Sur les déformations d'un feuilletage de codimension 1 en structures de contact

HAMIDOU DATHE*
Department of Mathematics, UCAD
Dakar, Sénégal

Снекн Кноиле[†]
Department of Mathematics, UCAD
Dakar, Sénégal

Abstract

Dans cet article on étudie quelques déformations particulières d'un feuilletage de codimension 1 en structures de contact. Ces déformations dites affines sont un peu plus générales que les déformations linéaires (voir [3]) au sens de Dathe-Rukimbira. Elles permettent aussi de donner dans une variété de contact compacte de dimension 2n+1, une condition nécéssaire et suffisante de déformabilité d'une 1-forme intégrable quelconque en structures de contact.

AMS Subject Classification: 62G05; 62G20.

Keywords: déformations, déformations affines, feuilletage de codimension 1, structures de contact.

1 Introduction

Dans ce texte, V d'esignera toujours une variété différentiable de classe C^{∞} orientée. Les champs d'hyperplans tangents qu'on considérera sur V seront supposés transversalement orientés. Un tel champ ξ pourra toujours être vu comme le noyau d'une 1-forme η , appelée équation de ξ , unique à multiplication près par une fonction positive.

Si η satisfait la condition d'intégrabilité de Frobénuis à savoir $\eta \wedge d\eta = 0$, alors ξ est dit un feuilletage de codimension 1 de V.

Si V est de dimension impaire 2n + 1, on dit que ξ est une structure de contact sur V si $\eta \wedge (d\eta)^n$ est une forme volume sur V. Une telle forme η est appelée forme de contact sur V et (V, ξ) une variété de contact. Si η est une forme de contact sur V, alors il existe un unique champ de vecteurs Z tel que $\eta(Z) = 1$ et $i_Z d\eta = 0$, appelé champ de Reeb de η . On supposera dans la suite sur V, que toute forme de contact η est positive (ie : $\eta \wedge (d\eta)^n > 0$).

^{*}E-mail address: hamidou.dathe@yahoo.fr †E-mail address: chthioune@yahoo.fr

Une variété de contact (V, η, Z) de forme de contact η et de champ de Reeb Z admet aussi une métrique riemanniènne g et un champ de tenseur J de type (1,1) telles que les propriétés suivantes soient vérifiées (voir [1]): JZ = 0, $\eta(Z) = 1$, $J^2 = -id_{TV} + \eta \otimes Z$, $\eta(X) =$ $g(Z, X), g(JX, JY) = g(X, Y) - \eta(X)\eta(Y), g(X, JY) = d\eta(X, Y).$

Une telle métrique g est appelée une métrique de contact. Si Z est Killing (ie son groupe local à un paramétre est formé par des isométries) relativement à une certaine métrique de contact g ; on dit que V est une K-variété de contact.

A première vue, la théorie des feuilletages de codimension 1 et celle des structures de contact sur une vartiété V de dimension 2n+1 appartiennent entièrement à deux mondes différents. Cependant le développement des deux théories a fait apparaître de nombreux points communs. De plus la théorie des feuilletacts (ou confoliations ie : des structures définies par des 1-formes η telles que $\eta \wedge (d\eta)^n \geq 0$, voir [4]) d'Eliashberg et Thurston est un pont direct entre les deux domaines qui leur permet notamment de montrer le théorème suivant dit de perturbation d'Eliashberg-Thurston.

Théorème 1.1. [4] Sur une variété V fermée de dimension 3, tout feuilletage de classe au moins C^2 , tranversalement orientable de codimension 1, différent du feuilletage produit de $S^2 \times S^1$ par les sphéres $S^2 \times p$, $p \in S^1$ est C^0 -proche d'une structure de contact.

Rappelons que si ξ est un feuilletage de codimension 1, défini par une 1-forme non singulière α sur une variété V de dimension 2n+1, alors on dit que ξ est déformable en structures de contact, s'il existe sur V une famille à un paramétre réel de champs d'hyperplans $(\xi_t)_{t>0}$ définis par des 1-formes α_t telle que $\xi_0 = \xi$ et pour tout t > 0, α_t est de contact. Selon Dathe et Rukimbira (voir [2]), si ξ_t est défini par une 1-forme $\alpha_t = \alpha + t\beta$ où β est une 1forme non singulière indépendante de t, alors ξ est dit linéairement déformable.

Dans [4], Eliashberg et Thurston, optimistes quant à la possibilité de trouver mieux qu'une approximation C^0 , posent la question suivante : Est - il toujours possible de déformer un feuilletage en structure de contact? A défaut de répondre positivement à cette question, il serait intéressant de trouver une condition nécessaire et suffisante de déformabilité d'un feuilletage en structures de contact. Dathe et Rukimbira ont réussi dans [3] à démontrer les théorèmes suivants :

Théorème 1.2. [3] Etant données V une variété différentielle fermée de dimension 2n+1, α une 1-forme fermée non singulière sur V et β une 1-forme quelconque sur V. Alors les conditions suivantes sont équivalentes :

- (i) Les 1-formes $\alpha_t = \alpha + t\beta$ données dans une déformation linéaire de α en structure de contact sont des formes de contact pour tout t > 0.
- (ii) La 1-forme β est de contact et $\alpha(Z) = 0$ où Z est le champ de Reeb de β .

Le théorème 1.3 suivant compléte le théorème 1.2, en effet il permet d'établir que si la fonction $\alpha(Z)$ n'est pas identiquement nulle, alors on ne peut effectuer de déformations linéaires à l'aide de la forme de contact β .

Théorème 1.3. [3] Soit (V,β,Z) une variété de contact fermée de dimension 2n+1, où Zest le champ de Reeb de β . Soit α une 1-forme fermée non singulière sur V telle que $\alpha(Z)$

soit non identiquement nulle. Alors il existe $\varepsilon > 0$ tel que la 1-forme $\alpha_t = \alpha + t\beta$ ne soit pas de contact pour tout $0 \le t \le \varepsilon$.

Le but de cet article est d'étudier quelques déformations particulières dites affines qui sont un peu plus générales que les déformations linéaires au sens de Dathe-Rukimbira. On donne d'abord une condition nécessaire et suffisante de déformabilité affine d'une 1-forme intégrable quelconque en structures de contact, dans une variété de contact compacte de dimension 2n+1 (voir théorème 2.2). Ces déformations nous permettent aussi d'étendre pour les 1-formes fermées non singulières les théorèmes 1.2 et 1.3 ci-dessus.

2 Déformations affines

Dans toute la suite C et B vérifient respectivement : $C: [0, +\infty[\to]0, +\infty[$ continue en 0 avec C(0) = 1 et $B: [0, +\infty[\to [0, +\infty[$ continue et strictement croissante sur $[0, +\infty[$ avec B(0) = 0.

Définition 2.1. Un feuilletage ξ défini par une 1-forme non singulière α sur une variété V de dimension 2n+1, admet une **déformation affine** en structures de contact s'il existe sur V une 1-forme β non singulière et indépendante de t et une famille à un paramétre réel de champs d'hyperplans $(\xi_t)_{t\geq 0}$ définis par des 1-formes $\alpha_t = C(t)\alpha + B(t)\beta$ telles que $\alpha_0 = \alpha$ et pour tout t > 0, α_t soit une forme de contact.

En particulier si C(t) = 1 et B(t) = t on retrouve les déformations linéaires au sens de Dathe-Rukimbira.

Théorème 2.2. Soit (V,β,Z) une variété de contact compacte de dimension 2n+1, où Z est le champ de Reeb de β . Une 1-forme α intégrable sur V admet une déformation affine à l'aide de β si et seulement si

$$\alpha \wedge (d\beta)^n + n\beta \wedge (d\alpha) \wedge (d\beta)^{n-1} \ge 0. \tag{2.1}$$

Pour la preuve du théorème 2.2 démontrons d'abord le lemme 2.3 suivant :

Lemme 2.3. Soit γ , δ deux 2-formes sur V alors on a

$$(\gamma + \delta)^n = \sum_{k=0}^n C_k^n \gamma^k \wedge \delta^{n-k}$$

Preuve. L'ensemble $\Omega^2(V)$ des 2-formes différentielles sur V est une sous algébre commutative de l'ensemble $\Omega(V)$ des formes différentielles sur V. Donc on peut appliquer la formule du binôme de Newton sur $\Omega^2(V)$ et par suite on a le résultat voulu. \triangleleft

Preuve du théorème 2.2 : Considérons la famille à un paramétre réel t de champs d'hyperplans $(\xi_t)_{t\geq 0}$ définis par les 1-formes $\alpha_t = C(t)\alpha + B(t)\beta$ où C et B sont définies comme précédemment. Si t=0 on a

$$\alpha_0 = C(0)\alpha + B(0)\beta = \alpha$$
.

Et $\forall t > 0$

$$\alpha_t \wedge (d\alpha_t)^n = (C(t)\alpha + B(t)\beta) \wedge (C(t)d\alpha + B(t)d\beta)^n.$$

Donc en appliquant le résultat du lemme 2.3 on a

$$\alpha_t \wedge (d\alpha_t)^n = (C(t)\alpha + B(t)\beta) \wedge (\sum_{k=0}^n C_n^k (C(t))^k (B(t))^{n-k} (d\alpha)^k \wedge (d\beta)^{n-k}) =$$

$$\sum_{k=0}^{n} C_n^k (C(t))^k (B(t))^{n-k} [C(t)\alpha \wedge (d\alpha)^k \wedge (d\beta)^{n-k} + B(t)\beta \wedge (d\alpha)^k \wedge (d\beta)^{n-k}].$$

Puisque α est intégrable alors on peut écrire

$$\alpha \wedge (d\alpha)^k \wedge (d\beta)^{n-k} = 0, \quad \forall k \in \{1, ..., n\}$$
 (2.2)

et

$$d(\alpha \wedge (d\alpha)^{k-1} \wedge \beta \wedge (d\beta)^{n-k}) = 0, \quad \forall k \in \{2, ..., n\}$$

cette dernière implique que

$$\forall k \in \{2, ..., n\}, \quad \beta \wedge (d\alpha)^k \wedge (d\beta)^{n-k} - \alpha \wedge d((d\alpha)^{k-1} \wedge \beta \wedge (d\beta)^{n-k}) = 0.$$

Ainsi on déduit toujours de l'intégrabilité de α que

$$\forall k \in \{2, ..., n\}, \quad \alpha \wedge d((d\alpha)^{k-1} \wedge \beta \wedge (d\beta)^{n-k}) = 0.$$

Par suite

$$\beta \wedge (d\alpha)^k \wedge (d\beta)^{n-k} = 0, \quad \forall k \in \{2, ..., n\}.$$
 (2.3)

Donc (2.2) et (2.3) simplifient la valeur de $\alpha_t \wedge (d\alpha_t)^n$ ci-dessus et on a :

$$\alpha_t \wedge (d\alpha_t)^n = (B(t))^n [(C(t)(\alpha \wedge (d\beta)^n + n\beta \wedge d\alpha \wedge (d\beta)^{n-1}) + B(t)\beta \wedge (d\beta)^n].$$

Ainsi si $\alpha \wedge (d\beta)^n + n\beta \wedge d\alpha \wedge (d\beta)^{n-1} \ge 0$ alors $\alpha_t \wedge (d\alpha_t)^n > 0$.

Inversement si $\alpha_t \wedge (d\alpha_t)^n > 0$ alors

$$[(C(t)(\alpha \wedge (d\beta)^n + n\beta \wedge d\alpha \wedge (d\beta)^{n-1}) + B(t)\beta \wedge (d\beta)^n] > 0.$$

Donc en passant à la limite lorsque $t \to 0$ et en tenant compte des continuités de B et C en 0 on a:

$$\alpha \wedge (d\beta)^n + n\beta \wedge d\alpha \wedge (d\beta)^{n-1} \ge 0. \triangleleft$$

Corollaire 2.4. Soit (V,β,Z) une variété de contact fermée de dimension 2n+1, où Z est le champ de Reeb de β . Une 1-forme fermée non singulière α sur V, admet une déformation affine à l'aide de la forme de contact β en structures de contact si et seulement si $\alpha(Z) = 0$.

Pour la preuve du corollaire 2.4 démontrons d'abord le lemme 2.5 suivant :

Lemme 2.5. Soit (V,β,Z) une variété de contact fermée de dimension 2n+1, où Z est le champ de Reeb de β . Pour toute 1-forme fermée α sur V si la fonction $\alpha(Z)$ garde un signe constant alors elle est nulle.

Preuve. En effet β étant une forme de contact de champ de Reeb Z on a :

$$0 = i_Z(\alpha \wedge \beta \wedge (d\beta)^n) = \alpha(Z)\beta \wedge (d\beta)^n - \alpha \wedge (d\beta)^n,$$

c'est à dire que $\alpha \wedge (d\beta)^n = \alpha(Z)\beta \wedge (d\beta)^n$. Ainsi puisque α fermée alors on a :

$$d(\alpha \wedge \beta \wedge (d\beta)^{n-1}) = -\alpha \wedge (d\beta)^n = -\alpha(Z)\beta \wedge (d\beta)^n.$$

Par suite d'après un théorème de "Stokes" on a :

$$\int_{V} \alpha(Z)\beta \wedge (d\beta)^{n} = -\int_{V} d(\alpha \wedge \beta \wedge (d\beta)^{n-1}) = 0.$$

Ceci entraine alors que si $\alpha(Z)$ garde un signe constant elle est nulle. \triangleleft

Preuve du corollaire 2.4 : En effet puisque α est fermée ($d\alpha = 0$), alors la condition nécéssaire et suffisante du théorème 2.2 devient

$$\alpha \wedge (d\beta)^n = \alpha(Z)\beta \wedge (d\beta)^n \ge 0.$$

Par suite le lemme 2.5 permet de conclure. ◄

Etant donnée V une variété fermée comme dans le corollaire 2.4, si on ne fixe pas à priori la forme de contact β , alors la condition de déformabilité du corollaire sera retrouvée moyennant les théorèmes 2.6 et 2.9 ci-dessous, qui pourront respectivement être vus comme des extensions aux déformations affines des théorèmes 1.2 et 1.3 de Dathe et Rukimbira.

Théorème 2.6. Etant données V une variété fermée de dimension 2n+1, α une 1-forme fermée non singulière sur V et β une 1-forme quelconque sur V. Alors les conditions suivantes sont équivalentes :

- (a) Les 1-formes $\alpha_t = C(t)\alpha + B(t)\beta$ données dans une déformation affine de α en structures de contact sont des formes de contact pour tout t > 0.
- (b) La 1-forme β est de contact et $\alpha(Z) = 0$ où Z est le champ de Reeb de β .

Preuve. Puisque α est fermée, par un calcul simple on a :

$$\forall t > 0, \, \alpha_t \wedge (d\alpha_t)^n = (B(t))^n [C(t)\alpha \wedge (d\beta)^n + B(t)\beta \wedge (d\beta)^n]. \tag{2.4}$$

Si on fixe une forme volume ω sur V, alors il existe deux fonctions de classe \mathbb{C}^{∞} $g, h: V \to \mathbb{R}$ telles que $\alpha \wedge (d\beta)^n = g\omega$ et $\beta \wedge (d\beta)^n = h\omega$.

Supposons (a) vraie alors pour tout t > 0, $\alpha_t \wedge (d\alpha_t)^n > 0$, ceci équivaut à C(t)g + B(t)h > 0 et ainsi en passant à la limite lorsque $t \to 0$ on a $g \ge 0$ et donc

$$\alpha \wedge (d\beta)^n \ge 0. \tag{2.5}$$

Ainsi comme V est fermée alors d'après un théorème de "Stokes" on a

$$\int_{V} \alpha \wedge (d\beta)^{n} = -\int_{V} d(\alpha \wedge \beta \wedge (d\beta)^{n-1}) = 0.$$

Par suite (2.5) donne

$$\alpha \wedge (d\beta)^n = 0. (2.6)$$

D'où (2.4) entraine que $(B(t))^{n+1}\beta \wedge (d\beta)^n > 0$, c'est à dire que β est une forme de contact sur V et de plus si Z est le champ de Reeb de β on a

$$0 = i_Z(\alpha \wedge \beta \wedge (d\beta)^n) = \alpha(Z)\beta \wedge (d\beta)^n - \alpha \wedge (d\beta)^n$$
(2.7)

Donc (2.7) et (2.6) donnent

$$\alpha(Z)\beta \wedge (d\beta)^n = \alpha \wedge (d\beta)^n = 0. \tag{2.8}$$

Ce qui implique $\alpha(Z) = 0$.

Inversement supposons (b) vraie. D'après (2.4) et (2.7) on a

$$\forall t > 0, \alpha_t \wedge (d\alpha_t)^n = (B(t))^n [C(t)\alpha(Z) + B(t)]\beta \wedge (d\beta)^n.$$

D'où les hypothéses β contact et $\alpha(Z) = 0$ entrainent que

$$\forall t > 0, \alpha_t \wedge (d\alpha_t)^n = (B(t))^{n+1} \beta \wedge (d\beta)^n > 0. \triangleleft$$

Exemple 2.7. Toute 3-variété fermée munie d'une forme de contact avec une métrique de contact plate porte un feuilletage de codimension I qui admet une déformation affine en structures de contact.

Preuve. Si on considére une 3-variété fermée munie d'une forme de contact avec une métrique de contact plate, elle porte un feuilletage ξ de dimension 2 totalement géodésique et parallélisable par deux champs de vecteurs Z_1 et Z_2 orthogonaux qui sont champs de Reeb des deux formes de contact respectives β_1 et β_2 (voir [2]). D'après le théorème 2.6 les familles à un paramétre réel $t \ge 0$ de 1-formes $\alpha_t^1 = C(t)\alpha + B(t)\beta_1$ et $\alpha_t^2 = C(t)\alpha + B(t)\beta_2$ sont des déformations affines de α en structures de contact. \triangleleft

Exemple 2.8. Soit (V,β,Z,g) une K - variété de contact fermée de métrique de contact g, où Z est le champ de Reeb de β. Alors toute 1-forme fermée non singulière et harmonique α relativement à g, admet une déformation affine en structures de contact.

Preuve. En effet si α est fermée non singulière et harmonique relativement à g et Z est Killing relativement à g, alors $\alpha(Z) = 0$ (voir [1]). Puis on conclut par le théorème 2.6.

De même qu'entre les théorèmes 1.2 et 1.3, le théorème 2.9 ci-dessous compléte aussi le théorème 2.6.

Théorème 2.9. Soit (V,β,Z) une variété de contact fermée de dimension 2n+1, où Z est le champ de Reeb de β . Soit α une 1-forme fermée non singulière sur V telle que $\alpha(Z)$ soit non identiquement nulle. Alors pour tout C et B, il existe $\varepsilon > 0$ tel que pour tout $0 \le t \le \varepsilon$, la 1-forme $\alpha_t = C(t)\alpha + B(t)\beta$ ne soit pas de contact.

Preuve du théorème 2.9 : D'après ce qui précéde on a

$$\forall t > 0, \alpha_t \wedge (d\alpha_t)^n = (B(t))^n [C(t)\alpha(Z) + B(t)]\beta \wedge (d\beta)^n. \tag{2.9}$$

De par le lemme 2.5, comme $\alpha(Z)$ est non identiquement nulle, il existe des constantes a < 0 et b > 0 telle que

$$a \le \alpha(Z) \le b \tag{2.10}$$

Pour tout $0 \le t \le B^{-1}(-a)$, puisque B est continue et strictement croissante alors

$$0 \le B(t) \le -a. \tag{2.11}$$

Par ailleurs la stricte positivité de C, (2.10) et (2.11) donnent

$$aC(t) \le C(t)\alpha(Z) + B(t) \le bC(t) - a$$
.

De plus comme aC(t) < 0 et bC(t) - a > 0, alors pour tout $0 \le t \le B^{-1}(-a)$, il existe une partie de V notée Σ_t sur laquelle la fonction $C(t)\alpha(Z) + B(t)$ s'annule. D'où d'après (2.9), la 1-forme $\alpha_t = C(t)\alpha + B(t)\beta$ n'est pas de contact dans Σ_t , pour tout $0 \le t \le \varepsilon$ où $\varepsilon = B^{-1}(-a)$.

Exemple 2.10. Ecrivons le tore T^3 comme $\mathbb{R}^3 \setminus \mathbb{Z}^3$ muni des coordonnées $x, y, \theta \in [0, 2\pi[$, deux champs de vecteurs constants sur \mathbb{R}^3 , linéairement indépendants, induisent une action non singulière de \mathbb{R}^2 sur T^3 . En particulier, considérons le cas suivant d'une action induite par les champs de vecteurs :

$$X = \frac{\partial}{\partial x} + a \frac{\partial}{\partial \theta}$$
$$Y = \frac{\partial}{\partial y} + b \frac{\partial}{\partial \theta}$$

a et b étant des nombres irrationnels, rationnellement indépendants. Toutes les orbites de cette action sont homéomorphes à \mathbb{R}^2 et denses dans T^3 . On l'appelle une action irrationnelle associée au couple (a,b) (voir [5] pour plus de détails concernant ces actions). Le feuilletage associée à cette action peut être défini par la 1-forme $\alpha_0 = d\theta - adx - bdy$. Considérons le tore T^3 muni des formes de contact

$$\beta_n = \cos(n\theta)dx + \sin(n\theta)dy$$
 ; $\forall n \in \mathbb{N}^*$.

Le champ de Reeb R_n de chaque β_n est de la forme

$$R_n = \cos(n\theta) \frac{\partial}{\partial x} + \sin(n\theta) \frac{\partial}{\partial y}.$$

On remarque que

$$\alpha_0(R_n) = -a\cos(n\theta) - b\sin(n\theta) \quad \forall n \in \mathbb{N}^*,$$

n'est pas identiquement nulle. Donc d'après le théorème 2.9 il existe $\varepsilon > 0$ tel que la 1-forme $\alpha_t = C(t)\alpha_0 + B(t)\beta_n$ ne soit pas de contact pour tout $0 \le t \le \varepsilon$.

Dans [5] Robert Roussarie montre le théorème 2.11 suivant :

Théorème 2.11. [5] Soit \mathcal{F} un feuilletage de T^3 , de classe C^2 au moins, dont toutes les feuilles sont difféomorphes à \mathbb{R}^2 , et tel que \mathcal{F} soit transversalement orientable. Alors \mathcal{F} est topologiquement conjugué au feuilletage défini par une action irrationnelle sur T^3 .

Le feuilletage \mathcal{F} vérifiant les hypothèses du théorème 2.11 est dit un feuilletage de Reeb sur T^3 (voir [5]) et on a la proposition suivante :

Proposition 2.12. Considérons T^3 muni d'une des formes de contact β_n comme dans l'exemple 2.10. Alors pour tout feuilletage de Reeb sur T³, il n'existe pas de déformations affines en structure de contact à l'aide de β_n avec $n \in \mathbb{N}^*$, fixé.

Preuve. En effet il suffit d'abord de remarquer que si \mathcal{F} est topologiquement conjugué à un feuilletage défini par une 1-forme fermée qui admet une déformation affine en structures de contact à l'aide d'une forme de contact donnée alors $\mathcal F$ l'est aussi. Puis grâce au théorème 2.11 et l'exemple 2.10 ci-dessus, on conclut. ◄

Proposition 2.13. Soit V une variété fermée de dimension 2n+1, les fibrations de V sur le cercle S¹, dont les fibres ont une caractéristique d'Euler-Poincaré non nulle, n'admettent pas de déformations affines en structures de contact.

Preuve. En effet soit α une 1-forme fermée définissant une fibration π de V sur le cercle S¹, dont les fibres ont une caractéristique d'Euler-Poincaré non nulle. Supposons qu'il existe une déformation affine de α en structures de contact à l'aide d'une forme de contact β de champ de Reeb Z. Alors d'après le théorème 2.6 on a $\alpha(Z) = 0$, c'est à dire que Z est tangent aux fibres de la fibration π . Donc ceci implique que chaque fibre de π admet une caractéristique d'Euler-Poincaré nulle. Ce qui est absurde, par suite on a le résultat cherché. ⊲

References

- [1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhauser 2002.
- [2] H.Dathe, Feuilletages des variétés fibrées et Structures de contact, Thèse soutenue le 23 mars 2003 à l'Université de Bretagne Sud(France).
- [3] H.Dathe and P.Rukimbira, Foliations and contact structure, Advances in Geometry vol4, No.1(2004), 75-81.
- [4] Y. Eliashberg and W. P. Thurston, *Confoliations*, University Lectures Series, Amer. Math. Soc. 13(1998)
- [5] R. Roussarie, Sur les feuilletages des variétés de dimension trois, Annales de l'institut Fourrier, tome 21, no.3(1971), p.13-82.