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Abstract

For a given vector field ν(x) around a nonsingular point x0, we provide explicit

coordinates z = ϕ(x) in which the vector field is straightened out, i. e., ϕ∗(ν)(z) = ∂
∂z1

.
The procedure is generalized to Frobënius Theorem, namely, for an involutive distribu-

tion ∆ = span {ν1, . . .,νm} around a nonsingular point x0, we give explicit coordinates

z = ϕ(x) in which

ϕ∗∆ = span

{

∂

∂z1
, . . .,

∂

∂zm

}

.

The method is illustrated by several examples and is applied to the linearization of

control systems.
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1 Introduction

The theory of differential equations is one of the most productive and useful contributions

of our modern times. Its applications are widespread in all branches of natural sciences,

particulary, in Physics, Biology, Chemistry, Engineering, Ecology, and in Weather Predic-

tions, just to name few. It plays the role of a connector between abstract mathematical

theories and applications in real world problems. Paraphrasing Newton quoted as saying

that ”it is useful to solve differential equations”, a lot has been deserved in solving differ-

ential equations with various methods and techniques provided in the literature. Existence

and uniqueness of solutions have been addressed in many scientific papers and textbooks.

Consider the simplest expression of a linear partial differential equation

ν1(x)
∂u

∂x1

+ · · ·+νn(x)
∂u

∂xn

= b(x)

where ν1(x), · · · ,νn(x) and b(x) are smooth or analytic functions in the variable x. This

partial differential equation is referred to as a homogeneous (resp. nonhomogeneous) linear

first order partial differential equation when b = 0 (resp. b, 0). The vector field ν(x) whose
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components are ν1(x), · · · ,νn(x) is called the characteristic vector field of the homogeneous

equation and the corresponding dynamical system ẋ = ν(x), its characteristic equation. The

solutions of the system are the integral curves of the characteristic equation and are often

obtained by solving the so-called Lagrange subsidiary equation (also called characteristic

equation)
dx1

ν1(x)
= · · ·= dxn

νn(x)
=

du

b(x)
.

Several methods have been devoted to the solving of such system among them Euler’s

method and Natani’s method [3], [5]. Most of the work on ordinary differential equations

have been done around equilibrium points (non regular or singular point), that is, a point

x0 where ν(x0) = 0. The reason being that regular points, that is, where ν(x0) , 0 are

not topologically reach because in their neighborhoods all trajectories are straight parallel

lines (straightening theorem). Though this fact remains true and hence often neglected, the

straightening theorem has many important applications. Indeed, a solution of the nonhomo-

geneous partial differential equation above can be easily found around a regular point x0 of

ν by simple quadrature in new coordinates: If z = ϕ(x) is a change of coordinates around x0

that rectifies the vector field ν, i.e., such that ϕ∗ν = ∂
∂z1

, then the nonhomogeneous equation

simplifies as ∂ũ
∂z1

= b̃(z), where u(x) = ũ(ϕ(x)) and b(x) = b̃(ϕ(x)). A solution ũ (yielding

u = ũ◦ϕ) is given by ũ(z) = a(z2, . . ., zn)+
Z z1

0
b̃(ε, z2 . . . , zn)dε. The only difficulty in ap-

plying the straightening theorem is in finding the straightening diffeomorphism. The main

focus of this paper is to provide an explicit algorithm allowing to compute the straightening

diffeomorphism.

2 Definitions and Notations

This section deals with basic notations and definitions. We will first start by recalling the

notion of vector fields and flow; then we will give a version of the flow box theorem. In Sec-

tion 3, we will give our main results, that is, explicit formulas for computing both the rec-

tifying change of coordinates and its inverse. We generalize those results to the Frobënius

Theorem and we discuss the convergence of the power series. We illustrate by taking sev-

eral examples in Section 5. The last Section 6 gives applications to the linearization of

control systems.

2.1 Vector Fields and Flows.

An analytic vector field, ν, is an analytic mapping from a manifold M to its tangent fiber-

space T M that associates to each point x ∈ M , a tangent vector ν|x ∈ TxM . In local coor-

dinates x = (x1, . . . ,xn), the vector field ν is simply written

ν(x) , ν|x = ν1(x)
∂

∂x1

∣

∣

∣

x
+ · · ·+νn(x)

∂

∂xn

∣

∣

∣

x
,

where
{

∂
∂x1

∣

∣

∣

x
, . . . , ∂

∂xn

∣

∣

∣

x

}

form a basis of TxM . In what follows we will omit the subscript |x
and use the more compact notation ∂xi

,
∂

∂xi

∣

∣

∣

x
and we will denote by V (M ) the set of all
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vector fields on M .

A curve γ : I ⊆ R 7−→ M is an integral curve for the vector field ν ∈ V (M ) if for any

t ∈ I we have γ′(t) = ν(γ(t)). The flow of ν is an analytic map φ : I ×M 7−→ M such that

for any x ∈ M the curve φx : t 7−→ φ(t,x) is an integral curve of ν. In other words, the flow

is a solution of the differential equation

dφ(t,x)

dt
= ν(φ(t,x)), φ(0,x) = x.

For further details about the existence conditions and uniqueness of solutions, we refer the

readers to the existing literature (e.g. [1], [15], [16] and the references therein). Above

and throughout the paper, all objects considered are analytic except otherwise stated. As

all results are intended locally, we will set M = Rn without loss of generality. For a vector

field ν(x) = ν1(x)∂x1
+ · · ·+νn(x)∂xn

and a function h in x-coordinates, we denote by

Lν(h)(x) =
∂h

∂x
ν(x) =

∂h

∂x1

ν1(x)+ · · ·+ ∂h

∂xn

νn(x)

the Lie-derivative of h along the vector field ν. Recursive Lie-derivatives are defined by

setting

L0
ν(h)(x) = h(x), L

j+1
ν (h)(x) = Lν(L

j
ν(h))(x), j = 0,1, . . .,∞.

Given another vector field µ(x) = µ1(x)∂x1
+ · · ·+ µn(x)∂xn

, the Lie-bracket between µ and

ν defines a new vector field

[µ,ν] = (Lµ(ν1)−Lν(µ1))∂x1
+ · · ·+(Lµ(νn)−Lν(µn))∂xn

.

Let ϕ : Rn 7−→ Rn be a (local) diffeomorphism, ϕ(0) = 0, giving rise to new coordinates

system z = ϕ(x). The vector field ν is transformed via ϕ into a new vector field given by

ϕ∗ν(z) = Lν(ϕ1)(z)∂z1
+ · · ·+Lν(ϕn)(z)∂zn

,

where, by abuse of notation, we put

Lν(ϕ j)(z) =
∂ϕ j

∂x
(ϕ−1(z))ν(ϕ−1(z)), for all 1 ≤ j ≤ n.

In the next subsection we will recall a version of the flow box theorem before the main

results. First we introduce some notation that will be useful in the sequel. For any x ∈ Rn

we put x = (x1, . . .,xn). For the set of n-tuples of integers, i.e., the subset Nn ⊂ Rn, we

will use a bolded variable to denote its elements. Given two n-tuples m = (m1, . . .,mn)

and α = (α1, . . .,αn) we say that m � α if and only if mi ≥ αi for all 1 ≤ i ≤ n and we

denote by m! = m1! · · ·mn! and mα = m
α1

1 · · ·mαn
n . By extension, for x = (x1, . . . ,xn) ∈ Rn

we put xm = x
m1

1 · · ·xmn
n and set |m| = m1 + · · ·+ mn. Let f be an analytic function with

f (x) = ∑ fm × xm its Taylor series expansion, where fm = 1
m!

∂m f
∂xm (0) are constant coeffi-

cients, and let ν = ν1∂x1
+ · · ·+ νn∂xn

be an analytic vector field. For any ρ > 0, we

define the norm || · ||ρ by || f ||ρ = ∑ | fm| · ρ|m| and extend the norm to vector fields by

||ν||ρ = max
{

||ν1||ρ, . . ., ||νn||ρ
}

.
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2.2 Flow Box Theorem.

The flow-box theorem is a very well-known result in differential geometry and dynamical

systems. A simple version of that theorem is stated as follows.

Theorem 2.1. (Flow-Box Theorem) Let ν be a nonsingular vector field at x0 ∈ Rn, i.e.,

ν(x0) , 0. There exist a local change of coordinates z = ϕ(x) in a neighborhood U 3 x0

such that ϕ∗(ν)(z) = ∂z1
for all z ∈ ϕ(U).

In very simple terms, the flow-box theorem states that new coordinates z = col(z1, . . . , zn)
can be found in which the integral curves of a nonsingular vector field are (locally) parallel

straight lines φ(t, z) = (z1 + t, z2, . . . , zn). The existence and proof of this theorem, as well

as its general form, can be found in the literature (e. g. [1], [15]).

There are few methods (method of characteristics, integration of differential one-forms)

dealing with solving partial differential equations but, to the author’s knowledge, none gives

explicit formulas for rectifying a general vector field. We propose here a systematic way

of finding the rectifying change of coordinates as well as its inverse by giving explicit

formulas for both the diffeomorphism and its inverse. We will illustrate the results with

several examples. We will apply the results in finding feedback linearizing coordinates for

control systems that can be linearized. Notice that finding the rectifying coordinates for a

given vector field ν is equivalent of solving the system of partial differential equations











































ν1

∂ϕ1

∂x1

+ · · ·+νn

∂ϕ1

∂xn

= 0

· · ·

ν1

∂ϕn−1

∂x1

+ · · ·+νn

∂ϕn−1

∂xn

= 0

ν1

∂ϕn

∂x1

+ · · ·+νn

∂ϕn

∂xn

= 1.

The first n−1 equations are equivalent to the fact that ν⊥ = span {dϕ1, . . . ,dϕn−1} , that is,

the co-distribution associated with ν is generated by the exact differential 1-forms dϕ1, . . .,dϕn−1.

The characteristic equation (or subsidiary equation) associated to that co-distribution is de-

fined by
dx1

ν1(x)
= · · ·= dxn

νn(x)
.

Each solution is called a first integral of the characteristic equation. The importance of

rectifying the vector field can be in solving the Cauchy problem; in finding closed form

solutions of ordinary differential equations, and finding the symmetries of vector fields.

3 Main Result

In this section we give the main results of this paper which are explicit coordinates change

(and their inverse) normalizing any non vanishing (nonsingular) vector field.

Theorem 3.1. Let ν be a nonsingular vector field on Rn, 1 ≤ k ≤ n any integer such that

νk(0) , 0. Assume ν(0) = ∂zk
and let σk(x) = 1/νk(x).
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(i) The diffeomorphism z = ϕ(x) = col(ϕ1(x), . . .,ϕn(x)) defined by

ϕ j(x) = x j +
∞

∑
s=1

(−1)sxs
k

s!
Ls−1

σkν (σkν j)(x) j , k

ϕk(x) =
∞

∑
s=1

(−1)s+1xs
k

s!
Ls−1

σkν (σk)(x)

(3.1)

satisfies ϕ∗(ν)(z) = ∂zk
in a neighborhood of the origin U 3 0 ⊆ Rn.

(ii) The diffeomorphism x = ψ(z) = col(ψ1(z), . . .,ψn(z)) given by

ψ j(z) = z j +
∞

∑
s=1

zs
k

s!

(

s−1

∑
i=0

(−1)iCi
s∂

i
zk
·Ls−i−1

ν (ν j)(z)

)

j , k

ψk(z) =
∞

∑
s=1

zs
k

s!

(

s−1

∑
i=0

(−1)iCi
s∂

i
zk
·Ls−i−1

ν (νk)(z)

) (3.2)

is an inverse of z = ϕ(x), that is, it satisfies
∂ψ(z)

∂zk

= ν(ψ(z)).

Before we prove this result, let us first make the following remarks:

R1. The expressions above are not Taylor series around the origin or in the variable xk as

the coefficients Ls
σkν(σkν j)(x) are evaluated at x = (x1, . . .,xn) and might well depend on xk

(see later for justification).

R2. If the vector field ν is independent of some variable x j ( j , k), the diffeomorphism ϕ(x)

is also independent of the variable x j (except a linear dependence for the component ϕ j(x)).

R3. If any of the components of ν(x) is zero, say ν j(x) = 0, then ϕ j(x) = x j.

To summarize the remarks above, let us mention that the method used here is different

from the classical series expansion for solving ordinary differential equations for which

both ν(x) = ∑νm1···mn
x

m1

1 · · ·xmn
n and ϕ j(x) = ∑ϕ

j
q1···qnx

q1

1 · · ·xqn
n are expanded in power series

and a recursive relationship between the constant coefficients νm1···mn
and ϕ

j
q1···qn is thought.

Here the expressions of ϕ and its inverse depend on the entire vector field ν (not on the

coefficient of its series) and the coefficients of the series are functions rather than constants.

The problem of convergence is of paramount importance for the validation of the results

and is addressed below

Theorem 3.2. Let ρ > 0 be a positive number such that ||ν||ρ = κ(ρ) < ∞. For any 0 <
ρ̂ < ρe−1−κ(ρ), the series (3.1) and (3.2) converge inside the ball of radius ρ̂. Moreover, we

have

(i) ||ϕ j(x)||ρ̂ ≤ ρ̂

[

1+
κ(ρ)

1−κ(ρ)/ ln(ρ/ρ̂)

]

(ii) ||ψ j(z)||ρ̂ ≤ ρ̂
[

1+
κ(ρ) (ln(ρ/ρ̂))2

(ln(ρ/ρ̂)−1) (ln(ρ/ρ̂)−1−κ(ρ))

]

An extension of Theorem 3.1 is obtained for the Frobënius theorem and is given below. The

version of the Frobënius theorem used here can be found in many textbooks [1, 14, 15, 16].
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Theorem 3.3. (Frobënius) (i) Let ν1(x), . . .,νm(x) be a set of analytic vector fields on Rn

such that the distribution D(x) = span
{

ν1(x), . . .,νm(x)
}

is involutive and of maximal rank

m≤ n in a neighborhoodU ⊂Rn of the origin. There exist an open neighborhood 0∈Ω⊂U

and a change of coordinates z = ϕ(x) such that ϕ∗D(z)=span {∂z1
, . . . ,∂zm

} ∀ z ∈ ϕ(Ω).

(ii) There exists a sequence of explicit coordinates changes ϕk(x) = x + φk(xk, . . .,xn), for

k = 1, . . . ,n whose composition ϕ(x) = ϕm ◦ · · · ◦ϕ1(x) rectifies the distribution D.

4 Proofs

In this section we give proofs of our results, namely, Theorems 3.1, 3.2, and 3.3. We start

with Theorem 3.1 and give a constructive proof.

Proof-Sketch of Theorem 3.1 (i). Without loss of generality we assume k = n. The general

case will follow. Notice that for any diffeomorphism z = ϕ(x) the two following conditions

are equivalent.

(a) ϕ∗(ν)(z) = ∂zn
.

(b) Lν(ϕ j)(x) = 0 and Lν(ϕn)(x) = 1 for 1 ≤ j ≤ n−1.

For that reason we will show that condition (b) holds. To start let us take 1 ≤ j ≤ n−1.

It follows directly

Lν(ϕ j)(x) = Lν(x j)+
∞

∑
s=1

Lν

(

(−1)sxs
n

s!
Ls−1

σnν (σnν j)

)

= ν j(x)+
∞

∑
s=1

(−1)sxs
n

s!
LνLs−1

σnν (σnν j)+
∞

∑
s=1

(−1)sxs−1
n

(s−1)!
νn(x)Ls−1

σnν (σnν j)

= ν j(x)+
∞

∑
s=1

(−1)sxs
n

s!
νn(x)Ls

σnν(σnν j)−ν j(x)−
∞

∑
s=1

(−1)sxs
n

s!
νn(x)Ls

σnν(σnν j) = 0.

A direct computation shows that

Lνϕn(x) =
∞

∑
s=1

Lν

(

(−1)s−1xs
n

s!
Ls−1

σnν (σn)

)

=
∞

∑
s=1

(−1)s−1xs
n

s!
LνLs−1

σnν (σn)+
∞

∑
s=1

(−1)s−1xs−1
n

(s−1)!
νn(x)Ls−1

σnν (σn)

=
∞

∑
s=1

(−1)s−1xs
n

s!
νn(x)Ls

σnν(σn)+νn(x)σn(x)+
∞

∑
s=1

(−1)sxs
n

s!
νn(x)Ls

σnν(σn) = 1.

This ends the sketch of proof of Theorem 3.1 (i). The assumptions ν(0) = ∂xk
is not re-

strictive. Indeed, if ν(0) = c1∂x1
+ · · ·+ cn∂xn

, then by a linear change of coordinates we

can always get ν(0) = ∂xk
. The proof of the general case follows by first applying the linear

change of coordinates (permutation)

τ(x) ,











x̃ j = τ j(x) = x j j , k, j , n

x̃k = τk(x) = xn

x̃n = τn(x) = xk.
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Under these new coordinates the transformed vector field ν̃ = τ∗(ν) is obtained from ν by

permuting the components νk and νn and the variables xk and xn. Thus we have ν̃n(0) = ∂x̃n

and the proof above yields

ϕ̃ j(x̃) = x̃ j +
∞

∑
s=1

(−1)sx̃s
n

s!
Ls−1

σ̃nν̃(σ̃nν̃ j)(x̃) j , n

ϕ̃n(x̃) =
∞

∑
s=1

(−1)s−1x̃s
n

s!
Ls−1

σ̃nν̃ (σ̃n)(x̃),

(4.1)

such that ϕ̃∗(ν̃) = ∂z̃n
. Because τ◦ τ = Id and τ is linear (hence ∂τ

∂x
≡ τ), it thus follows that

ν̃ = τ◦ν◦ τ which is equivalent to τ◦ ν̃ = ν◦ τ. It is enough to show that the expressions of

ϕ and ϕ̃ given respectively by (3.1) and (4.1) are related by τ ◦ ϕ̃ = ϕ◦ τ. Indeed, for j , k

and j , n, we get

ϕ j(τ(x̃))=τ j(x̃)+
∞

∑
s=1

(−1)s(τk(x̃))s

s!
Ls−1

σkν (σkν j)(τ(x̃))=x̃ j +
∞

∑
s=1

(−1)sx̃s
n

s!
Ls−1

σ̃nν̃ (σ̃nν̃ j)(x̃)=ϕ̃ j(x̃)

using the fact that Ls−1
σ̃nν̃ (σ̃nν̃ j)(x̃) = Ls−1

σkν (σkν j)(τ(x̃)) for any s ≥ 1. On the other hand, for

j = n, we get

ϕn(τ(x̃)) = τn(x̃)+
∞

∑
s=1

(−1)s(τk(x̃))s

s!
Ls−1

σkν (σkν j)(τ(x̃))= x̃k +
∞

∑
s=1

(−1)sx̃s
n

s!
Ls−1

σ̃nν̃ (σ̃nν̃k)(x̃) = ϕ̃k(x̃)

and, for j = k, we have

ϕk(τ(x̃)) =
∞

∑
s=1

(−1)s(τk(x̃))s

s!
Ls−1

σkν (σk)(τ(x̃)) =
∞

∑
s=1

(−1)sx̃s
n

s!
Ls−1

σ̃nν̃ (σ̃n)(x̃) = ϕ̃n(x̃).

This is the same as having τ ◦ ϕ̃(x̃) = ϕ◦ τ(x̃). (ii) The proof of the inverse is constructive.

Because of the linear transformation mentioned above, it is enough to show the proof in the

case k = n, that is, we suppose ν(0) = ∂zn
. We look for a change of coordinates x = ψ(z)

that satisfies
∂ψ(z)

∂zn
= ν(ψ(z)). First, we extend ν in Rn+1 as

ν̂(x,y) = ν̂1(x,y)∂x1
+ · · ·+ ν̂n(x,y)∂xn

+ ν̂n+1(x,y)∂y,

where ν̂ j = ν j(x) for 1 ≤ j ≤ n, and ν̂n+1 = νn(x). We want emphasize here the fact that the

components ν̂n(x,y) and ν̂n+1(x,y) are both equal to νn(x). Because ν̂(0) , 0 there exist a

change of coordinates (z,w) = ϕ̂(x,y) such that ϕ̂∗ν̂ = ∂zn
+∂w. An inverse (x,y) = ψ̂(z,w)

should thus satisfy
∂ψ̂

∂zn

+
∂ψ̂

∂w
= ν̂(ψ̂(z,w)). (4.2)

Define the operator ∇ , ∂zn
+ ∂w and rewrite (4.2) as ∇ · ψ̂ = ν̂(ψ̂(z,w)). Apply the opera-

tor ∇ again on both side and get (we put ∇2 , ∇◦∇)

∇2 ·ψ̂(z,w) = ∇· ν̂(ψ̂(z,w)) =
∂ν̂

∂(x,y)
(ψ̂(z,w))∇ · ψ̂(z,w)=

∂ν̂

∂(x,y)
(ψ̂(z,w))ν̂(ψ̂(z,w))= Lν̂(ν̂)(ψ̂(z,w)).
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A simple recurrence argument yields

∇s · ψ̂(z,w) = Ls−1
ν̂ (ν̂)(ψ̂(z,w)), for all s ≥ 1.

Define ∂s
w ,

∂s

∂ws , and ∂s
zn
,

∂s

∂zs
n

for all s ≥ 1. Since on the one hand side, ∂w = −∂zn
+∇ and

on the other hand side ∇◦∂zn
= ∂zn

◦∇, it follows that

∂s
w =

s

∑
i=0

(−1)iCi
s ∂i

zn
◦∇s−i,

where ∂s
zn
◦∇0 = ∂s

zn
and ∂0

zn
◦∇s = ∇s. We then deduce that

∂s
wψ̂ ,

∂sψ̂

∂ws
=

s

∑
i=0

(−1)iCi
s ∂i

zn
·
(

∇s−iψ̂(z,w)
)

= (−1)s ∂s
zn
·ψ̂(z,w)+

s−1

∑
i=0

(−1)iCi
s ∂i

zn
·Ls−i−1

ν̂ (ν̂)(ψ̂(z,w)).

Taking ψ̂(z,0) = (z,0), we get

∂sψ̂

∂ws

∣

∣

∣

w=0
=

s−1

∑
i=0

(−1)iCi
s ∂i

zn
·Ls−i−1

ν̂ (ν̂)(z,0).

A Taylor series expansion of ψ̂(z,w) with respect to w at w = 0 is

ψ̂(z,w) =

(

z

0

)

+
∞

∑
s=1

ws

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

zn
·Ls−i−1

ν̂ (ν̂)(z,0)

)

Let us define ψ(z) by its components in the following way: for any 1 ≤ j ≤ n we set

ψ j(z) = ψ̂ j(z,w)|w=zn
. Since ν̂ j(x,y) = ν j(x) is independent of the variable y, it follows

that Ls
ν̂ν̂ j = Ls

νν j for all s ≥ 0. We then deduce that

ψ j(z) = z j +
∞

∑
s=1

zs
n

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

zn
·Ls−i−1

ν (ν j)(z)

)

.

To complete the proof we will show that
∂ψ j(z)

∂zn

= ν j(ψ(z)) for all 1 ≤ j ≤ n; which indeed

follows from the fact that

∂ψ j(z)

∂zn

=
∂

∂zn

ψ̂ j(z, zn) =
∂ψ̂ j

∂zn

(z, zn)+
∂ψ̂ j

∂w
(z, zn) = ν̂ j(ψ̂(z, zn)) = ν j(ψ(z)).

This ends the proof-sketch of Theorem 3.1. �

Proof of Theorem 3.2. In the following we prove Theorem 3.2, that is, the convergence of

the series (3.1)-(3.2). Before we proceed we need to introduce more notation. Recall the

notation introduced previously in subsection 2.1 and denote by ∂i : C ω(Rn)−→ C ω(Rn) the

derivation operator defined by ∂i( f ) = ∂ f

∂xi
. For a n-tuple α = (α1, . . .,αn) ∈ Nn we get

∂α( f ) = ∂α1

1 ◦ · · ·◦∂αn
n ( f ) =

∂α f

∂xα
=

∂α1+···+αn f

∂x
α1

1 · · ·∂x
αn
n

.
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For the vector field ν we have ∂α(ν) = ∂α(ν1)∂x1
+ · · ·+∂α(νn)∂xn

. It is easy to see that

Lν( f ) =
n

∑
j=1

∂ f

∂x j

ν j =
n

∑
j1=1

∂α0( f )×∂α1(ν j1)

where |α0| = 1 and |α1| = 0 with α0 an n-tuple whose components are zero except the

( j1)
th component. By an inductive argument we check that for any s ≥ 1 the successive Lie

derivatives yield

Ls
ν( f ) =

n

∑
j1,..., js=1

∑∂α0( f )×∂α1(ν j1)× ·· · ×∂αs−1(ν js−1
)×∂αs(ν js), (4.3)

where the second summation is taken over some n-tuples αi = (αi1, . . .,αin), i = 0,1, . . ., s
with αs = 0, |α0| ≥ 1 and |α0|+ |α1|+ · · ·+ |αs| = s. The proof uses the following lemma.

Lemma 4.1. Let f (resp. ν) be an analytic function (resp. vector field). Let s ≥ 1 and t ≥ 0

be given integers and 0 < ρ̂ < ρ two positive real numbers. Define

M = sup
mi�αi

{

∑
|α|=s

(m0!/α0!) · · ·(ms!/αs!)(ρ̂/ρ)|m|
}

.

Then we have the following inequalities

(i) M ≤ s!
(

ln(ρ/ρ̂)
)−s

(ii) ||Ls
ν( f )||ρ̂ ≤ s!

(

ρ̂ ln(ρ/ρ̂)
)−s

|| f ||ρ||ν||sρ

(iii) ||∂i
zn

Lt−i
ν ( f )||ρ̂ ≤ t!(ρ̂ln(ρ/ρ̂))−t|| f ||ρ||ν||t−i

ρ

Proof of Theorem 3.2 (i). Replacing s by s−1, the vector field ν by σkν, and the function f

by σkν j in Lemma 4.1 (ii) and taking into account the fact that || f ||ρ ≤ κ(ρ) we obtain

||Ls−1
σkν ( f )||ρ̂ ≤ (s−1)!ρ̂−s+1 ×|| f ||ρ×

(

κ(ρ)

ln(ρ/ρ̂)

)s−1

≤ (s−1)!(ρ̂ln(ρ/ρ̂))−s+1×(κ(ρ))s .

Thus an approximation of the series ϕ j(x) = x j +
∞

∑
s=1

(−1)sxs
k

s!
Ls−1

σkν (σkν j)(x) is given by

||ϕ j(x)||ρ̂ ≤ ρ̂ +
∞

∑
s=1

ρ̂s

s!

∣

∣

∣

∣

∣

∣Ls−1
σkν (σkν j)(x))

∣

∣

∣

∣

∣

∣

ρ̂
≤ ρ̂+ ρ̂κ(ρ)×

∞

∑
s=1

1
s

(

κ(ρ)/ ln(ρ/ρ̂)
)s−1

≤ ρ̂ + ρ̂κ(ρ)×
∞

∑
s=1

(

κ(ρ)/ ln(ρ/ρ̂)
)s−1

The series converges and is bounded by ρ̂ + ρ̂κ(ρ)
1−κ(ρ)/ ln(ρ/ρ̂)

if κ(ρ)/ ln(ρ/ρ̂) < 1, i.e., if

ρ̂ < ρe−κ(ρ).
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Proof of Theorem 3.2 (ii). To prove the convergence of the series

ψ j(z) = z j +
∞

∑
s=1

zs
k

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

zk
Ls−i−1

σkν (σkν j)(z)

)

we replace f by σkν j and ν by σkν in Lemma 4.1 (iii). We can thus estimate the compo-

nent ψ j as

||ψ j(z)||ρ̂ ≤ ρ̂+
∞

∑
s=1

ρ̂s

s!

(

s−1

∑
i=0

Ci
s ||∂i

zk
Ls−i−1

σkν (σkν j)(z)||ρ̂
)

≤ ρ̂+
∞

∑
s=1

ρ̂s

s!

(

s−1

∑
i=0

Ci
s (s−1)!(ρ̂ln(ρ/ρ̂))−s+1||σkν j||ρ||σkν||s−i−1

ρ

)

≤ ρ̂+ ρ̂||σkν j||ρ
∞

∑
s=1

ln(ρ/ρ̂)−s+1

s

(

s−1

∑
i=0

Ci
s κ(ρ)s−i−1

)

≤ ρ̂+ ρ̂||σkν j||ρ
∞

∑
s=1

ln(ρ/ρ̂)−s+1

s

(1+κ(ρ))s−1

κ(ρ)

≤ ρ̂+ ρ̂ ln(ρ/ρ̂)
∞

∑
s=1

ln(ρ/ρ̂)−s [(1+κ(ρ))s −1] .

The series is convergent if
1+κ(ρ)
ln(ρ/ρ̂) < 1, i.e., if ρ̂ < ρe−1−κ(ρ) and is bounded by

ρ̂
[

1+
κ(ρ) (ln(ρ/ρ̂))2

(ln(ρ/ρ̂)−1) (ln(ρ/ρ̂)−1−κ(ρ))

]

.

Proof of Lemma 4.1 (i) Because mi!/αi! ≤ (mi)αi

for all 0 ≤ i ≤ s we deduce that

M ≤ sup
mi�αi

{

∑
|α0|+···+|αs|=s

(m0)
α0(m1)

α1 · · ·(ms)
αs × (ρ̂/ρ)|m0|+|m1|+···+|ms|

}

.

On the other side, ∑
|α0|+···+|αs|=s

(m0)
α0(m1)

α1 · · ·(ms)
αs ≤

(

|m0|+ |m1|+ · · ·+ |ms|
)s

, which

implies that

M ≤ sup
mi�αi

{(

|m0|+ |m1|+ · · ·+ |ms|
)s

× (ρ̂/ρ)|m0|+|m1|+···+|ms|
}

≤ sup
mi�0

{(

|m0|+ |m1|+ · · ·+ |ms|
)s

× (ρ̂/ρ)|m0|+|m1|+···+|ms|
}

.

The inequality follows from Stirling formula s! =
√

2πs(s/e)seλs where λs > 0, and the fact

that the maximum of xs(ρ̂/ρ)x is
(

s
ln(ρ/ρ̂)

)s

e−s.

(ii) Let the Taylor expansions of the analytic functions f ,ν j1, . . . ,ν js be represented by

f (x) = ∑
m0�0

fm0
×xm0 and ν ji(x) = ∑

mi�0

(ν ji)mi
×xmi , for all 1 ≤ i ≤ s.
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It follows easily that

∂α0( f ) = ∑
m0�α0

(m0!/α0!) fm0
×xm0−α0

and for any 1 ≤ i ≤ s

∂αi(ν ji) = ∑
mi�αi

(mi!/αi!)(ν ji)mi
×xmi−αi .

Consequently

Ls
ν( f ) =

n

∑
j1,..., js=1

∑
|α|=s

∑
mi�αi

fm0 × (ν j1)m1
×·· ·× (ν js)ms

× (m0!/α0!) · · ·(ms!/αs!)×xm−α

where, for convenience, we put m = m0 + m1 + · · ·+ ms and α = α0 + α1 + · · ·+ αs. For

any 0 < ρ̂ < ρ we have the following estimates (set J = ( j1, . . . , js))

||Ls
ν( f )||ρ̂ =

n

∑
J =1

∑
|α|=s

∑
mi≥αi

| fm0
|× |(ν j1)m1

|× · · ·× |(ν js)ms
|(m0!/α0!) · · ·(ms!/αs!)× ρ̂|m−α|

= ρ̂−|α| n

∑
J =1

∑
|α|=s

∑
mi≥αi

| fm0
|× |(ν j1)m1

|× · · ·× |(ν js)ms
|(m0!/α0!) · · ·(ms!/αs!)×ρ|m|(ρ̂/ρ)|m|

= ρ̂−s
n

∑
J =1

∑
|α|=s

∑
mi≥αi

| fm0|ρ|m0| · |(ν j1)m1
|ρ|m1| · · · |(ν js)ms

|ρ|ms|(m0!/α0!) · · ·(ms!/αs!) · (ρ̂/ρ)|m|

≤ ρ̂−s
n

∑
J =1

∑
|α|=s

∑
mi≥αi

| fm0|ρ|m0| · |(ν j1)m1
|ρ|m1| · · · |(ν js)ms

|ρ|ms|(m0!/α0!)| · · ·(ms!/αs!) · (ρ̂/ρ)|m|

≤ ρ̂−s|| f ||ρ×||ν||sρ× sup
mi�αi

{

∑
|α0|+···+|αs|=s

(m0!/α0!)(m1!/α1!) · · ·(ms!/αs!)× (ρ̂/ρ)|m|
}

.

Using Lemma 4.1 (i), the item (ii) follows directly.

(iii) Consider (4.3) where s is replaced by t − i, that is,

Lt−i
ν ( f ) = ∑

J
∑∂α0( f )×∂α1(ν j1)×·· ·×∂αt−i(ν jt−i

)

with αt−i = 0, |α0| ≥ 1 and |α0|+ |α1|+ · · ·+ |αt−i| = t − i. Differentiating i times with

respect to xn we get

∂i
xn

Lt−i
ν ( f ) = ∑

J
∑∂α̂0( f )×∂α̂1(ν j1)×·· ·×∂α̂t−i(ν jt−i

) (4.4)

with |α̂0| ≥ 1 and |α̂0|+ |α̂1|+ · · ·+ |α̂t−i|= t. Following the same steps in Lemma 4.1 (ii)

we get ||∂i
xn

Lt−i
ν ( f )||ρ̂ ≤ t!(ρ̂ln(ρ/ρ̂))−t|| f ||ρ||ν||t−i

ρ . Notice that the power t − i on the last

term is due to the fact there are t − i factors only that involve the components of the vector

field ν. �

Proof of Theorem 3.3. A formal proof of this theorem can be found in the literature. We

are here interested on a constructive proof, that is, item (ii). We start with the simplest case

where the vector fields commute, that is, their pairwise Lie-brackets are zero.



86 Issa Amadou Tall

(a) Commutative Case. Take ν1(x), . . .,νm(x) such that

{

dimspan
{

ν1(0), . . .,νm(0)
}

= m,
[

νk,νl
]

= 0, 1 ≤ k, l ≤ m.

Without loss of generality we can assume that νk(0) = ∂xk
for 1 ≤ k ≤ m. We apply Theo-

rem 3.1 to the vector field ν1 and define a change of coordinates ϕ1 such that ϕ1
∗ν1 = ∂z1

.
Under this change of coordinates the distribution D(x) = span

{

ν1(x), . . .,νm(x)
}

is trans-

formed as D1 = ϕ1
∗D = span

{

∂z1
,ϕ1

∗ν2, . . .,ϕ1
∗νm
}

. Since ϕ1
∗[ν

1,νl] = [ϕ1
∗ν1,ϕ1

∗νl] = 0,
then the vector fields ϕ1

∗ν2, . . .,ϕ1
∗νm are independent of the variable z1. Thus we can apply

Theorem 3.1 again to ϕ1
∗ν2 to define ϕ2 such that ϕ2

∗(ϕ1
∗ν

2) = ∂z2
. Moreover, ϕ2

∗(ϕ1
∗ν1) = ∂z1

because ϕ2(z) = z+φ2(z2, . . ., zn). We denote the new distribution as

D2 = ϕ2
∗D1 = span

{

∂z1
,∂z2

,ϕ2
∗(ϕ1

∗ν3), . . .,ϕ2
∗(ϕ1

∗νm)
}

.

Let us assume that the original distributionhas been transformed, via changes of coordinates

ϕ1, . . . ,ϕk−1, into

Dk−1 = (ϕk−1 ◦ · · ·◦ϕ1)∗D = span
{

∂z1
, . . .,∂zk−1

, ν̃k, . . . , ν̃m
}

,

where ν̃l = (ϕk−1 ◦ · · ·◦ϕ1)∗νl for k ≤ l ≤ m. Because of the commutativity it follows that

the vector fields ν̃k, . . . , ν̃m are independent of the variables z1, . . . , zk−1. Thus we can apply

Theorem 3.1 to the vector field ν̃k and find a change of coordinates ϕk such that ϕk
∗ν̃k = ∂zk

.

Moreover, such change of coordinates can be chosen in such a way that ϕk
∗∂zi

= ∂zi
for

1 ≤ i ≤ k−1. It thus takes the distribution Dk−1 into

Dk = (ϕk ◦ · · ·◦ϕ1)∗D = span
{

∂z1
, . . .,∂zk

, ν̃k+1, . . . , ν̃m
}

,

where ν̃l = (ϕk ◦ · · · ◦ϕ1)∗νl for k +1 ≤ l ≤ m.

(b) Involutive Case. In this case we consider, for simplicity, two vector fields ν1 and ν2

and we suppose that

{

dimspan
{

ν1(0),ν2(0)
}

= 2,
[

ν1,ν2
]

(x) = γ1(x)ν1(x)+ γ2(x)ν2(x).

Without loss of generality we assume that ν1(0) = ∂x1
and ν2(0) = ∂x2

. We apply Theo-

rem 3.1 to the vector field ν1 and define a change of coordinates ϕ1 such that ϕ1
∗ν1 = ∂z1

.
Because the involutitivity is invariant by change of coordinates, then the transformed vector

fields ν̃1 = ϕ1
∗ν1 = ∂z1

and ν̃2 = ϕ1
∗ν2 satisfy

[

∂z1
, ν̃2
]

(z) = γ̃1(z)∂z1
+ γ̃2(z)ν̃2(z), (4.5)

where γ̃1(z) = ϕ1
∗γ1(z) and γ̃2(z) = ϕ1

∗γ2(z). The condition (4.5) implies, in particular, that

∂ν̃2
j

∂z1

= γ̃2(z)ν̃2
j(z), 2 ≤ j ≤ n.
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The value of γ̃2 is thus uniquely determined as
∂ν̃2

2

∂z1

/

ν̃2
2(z), and the condition above can be

integrated to yield

ν̃2
j(z) = µ j(z)exp

(

Z z1

0
γ̃2(ε, z2, . . ., zn)dε

)

, 2 ≤ j ≤ n

for some appropriate functions µ j(z) = µ j(z2, . . . , zn) that are independent of the variable z1

with µ2(0) , 0. The vector field µ(z) = 0 ·∂z1
+µ2(z)∂z2

+ · · ·+µn∂zn
of Rn is independent

of the variable z1. Thus by Theorem 3.1 we can find a change of coordinates ϕ2(z) =

z + ϕ(z2, . . . , zn) such that ϕ2
∗µ = ∂z̃2

. The same change of coordinates brings ν̃2 = ν̃2
1∂z1

+
b(z)µ(z), where b(z) = exp(

R z1

0 γ̃2(ε, z2, . . . , zn)dε), into ϕ2
∗ν̃2

1∂z̃1
+ ∂z̃2

. Thus the change of

coordinates z̃ = ϕ2 ◦ϕ1(x) transforms the distribution D(x) = span
{

ν1(x),ν2(x)
}

into the

straightened distribution (ϕ2 ◦ϕ1)∗D(z̃) = span {∂z̃1
,∂z̃2

} . �

5 Examples

We will illustrate the results in this section by considering several examples.

Example 5.1. (i) Consider the nonsingular vector field ν(x)= x1∂x1
+x2∂x2

+∂x3
on R3. The

change of coordinates z = ϕ(x) should satisfy the system of partial differential equations































x1
∂ϕ1

∂x1

+x2
∂ϕ1

∂x2

+
∂ϕ1

∂x3

= 0

x1

∂ϕ2

∂x1

+x2

∂ϕ2

∂x2

+
∂ϕ2

∂x3

= 0

x1
∂ϕ3

∂x1

+x2
∂ϕ3

∂x2

+
∂ϕ3

∂x3

= 1.

It is not difficult to guess or find a solution as given by ϕ1(x) = x1e−x3 ,ϕ2(x) = x2e−x3 ,ϕ3(x) = x3.
Indeed, by the method of characteristics we would rewrite the system of partial differential

equation as

dx1

x1

=
dx2

x2

=
dx3

1

or equivalently dx1 − x1dt = 0,dx2 − x2dt = 0,dx3 − dt = 0; which integrates easily as

x3 = t = z3,x2 = z2ez3 ,x1 = z1ez3. This provides the inverse x = ψ(z) from which the

coordinates z = ϕ(x) can be easily found. Since ν3(x) = 1, we have σ3(x) = 1, and hence

Theorem 2.1 gives

z = ϕ(x) ,







































z1 = ϕ1(x) = x1 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

ν (ν1)(x)

z2 = ϕ2(x) = x2 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

ν (ν2)(x)

z3 = ϕ3(x) =
∞

∑
s=1

(−1)s−1xs
3

s!
Ls−1

ν (1)(x).
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A simple calculation shows that Ls−1
ν (ν1) = x1 and Ls−1

ν (ν2) = x2 for all s; which yields

z = ϕ(x) ,







































z1 = ϕ1(x) = x1 +
∞

∑
s=1

(−1)sxs
3

s!
x1 = x1e−x3

z2 = ϕ2(x) = x2 +
∞

∑
s=1

(−1)sxs
3

s!
x2 = x2e−x3

z3 = ϕ3(x) =
∞

∑
s=1

(−1)s−1xs
3

s!
Ls−1

ν (1)(x) = x3.

Because ∂i
z3
·Ls−i−1

ν (ν j)(z) = 0 for all i ≥ 1, we have

s−1

∑
i=0

(−1)iCi
s ∂i

z3
·Ls−i−1

ν (ν j)(z) = Ls−1
ν (ν j)(z) = z j.

Thus we can immediately verify that the inverse x = ψ(z) = col(ψ1(z),ψ2(z),ψ3(z)) is

given by its components

x = ψ(z) ,







































x1 = ψ1(z) = z1 +
∞

∑
s=1

zs
3

s!
z1 = z1ez3

x2 = ψ2(z) = z2 +
∞

∑
s=1

zs
3

s!
z2 = z2ez3

x3 = ψ3(z) =
∞

∑
s=1

zs
3

s!
Ls−1

ν (1)(z) = z3.

(ii) Next, we consider the vector field ν(x) = x1x2∂x1
+ x2

2∂x2
+ ∂x3

on R3. The corre-

sponding system of PDEs satisfied by ϕ is






























x1x2

∂ϕ1

∂x1

+x2
2

∂ϕ1

∂x2

+
∂ϕ1

∂x3

= 0

x1x2

∂ϕ2

∂x1

+x2
2

∂ϕ2

∂x2

+
∂ϕ2

∂x3

= 0

x1x2

∂ϕ3

∂x1

+x2
2

∂ϕ3

∂x2

+
∂ϕ3

∂x3

= 1.

It is clear that ϕ3(x) = x3 solves the last partial differential equation which is also given

by the formula (4.1) with n = 3 and σ3 = 1. Now, it is less easier to guess for a solution.

However, we can apply (4.1) with ν1(x) = x1x2, ν2(x) = x2
2. It can easily be seen that

Ls−1
ν (ν1) = s!x1xs

2 and also Ls−1
ν (ν2) = s!xs+1

2 . Thus

z = ϕ(x) ,



































































ϕ1(x) = x1 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

ν (ν1)(x)

= x1 +
∞

∑
s=1

(−1)sxs
3x1xs

2 =
x1

1+x2x3

ϕ2(x) = x2 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

ν (ν2)(x)

= x2 +
∞

∑
s=1

(−1)sxs
3xs+1

2 =
x2

1+x2x3

ϕ3(x) = x3.
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Though an inverse can be found directly from the above change of coordinates, we want

verify the formulas given by Theorem 3.1 (ii). Using the previous argument, i.e., ∂i
z3
·

Ls−i−1
ν (ν j)(z) = 0 for all i ≥ 1, we get

s−1

∑
i=0

(−1)iCi
s ∂i

z3
·Ls−i−1

ν (ν j)(z) = Ls−1
ν (ν j)(z) = s!z jz

s
2.

We then compute the inverse via Theorem 3.1 (ii) as

x = ψ(z) =







































x1 = ψ1(z) = z1 +
∞

∑
s=1

zs
3

s!
s!z1zs

2 =
z1

1− z2z3

x2 = ψ2(z) = z2 +
∞

∑
s=1

zs
3

s!
s!zs+1

2 =
z2

1− z2z3

x3 = ψ3(z) =
∞

∑
s=1

zs
3

s!
Ls−1

ν (1)(z) = z3.

We can notice that although the vector field is defined globally, both the diffeomorphism

and its inverse are only obtained locally. They are here defined inside the cylinder

C =
{

(x1,x2,x3) ∈ R3 : |x2x3| < 1
}

.

In the previous two examples, the vector field ν(x)∈ R3 does not depend on the variable x3.

In the next example we will consider a case where it does.

(iii) Consider the vector field ν(x) = x3∂x1
+(x2 + x3)∂x2

+ ∂x3
on R3. In this example

Lν(ν1) = 1 and Ls−1
ν (ν1) = 0 for s ≥ 3. In the other hand we can see that Ls−1

ν (ν2) =

x2 +x3 +1 for all s ≥ 2. It thus follows that

ϕ1(x) = x1 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

ν (ν1)(x) = x1 −x3ν1(x)+
x2

3

2!
Lν(ν1)(x) = x1 −

1

2
x2

3

and

ϕ2(x) = x2 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

ν (ν2)(x) = x2 −x3ν2(x)+
∞

∑
s=2

(−1)sxs
3

s!
(x2 +x3 +1)

= x2 −x3(x2 +x3)+(e−x3 +x3 −1)(x2 +x3 +1) = (x2 +x3 +1)e−x3 −1.

Once again we can compute the inverse directly or via Theorem 3.1 (ii). To find the inverse,

first notice that ∂i
z3
·Ls−i−1

ν (ν1)(z) = 0 if (i, s) , (0,1); which yields

ψ1(z) = z1 +
∞

∑
s=1

zs
3

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

zn
·Ls−i−1

ν (ν1)(z)

)

= z1 +
z2

3

2!
ν1(z) = z1 +

1

2
z2

3.

We also have ∂i
z3
·Ls−i−1

ν (ν2)(z) = 0 for all i ≥ 2, from which we deduce

s−1

∑
i=0

(−1)iCi
s ∂i

z3
·Ls−i−1

ν (ν2)(z) = Ls−1
ν (ν2)(z)− s∂z3

·Ls−2
ν (ν2)(z) = z2 + z3 +1− s.
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By Theorem 3.1 (ii), we get the 2nd component of ψ(z) as

ψ2(z) = z2 +
∞

∑
s=1

zs
3

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

z3
·Ls−i−1

ν (ν2)(z)

)

= z2 +
∞

∑
s=1

zs
3

s!
(z2 + z3 +1− s)

= z2 +
∞

∑
s=1

zs
3

s!
(z2 + z3 +1)−

∞

∑
s=1

zs
3

s!
s = z2 +(ez3 −1)(z2 + z3 +1)− z3ez3

= (z2 +1)ez3 − z3 −1.

It is straightforward to verify that

x = ψ(z) ,















x1 = ψ1(z) = z1 +
1

2
z2

3

x2 = ψ2(z) = (z2 +1)ez3 − z3 −1

x3 = ψ3(z) = z3.

is an inverse of z = ϕ(x). .

The next example illustrates the fact that the series given by Theorem 3.1 are not Taylor

series at the origin or in the variable xk.

Example 5.2. Consider the nonsingular vector field ν(x) = λ(x3)∂x1
+ ∂x3

in R3, where λ

is a flat function, that is, λ and all its derivatives are zero at x3 = 0. An example is the

well-known function given by

λ(x3) =

{

exp(−1/x2
3) if x3 , 0

0 if x3 = 0.

It is straightforward to check that Ls−1
ν (ν1)(x) = λ(s−1)(x3) for all s ≥ 1, where λ(k)(x3) is

the kth derivative of λ. Should the formula (3.1) have been a series expansion around 0 or

at xk = 0, the straightening diffeomorphism would have been given by

z = ϕ(x) ,







































ϕ1(x) = x1 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

ν (ν1)(0) = x1

ϕ2(x) = x2 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

ν (ν2)(0) = x2

ϕ3(x) =
∞

∑
s=1

(−1)s−1xs
3

s!
Ls−1

ν (1)(0) = x3;

which is impossible. However we can verify easily that ϕ1(x) = x1 −
Z x3

0
λ(ε)dε; which

coincides with

ϕ1(x) = x1 +
∞

∑
s=1

(−1)sxs
3

s!
λ(s−1)(x3).

Indeed we can show that

Z x3

0
λ(ε)dε = −

∞

∑
s=1

(−1)sxs
3

s!
λ(s−1)(x3).
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The two functions coincide when x3 = 0, and it is enough to verify that their derivatives are

also equal. The derivative of the right hand side is

−
∞

∑
s=1

(−1)sxs−1
3

(s−1)!
λ(s−1)(x3)−

∞

∑
s=1

(−1)sxs
3

s!
λ(s)(x3) = λ(x3)

after simplification (which equals the derivative of the left).

Now, to find the inverse of the normalizing coordinates, let us apply Theorem 3.1 (ii)

with n = 3 and k = 3. First, we have Ls
νν = λ(s)(x3)∂x1

for all s ≥ 1. We thus obtain

ψ(z) = z+
∞

∑
s=1

zs
3

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

z3
·Ls−i−1

ν (ν)(z)

)

= z+
∞

∑
s=1

zs
3

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

z3
·λ(s−i−1)(z3)∂z1

)

= z+
∞

∑
s=1

zs
3

s!

(

s−1

∑
i=0

(−1)iCi
s λ(s−1)(z3)∂z1

)

= z+
∞

∑
s=1

zs
3

s!

(

s−1

∑
i=0

(−1)iCi
s

)

λ(s−1)(z3)∂z1

= z−
∞

∑
s=1

(−1)szs
3

s!
λ(s−1)(z3)∂z1

= col

(

z1−
∞

∑
s=1

(−1)szs
3

s!
λ(s−1)(z3), z2, z3

)

It thus clearly follows that

ψ(z) = col

(

z1 +

Z z3

0
λ(ε)dε, z2, z3

)

which was predictable directly from the change of coordinates z = ϕ(x). .

6 Applications.

This section deals with few applications of the flow-box theorem among them the lineariza-

tion of control systems [22], [23] (see also [24]), and integration of ordinary differential

equations.

We use the rectifying theorem for vector fields to construct linearizing coordinates for

control systems for which this is possible. For further details we refer to our papers [22],

[23], [24]. The method can also be applied to nonlinearizable control systems to construct

normal forms or simplify their dynamics as well as for an analysis of symmetries of vector

fields. We will only illustrate here with few examples.

Example 6.1. Consider a single-input control system

Σ : ẋ = f (x)+g(x)u ,











ẋ1 = x2 −2x2x3 +x2
3 +4x2x3u

ẋ2 = x3 −2x3u

ẋ3 = u
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with f (x) = col(x2 −2x2x3 + x2
3, x3, 0) and g(x) = col (4x2x3,−2x3, 1). We start by recti-

fying the vector field g(x). Denote ν(x) = g(x) and apply Theorem 2.1 with n = 3, and

σ3(x) = 1. Since

Lν(ν1) = −8x2
3 +4x2,L2

ν(ν1) = −16x3 −8x3 = −24x3,L3
ν(ν1) = −24,Ls−1

ν (ν1) = 0, s ≥ 5,

we have

y1 = ϕ1(x) = x1 +
∞

∑
s=1

(−1)s xs
3

s!
Ls−1

ν (ν1)(x)

= x1 −x3(4x2x3)+
x2

3

2
(−8x2

3 +4x2)− x3
3

6
(−24x3)+

x4
3

24
(−24)

= x1 −4x2x2
3 −4x4

3 +2x2x2
3 +4x4

3 −x4
3 = x1 −2x2x2

3 −x4
3.

Similarly, we have Lν(ν2) = −2, and Ls−1
ν (ν2) = 0 for s ≥ 3; which yields

y2 = ϕ2(x) = x2 +
∞

∑
s=1

(−1)s xs
3

s! Ls−1
ν (ν2)(x)

= x2 −x3(−2x3)+
x2

3

2
(−2) = x2 +2x2

3 −x2
3 = x2 +x2

3.

We apply the change of coordinates y = col (x1 −2x2x2
3 − x4

3, x2 + x2
3, x3) to transform the

original system into

Σ̃ : ẏ = f̃ (y)+ g̃(y)u ,











ẏ1 = y2 −2y2y3

ẏ2 = y3

ẏ3 = u

where g̃(y) = col (0, 0, 1) and f̃ (y) = col (y2 −2y2y3, y3, 0). The vector field f̃ (y) decom-

poses uniquely as f̃ (y) = col (y2, 0, 0)+ y3col (−2y2, 1, 0). The next step is to rectify the

vector field ν(y) = col (−2y2, 1, 0). Theorem 3.1 with k = 2, and σ2(y) = 1, yields

z = ϕ̃(y) ,















z1 = y1 +
∞

∑
s=1

(−1)s ys
2

s!
Ls−1

ν (ν1)(y) = y1 −y2(−2y2)+
y2

2

2
(−2) = y1 +y2

2

z2 = y2

z3 = y3.

The system is then transformed, via z = ϕ̃(y), to the linear Brunovský form

ΛBr : ż = Az+bu ,











ż1 = z2

ż2 = z3

ż3 = u.

The linearizing coordinates for the original system are thus obtained as a composition of

the two-step changes of coordinates

z = ϕ̃◦ϕ(x) ,











z1 = x1 −2x2x2
3 −x4

3 +(x2 +x2
3)

2 = x1 +x2
2

z2 = x2 +x2
3

z3 = x3.

Of course, this linearizing coordinates could have been obtained directly or by other meth-

ods. What we want emphasize here is that the method works and is applicable for any

linearizable system.



Flow-Box Theorem and Beyond 93

Example 6.2. We consider the following example















ẋ1 = x2 +

(

1

2
x2 −

1

12
x3x4

)

u ẋ3 = x4 +x4u

ẋ2 = x3 +
1

2
x3u ẋ4 = u.

Because of the strict feedforward structure, we showed in [18] (using a 4-step algorithm)

that the change of coordinates

z = ϕ(z) ,







































z1 = x1 −
1

24

(

12x2x4 −4x3x2
4 +x4

4

)

z2 = x2 −
1

2

(

x3x4 −
1

3
x3

4

)

z3 = x3 −
1

2
x2

4

z4 = x4

(6.1)

linearizes the system. We can recover such coordinates directly by applying the algorithm

given in the proof. Denote by f (x) = col(x2, x3, x4, 0) and

ν(x) , g(x) = col

(

1

2
x2 −

1

12
x3x4,

1

2
x3, x4, 1

)

.

The first step consists of rectifying the control vector field via Theorem 3.1. Since ν4 = 1,

hence σ4 = 1, and we have

Lν(ν1) =
1

2

(

1

2
x3

)

− 1

12

(

x2
4 +x3

)

=
1

6
x3 −

1

12
x2

4,

and L2
ν(ν1) = 1

6
x4 − 1

6
x4 = 0 (thus Ls−1

ν (ν1) = 0,∀s ≥ 3). It follows that

ϕ1(x) = x1 −x4ν1(x)+
1

2
x2

4Lν(ν1) = x1 −
1

2
x2x4 +

1

6
x3x2

4 −
1

24
x3

4.

We can also verify easily that Lν(ν2) = 1
2
x4, L2

ν(ν2) = 1
2
, and Ls−1

ν (ν2) = 0 for all s ≥ 3.

Thus we get

ϕ2(x) = x2 −x4ν2(x)+
1

2
x2

4Lν(ν2)−
1

6
x3

4L2
ν(ν2)

= x2 −
1

2
x3x4 +

1

4
x3

4 −
1

12
x3

4 = x2 −
1

2
x3x4 +

1

6
x3

4.

Similarly, Lν(ν3) = 1, and Ls−1
ν (ν3) = 0 for all s ≥ 3; which implies

ϕ3(x) = x3 −x4ν3(x)+
1

2
x2

4Lν(ν2) = x3 −x2
4 +

1

2
x2

4 = x3 −
1

2
x2

4.

Because ν4(x) = 1, we get ϕ4(x) = x4, and the change of coordinates (6.1) rectifies the

control vector field g and linearizes the system at the same time.
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Notice that the algorithm described in [18] allowed only to find such linearizing coor-

dinates by computing a component at a time (holding other components identity) starting

from ϕ3 then ϕ2 and finally ϕ1 and updating the system at each step. A composition of

different coordinates changes gave (6.1). However, Theorem 3.1 allows to compute those

components independently to each other. .

Example 6.3. Consider the following example [14] motivated by a mixed-culture bioreac-

tor










ẋ1

ẋ2

ẋ3



=





x1

(1− lnx3)x2

−px1x3



−





x1

x2

x3



u1 +





0

0

1



u2 (6.2)

with x1 > 0,x2 > 0,x3 > 0. An equilibrium point for this system is x3 = 1,u1 = 1,u2 = 1

with x1 and x2 arbitrary. Define the new coordinates xi = xi −1, u j = u j −1 so the system

above can be written in the form

Σ : ẋ = f (x)+g1(x)u1 +g2(x)u2

where

f (x) =





0

−(1+x2) ln(1+x3)

−p(1+x1)(1+x3)−x3



 , g1(x) = −





1+x1

1+x2

1+x3



 and g2(x) =





0

0

1





We look for a change of coordinates y = ϕ(x) that rectifies the distribution D = span {g1,g2},

i.e., such that (ϕ)∗D = β(y){∂y2
,∂y3

} or equivalently (ϕ)∗g2 = ∂y3
and (ϕ)∗g1 = ∂y2

+

β12(y)∂y3
. Apply Theorem 3.1 with ν = g1 and σ2 = −(1+x2)

−1. Because

Lσ2ν(σ2ν1) =
1

1+x2

× 1+x1

1+x2

− 1+x1

(1+x2)2
×1 = 0

Lσ2ν(σ2) = − 1

(1+x2)2
×1 = − 1

(1+x2)2

it follows that Ls−1
σ2ν (σ2ν1) = 0 and Ls−1

σ2ν (σ2) = (−1)s−1(s−1)!
(1+x2)s , s ≥ 1. Thus the change of

coordinates

y = ϕ(x) ,



















































































y1 = x1 +
∞

∑
s=1

(−1)sxs
2

s!
Ls−1

σ2ν (σ2ν1)(x)

= x1 −x2(σ2ν1)(x) =
x1 −x2

1+x2

y2 =
∞

∑
s=1

(−1)sxs
2

s!
Ls−1

σ2ν (σ2)(x)

=
∞

∑
s=1

(−1)sxs
2

s!

(−1)s−1(s−1)!

(1+x2)s

= −
∞

∑
s=1

xs
2(1+x2)

−s

s
= − ln(1+x2)

y3 = x3
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transforms Σ into

Σ̆ : ẏ = f̆ (y)+ ğ1(y)ŭ1 + ğ2(y)ŭ2

where

f̆ (y) =





(1+y1) ln(1+y3)

ln(1+y3)
λ(y1,y2,y3)



 , ğ1(y) =





0

1

−1−y3



 and ğ2(y) =





0

0

1





where

λ = −pe−y2(1+y1)(1+y3)−y3

This system is in feedback form and the following change of coordinates

z = ϕ̆1(y) ,











z1 = φ̆1(y) = y1

z2 = φ̆2(y) = (1+y1) ln(1+y3)

z3 = φ̆3(y) = y3

with feedback v1 = L f̆ φ̆2(y),v2 = ŭ2−(1+y3)ŭ1 +λ(y1,y2,y3) brings the latter system into

the linear form

Σ : ż = f (z)+g1(z)v1 +g2(z)v2 ,







ż1 = z2

ż2 = v1

ż3 = v2.

We deduce that (6.2) can be linearized by the composition of coordinates changes z1 =
x1−x2

x2
, z2 = x1

x2
lnx3, z3 = x3 −1 with the relations between old and new control inputs given

by x1x3(lnx3)
2− px2

1x3 +x1x3u1 +x1u2 = x2x3v1 and −px1x3−x2u1 +u2 = v2. Notice that

the coordinates transformations are not unique and the following change of coordinates

z1 = ln(x1/x2), z2 = lnx3, z3 = lnx1 with appropriate feedback has been proposed in [14] to

linearize the system. We recovered this latter change of coordinates and feedback in [25]

using the linearizing approach for strict feedforward systems.

Example 6.4. Consider the system Σ : ẋ = f (x)+g1(x)u1 +g2(x)u2 described in the coor-

dinates x = (x1, . . . ,x5)
T ∈ R5 by

f (x) =













x2(1+x3)

x3(1+x1)
x1 +x5 +x2

1

x5 +x2
1

0













, g1(x) =













0

−x2

1+x3

0

0













, and g2(x) =













0

0

0

0

1













We rectify the vector field g1(x). Put ν = g1(x) and apply Theorem II.2 with n = 5 and σ3 =
(1+x3)

−1, thus σ3ν = −x2(1+x3)
−1∂x2

+ ∂x3
. Since ν1 = ν4 = ν5 = 0 we have ϕ1(x) =

x1,ϕ4(x) = x4 and ϕ5(x) = x5. On the other side ν2(x) = −x2 implies

Lσ3ν(σ3ν2)=2x2(1+x3)
−2,L2

σ3ν(σ3ν2)=−6x2(1+x3)
−3

which recurrently gives

Ls−1
σ3ν (σ3ν2)=(−1)ss!x2(1+x3)

−s.
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It follows that

ϕ2(x)=x2 +
∞

∑
s=1

(−1)sxs
3

s!
Ls−1

σ3ν (σ3ν2)(x)=x2(1+x3).

To calculate ϕ3(x), notice that Lσ3ν(σ3) = −(1+x3)
−2 and L2

σ3ν(σ3) = 2(1+x3)
−3. Thus

a simple recurrence shows that Ls−1
σ3ν σ3 = (−1)s−1(s−1)!(1+x3)

−s, s ≥ 1, which implies

y3 = ϕ3(x) =
∞

∑
s=1

(−1)s+1xs
3

s!
Ls−1

σ3ν (σ3)(x)

=
∞

∑
s=1

1

s

(

x3

1+x3

)s

=
∞

∑
s=1

Z

(

x3

1+x3

)s−1(
x3

1+x3

)′
dx3

=

Z

1

1+x3

dx3 = ln(1+x3).

We apply the change of coordinates

y = ϕ(x) ,































y1 = x1

y2 = x2(1+x3)

y3 = ln(1+x3)

y4 = x4

y5 = x5

whose inverse is given by (Theorem 3.1 (ii) can be used)

x = ϕ−1(y) ,































x1 = y1

x2 = y2e−y3

x3 = ey3 −1

x4 = y4

x5 = y5

to transform the original system into

Σ̆ ,































ẏ1 = y2

ẏ2 = (1+y1)ey3(ey3 −1)+y2e−y3(y1 +y5 +y2
1)

ẏ3 = e−y3(y1 +y5 +y2
1)+u1

ẏ4 = y5 +y2
1

ẏ5 = u2.

The system is in feedback form and can be put into the linear Brunovský form via

z = ϕ̆(y) ,































z1 = φ̆1(y) = y1

z2 = φ̆2(y) = y2

z3 = φ̆3(y) = (1+y1)ey3(ey3 −1)+y2e−y3(y1 +y5 +y2
1)

x4 = φ̆4(y) = y4

x5 = φ̆5(y) = y5 +y2
1
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with v1 = ∂ϕ3

∂y1
ẏ1 + · · ·+ ∂ϕ3

∂y5
ẏ5 and v2 = ∂ϕ5

∂y1
ẏ1 + · · ·+ ∂ϕ5

∂y5
ẏ5. The composition z = ϕ̆◦ϕ(x)

gives the linearizing coordinates






























x1 = x1

z2 = x2(1+x3)

z3 = (1+x31)x3(1+x3)+x2(x1 +x5 +x2
1)

z4 = x4

z5 = x5 +x2
1

with appropriate feedback.

Example 6.5. Consider a simplified model of a VTOL with dynamics [17] (see Fig. 1.)










ẍ = −sin(θ) T
M

+cos(θ) 2 sinα
M

F

ÿ = −cos(θ) T
M

+ sin(θ) 2 sinα
M

F −g
θ̈ = 2l

J
cosαF

(6.3)

where M, J, l and g denote the mass, moment of inertia, distance between wingtips and grav-

itational acceleration. The control inputs are the thrust T , and the rolling moment due to the

torque F , whose direction forms a fixed angle α with the horizontal body axis. The position

of center mass and the roll angle with respect to the horizon are (x,y), and θ while (ẋ, ẏ)
and θ̇ stand for their respective velocities. Let x1 = x,x2 = ẋ,x3 = θ,x4 = θ̇,x5 = y,x6 = ẏ

with control inputs u1 = 2l
J

cosαF and u2 = −cos(θ) T
M

+ sin(θ) 2 sinα
M

F − g. The system

rewrites in the form

Σ : ẋ = f (x)+g1(x)u1 +g2(x)u2,x = (x1, . . . ,x6) ∈ R6

with

f (x) =

















x2

g tanx3

x4

0

x6

0

















, g1(x) =

















0

η(x3)
0

1

0

0

















andg2(x) =

















0

tanx3

0

0

0

1

















where η(x3) = J tanα
Ml

(

cos2 x3−sin2 x3

cosx3

)

. Put ν1 = g1 and ν2 = g2. We look for z = ϕ(x) that

rectifies the distribution D = span
{

ν1,ν2
}

, i.e., such that (ϕ)∗D = β(z){∂z4
,∂z6

}. Apply

Theorem 3.1 first to ν1 = g1(x) with n = 6 and σ4 = 1. Since Ls−1
ν1 (ν1

2) = 0 for all s ≥ 2 it

follows that

y = ϕ(x) ,































































y1 = x1

y2 = x2 +
∞

∑
s=1

(−1)sxs
4

s!
Ls−1

σ4ν1(σ4ν1
2)(x)

= x2 −x4ν1
1(x) = x2−x4η(x3)

y3 = x3

y4 = x4

y5 = x5

y6 = x6.
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The distribution D is transformed into

(ϕ)∗D = span
{

ν̆1, ν̆2
}

= span















































0

0

0

1

0

0

















,

















0

tany3

0

0

0

1















































.

Now we look for z = ϕ̆(y) such that (ϕ̆)∗ν̆2 = ∂z6
. Similar to the steps above we obtain

z = ϕ̆(y) ,































































z1 = y1

z2 = y2 +
∞

∑
s=1

(−1)sys
6

s!
Ls−1

σ6ν̃2(σ6ν̃2
2)(y)

= y2 −y6ν̃2
2(y) = y2−y6 tan(y3)

z3 = y3

z4 = y4

z5 = y5

z6 = y6.

Hence the previous distribution is straightened by latest change of coordinates. Thus, the

change of coordinates z = ϕ̆◦ϕ(x)

z = ϕ̆◦ϕ(x) ,







































z1 = x1

z2 = x2 −x4η(x3)−x6 tan(x3)

z3 = x3

z4 = x4

z5 = x5

z6 = x6

takes the original system Σ into Σ : ż = f (z)+b1u1 +b2u2, z ∈ R6 with

f (z) =

















z2 + z4η(z3)+ z6 tan(z3)
g tanz3 −η′(z3)z2

4 − z6z4 sec2(z3)

z4

0

z6

0

















Since
∂2 f

∂z2
4

, 0, the integrability condition fails to be satisfied and the system is not feedback

linearizable. The algorithm stops. What is worth noticing here is, though the system is not

feedback linearizable, this method provides an easy way of verifying that fact. Indeed, the

classical method would require, in general, to verify that the distribution

Dn−2 = span
{

gi,ad f gi, . . . ,adn−2
f gi, i = 1, . . . ,m

}
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Figure 1. Forces acting on the aircraft.

is involutive by calculating all Lie brackets. Even once we check that all distributions are

involutive, finding linearizing change of coordinates and feedback is another challenge.

Other applications of the flow box theorem include solving explicitly systems of ordi-

nary differential equations and finding symmetries of vector fields. We refer to our work in

progress for further details on those issues. We want just illustrate here with one example.

Example 6.6. Consider the simplest system of ordinary differential equations

{

ẋ1 = x2

ẋ2 = −x1

with initial condition x1(0) = a1,x2(0) = a2. Obviously, a solution is obtained directly

by integrating the second order system associated ẍ1 + x1 = 0 and ẍ2 + x2 = 0. We get

x1(t) = a1 cos t + a2 sin t and x2(t) = −a1 sint + a2 cos t. We will recover this solution by

extended the system as follows











ẋ1 = x2

ẋ2 = −x1

ẋ3 = 1

with initial condition x1(0) = a1,x2(0) = a2,x3(0) = 0. Let ν(x) = col(x2,−x1,1) be the

vector field associated with the extended system. It is straightforward to verify that L2s
ν (ν1) =

(−1)sx2 and L2s−1
ν (ν1) = (−1)sx1 on one side and L2s

ν (ν2) = (−1)s−1x1 and L2s−1
ν (ν1) =

(−1)sx2 on the other side. Since ∂i
x3
·Ls−i−1

ν (ν1) = 0 and ∂i
x3
·Ls−i−1

ν (ν2) = 0 for all i ≥ 1,



100 Issa Amadou Tall

we deduce from Theorem 3.1 (ii) that the change of coordinates x = ψ(z) is given by

x = ψ(z),



































































x1 = z1 +
∞

∑
s=1

zs
3

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

z3
·Ls−i−1

ν (ν1)(z)

)

= z1 +
∞

∑
s=1

zs
3

s!
Ls−1

ν (ν1)(z)

= z1 +
∞

∑
s=1

z2s
3

(2s)!
(−1)sz1 +

∞

∑
s=0

z2s+1
3

(2s+1)!
(−1)sz2 = z1 cosz3 + z2 sinz3

x2 = z2 +
∞

∑
s=1

zs
3

s!

(

s−1

∑
i=0

(−1)iCi
s ∂i

z3
·Ls−i−1

ν (ν2)(z)

)

= z2 +
∞

∑
s=1

zs
3

s!
Ls−1

ν (ν2)(z)

= z2 +
∞

∑
s=1

z2s
3

(2s)!(−1)sz2−
∞

∑
s=0

z2s+1
3

(2s+1)!(−1)sz1 = −z1 sinz3 + z2 cosz3

x3 = z3

Since x3 = t (ẋ3 = 1 and x3(0)= 0) we then have x1(t) = z1 cos t +z2 sint,x2(t) =−z1 sint +
z2 cos t and using the initial conditions we arrive to the solution above.

Conclusion

In this paper we have provided explicit formulas for finding a diffeomorphism rectifying a

non singular vector field as well as its inverse in terms of power series of functions that are

Lie derivatives of the components of the vector field along itself. We have established the

convergence of those series and extended the results to the Frobënius case, and we have also

provided several examples as well as an application to the linearization of control systems.
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