV
≤ ρ̃2
V, ∀s ≥ T̃D̃+1+h. (3.72)

Now, multiplying (2.36)2 by A3
Nφ and using (2.36)3, we derive that

dY1

dt
+2ε |A5/2

N φ|2L2 ≤ 2α|〈A3/2
N f (φ),A5/2

N φ〉|+2|〈A1/2
N B1(v,φ),A5/2

N φ〉|, (3.73)

where
Y1(t) = |A3/2

N φ(t)|2L2 .

Note that
2|〈A1/2

N B1(v,φ),A5/2
N φ〉| ≤ 2|A1/2

N B1(v,φ)|L2 |A5/2
N φ|L2

≤ ε
4 |A

5/2
N |

2
L2 + c‖v‖|A0v|L2‖φ‖|ANφ|L2 + |v|L2‖v‖|ANφ|L2 |A3/2

N φ|L2 ,

(3.74)

and
2α|〈A3/2

N f (φ),A5/2
N φ〉| ≤ ε

4 |A
5/2
N φ|2

L2 + c| f
′′′

(φ)(A1/2
N φ)3|2

L2

+c| f
′′

(φ)(A1/2
N φ)ANφ|

2
L2 + | f

′

(φ)A3/2
N φ|2

L2

≤ ε
4 |A

5/2
N |

2
L2 +Q2(|ANφ|)|A

3/2
N |

2
L2 .

(3.75)

It follows from (3.73)-(3.75) that

dY1

dt
+ ε|A5/2

N φ|2L2 ≤ Π1(t), (3.76)

where

Π1(t) = Q2(|ANφ|)|A
3/2
N φ|2L2 + c‖v‖|A0v|L2‖φ‖|ANφ|L2 + |v|L2‖v‖|ANφ|L2 |A3/2

N φ|L2 . (3.77)

It follows from the Gronwall lemma that

|A3/2
N φ(t)|2L2 ≤ c1, ∀t ≥ t0. (3.78)

For the bound on
∫ t+t2

t+t1
(|A0v|2L2 + |A2

Nφ|
2
L2 + |A

5/2
N φ|2L2)dr, we proceed as follows. From (3.65) and

(3.76), we have

ν|A0v|2L2 + ε |A2
Nφ|

2
L2 + ε|A

5/2
N φ|2L2 ≤ −

dY
dt
−

dY1

dt
+Ψ(t)Y(t)+Π(t)+Π1(t). (3.79)
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Then for s ≥ T̃D+1+h and t1, t2 ∈ [−h,0] with t2 > t1, we derive from (3.69) and (3.79) that∫ t+t2

t+t1
(ν|A0v|2L2 + ε|A2

Nφ|
2
L2 + ε|A

5/2
N φ|2L2)dr ≤ Y(t+ t1)

+Y1(t+1)+
∫ t+t2

t+t1
(Ψ(r)Y(r)+Π(r)+Π1(r))dr

≤ ρ̃2
V+ α̃1|t2− t1|+ α̃2+ c1,

(3.80)

which gives (3.54)2. �

Corollary 3.14. The assumptions and the notations are the same as in Theorems 3.11 and 3.13.
There exist ρ2

V, β1, β2 such that for any bounded set D ⊂ CY we have

‖Ũ(t, t− s)(u0,ϑ)‖2
CV
= max
ζ∈[−h,0]

|u(t+ ζ, t− s, j(ϑ))|2L2 ≤ ρ
2
V,

∫ t+t2

t+t1

∣∣∣∣A0v(σ, t− s, j(ϑ))|2L2 + |A
3/2
γ φ(σ, t− s, j(ϑ))|2L2

)
dσ

≤ β1|t2− t1|+β2,

(3.81)

for all s ≥ TD+1+h, t ∈ <, (u0,ϑ) ∈ D, t1, t2 ∈ [−h,0].
Moreover, the family {Bs(t)}t∈<, where Bs(t) = Bs = BCV(0,ρV)× BLV(0,h1/2ρV) is absorbing for
S (., .).

Proof. The proof is similar to that of Corollary 3.12. �

3.5 Existence of the pullback attractor

In this part, we prove that U(., .) and S (., .) have a unique uniformly bounded pullback attractor in
CY and MY respectively.

Theorem 3.15. There exists a unique uniformly bounded attractor {ACY(t)}t∈< for the process
Θ(., .) in CY and a unique uniformly bounded attractor {AMY(t)}t∈< for the process S (., .) inMY.
Furthermore these attractors satisfy

AMY(t) ⊂ Y×CY, AMY(t) = j(ACY(t)), ∀t ∈ <. (3.82)

Proof. We proceed as in [6, 3]. Let us set B2(t) = B2 = BCV(0,ρV) for all t ∈<. Then {B2(t)}t∈< is a
family of bounded set in CV and uniformly absorbing for Ũ(., .). Let us set B̃2 = j(B2). Then, there
exists T̃B̃2

= TB2 +1+h > 0 such that

Ũ(t, t− s)B̃2 ⊂ B2, ∀t ∈ <, s ≥ T̃B̃2
. (3.83)

Now let us set
B3(t) =

⋃
s≥T̃B̃2

Ũ(t, t− s)B̃2 ⊂ B2 ⊂ CV. (3.84)

Then {B3(t)} is a family of uniformly bounded sets in CV which is (uniformly) absorbing for Ũ(., .).
Let us prove that (B3(t)) is relatively compact in CY.
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Step 1. First for t1 ∈ [−h,0], the set ⋃
s≥T̃B̃2

⋃
ϑ∈B2

Ũ(t− s)( j(ϑ))(t1) (3.85)

is relatively compact in Y. In fact, for t1 ∈ [−h,0], t ∈ <, the set

{u(t+ t1, t− s, j(ϑ)), s ≥ T̃B̃2
,ϑ ∈ B2} (3.86)

is relatively compact in Y since it is bounded in V and the injection of V in Y is compact.
Step 2. Let us now prove that the set ⋃

s≥T̃B̃2

Ũ(t, t− s)B̃2 (3.87)

is equi-continuous. We proceed as in [6, 3] and we note that for t ∈ <, t1, t2 ∈ [−h,0], s ≥ T̃B̃2
and

ϑ ∈ B̃2, we have

|Ũ(t, t− s)( j(ϑ))(t1)− Ũ(t, t− s)( j(ϑ))(t2)|Y = |u(t+ t1, t− s, j(ϑ)−u(t+ t2, t− s, j(ϑ))|Y. (3.88)

Now let us denote u(.) = u(.; t− s, j(ϑ)). From (2.36)1, we have

|v(t+ t1)− v(t+ t2)|L2 =

∣∣∣∣∣∣
∫ t+t2

t+t1
v
′

(r)dr

∣∣∣∣∣∣
L2
≤

∫ t+t2

t+t1
|v
′

(r)|L2dr

≤

∫ t+t2

t+t1

(
ν|A0v(r)|L2 + |B0(v,v)|L2 + ε|R0(ANφ,φ)|L2 + |g|L2 + |G(t,vr)|L2

)
dr

≤ |g|L2 |t2− t1|+
∫ t+t2

t+t1

(
ν|A0v(r)|L2 + c|A0v(r)|L2‖v‖+ cε|ANφ|L2 |A3/2

N φ|L2 +Lg‖vr‖CH1

)
dr

≤ |g|L2 |t2− t1|+ (ν+ cρV)|t2− t1|1/2
∫ t+t2

t+t1
|A0v(r)|2L2dr+ cε|t2− t1|1/2ρV

∫ t+t2

t+t1
|A3/2

N φ|2L2dr

≤ |g|L2 |t2− t1|+ (ν+ ε + cρV)|t2− t1|1/2(β1|t2− t1|+β2)+ cρ̃Y|t2− t1|.
(3.89)

From (2.36)2, we also have

|A1/2
N (φ(t+ t1)−φ(t+ t2))|L2 =

∣∣∣∣∣∣
∫ t+t2

t+t1
A1/2

N φ
′

(r)dr

∣∣∣∣∣∣
L2
≤

∫ t+t2

t+t1
|A1/2

N φ
′

(r)|L2dr

≤

∫ t+t2

t+t1

(
ε |A5/2

N φ(r)|L2 + |A1/2
N B1(v,φ)|L2 + |A3/2

N f (φ)|L2

)
dr

≤ c|t2− t1|1/2
∫ t+t2

t+t1
|A5/2

N φ(r)|2L2dr+ c
∫ t+t2

t+t1
(‖v‖1/2|A0v|1/2

L2 ‖φ‖
1/2|ANφ|

1/2
L2 )dr

+c
∫ t+t2

t+t1

(
|v|1/2

L2 ‖v‖
1/2|ANφ|

1/2
L2 |A

3/2
N φ(r)|1/2

L2 +Q2(|ANφ|L2)|A3/2
N φ|L2

)
dr

≤ c|t2− t1|1/2(β1|t2− t1|+β2)ρV+ c1Q2(ρV)|t2− t1|.

(3.90)
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It follows from (3.89) and (3.90) that the set⋃
s≥T̃B̃2

Ũ(t, t− s)B̃2 (3.91)

is equi-continuous.
It follows from Step 1, Step 2 and the Ascoli-Arzela theorem that B3(t) is relatively compact in Y.
The proves that {B3(t)}t∈< (where the closure is taken in CY) is a family of compact absorbing set
in CY for the process Ũ(·, ·). Consequently, it is also a family of compact (uniformly) absorbing
sets for the process U(·, ·) in CY. Moreover, { j(B3(t)}t∈< is also a family of compact (uniformly)
absorbing sets for the process S (·, ·) inMY, which ensures the existence of the pullback attractors
the processes. �

3.6 Example of a forcing term with variable delays

In this part, we give an example of a delay term G that satisfies (2.27)-(2.31). We assume that the
delay term is given by

G(t,vt) = G0(v(t−ρ(t)), (3.92)

where G0 :<2→<2 satisfies

G0(0) = 0, |G0(u)−G0(v)|<2 ≤ L1|u− v|<2 , (3.93)

for some fixed constant L1 > 0.We assume that ρ ∈C1[0,+∞), ρ(t)≥ 0, ∀t ≥ 0, h= sup
t≥0

ρ(t) ∈ (0,+∞),

ρ∗ = sup
t≥0

ρ
′

(t)< 1.We can prove as in [4] that this situation is within our framework and (2.27)-(2.31)

are all satisfied.
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