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Abstract

In this paper, we study the pair (GP(R),GP(R)⊥) where GP(R) is the class of
all Gorenstein projective modules. We prove that it is a complete hereditary cotorsion
theory, provided l.Ggldim(R) < ∞. We discuss also, when every Gorenstein projective
module is Gorenstein flat.
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1 Introduction

Throughout the paper, all rings are associative with identity, and an R-module will mean
left R-module unless explicitly stated otherwise.
Let R be a ring, and let M be an R-module. As usual, we use pdR(M), idR(M), and fdR(M)
to denote, respectively, the classical projective dimension, injective dimension, and flat
dimension of M. We denote by M+ = HomZ(M,Q/Z) the character module of M.

For a two-sided Noetherian ring R, Auslander and Bridger [1] introduced the G-dimension,
GdimR(M), for every finitely generated R-module M. They showed that GdimR(M) ≤
pdR(M) for all finitely generated R-modules M, and equality holds if pdR(M) is finite.

Several decades later, Enochs and Jenda [5, 6] introduced the notion of Gorenstein
projective dimension (G-projective dimension for short), as an extension of G-dimension to
modules that are not necessarily finitely generated, and the Gorenstein injective dimension
(G-injective dimension for short) as a dual notion of Gorenstein projective dimension. Then,
to complete the analogy with the classical homological dimension, Enochs, Jenda, and
Torrecillas [8] introduced the Gorenstein flat dimension. Some references are [2, 3, 4, 5, 6,
8, 12].
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Recall that an R-module M is called Gorenstein projective, if there exists an exact se-
quence of projective R-modules:

P : · · · −→ P−1 −→ P−1 −→ P0 −→ P1 −→ P2 −→ ·· ·

such that M ∼= Im(P0 → P1) and such that the functor Hom R(−,Q) leaves P exact whenever
Q is a projective R-module. The complex P is called a complete projective resolution.

The Gorenstein injective R-modules is defined dually.
An R-module M is called Gorenstein flat, if there exists an exact sequence of flat R-

modules:
F : · · · −→ F−2 −→ F−1 −→ F0 −→ F1 −→ F2 −→ ·· ·

such that M ∼= Im(F0 → F1) and such that the functor I⊗R− leaves F exact whenever I is a
right injective R-module. The complex F is called a complete flat resolution.

The Gorenstein projective, injective, and flat dimensions are defined in terms of resolu-
tions and denoted by Gpd(−), Gid(−), and Gfd(−), respectively (see [3, 7, 12]).
Notation. By P (R) and I (R) we denote the classes of all projective and injective R-modules,
respectively, and by P (R) and I (R) we denote the classes of all modules with finite pro-
jective dimensions and injective dimensions, respectively. Furthermore, we let GP (R) and
GI (R) denote the classes of all Gorenstein projective and injective R-modules, respectively.

In [2], the authors proved the equality

sup{GpdR(M) |M is a (left) R-module}= sup{GidR(M) |M is a (left) R-module}.

They called the common value of the above quantities the left Gorenstein global dimension
of R and denoted it by l.Ggldim(R). Similarly, they set

l.wGgldim(R) = sup{GfdR(M) |M is a (left) R-module}

which they called the left weak Gorenstein global dimension of R.

Given a class X of R-modules we set:

X⊥ = kerExt1R(X,−) = {M | Ext1R(X ,M) = 0 for all X ∈ X}.
⊥X = kerExt1R(−,X) = {M | Ext1R(M,X) = 0 for all X ∈ X}.

The class X⊥ (resp.,⊥X) is usually called the right (resp., left) orthogonal complement
relative to the functor Ext1R(−,−) of the class X.

Definition 1.1 (Precovers and Preenvelopes). Let X be any class of R-modules and let M
be an R-module.

• An X-precover of M is an R-homomorphism ϕ : X → M where X ∈ X and such that
the sequence

Hom R(X ′,X)
HomR(X ′,ϕ)−−−−−−−→ Hom R(X ′,M) −−−−→ 0

is exact for every X ′ ∈ X. An X-precover is called special, if ϕ is surjective and
ker(ϕ) ∈ X⊥.
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• An X-preenvelope of M is an R-homomorphism ϕ : M → X where X ∈ X and such
that the sequence,

Hom R(X ,X ′)
HomR(ϕ,X ′)−−−−−−−→ Hom R(M,X ′) −−−−→ 0

is exact for every X ′ ∈ X. An X-preenvelope is called special, if ϕ is injective and
coker(ϕ) ∈ ⊥X.

For more details about precovers (and preenvelopes), the reader may consult [7, Chap-
ters 5 and 6].

Definition 1.2 ([12], Resolving classes 1.1). For any class X of R-modules.

• We call X projectively resolving, if P (R) ⊆ X and for every short exact sequence
0 −→ X ′ −→ X −→ X” −→ 0 with X” ∈ X the conditions X ′ ∈ X and X ∈ X are
equivalent.

• We call X injectively resolving, if I (R)⊆X and for every short exact sequence 0−→
X ′ −→ X −→ X”−→ 0 with X ′ ∈X the conditions X” ∈X and X ∈X are equivalent.

A pair (X,Y) of classes of R-modules is called a cotorsion theory [7], if X⊥ = Y and
⊥Y = X. In this case, we call X∩Y the kernel of (X,Y). Note that each element K of the
kernel is a splitter in the sense of [11], i.e., Ext1R(K,K) = 0. If C is any class of modules,
then (⊥C,(⊥C)⊥) is easily seen be a cotorsion theory, called a cotorsion theory generated
by C (see [13, Definition 1.10]). A cotorsion theory (X,Y) is called complete [13], if ev-
ery R-module has a special Y-preenvelope (or equivalently every R-module has a special
X-precover; see [13, Lemma 1.13]). A cotorsion theory (X,Y) is said to be hereditary
[10], if whenever 0 → L′ → L → L′′ → 0 is exact with L,L′′ ∈ X, then L′ is also in X, or
equivalently, if 0 → M′→ M → M” → 0 is exact M′,M ∈Y, then M′′ is also in Y.

The aim of this paper is the study of the pair (GP(R),GP(R)⊥).
Note: Below, we have only proved the results concerning the Gorenstein projective mod-
ules. The proofs of the Gorenstein injective ones are dual, and we can find a dual of the
results using in the proofs in [12].

2 Lemmas

In this section, we recall some fundamental results about Gorenstein projective modules
and dimensions. These results are extracted from the work of Holm in [12].

The first lemma shows that the class of Gorenstein projective modules is projectively
resolving:

Lemma 2.1 ([12], Theorems 2.5). Let R be a ring. Then, The class GP(R) is projectively
resolving. Moreover, it is closed under direct sums and direct summands.

The next lemma study the GP(R)-precovers of R-modules with finite Gorenstein pro-
jective dimension.
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Lemma 2.2 ([12], Theorems 2.10). Let M be an R-module with finite Gorenstein projective
dimension n. Then M admits a surjective GP(R)-precover, ϕ : G � M, where K = kerϕ

satisfies pdRK = n−1 (if n = 0, this should be interpreted as K = 0).

In the the following lemma, Holm gave a functorial description of the finite Gorenstein
projective dimension of modules.

Lemma 2.3 ([12], Theorem 2.20). Let M be an R-module with finite Gorenstein projective
dimension, and let n be an integer. Then the following conditions are equivalent:

1. GpdR(M)≤ n.

2. ExtiR(M,L) = 0 for all i > n, and all R-modules L with finite pdR(L).

3. ExtiR(M,Q) = 0 for all i > n, and all projective R-modules Q.

4. For every exact sequence of R-module 0→ Kn →Gn−1 → ··· →G0 →M → 0 where
G0, ...,Gn−1 are Gorenstein projectives, Kn is also Gorenstein projective.

Recall that the finitistic projective dimension of R is defined as:

FPD(R) = sup{pdR(M) |M is an R-module with pdR(M) < ∞}

Lemma 2.4 ([12], Theorems 2.28). For any ring R there is an equality

FPD(R) = sup{GpdR(M) |M is an R-module with finite Gorenstein projective dimension}.

3 Main results

We begin with the following theorem:

Theorem 3.1. For any ring R, the following holds:

1. ExtiR(G,M) = 0 for all i > 0, all G ∈ GP(R), and all M ∈ GP(R)⊥.

2. ExtiR(M,G) = 0 for all i > 0, all G ∈ GI(R), and all M ∈ ⊥GI(R).

3. GP(R)⊥ and ⊥GI(R) are projectively resolving.

4. GP(R)⊥ and ⊥GI(R) are injectively resolving.

Proof. (1) Let M and G be an arbitrary elements of GP(R)⊥ and GP(R), respectively,
and let n > 1 be an integer. Pick an exact sequence 0 → G′ → P1 → ... → Pn → G → 0
where all Pi are projectives. By the projectively resolving of GP(R) (Lemma 2.1), G′ is
clearly Gorenstein projective. Consequently, we have ExtnR(G,M) = Ext1R(G′,M) = 0, as
desired.

(2) By a dual argument to (1).
(3) We claim that GP(R)⊥ is projectively resolving. Using the long exact sequence in

homology, we conclude that GP(R)⊥ is closed by extension, i.e., if 0→M→M′→M′′→ 0
is an exact sequence where M and M′′ are in GP(R)⊥, then so is M′. In addition, from the
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definition of Gorenstein projective modules, it is clear that P (R)⊆GP(R)⊥. Now, consider
a short exact sequence 0 → M → M′ → M′′ → 0 where M′ and M′′ are in GP(R)⊥. For an
arbitrary Gorenstein projective R-module G, consider a short exact sequence 0→G→ P→
G′→ 0 where P is projective and G′ is Gorenstein projective (such a sequence exists by the
definition of Gorenstein projective modules). From the long exact sequence of homology,
we have:

· · · → Ext1R(G′,M′′)→ Ext2R(G′,M)→ Ext2R(G′,M′)→ . . .

Then, Ext2R(G′,M) = 0 since Ext1R(G′,M′′) = Ext2R(G′,M′) = 0 (from (1) above). Accord-
ingly, Ext1R(G,M) = Ext2R(G′,M) = 0, as desired.

(4) We claim that GP(R)⊥ is injectively resolving. Clearly, I (R) ⊆ GP(R)⊥, and
GP(R)⊥ is closed by extension. Now, consider a short exact sequence 0 → M → M′ →
M′′→ 0 where M and M′ belongs to GP(R)⊥. Using the long exact sequence of homology,
for all Gorenstein projective module G, we have

· · · → Ext1R(G,M′)→ Ext1R(G,M′′)→ Ext2R(G,M)→ . . .

Thus, from (1), Ext1R(G,M′′) = 0. Hence, M′′ ∈ GP(R)⊥. Consequently, GP(R)⊥ is injec-
tively resolving.

From the above theorem, we conclude the following two corollary.

Corollary 3.2. For any ring R,

1. P (R) = GP(R)∩GP(R)⊥.

2. I (R) = GI(R)∩⊥GI(R).

Proof. (1) Let M ∈ GP(R)∩GP(R)⊥ and consider a short exact sequence 0 → M′ →
P → M → 0 where P is projective. Since GP(R)⊥ is projectively resolving (by Theorem
3.1), M′ ∈ GP(R)⊥. Then, Ext1R(M,M′) = 0. Therefore, this short exact sequence splits.
Consequently, M is a direct summand of P, and then projective.

(2) By a dual proof to (1).

Corollary 3.3.

1. [12, Proposition 2.27] Every Gorenstein projective (resp., injective) module with fi-
nite projective (resp., injective) dimension is projective (resp., injective).

2. Every Gorenstein projective (resp., injective) module with finite injective (resp., pro-
jective) dimension is projective (resp., injective).

Proof. (1) If M is a Gorenstein projective module with finite projective dimension, then
M ∈ GP(R)∩GP(R)⊥ (by Lemma 2.3). Consequently, M is projective (by Corollary 3.2).

The injective case is dual.
(2) Note that every module I with idR(I) := n < ∞ belongs to GP(R)⊥. Indeed, by

the definition of the Gorenstein projective modules, for each Gorenstein projective module
G we can find an exact sequence 0 → G → Pn−1 → ... → P0 → G′ → 0 where all Pi are
projective and G′ is Gorenstein projective. Thus, we have Ext1R(G, I) = Extn+1

R (G′, I) = 0.
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Now, if M is a Gorenstein projective module with finite injective dimension, then M ∈
GP(R)∩GP(R)⊥. Accordingly, by Corollary 3.2, M is projective.

Dually, we can prove that every module with finite projective dimension is an element
of ⊥GI(R). Consequently, by Corollary 3.2, every Gorenstein injective module with finite
projective dimension is injective.

The main result of this paper is the following theorem:

Theorem 3.4. If l.Ggldim(R) < ∞, then (GP(R),GP(R)⊥) and (⊥GI(R),GI(R)) are com-
plete, hereditary cotorsion theories.

Proof. (1) To show that (GP(R),GP(R)⊥) is a cotorsion theory, we have to prove that
⊥(GP(R)⊥) = GP(R). Let M be an element of ⊥(GP(R)⊥). Since GpdR(M) < ∞ and from
Lemmas 2.2 and 2.3, M admits a surjective GP(R)-precover ϕ : G→M where K = ker(ϕ)∈
GP(R)⊥. Then, G is a special GP(R)-precover of M, and the short exact sequence 0→K →
G → M → 0 splits since Ext1R(M,K) = 0. Thus, M is a direct summand of G. Hence, M
is Gorenstein projective (by Lemma 2.1). Consequently, ⊥(GP(R)⊥) ⊆ GP(R), while the
other inclusion is clear. Therefore, (GP(R),GP(R)⊥) is a cotorsion theory, and every R-
module has a special GP(R)-precover. This implies that (GP(R),GP(R)⊥) is complete.
Moreover, since GP(R) is projectively resolving and GP(R)⊥ is injectively resolving, this
cotorsion theory is hereditary.

(2) To prove the dual Gorenstein injective result, we use the dual result of Lemmas 2.1
and 2.2.

Proposition 3.5. If l.Ggldim(R) < ∞, then GP(R)⊥ = P (R) = I (R) = ⊥GI(R).

Proof. Clearly, by Lemma 2.3, P (R) ⊆ GP(R)⊥. Now, let M ∈ GP(R)⊥ and N be an
arbitrary R-module, and set n := l.Ggldim(R). We have, GpdR(N) ≤ n. Then, by Lemma
2.3, we can find an exact sequence

0 −→ G −→ Pn −→ ...−→ P1 −→ N −→ 0

where all Pi are projective and G is Gorenstein projective. Thus, by Theorem 3.1, for all j >
0, Ext j+n

R (N,M) = Ext j
R(G,M) = 0. Consequently, idR(M) ≤ n. Using [2, Corollary 2.7],

P (R) = I (R) since l.Ggldim(R) < ∞. Then, M ∈ P (R). Accordingly, GP(R)⊥ = P (R).
Similarly, we prove that ⊥GI(R) = I (R). This finishes the proof.

Proposition 3.6. If GP(R) =⊥(P (R)) and GP(R)⊥ = P (R), then FPD(R) = l.Ggldim(R).

Proof. From [13, Theorem 2.2], every R-module admits a special GP(R)⊥-preenvelope.
On the other hand, by hypothesis, (GP(R),GP(R)⊥) is the cotorsion theory generated by
P (R). Then, (GP(R),P (R)) is a complete cotorsion theory. Therefore, every R-module M
has a special GP(R)-precover.

The inequality FPD(R) ≤ l.Ggldim(R) follows from Lemma 2.4. Now, suppose that
FPD(R)≤ n and let M be an arbitrary R-module. We claim that l.Ggldim(R) < ∞. From the
first part of this proof, M admits a special GP(R)-precover. Then, there is an exact sequence
0 → K → G → M → 0 where G is Gorenstein projective and K ∈ GP(R)⊥ = P (R). Thus,
pdR(K)≤ n, and so GpdR(M)≤ n+1. Hence, l.Ggldim(R)≤ n+1 < ∞. Consequently, by
Lemma 2.4, l.Ggldim(R) = sup{GpdR(M | GpdR(M) < ∞}= FPD(R).

From the above propositions, we conclude the following characterization of the left
Gorenstein global dimension of a ring R, provided FPD(R) < ∞.
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Corollary 3.7. If FPD(R) < ∞, then the following are equivalent:

1. l.Ggldim(R) < ∞.

2. GP(R) =
⊥P (R) and GP(R)⊥ = P (R).

Proof. (1) ⇒ (2) The first equality follows from Lemma 2.3, whereas the second fol-
lows from Proposition 3.5.

(2)⇒ (1) Follows from Proposition 3.6.
Now, we discuss the rings over which ”every Gorenstein projective module is Goren-

stein flat”.

Proposition 3.8. For any ring R, the following are equivalent:

1. Every Gorenstein projective module is Gorenstein flat.

2. I+ ∈ GP(R)⊥ for every right injective R-module I.

3. (F+)+ ∈ GP(R)⊥ for every flat R-module F.

Proof. (1)⇒ (2) Let I be a right injective R-module. Since every Gorenstein projective
R-module is Gorenstein flat, and by the definition of the Gorenstein flat modules, we have
Tor1

R(I,G) = 0 for all G ∈ GP(R). By adjointness, we have Ext1R(G, I+) = (Tor1
R(I,G))+ =

0. Consequently, I+ ∈ GP(R)⊥.
(2)⇒ (1) Consider a complete projective resolution

P: · · · → P−2
f2−→ P−1

f−1−−→ P0
f0−→ P1

f1−→ P2 → . . .

We decompose it into a short exact sequences 0 → Gi → Pi → G′
i → 0 where Gi = ker( fi)

and G′
i = Im( fi). From [12, Observation 2.2], Gi and G′

i are Gorenstein projectives. Now, let
I be a right injective R-module. By hypothesis, we have (Tor1

R(I,G′
i))

+ = Ext1R(G′
i, I

+) = 0.
Then, Tor1

R(I,G′
i) = 0. Therefore,

0 → I⊗R Gi → I⊗R Pi → I⊗R G′
i → 0

is exact. Thus, I ⊗R − keeps the exactness of P. Then, P is a complete flat resolution.
Consequently, every Gorenstein projective module is Gorenstein flat.

(2) ⇒ (3) Let F be a flat R-module. Then, F+ is a right injective R-module. Conse-
quently, (F+)+ ∈ GP(R)⊥.

(3)⇒ (2) Let I be a right injective R-module. There exists a flat R-module F such that
F → I+ → 0 is exact. Then, 0 → (I+)+ → F+ is exact. However, 0 → I → (I+)+ is exact
(by [9, Proposition 3.52]). Thus, 0 → I → F+ is exact, and then I is a direct summand of
F+. Hence, I+ is a direct summand of (F+)+. On the other hand, it is easy to see that
GP(R)⊥ is closed under direct summands. Consequently, I+ ∈ GP(R)⊥, as desired.

Proposition 3.9. For any ring R, sup{GfdR(M) |M is Gorenstein projective}= 0 or ∞.
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Proof. Note that if GfdR(M) ≤ n, then we have Tori
R(I,M) = 0 for all i > n. In-

deed, the case n = 0 follows directly from the definition of the Gorenstein flats mod-
ules, whereas the case n > 0 is deduced from the first case by an n-step projective res-
olution of M. Suppose that sup{GfdR(M) | M is Gorenstein projective} = n < ∞. Then,
Extn+1

R (G, I+) = (Torn+1
R (I,G))+ = 0 for every right injective module I and every Goren-

stein projective module G. However, for every Gorenstein projective module G we can find
an exact sequence 0→G→ Pn−1 → ...→ P0 →G′→ 0 where all Pi are projective and G′ is
Gorenstein projective. Thus, Ext1R(G, I+) = Extn+1

R (G′, I+) = 0. So, I+ ∈GP(R)⊥ for every
right injective module I. Then, by Proposition 3.8, every Gorenstein projective module is
Gorenstein flat. Consequently, sup{GfdR(M) |M is Gorenstein projective}= 0, as desired.

A direct consequence of the above proposition is the following corollary:

Corollary 3.10. If l.wGgldim(R)< ∞, then every Gorenstein projective R-module is Goren-
stein flat.
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