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Universidad de Santiago de Compostela, Santiago de Compostela, Spain

A O‡
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Abstract

In this paper, we study the topological structure of solution sets for the following
first-order impulsive evolution inclusion with initial conditions:

y′(t)−Ay(t) ∈ F(t,y(t)), a.e. t ∈ J\{t1, . . . , tm},
y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m

y(0) = a ∈ E,

where J := [0,b] and 0 = t0 < t1 < . . . < tm < b, A is the infinitesimal generator of a
C0−semigroup of linear operator T (t) on a separable Banach space E and F is a set-
valued map. The functions Ik characterize the jump of the solutions at impulse points
tk (k = 1, . . . ,m). The continuous selection of the solution set is also investigated.

AMS Subject Classification: 34A37, 34A60, 34G20.

Keywords: Impulsive differential inclusions, semigroup, solution set, compactness, abso-
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1 Introduction

Differential equations with impulses were considered for the first time by Milman and
Myshkis [41] and then followed by a period of active research which culminated with the
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monograph by Halanay and Wexler [34]. Many phenomena and evolution processes in
the field of physics, chemical technology, population dynamics, and natural sciences may
change state abruptly or be subject to short-term perturbations. (see for instance [1, 40]
and the references therein). These short perturbations may be seen as impulses. Impul-
sive problems arise also in various applications in communications, chemical technology,
mechanics (jump discontinuities in velocity), electrical engineering, medicine, and biology.
These perturbations may be seen as impulses. For instance, in the periodic treatment of
some diseases, impulses correspond to the administration of a drug treatment. In environ-
mental sciences, impulses correspond to seasonal changes of the water level of artificial
reservoirs. Their models are described by impulsive differential equations and inclusions.
Various mathematical results (existence, asymptotic behavior,. . . ) have been obtained so
far (see [6, 11, 40, 44] and the references therein).

Given a real separable Banach space E with norm ‖ · ‖, consider the following problem
y′(t)−Ay(t) ∈ F(t,y(t)), a.e. t ∈ J\{t1, . . . , tm},

∆yt=tk = Ik(y(t−k )), k = 1, . . . ,m
y(0) = a,

(1.1)

where 0 = t0 < t1 < . . . < tm < tm+1 = b, J = [0,b], F : J×E→P(E) is a multifunction, and
the operator A is the infinitesimal generator of a C0− semigroup {T (t)}t≥0, Ik ∈C(E,E) (k =
1, . . . ,m), and∆y|t=tk = y(t+k )−y(t−k ). The notations y(t+k )= lim

h→0+
y(tk+h) and y(t−k )= lim

h→0+
y(tk−

h) stand for the right and the left limits of the function y at t = tk, respectively.

In 1890, Peano [43] proved that the Cauchy problem for ordinary differential equations
has local solutions although the uniqueness property does not hold in general. In case
where the uniqueness does not hold, Keneser [39] proved in 1923 that the solution set
is a continuum, i.e. closed and connected. In 1942, Aronszajn [5] improved this result
for differential inclusions in the sense that he showed that the solution set is compact and
acyclic, and he specified this continuum to be an Rδ−set. An analogous result was obtained
for differential inclusions by serval authors; see for instance [3, 10, 16, 17, 24, 31, 49].

Very recently, the topological and geometric structures of the solution sets for impulsive
differential equations and inclusions on compact and non-compact intervals were investi-
gated in [2, 19, 20, 21, 22, 23, 29, 32, 33, 35] where the solution set is shown to be an
absolute retract, contractible, acyclic, and Rδ− set.

Our goal is to investigate the topological structures of the solution set of Problem (1.1),
where the right-hand side is not necessarily convex valued.

2 Preliminaries

In this section, we recall from the literature some notations, definitions, and auxiliary results
which will be used throughout this paper. Let (E, || · ||) be a separable Banach space, J :=
[0,b] an interval in R and C(J,E) the Banach space of all continuous functions from J into
E with the suppremum norm

‖y‖∞ = sup{‖y(t)‖ : 0 ≤ t ≤ b}.
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Set

AC(J,E) = {y : [0,b]→ E absolutely continuous,

y(t) = y(0)+
∫ t

0
y′(s)ds, and y′ ∈ L1([0,b],E)}.

B(E) refers to the Banach space of linear bounded operators from E into E with the usual
norm

‖N‖B(E) = sup{‖N(y)‖ : ‖y‖ = 1}.

A function y : J → E is called measurable provided for every open subset U ⊂ E, the set
y−1(U) = {t ∈ J : y(t) ∈ U} is Lebesgue measurable. A measurable function y : J → E is
Bochner integrable if ‖y‖ is Lebesgue integrable. For properties of the Bochner integral,
see e.g. Yosida [48]. In what follows, L1(J,E) denotes the Banach space of functions
y : J −→ E, which are Bochner integrable with norm

‖y‖L1 =

∫ b

0
‖y(t)‖dt.

Denote by P(E) = {Y ⊂ E : Y , ∅}, Pcl(E) = {Y ∈ P(E) : Y closed}, Pb(E) = {Y ∈ P(E) : Y
bounded},Pcv(E)= {Y ∈P(E) : Y convex},Pcp(E)= {Y ∈P(E) : Y compact}, andPwkcp(E)=
{Y ∈ P(E) : Y weakly compact}.

Definition 2.1. A multi-valued map F : J→Pcl(Y) is said measurable provided for every
open U ⊂ Y, the set

F+1(U) = {x ∈ J : F(x) ⊂ U}

is Lebesgue measurable.

An characterization of the measurability of the multifunction is given by the following
lemma

Lemma 2.2. ([15, 30]) The mapping F is measurable if and only if for each x ∈ Y, the
function ζ : J→ [0,+∞) defined by

ζ(t) = dist(x,F(t)) = inf{‖x− y‖ : y ∈ F(t)}, t ∈ J,

is Lebesgue measurable.

The following two lemmas are needed in this paper. The first one is the celebrated
Kuratowski-Ryll-Nardzewski selection theorem.

Lemma 2.3. ([30], Theorem 19.7) Let Y be a separable metric space and F : J→Pcl(Y) a
measurable multivalued map. Then F has a measurable selection.

First, consider the Hausdorff pseudo-metric

Hd : P(E)×P(E) −→ R+∪{∞}

defined by

Hd(A,B) =max
{

sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}

where d(A,b) = inf
a∈A

d(a,b) and d(a,B) = inf
b∈B

d(a,b). (Pb,cl(E),Hd) is a metric space and

(Pcl(X),Hd) is a generalized metric space.
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Definition 2.4. A multi-valued operator N : E→Pcl(E) is called

(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x),N(y)) ≤ γd(x,y), for each x, y ∈ E,

(b) a contraction if it is γ-Lipschitz with γ < 1.

Notice that if N is γ−Lipschitz, then for every γ′ > γ,

N(x) ⊂ N(y)+γ′d(x,y)B(0,1), ∀ x,y ∈ E,

where B(0,1) denotes the unit ball in the space E.

Definition 2.5. A is called L⊗B measurable if A belongs to the σ-algebra generated by all
sets of the form I×D where I is Lebesgue measurable in J and D is Borel measurable in E.

Definition 2.6. A subset A ⊂ L1(J,E) is decomposable if for all u,v ∈ A and for every
Lebesgue measurable set I ⊂ J, we have:

uχI + vχJ\I ∈ A,

where χA stands for the characteristic function of the set A. We denote Dco the family of
decomposable sets.

More details on the previous sets can be found in the monograph by Fryszkowski [28].
Let F : J ×E→P(E) be a multi-valued map with nonempty closed values. Assign to

F the multi-valued operator F : C(J,E)→P(L1(J,E)) defined by

F (y) = {v ∈ L1(J,E) : v(t) ∈ F(t,y(t)), a.e. t ∈ J}.

The operator F is called the Nemyts’kiı̆ operator associated to F.

Definition 2.7. Let F : J×E→P(E) be a multi-valued map with nonempty compact values.
We say that F is of lower semi-continuous type (l.s.c. type) if its associated Nemyts’kiı̆
operator F is lower semi-continuous and has nonempty closed and decomposable values.

Next, we state a classical selection theorem due to Bressan and Colombo.

Lemma 2.8. (see [13, 18, 36]) Let X be a separable metric space and let E be a Banach
space. Then every l.s.c. multi-valued operator N : X→Pcl(L1(J,E)) with closed decompos-
able values has a continuous selection, i.e. there exists a continuous single-valued function
f : X→ L1(J,E) such that f (x) ∈ N(x) for every x ∈ X.

Let us introduce the following hypothesis.

(H1) F : J×E −→P(E) is a nonempty compact valued multi-valued map such that
(a) the mapping (t,y) 7→ F(t,y) is L⊗B measurable;
(b) the mapping y 7→ F(t,y) is lower semi-continuous for a.e. t ∈ J.

The following lemma is crucial in the proof of our existence theorem.
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Lemma 2.9. (see e.g. [18, 27]) Let F : J × E → Pcp(E) be an integrably bounded multi-
valued map satisfying (H1). Then F is of lower semi-continuous type.

Definition 2.10. A space X is called an absolute retract (written as X ∈ AR) provided that
for every space Y, a closed subset B ⊂ Y, and a continuous map f : B→ X, there exists a
continuous extension f̃ : Y → X of f over Y, i.e., e f̃ (x) = f (x) for every x ∈ B.

We need the following result owed to Bressan-Cellina-Fryszkowski.

Lemma 2.11. ([12], Thm. 2) Let E be a Banach space, X = L1(T,E), for some measurable
space T, and N : E→P(X) a contraction map with decomposable values. Then Fix (N) is
an absolute retract.

For further readings and details on multivalued analysis, we refer to the books by Aubin
and Cellina [7], Aubin and Frankowska [8], Deimling [18], Górniewicz [30], Hu and Papa-
georgiou [36, 37], Kamenskii [38], Smirnov [45], and Tolstonogov [46].

3 Continuous selection and absolute retract of solution set

In this section we present some proprieties of the solution set of the Problem (1.1) where
the right-hand side is not necessarily convex. First, we give some auxiliary lemmas.

Let f ∈ L1(J,E), and assume that the operator A generates a semigroup T (t). We con-
sider the following impulsive problem

y′(t)−Ay(t) = f (t), a.e. t ∈ J,
∆yt=tk = Ik(y(t−k )), k = 1, . . . ,

y(0) = a,
(3.1)

where A is the infinitesimal generator of a C0−semigroup of linear operator T (t) on a sepa-
rable Banach space E.

Note the solution of the problem (3.1) by y(a, f ).

PC := {y : J→ E : y ∈ AC((tk, tk+1),E), k = 0, . . .m−1}.

Then (PC,‖ · ‖PC) is a Banach space with norm

‖y‖PC = ‖y‖∞+ ‖y′‖L1 .

Definition 3.1. A function y(a, f ) ∈ PC is called mild solution of Problem (3.1) if

y(a, f ) = T (t)a+
∫ t

0
T (t− s) f (s)ds+

∑
0<tk<t

T (t− tk)Ik(y(a, f )(tk)), t ∈ J.

Definition 3.2. A function y ∈ PC is called mild solution of Problem (1.1) if there exists
f ∈ L1(J,E) such that

y(t) = T (t)a+
∫ t

0
T (t− s) f (s)ds+

∑
0<tk<t

T (t− tk)Ik(y(tk)), t ∈ J,

and
f (t) ∈ F(t,y(t)), a.e. t ∈ J.
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Note that Ω = {y(a, f ) : (a, f ) ∈ E × L1(J,E)} is the appropriate space for mild solutions
of the problem (3.1). We define the following operator L : E×L1(J,E)→Ω by

L(v)(t) =



L0(a,v)(t), if t ∈ [0, t1],
L1(a,v)(t), if t ∈ (t1, t2],
. . . . . .

Lm−1(a,v)(t), if t ∈ (tm−1, tm],
Lm(a,v)(t), if t ∈ (tm,b],

(3.2)

where

L0(a,v)(t) = T (t)a+
∫ t

0
T (t− s)v(s)ds, t ∈ [0, t1]

L1(a,v)(t) = T (t− t1)[L0(v)(t1)+ I1(L0(v)(t1))]+
∫ t

t1
T (t− s)v(s)ds, t ∈ (t1, t2]

L2(a,v)(t) = T (t− t2)[L1(v)(t2)+ I2(L1(v)(t2))]+
∫ t

t2
T (t− s)v(s)ds, t ∈ (t2, t3]

. . .

Lm−1(a,v)(t) = T (t− tm)[Lm−2(v)(tm−1)+ Im−1(Lm−2(v)(tm−1))]

+

∫ t

tm
(T (t− s)v(s)ds, t ∈ (tm,b].

From (3.2), we can easily check that

L(a,v)(t) = T (t)a+
∑

0<tk<t

T (t− s)Ik(Lk−1(v)(tk))+
∫ t

0
T (t− s)v(s)ds, a.e. t ∈ J.

Lemma 3.3. The map L : E×L1(J,E)→Ω defined by L(a,v) = y(a,v) is one-to-one, where
y(., .) is solution of the problem (3.1).

Proof. For the construction of the operator L we have L(a,v) = y(a,v). Now, we prove
that L is one-to-one.

1. Let v1,v2 ∈ L1(J,E) be such that L(v1) = L(v2). For t ∈ [0, t1], we have∫ t

0
T (t− s)v1(s)ds =

∫ t

0
T (t− s)v2(s)ds.

For t ∈ (t1, t2] we have

T (t− t1)[L0(v1)(t1)+ I1(L0(v1)(t1))]+
∫ t

t1
T (t− s)v1(s)ds

= T (t− t2)[L0(v2)(t1)+ I1(L0(v2)(t1))]+
∫ t

t1
T (t− s)v2(s)ds.

For t ∈ (t2, t3] we have

T (t− t2)[L1(v1)(t2)+ I2(L1(v1)(t2))]+
∫ t

t2
T (t− s)v1(s)ds

= T (t− t2)[L1(v2)(t2)+ I2(L1(v2)(t2))]+
∫ t

t2
T (t− s)v2(s)ds.
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We continuous this process, and get for t ∈ (tm,b]

T (t− tm)[Lm−1(v1)(tm−1)+ Im−1(Lm−1(v1)(tm−1))]+
∫ t

tm−1

T (t− s)v1(s)ds

= T (t− tm)[Lm−1(v2)(tm−1)+ Im−1(Lm−1(v2)(tm−1))]+
∫ t

tm−1

T (t− s)v2(s)ds.

Let t ∈ J1 = [0, t1], then ∫ t

0
T (t− s)[v1(s)− v2(s)]ds = 0. (3.3)

Thus, for each h > 0, we have

T (h)
∫ t

0
T (t− s)[v1(s)− v2(s)]ds = 0⇒

∫ t

0
T (t+h− s)[v1(s)− v2(s)]ds = 0. (3.4)

From (3.3) and (3.4) we obtain∫ t+h

t
T (t+h− s)[v1(s)− v2(s)]ds

=

∫ t

0
T (t+h− s)[v1(s)− v2(s)]ds

+

∫ t+h

t
T (t+h− s)[v1(s)− v2(s)]ds

=

∫ t+h

0
T (t+h− s)[v1(s)− v2(s)]ds = 0.

Hence
1
h

∫ t+h

t
T (t+h− s)[v1(s)− v2(s)]ds = 0. (3.5)

Let J∗1 be the set of all t ∈ (0, t1) such that

lim
h→0

1
2h

∫ t+h

t−h
‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds = 0, (3.6)

and we observe that J1\J∗1 has Lebesgue measure m(J1\J∗1) = 0 (see [25] p. 217). Let
t ∈ J∗1 be arbitrary, we have

1
h

∫ t+h

t
T (t+h− s)[v1(s)− v2(s)]ds

=
1
h

∫ t+h

t
T (t+h− s)[v1(s)− v2(s)− v1(t)+ v2(t)]ds

+
1
h

∫ t+h

t
T (t+h− s)[v1(t)− v2(t)]ds.
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By (3.5), we have

1
h

∫ t+h

t
T (t+h− s)[v1(t)− v2(t)− v1(s)+ v2(s)]ds

=
1
h

∫ t+h

t
T (t+h− s)[v1(t)− v2(t)]ds.

Set

µ(h) =
1
h

∫ h

0
T (s)[v1(t)− v2(t)]ds.

µ(h) ≤
1
h

∫ t+h

t
‖T (t+h− s)‖B(E)‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds

≤
1
h

∫ t+h

t
‖T (t+h− s)‖B(E)‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds

≤
Me2ωh

h

∫ t+h

t−h
‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds.

Hence

µ(h) ≤
2Me2ωh

2h

∫ t+h

t−h
‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds.

In view of (3.6) we concluded that

lim
h→0
µ(h) = 0⇒ v1(t)− v2(t) = 0.

Since t is arbitrary and m(J1\J∗1) = 0, we have

v1− v2 = 0⇒ v1 = v2 on J1.

For t ∈ (t1, t2] we have∫ t

t1
T (t− s)[v1(s)− v2(s)]ds, t ∈ (t1, t2] = J2. (3.7)

Thus, for each h > 0, we have∫ t

t1
T (t+h− s+ t1)[v1(s)− v2(s)]ds = 0 (3.8)

From (3.7) and (3.8) we obtain∫ t+h

t
T (t+h− s+ t1)[v1(s)− v2(s)]ds

=

∫ t

t1
T (t+h− s+ t1)[v1(s)− v2(s)]ds

+

∫ t+h

t
T (t+h− s+ t1)[v1(s)− v2(s)]ds

=

∫ t+h

t1
T (t+h− s+ t1)[v1(s)− v2(s)]ds = 0.
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Hence
1
h

∫ t+h

t
T (t+h− s+ t1)[v1(s)− v2(s)]ds = 0. (3.9)

Let J∗2 be the set of all t ∈ (t1, t2) such that

lim
h→0

1
2h

∫ t+h

t−h
‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds = 0, (3.10)

and we observe that J2\J∗2 has Lebesgue measure m(J2\J∗2) = 0 (see [25] p. 217). Let
t ∈ J∗2 be arbitrary, we have

1
h

∫ t+h

t
T (t+h− s+ t1)[v1(s)− v2(s)]ds

=
1
h

∫ t+h

t
T (t+h− s)[v1(s)− v2(s)− v1(t)+ v2(t)]ds

+
1
h

∫ t+h

t
T (t+h− s+ t1)[v1(t)− v2(t)]ds.

By (3.9), we have

1
h

∫ t+h

t
T (t+h− s+ t1)[v1(t)− v2(t)− v1(s)+ v2(s)]ds

=
1
h

∫ t+h

t
T (t+h− s+ t1)[v1(t)− v2(t)]ds.

Set

µ1(h) =
1
h

∫ t1+h

t1
T (s)[v1(t)− v2(t)]ds.

µ1(h) ≤
1
h

∫ t+h

t
‖T (t+h− s+ t1)‖B(E)‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds

≤
1
h

∫ t+h

t
‖T (t+h− s+ t1)‖B(E)‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds

≤
Me2ωh

h

∫ t+h

t−h
‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds.

Hence

µ1(h) ≤
2Me2ω(h+t1)

2h

∫ t+h

t−h
‖v1(t)− v2(t)− v1(s)+ v2(s)‖ds.

In view of (3.10) we conclude that

lim
h→0
µ(h) = 0⇒ v1(t)− v2(t) = 0.

Since t is arbitrary and m(J2\J∗2) = 0, we have

v1− v2 = 0⇒ v1 = v2 on J2.
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We continue this process until we arrive that

v1 = v2 on Jm.

This implies that
v1 = v2 on J.

For each (a, f ) ∈ E×L1(J,E) we denote y(a, f ) the solution of the problem (3.1). Set

Ω = {y(a, f ) : (a, f ) ∈ E×L1(J,E)},

is a metric space with distance

d(y(a1, f1),y(a2, f2)) = ‖y(a1, f1)− y(a2, f2)‖PC + ‖ f1− f2‖L1 . (3.11)

Lemma 3.4. Ω is a complete metric space.

Proof. Since L is one-to-one, the distance (3.11) makes sense. It remains to show thatΩ
with the distance d, is complete. Let {yn(an, fn)}n≥1 be Cauchy sequence in Ω. For n,m ∈ N
we have

d(yn(an, fn),ym(am, fm)) = ‖yn(an, fn)− ym(am, fm)‖PC + ‖ fn− fm‖L1 .

Since L1 is a Banach space, there exist f ∈ L1 such that

‖ fn− f ‖L1 → 0 as n→∞.

From the definition of yn we have

‖an−am‖ = ‖T (0)an−T (0)am‖ ≤ ‖yn(an, fn)− ym(am, fm)‖.

Thus {an}n≥1 is a Cauchy sequence in E then there exists a ∈ E such that

‖an−a‖ → 0 as n→∞.

We consider the following impulsive problem
y′(t)−Ay(t) = f (t), a.e. t ∈ J,

∆yt=tk = Ik(y(t−k )), k = 1, . . . ,
y(0) = a.

(3.12)

The solution of Problem (3.12) is defined by

y(a, f ) = T (t)a+
∫ t

0
T (t− s) f (s)ds+

∑
0<tk<t

T (t− tk)Ik(y(a, f )(tk)), t ∈ J.

Now we prove that the sequence {yn}n≥1 converges to y(a, f ). Let t ∈ [0, t1].We have

‖yn(an, fn)(t)− y(a, f )(t)‖ ≤ Meωb‖an−a‖+Meωb
∫ b

0
‖ f2(s)− f1(s)‖ds.



82 M. Benchohra, J. J. Nieto, and A. Ouahab

Then

sup
t∈[0,t1]

‖yn(an, fn)(t)− y(a, f )(t)‖ ≤ Meωb‖an−a‖

+Meωb
∫ b

0
‖ fn(s)− f (s)‖ds→ 0 as n→∞.

This implies that
‖yn(an, fn)(t1)− y(a, f )(t1)‖ → 0 as n→∞

and by the continuity of I1 we have

‖yn(an, fn)(t+1 )− y(a, f )(t+1 )‖ ≤ ‖yn(an, fn)(t1)− y(a, f )(t1)‖

+‖I1(yn(an, fn)(t1))− I1(y(a, f )(t1))‖ → 0 as n→∞.

For t ∈ (t1, t2] we have

sup
t∈[t1,t2]

‖yn(an, fn)(t)− y(a, f )(t)‖ ≤ Meωb‖yn(an, fn)(t1)− y(a, f )(t1)‖

+Meωb‖I1(yn(an, fn)(t1))− I1(y(a, f )(t1))‖

+Meωb
∫ b

0
‖ fn(s)− f (s)‖ds→ 0 as n→∞.

We continue this process until we arrive

sup
t∈[tm,b]

‖yn(an, fn)(t)− y(a, f )(t)‖ ≤ Meωb‖yn(an, fn)(tm)− y(a, f )(tm)‖

+Meωb‖Im(yn(an, fn)(tm))− Im(y(a, f )(tm))‖

+Meωb
∫ b

0
‖ fn(s)− f (s)‖ds→ 0 as n→∞.

Hence {yn(an, fn)}n≥1 converges to y(a, f ) in Ω. Let

G(a, f ) = {v ∈ L1(J,E) : v(t) ∈ F(t,y(a, f )(t)) a.e. t ∈ J},

and
G∗(a) = { f ∈ L1(J,E) : f ∈G(a, f )}.

Lemma 3.5. Assume that the multi-valued map F : J×E→Pcp(E) is such that t→ F(t, .)
is a measurable and

(H2) There exist p ∈ L1(J,R+) such that

Hd(F(t, x),F(t,y)) ≤ p(t)‖x− y‖, for x,y ∈ E and a.e. t ∈ Jk

and
F(t,0) ⊂ p(t)B(0,1), for a.e. t ∈ J,

hold. Then F is of lower semicontinuous type and G : E×L1(J,E)→P(Dco).

Remark 3.6.
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(a) (H2) implies that the multifunction F has at most the linear growth

‖F(t, x)‖P ≤ p(t)(1+ ‖x‖), p ∈ L1(J,R+), a.e. t ∈ J, x ∈ E.

Proof of Lemma 3.5. The multivalued map t→ F(t, .) is measurable and x→ F(., x)
is Hd-continuous. In addition F(., .) has compact values; hence G(., .) is measurable, con-
tinuous. Since the measurable multifunction F is integrably bounded, Lemma 2.9 implies
that the Nemyts’kiı̆ operator F has decomposable values. Let (a, f ) ∈ E × L1(J,E), then
there exists a unique y(a, f ) ∈ PC such that y(a, f ) is a solution of the problem (3.1), by the
definition of F and G we have F (y(a, f )) =G(a, f ), then for every (a, f ) ∈ E × L1(J,E) we
obtain that G(a, f ) ∈ P(Dco).

Theorem 3.7. F : J ×E→Pcp(E); t→ F(t, x) is measurable for each x ∈ E. Assume that
(H2) and the following condition

(A1) there exist ck > 0, k = 1, . . . ,m such that

‖Ik(x)− Ik(y)‖ ≤ ck‖x− y‖ for every x,y ∈ E

hold, then there exists a continuous function L∗ : Ω→ PC satisfying for each a ∈ E the
following properties

L∗(a,y) ∈ S (a) for each y ∈Ω∗
L∗(a, f ) = y, for each y ∈ S (a),

where
Ω = {(a,y) ∈ E×Ω : a ∈ E, y ∈Ω∗}

and
Ω∗ = {y ∈Ω : y(0) = a}.

Remark 3.8. By conditions of Theorem 3.7 the solution set of Problem (1.1) is not empty.
For the proof, we can see [11, 20, 35].

Proof. From Lemma 3.5, we have that, for every (a, f ) ∈ E×L1(J,E),G(a, f ) ∈ P(Dco)
with decomposable values. Now we prove that G is Hausdorff continuous. Let (an, fn) be a
sequence in E × L1(J,E) converging to (a, f ). Let ε > 0 and gn ∈G(an, fn). From (H2) tells
us that

Hd(F(t,y(a, f )(t)),F(t,yn(an, fn)(t))) ≤ p(t)‖yn(an, fn)(t)− y(a, f )(t)‖+
ε

2
, a.e. t ∈ J.

Hence there is w ∈ F(t,y(a, f )(t)) such that

‖gn(t)−w‖ ≤ p(t)‖y(a, f )(t)− y(an, fn)(t)‖+
ε

2
, t ∈ J.

Consider the mapping Un : J→P(E) defined by

Un(t) = {w ∈ E : ‖ f (t)−w‖ ≤ p(t)‖y(an, fn)(t)− y(a, f )(t)‖+
ε

2
}, t ∈ J,
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that is Un(t) = B(gn(t), p(t)|y(an, fn)(t)− y(a, f )(t)‖+
ε

2
). Since g, l,y, ȳ are measurable, The-

orem III.4.1 in [15] tells us that the closed ball U is measurable.
Finally the set V(t) = U(t)∩ F(t,y(t)) is nonempty since it contains w. Therefore the

intersection multi-valued operator V is measurable with nonempty, closed values (see [8, 15,
30, 47, 49]). By Lemma 2.3, there exists a function gn(t), which is a measurable selection
for V. Thus gn(t) ∈ F(t,y(a, f )(t)) and

‖gn(t)−gn(t)‖ ≤ p(t)‖y(an, fn)(t)− y(a, f )(t)‖+
ε

2
, for a.e. t ∈ J.

Thus for a.e. t ∈ J

‖gn(t)−gn(t)‖ ≤ p(t)‖y(an, fn)(t)− y(a, f )(t)‖ds+
ε

2
≤ Meωb p(t)‖an−a‖+Meωb p(t)‖ fn− f ‖L1

Meωb p(t)
m∑

k=1

‖Ik(y(an, fn))(tk)− Ik(y(a, f ))(tk)‖+
ε

2
.

Hence

‖gn−gn‖L1 ≤ Meωb‖p‖L1‖an−a‖+Meωb‖p‖L1‖ fn− f ‖L1

Meωb‖p‖L1

m∑
k=1

‖Ik(y(an, fn))(tk)− Ik(y(a, f ))(tk)‖+b
ε

2
.

By an analogous relation, obtained by interchanging the roles of y(an, fn) and y(a, f ), we
finally arrive at

Hd(G(an, fn),G(a, f )) ≤ Meωb‖p‖L1‖an−a‖+Meωb‖p‖L1‖ fn− f ‖L1

Meωb‖p‖L1

m∑
k=1

‖Ik(y(an, fn))(tk)− Ik(y(a, f ))(tk)‖+b
ε

2
.

Using the fact that Ik, k = 1, . . . ,m are continuous functions, we have

Hd(G(an, fn),G(a, f ))→ 0 as n→∞.

Now, show that a→ G(a, .) is Hd− Lipschitz. Let f1, f2 ∈ L1(J,E). Denote y(a, f1) and
y(a, f2) the mild solutions of the problem (3.1) respectively, thus for t ∈ [0, t1] we have

‖y(a, f1)(t)− y(a, f2)(t)‖ ≤ Meωt1
∫ t

0
‖ f1(s)− f2(s)‖ds. (3.13)

From (A1) we obtain

‖I1(y(a, f1)(t1))− I1(y(a, f2)(t1))‖ ≤ c1Meωt1
∫ t1

0
‖ f1(s)− f2(s)‖ds. (3.14)
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For t ∈ (t1, t2] we have

‖y(a1, f1)(t)− y(a2, f2)(t)‖ ≤ ‖y(a, f1)(t1)− y(a, f2)(t1)‖

+‖I1(y(a, f1)(t1))− I1(y(a, f2)(t1))‖

+

∫ t

t1
‖T (t− s)‖B(E)‖ f1(s)− f2(s)‖ds

≤ Meωt
∫ t

0
‖ f1(s)− f2(s)‖ds

+c1Meωt1
∫ t1

0
‖ f1(s)− f2(s)‖ds.

Hence for t ∈ (tp−1, tp], p = 1, . . . ,m, we have

‖y(a1, f1)(t)− y(a2, f2)(t)‖ ≤ Meωt
∫ t

0
‖ f1(s)− f2(s)‖ds

+

p−1∑
k=1

ckMeωtk
∫ tk

tk−1

‖ f1(s)− f2(s)‖ds.
(3.15)

Let v1 ∈G(a, f1) and ε > 0. The function

F(t,y(a, f2))∩B(v1(t), p(t)‖y(a, f1)− y(a, f2)‖+
ε

b
)

is measurable, then there exists v2 ∈ F(t,y(a, f2)) such that

‖v1(t)− v2(t)‖ ≤ p(t)‖y(a, f1)− y(a, f2)‖+
ε

b
.

From (3.15), we have

‖v1(t)− v2(t)‖ ≤ p(t)Meωt
∫ t

0
‖ f1(s)− f2(s)‖ds

+p(t)
p−1∑
k=1

ckMeωtk
∫ tk

tk−1

‖ f1(s)− f2(s)‖ds+
ε

b
.

Since tp−1 < t, we have

‖v1(t)− v2(t)‖ ≤ p(t)

Meωb+

m∑
k=1

ckeωtk

∫ t

0
‖ f1(s)− f2(s)‖ds+

ε

b
. (3.16)

Let τ > Meωb +

m∑
k=1

ckeωtk = D, m(t) =
∫ t

0
p(s)ds, and let L1 be the weighted space of

Lebesgue measurable functions such that
∫ b

0
‖v(t)‖e−τm(t)dt <∞. Endowed with norm

‖v‖1 =
∫ b

0
‖v(t)‖e−τm(t)dt, for v ∈ L1,
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it becomes a Banach space. From (3.16), we have

‖v1− v2‖1 =

∫ b

0
e−τm(t)‖v1(t)− v2(t)‖dt

≤

∫ b

0
p(t)e−τm(t)Ddt

∫ t

0
‖ f1(s)− f2(s)‖ds

=
−D
τ

∫ b

0
[e−τm(t)]′dt

∫ t

0
‖ f1(s)− f2(s)‖ds

=
−D
τ

{
e−τm(b)

∫ b

0
‖ f1(t)− f2(t)‖dt−

∫ b

0
‖ f1(t)− f2(t)‖dt

}
+ ε.

≤
D
τ

∫ b

0
‖ f1(t)− f2(t)‖dt+ ε.

Since ε is arbitrary, we get

‖v1− v2‖1 ≤
D
τ
‖ f1− f2‖1.

By an analogous relation obtained by interchanging the roles of v1 and v2, we finally obtain
that for every f1, f2 ∈ L1(J,E)

Hd(G(a, f1),G(a, f2)) ≤
D
τ
‖ f1− f2‖1.

Hence there exist continuous single-valued map φ : E×L1(J,E)→ L1(J,E) such that

φ(a, f ) ∈G(a, f ) for each f ∈ L1

and
φ(a, f ) = f for every f ∈G∗(a, f ).

Let (a,y) ∈ Ω be arbitrary. There exists a unique y ∈ Ω∗ for some f ∈ L1(J,E) where y(a, f )
denotes the mild solution of (3.1). Hence (a,y) = (a,y(a, f )). We consider the following
function

L∗(a,y(a, f ))(t) = T (t)a+
∫ t

0
T (t− s)φ(a, f )(s)ds+

∑
0<tk<t

T (t− tk)Ik(y(a, f )(tk)), t ∈ J.

Now we prove that the function L∗ is continuous. Let (a,y(a, f )), (a0,y(a0, f0)) ∈ E×Ω, then

‖L∗(a,y(a, f ))(t)−L∗(a0,y(a0, f0))(t)‖

≤ Meωb‖a−a0‖

+Meωb
∫ t

0
‖φ(a, f )(s)−φ(a0, f0)(s)ds

+Meωb
∑

0<tk<t

‖Ik(y(a, f )(tk))− Ik(y(a0, f0)(tk)‖
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Thus

‖L∗(a,y(a, f ))−L∗(a0,y(a0, f0))‖PC ≤ Meωb‖a−a0‖

+Meωb
∫ b

0
‖φ(a, f )(s)−φ(a0, f0)(s)ds

+Meωb
m∑

k=1

ck‖y(a, f )(tk))− y(a0, f0)(tk)‖.

This implies that

d(L∗(a,y(a, f )),L∗(a0,y(a0, f0))

≤ Meωb‖a−a0‖+Meωb
∫ b

0
‖φ(a, f )(s)−φ(a0, f0)(s)ds

+Meωb
m∑

k=1

ck‖y(a, f )(tk))− y(a0, f0)(tk)‖

+‖ f − f0‖L1 → 0 as (a,y(a, f ))→ (a0,y(a0, f0)).

Hence L∗ is continuous. Now, we prove that the solutions set is an absolute retract.

Theorem 3.9. Let F : J × E → Pcp(E) be multivalued map. Assume that t→ F(t, .) is a
measurable, (H2) and

(A2) there exist ck > 0, k = 1, . . . ,m such that

Ik(x) = ckx, for each x ∈ E,

then the solution set of Problem (1.1) is an absolute retract.

Proof. Using the fact that Ik, k = 1, . . . ,m are linear functions, then L is linear. Also it
clear that L(E×L1(J,E)) = Ω.Moreover since L is one-to-one then from Lemma 3.4 Ω is a
Banach space with norm

‖y(a, f )‖Ω = ‖y(a, f )‖PC + ‖ f ‖L1 , for each (a, f ) ∈ E×L1(J,E).

By using Theorem 3.7, we can prove that there exist L∗ :Ω→ PC such that

L∗(a,y) ∈ S (a) for each y ∈Ω∗
L∗(a, f ) = y, for each y ∈ S (a),

where
Ω = {(a,y) ∈ E×Ω : a ∈ E, y ∈Ω∗},

and
Ω∗ = {y ∈Ω : y(0) = a}.

It is clear that S (a) ⊂Ω∗. Since L is linear continuous and bijective, then L is an homomor-
phism

S (a) = (L◦G∗)(a).
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By the same method as used in Theorem 3.7 we can easily prove that G∗ is a contraction.
Hence from (2.11) S (a) is an absolute retract of Ω∗ Since Ω∗ is closed convex of a Banach
space Ω. Then Ω∗ is retract of Ω (see, [14]), this implies that S (a) is retract.
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sans convexité, C. R. Acad. Sci. Paris, Ser. I 310 (1990), 819–822.

[28] A. Fryszkowski, Fixed Point Theory for Decomposable Sets, Topological Fixed Point
Theory and its Applications, 2 Kluwer Academic Pulishers, Dordrecht, 2004.



90 M. Benchohra, J. J. Nieto, and A. Ouahab

[29] J. R. Graef, J. Henderson and A. Ouahab, Impulsive differential inclusions. A fixed
point approach. De Gruyter Series in Nonlinear Analysis and Applications 20. Berlin:
de Gruyter, 2013.
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