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Abstract

In this paper, we study the pair (GP(R), GP(R)*) where GP(R) is the class of
all Gorenstein projective modules. We prove that it is a complete hereditary cotorsion
theory, provided [.Ggldim(R) < co. We discuss also, when every Gorenstein projective
module is Gorenstein flat.
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1 Introduction

Throughout the paper, all rings are associative with identity, and an R-module will mean
left R-module unless explicitly stated otherwise.

Let R be a ring, and let M be an R-module. As usual, we use pdg(M), idg(M), and fdg(M)
to denote, respectively, the classical projective dimension, injective dimension, and flat
dimension of M. We denote by M™ = Homz(M,Q/Z) the character module of M.

For a two-sided Noetherian ring R, Auslander and Bridger [1] introduced the G-dimension,
Gdimg(M), for every finitely generated R-module M. They showed that Gdimg(M) <
pdg(M) for all finitely generated R-modules M, and equality holds if pdg(M) is finite.

Several decades later, Enochs and Jenda [5, 6] introduced the notion of Gorenstein
projective dimension (G-projective dimension for short), as an extension of G-dimension to
modules that are not necessarily finitely generated, and the Gorenstein injective dimension
(G-injective dimension for short) as a dual notion of Gorenstein projective dimension. Then,
to complete the analogy with the classical homological dimension, Enochs, Jenda, and
Torrecillas [8] introduced the Gorenstein flat dimension. Some references are [2, 3, 4, 5, 6,
8, 12].
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Recall that an R-module M is called Gorenstein projective, if there exists an exact se-
quence of projective R-modules:

P...-—P | —P | —P—P—P—- -

such that M = Im(Py — P;) and such that the functor Hom g (—, Q) leaves P exact whenever
Q is a projective R-module. The complex P is called a complete projective resolution.

The Gorenstein injective R-modules is defined dually.

An R-module M is called Gorenstein flat, if there exists an exact sequence of flat R-
modules:

F:...—F,—F |1 —Fkh—FH—FHh—-

such that M =2 Im(Fy — F;) and such that the functor / ® — leaves F exact whenever I is a
right injective R-module. The complex F is called a complete flat resolution.

The Gorenstein projective, injective, and flat dimensions are defined in terms of resolu-
tions and denoted by Gpd(—), Gid(—), and Gfd(—), respectively (see [3, 7, 12]).
Notation. By P(R) and I(R) we denote the classes of all projective and injective R-modules,
respectively, and by P(R) and I(R) we denote the classes of all modules with finite pro-
jective dimensions and injective dimensions, respectively. Furthermore, we let GP(R) and
G I(R) denote the classes of all Gorenstein projective and injective R-modules, respectively.

In [2], the authors proved the equality

sup{Gpdg(M) | M is a (left) R-module} = sup{Gidg(M) | M is a (left) R-module}.

They called the common value of the above quantities the left Gorenstein global dimension
of R and denoted it by /.Ggldim(R). Similarly, they set

1. wGgldim(R) = sup{Gfdg(M) | M is a (left) R-module}

which they called the left weak Gorenstein global dimension of R.

Given a class X of R-modules we set:

Xt = kerExty(X,—) = {M|Exty(X,M)=0forall X € X}.
LxX = kerExth(—,X) = {M|Exti(M,X)=0forall X € X}.

The class X+ (resp.,~X) is usually called the right (resp., left) orthogonal complement
relative to the functor Exty(—, —) of the class X.

Definition 1.1 (Precovers and Preenvelopes). Let X be any class of R-modules and let M
be an R-module.

e An X-precover of M is an R-homomorphism ¢ : X — M where X € X and such that
the sequence

Hom(x’,¢)
_

Homg(X',X) Homg(X',M) —— 0

is exact for every X’ € X. An X-precover is called special, if ¢ is surjective and
ker(¢) € X*.
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e An X-preenvelope of M is an R-homomorphism ¢ : M — X where X € X and such
that the sequence,

Homz(e,x")
—_—

Homg(X,X") Homgz(M,X') —— 0

is exact for every X’ € X. An X-preenvelope is called special, if @ is injective and
coker(@) € 1 X.

For more details about precovers (and preenvelopes), the reader may consult [7, Chap-
ters 5 and 6].

Definition 1.2 ([12], Resolving classes 1.1). For any class X of R-modules.

e We call X projectively resolving, if P(R) C X and for every short exact sequence
0— X' — X — X” — 0 with X” € X the conditions X’ € X and X € X are
equivalent.

e We call X injectively resolving, if I(R) C X and for every short exact sequence 0 —
X' — X — X” — 0 with X’ € X the conditions X” € X and X € X are equivalent.

A pair (X,9)) of classes of R-modules is called a cotorsion theory [7], if X+ =9) and
19) = X. In this case, we call X NQ) the kernel of (X,9)). Note that each element K of the
kernel is a splitter in the sense of [11], i.e., Exty(K,K) = 0. If € is any class of modules,
then (€, (+€)1) is easily seen be a cotorsion theory, called a cotorsion theory generated
by € (see [13, Definition 1.10]). A cotorsion theory (X,9)) is called complete [13], if ev-
ery R-module has a special 2)-preenvelope (or equivalently every R-module has a special
X-precover; see [13, Lemma 1.13]). A cotorsion theory (X,9)) is said to be hereditary
[10], if whenever 0 — L' — L — L” — 0 is exact with L,L” € X, then L' is also in X, or
equivalently, if 0 - M’ — M — M” — 0 is exact M',M € %), then M" is also in ).

The aim of this paper is the study of the pair (GP(R), GP(R)").
Note: Below, we have only proved the results concerning the Gorenstein projective mod-
ules. The proofs of the Gorenstein injective ones are dual, and we can find a dual of the
results using in the proofs in [12].

2 Lemmas

In this section, we recall some fundamental results about Gorenstein projective modules
and dimensions. These results are extracted from the work of Holm in [12].

The first lemma shows that the class of Gorenstein projective modules is projectively
resolving:

Lemma 2.1 ([12], Theorems 2.5). Let R be a ring. Then, The class GP(R) is projectively
resolving. Moreover, it is closed under direct sums and direct summands.

The next lemma study the GP(R)-precovers of R-modules with finite Gorenstein pro-
jective dimension.
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Lemma 2.2 ([12], Theorems 2.10). Let M be an R-module with finite Gorenstein projective
dimension n. Then M admits a surjective gP(R)-precoven ¢©:G—» M, where K = ker@
satisfies pdgK = n—1 (if n = O, this should be interpreted as K = 0).

In the the following lemma, Holm gave a functorial description of the finite Gorenstein
projective dimension of modules.

Lemma 2.3 ([12], Theorem 2.20). Let M be an R-module with finite Gorenstein projective
dimension, and let n be an integer. Then the following conditions are equivalent:

1. Gpdgx(M) <n.
2. Exth(M,L) =0 for all i > n, and all R-modules L with finite pdg(L).
3. Exth(M,Q) = 0 for all i > n, and all projective R-modules Q.

4. For every exact sequence of R-module 0 — K, — G,,_1 — --- — Gy — M — O where
Go, ..., G,_1 are Gorenstein projectives, K, is also Gorenstein projective.

Recall that the finitistic projective dimension of R is defined as:
FPD(R) = sup{pdz(M) | M is an R-module with pdg(M) < oo}
Lemma 2.4 ([12], Theorems 2.28). For any ring R there is an equality

FPD(R) = sup{ Gpdg(M) | M is an R-module with finite Gorenstein projective dimension}.

3 Main results

We begin with the following theorem:

Theorem 3.1. For any ring R, the following holds:
1. Exth(G,M) =0 foralli >0, all G € GP(R), and all M € GP(R)™.
2. Exth(M,G) =0foralli >0, all G € GI(R), and all M € ~GI(R).
3. GP(R)* and * GI(R) are projectively resolving.
4. GP(R)* and + GI(R) are injectively resolving.

Proof. (1) Let M and G be an arbitrary elements of GP(R)* and GP(R), respectively,
and let n > 1 be an integer. Pick an exact sequence 0 - G — P, — ... - P, - G — 0
where all P; are projectives. By the projectively resolving of GP(R) (Lemma 2.1), G’ is
clearly Gorenstein projective. Consequently, we have Ext%(G, M) = Exth(G',M) = 0, as
desired.

(2) By a dual argument to (1).

(3) We claim that GP(R)™ is projectively resolving. Using the long exact sequence in
homology, we conclude that GP(R)™ is closed by extension, i.e., if 0 — M — M’ — M" — 0
is an exact sequence where M and M” are in GP(R)*, then so is M'. In addition, from the
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definition of Gorenstein projective modules, it is clear that P(R) C GP(R)*. Now, consider
a short exact sequence 0 — M — M’ — M" — 0 where M’ and M" are in GP(R)*. For an
arbitrary Gorenstein projective R-module G, consider a short exact sequence 0 - G — P —
G’ — 0 where P is projective and G’ is Gorenstein projective (such a sequence exists by the
definition of Gorenstein projective modules). From the long exact sequence of homology,
we have:
- — Exth(G',M") — Exth(G',M) — Ext3(G',M') — ...

Then, Ext3(G',M) = 0 since Exty(G',M") = Ext4(G',M") = 0 (from (1) above). Accord-
ingly, Exty(G,M) = Extx(G',M) = 0, as desired.

(4) We claim that GP(R)" is injectively resolving. Clearly, I(R) C GP(R)"*, and
GP(R)* is closed by extension. Now, consider a short exact sequence 0 — M — M’ —
M" — 0 where M and M’ belongs to GP(R)*. Using the long exact sequence of homology,
for all Gorenstein projective module G, we have

.- — Exth(G,M') — Exth(G,M") — Ext3(G,M) — ...

Thus, from (1), Exty(G,M") = 0. Hence, M" € GP(R)*. Consequently, GP(R)" is injec-
tively resolving.

From the above theorem, we conclude the following two corollary.
Corollary 3.2. For any ring R,
1. P(R) = GP(R)N GP(R)™*.

2. I(R) = GI(R)N*GI(R).

Proof. (1) Let M € GP(R) N GP(R)* and consider a short exact sequence 0 — M’ —
P — M — 0 where P is projective. Since GP(R)" is projectively resolving (by Theorem
3.1), M’ € GP(R)*. Then, Exty(M,M’) = 0. Therefore, this short exact sequence splits.
Consequently, M is a direct summand of P, and then projective.

(2) By a dual proof to (1).

Corollary 3.3.

1. [12, Proposition 2.27] Every Gorenstein projective (resp., injective) module with fi-
nite projective (resp., injective) dimension is projective (resp., injective).

2. Every Gorenstein projective (resp., injective) module with finite injective (resp., pro-
Jective) dimension is projective (resp., injective).

Proof. (1) If M is a Gorenstein projective module with finite projective dimension, then
M € GP(R)N GP(R)* (by Lemma 2.3). Consequently, M is projective (by Corollary 3.2).

The injective case is dual.

(2) Note that every module / with idg(I) := n < o belongs to GP(R)*. Indeed, by
the definition of the Gorenstein projective modules, for each Gorenstein projective module
G we can find an exact sequence 0 — G — P, — ... — Py — G’ — 0 where all P; are
projective and G’ is Gorenstein projective. Thus, we have Extk(G,I) = Exts"™ (G',I) = 0.
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Now, if M is a Gorenstein projective module with finite injective dimension, then M €
GP(R)N GP(R)*. Accordingly, by Corollary 3.2, M is projective.

Dually, we can prove that every module with finite projective dimension is an element
of - GI(R). Consequently, by Corollary 3.2, every Gorenstein injective module with finite
projective dimension is injective.

The main result of this paper is the following theorem:

Theorem 3.4. If1.Ggldim(R) < oo, then (GP(R), GP(R)*) and (* GI(R), GI(R)) are com-
plete, hereditary cotorsion theories.

Proof. (1) To show that (GP(R), GP(R)") is a cotorsion theory, we have to prove that
L(GP(R)*) = GP(R). Let M be an element of -(GP(R)"). Since Gpdg(M) < oo and from
Lemmas 2.2 and 2.3, M admits a surjective GP(R)-precover ¢ : G — M where K = ker(@) €
GP(R)*. Then, G is a special GP(R)-precover of M, and the short exact sequence 0 — K —
G — M — 0 splits since Exty(M,K) = 0. Thus, M is a direct summand of G. Hence, M
is Gorenstein projective (by Lemma 2.1). Consequently, *(GP(R)*) C GP(R), while the
other inclusion is clear. Therefore, (GP(R), GP(R)") is a cotorsion theory, and every R-
module has a special GP(R)-precover. This implies that (GP(R), GP(R)*) is complete.
Moreover, since GP(R) is projectively resolving and GP(R)™ is injectively resolving, this
cotorsion theory is hereditary.

(2) To prove the dual Gorenstein injective result, we use the dual result of Lemmas 2.1
and 2.2.

Proposition 3.5. If1.Ggldim(R) < oo, then GP(R)" = P(R) = I(R) = ~GI(R).

Proof. Clearly, by Lemma 2.3, P(R) C GP(R)*. Now, let M € GP(R)* and N be an
arbitrary R-module, and set n := [.Ggldim(R). We have, Gpdg(N) < n. Then, by Lemma
2.3, we can find an exact sequence

0O—G—P,—..— P —N—0

where all P; are projective and G is Gorenstein projective. Thus, by Theorem 3.1, for all j >
0, Exty"(N,M) = Exth(G,M) = 0. Consequently, idg(M) < n. Using [2, Corollary 2.7],
?(R) = I(R) since [.Ggldim(R) < o. Then, M € P(R). Accordingly, GP(R)* = P(R).
Similarly, we prove that - GI(R) = I(R). This finishes the proof.

Proposition 3.6. If GP(R) =*(P(R)) and GP(R)* = P(R), then FPD(R) = [.Ggldim(R).

Proof. From [13, Theorem 2.2], every R-module admits a special gP(R)l—preenvelope.
On the other hand, by hypothesis, (GP(R), GP(R)") is the cotorsion theory generated by
P(R). Then, (GP(R),P(R)) is a complete cotorsion theory. Therefore, every R-module M
has a special GP(R)-precover.

The inequality FPD(R) < [.Ggldim(R) follows from Lemma 2.4. Now, suppose that
FPD(R) < n and let M be an arbitrary R-module. We claim that /.Ggldim(R) < eo. From the
first part of this proof, M admits a special GP(R)-precover. Then, there is an exact sequence
0 — K — G — M — 0 where G is Gorenstein projective and K € GP(R)* = P(R). Thus,
pdg(K) < n, and so Gpdg(M) < n+ 1. Hence, .Ggldim(R) < n+ 1 < o. Consequently, by
Lemma 2.4, [.Ggldim(R) = sup{Gpdg(M | Gpdg(M) < o} = FPD(R).

From the above propositions, we conclude the following characterization of the left
Gorenstein global dimension of a ring R, provided FPD(R) < eo.
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Corollary 3.7. If FPD(R) < oo, then the following are equivalent:
1. 1.Ggldim(R) < oo.
2. GP(R) = P(R) and GP(R)* = P(R).

Proof. (1) = (2) The first equality follows from Lemma 2.3, whereas the second fol-
lows from Proposition 3.5.

(2) = (1) Follows from Proposition 3.6.

Now, we discuss the rings over which “every Gorenstein projective module is Goren-
stein flat”.

Proposition 3.8. For any ring R, the following are equivalent:
1. Every Gorenstein projective module is Gorenstein flat.
2. I € GP(R)* for every right injective R-module I.
3. (FT)* € GP(R)* for every flat R-module F.

Proof. (1) = (2) Let I be a right injective R-module. Since every Gorenstein projective
R-module is Gorenstein flat, and by the definition of the Gorenstein flat modules, we have
Tork(I,G) = 0 for all G € GP(R). By adjointness, we have Exti(G,I") = (Tork(I,G))" =
0. Consequently, I'™ € GP(R)*.

(2) = (1) Consider a complete projective resolution

We decompose it into a short exact sequences 0 — G; — P, — G. — 0 where G; = ker(f;)
and G; =1Im(f;). From [12, Observation 2.2], G; and G; are Gorenstein projectives. Now, let
I be aright injective R-module. By hypothesis, we have (Tork(I,G%))* = Extk(G.,I7) =0.
Then, Tork(I,G!) = 0. Therefore,

0—I®rG; —1QrP—12rG;— 0

is exact. Thus, I ®r — keeps the exactness of P. Then, P is a complete flat resolution.
Consequently, every Gorenstein projective module is Gorenstein flat.

(2) = (3) Let F be a flat R-module. Then, F is a right injective R-module. Conse-
quently, (F™)* € GP(R)*.

(3) = (2) Let I be a right injective R-module. There exists a flat R-module F such that
F — I — 01is exact. Then, 0 — (I")* — FT is exact. However, 0 — I — (I')" is exact
(by [9, Proposition 3.52]). Thus, 0 — I — F™ is exact, and then [ is a direct summand of
F*. Hence, I' is a direct summand of (F*)". On the other hand, it is easy to see that
GP(R)* is closed under direct summands. Consequently, I* € GP(R)™, as desired.

Proposition 3.9. For any ring R, sup{Gfdg(M) | M is Gorenstein projective} = 0 or oo.
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Proof. Note that if Gfdg(M) < n, then we have Tork(I,M) = 0 for all i > n. In-
deed, the case n = 0 follows directly from the definition of the Gorenstein flats mod-
ules, whereas the case n > 0 is deduced from the first case by an n-step projective res-
olution of M. Suppose that sup{Gfdg(M) | M is Gorenstein projective} = n < o. Then,
Exts™(G,I7) = (Tory™ (I,G))™ = 0 for every right injective module 7 and every Goren-
stein projective module G. However, for every Gorenstein projective module G we can find
an exact sequence 0 - G — P,_| — ... — Py — G’ — 0 where all P; are projective and G’ is
Gorenstein projective. Thus, Extk(G,It) = Extit!(G', ) = 0. So, I € GP(R)™ for every
right injective module /. Then, by Proposition 3.8, every Gorenstein projective module is
Gorenstein flat. Consequently, sup{Gfdg(M) | M is Gorenstein projective} = 0, as desired.

A direct consequence of the above proposition is the following corollary:

Corollary 3.10. [f/.wGgldim(R) < o, then every Gorenstein projective R-module is Goren-
stein flat.
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