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Abstract

In this paper we have defined torse-forming projective N− curvature collineation
and discuss the existence of torse-forming projective N− curvature collineation in
NP−Fn (normal projective Finsler space) and study the corresponding results for con-
tra, concurrent and special concircular transformations.
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1 Introduction

Let Fn be an n-dimensional Finsler space equipped with 2n line elements (xi, ẋi) and posi-
tively homogeneous metric function F(x, ẋ) of degree one in directional arguments ẋi.
The normal projective covariant derivative of a vector field X i(x, ẋ) with respect to ẋk is
given by [1]

∇kX i = ∂kX i − (∂̇ jX i)Π j
khẋh +X j

Π
i
jk,

where

Π
i
kh = Gi

kh −
ẋi

n+1
Gr

khr,

which form a connection called the normal projective connection and ∂k = ∂

∂xk
, ∂̇k = ∂

∂̇xk

preserve the vector character of X i.
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The functions Πi
kh, Gi

kh and Gr
khr are symmetric in their lower indices and are positively

homogeneous of degree 0, 0 and -1 respectively in their directional arguments. The func-
tions Gi

kh are the Berwald’s connection parameters [2]. The derivatives ∂̇ jΠ
i
kh denoted by

Πi
jkh is given by

Π
i
jkh = Gi

jkh −
1

n+1
(δi

jG
r
khr + ẋiGr

jkhr),

are symmetric in their lower indices and positively homogeneous of degree -1 in directional
arguments and satisfy the following relations

(a) Πi
khẋk = Πi

hkẋk = Gi
h,

(b) Πi
ki = Gi

ki,
(c) ẋ jΠi

jhk = 0,

(d) Πi
jki = Πi

jik = Gi
jki,

(e) Πi
ikh = 2

n+1 Gi
ikh.

(1.1)

Let us consider a point transformation

x̄i = xi + εvi(x), (1.2)

where vi is a contravariant vector field. Then Lie-derivative of a tensor T i
j and the connection

coefficient Πi
jk are characterized by [1]

£T i
j = vh(∇hT i

j )−T h
j (∇hvi)+T i

h(∇ jvh)+(∂̇hT i
j )(∇svh)ẋs

and
£Π

i
jk = ∇ j∇kvi +Ni

h jk vh +Π
i
h jk(∇lvh)ẋl (1.3)

respectively. The commutation formulae with respect to Lie-derivative and other for any
tensor T i

jk are given by{
(a) £(∇lT i

jk)−∇l£(T i
jk) = (£Πi

lh)T
h
jk − (£Πi

jl)T
i

rk − (£Πr
kl)T

i
jr,

(b) ∂̇l(£T i
jk)−£(∂̇lT i

jk) = 0.

The Lie-derivative of the normal projective curvature tensor Ni
k jh expressed in the form

∇k(£Π
i
jh)−∇ j(£Π

i
kh) = £Ni

k jh +(£Π
r
km)ẋm

Π
i
r jh − (£Π

r
jm)ẋm

Π
i
rkh. (1.4)

The corresponding curvature Ni
jkh(x, ẋ) as called by[1], the normal projective curvature ten-

sor, is given by
Ni

jkh = 2{∂[ jΠ
i
k]h +Π

i
lh[ jΠ

l
k]mx̊m +Π

i
l[ jΠ

l
k]h},

is skew-symmetric in j and k indices and satisfied the following relations

(a) Ni
jkh =−Ni

k jh,

(b) ∂̇lNi
jkhẋl = 0,

(c) Ni
jki = 2N[k j],

(d) Ni
ikh = Nkh,

(e) Ni
jih =−Ni

i jh,

( f ) Ni
jkhẋh = H i

jk.

(1.5)
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where H i
jk is Berwald curvature tensor deviation. It is connected to Berwald curvature

tensor H i
jkh by {

(a) H i
jkh = ∂̇ jH i

kh = 2
3 ∂̇ j∂̇[kH i

h],

(b) H i
jkhẋ j = H i

kh.
(1.6)

The Berwald’s curvature tensor satisfies the Bianchi identity

H i
[ jkh] = H i

jkh +H i
kh j +H i

h jk = 0. (1.7)

The commutation formulae for any general tensor, involving the curvature tensor are given
as follows

2∇[k∇h]T
i
j = Ni

khlT
l
j −Nl

kh jT
i

l − (∂̇lT i
j )N

l
khmẋm, (1.8)

and
(∂̇ j∇k −∇k∂̇ j)T i

h = Π
i
jklT

l
h −Π

l
jkhT i

l −Π
l
jkmẋm(∂̇lT i

h). (1.9)

Definition 1.1.[4] The space Fn with normal projective connection parameter Πi
hk and

normal projective curvature tensor Ni
jkh, is termed as normal projective Finsler space and

usually denoted by NP−Fn.

2 Preliminaries

Torse-forming infinitesimal transformations in a Finsler space were discussed by R. B.
Misra and C. K. Mishra [7]. Special concircular projective curvature collineation in re-
current Finsler space was introduced by S. P. Singh[6].

Definition 2.1.[5] A Finsler space Fn is said to admit N-curvature collineation, if there
exist a vector field vi such that

£Ni
jkh = 0,

We also consider an infinitesimal transformation of the form

x̄i = xi + εvi(x), ∇kvi = viµk +λδ
i
k. (2.1)

where λ is a scalar function and µk being any non null vector field. Such a transformation
is called a torse-forming transformation[3].
In view of infinitesimal transformation (1.2) in [1], defined a projective motion, if there a
homogeneous scalar function p of degree one in ẋ′s satisfying

£Π
i
jk = 2δ

i
( j pk), (2.2)

where
p j = ∂̇ j p, (2.3)

and satisfy the conditions {
(a) ẋk pk = p ,
(b) ẋk pk j = 0.

(2.4)
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Theorem 4.1 [3], have proved that the scalar function λ appearing in (2.1) is a point function.

∂̇lλ = 0. (2.5)

We have the next particular cases:
A torse-forming transformation becomes
(1) a contra transformation, If λ = 0 and µ j = 0 in (2.1), such that

x̄i = xi + εvi(x), ∇kvi = 0. (2.6)

(2) a concurrent transformation, If µ j = 0 and λ = c (c being a constant) in (2.1), such that

x̄i = xi + εvi(x), ∇kvi = cδ
i
k. (2.7)

(3) a special concircular transformation, If µ j = 0 and λ 6=constant in (2.1), such that

x̄i = xi + εvi(x), ∇kvi = λδ
i
k. (2.8)

3 Torse-forming projective N−curvature collineation in NP−Fn

Definition 3.1. In NP−Fn, if the normal projective curvature tensor field Ni
jkh satisfies the

relation
£Ni

jkh = 0, (3.1)

where £ represents Lie-derivative defined by the transformation (2.1), which defines a pro-
jective motion, then the transformation (2.1) is called the torse-forming projective N−curvature
collineation.

Differentiating (2.1) partially with respect to ẋi and applying the commutation formula
(1.9), we have

(∂̇ j∇k −∇k∂̇ j)vi = (∂̇ jµk − ∂̇kµ j)v
i = Π

i
jklv

l. (3.2)

Transvecting (3.2) by ẋ j and using (1.1)(c), we get

(∂̇ j∇k −∇k∂̇ j)ẋ jvi = 0 or (∂̇ jµk − ∂̇kµ j)ẋ
jvi = 0.

Since ẋ j and vi is non zero, it implies{
(a) ∂̇ j∇kvi = ∇k∂̇ jvi,

(b) ∂̇ jµk = ∂̇kµ j.
(3.3)

The normal projective covariant differentiation of (2.1), we have

∇ j∇kvi = viµ jµk +λδ
i
jµk + vi(∇ jµk)+λ jδ

i
k, (3.4)

where
∇ jλ = λ j.

If µk follows the invariance property with respect to normal projective covariant differenti-
ation, such that

∇ jµk = 0. (3.5)
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In view of (3.5), the equation (3.4) reduces to

∇ j∇kvi = viµ jµk +λδ
i
jµk +λ jδ

i
k. (3.6)

Interchanging the indices j and k in (3.6) and subtracting the equation thus obtained to (3.6),
we have

2∇[ j∇k]v
i = λ jδ

i
k +λδ

i
jµk −λkδ

i
j −λδ

i
kµ j. (3.7)

Using equation (3.7) in commutation formula (1.8), we get

Ni
jkhvh = λ jδ

i
k +λδ

i
jµk −λkδ

i
j −λδ

i
kµ j. (3.8)

Transvecting (3.8) by ẋh, we get

H i
jkvh = (λ jδ

i
k +λδ

i
jµk −λkδ

i
j −λδ

i
kµ j)ẋ

h, (3.9)

in view of (1.5)(f).
Differentiating (3.9) partially with respect to ẋl and using (1.6)(a), we have

H i
l jkvh = λδ

i
jµkδ

h
l +λ∂̇lµkδ

i
jẋ

h −λδ
i
kµl jẋ

h −λδ
i
kµ jδ

h
l +λ jδ

i
kδ

h
l −λkδ

i
jδ

h
l . (3.10)

Adding the expressions obtained by cyclic change of (3.10) with respect to indices l, j and
k in cyclic order, we have

0 = λδ
i
jµkδ

h
l +λ∂̇lµkδ

i
jẋ

h −λδ
i
k∂̇lµ jẋ

h −λδ
i
kµ jδ

h
l (3.11)

+λ jδ
i
kδ

h
l −λkδ

i
jδ

h
l +λδ

i
kµlδ

h
j +λ∂̇ jµlδ

i
kẋh

−λδ
i
l ∂̇ jµkẋh −λδ

i
lµkδ

h
j +λkδ

i
lδ

h
j −λlδ

i
kδ

h
j

+λδ
i
lµ jδ

h
k +λ∂̇kµ jδ

i
l ẋ

h −λδ
i
j∂̇kµl ẋ

h −λδ
i
jµlδ

h
k

+λlδ
i
jδ

h
k −λ jδ

i
lδ

h
k .

in view of (1.7).
Using (3.3)(b) in (3.11), we obtain

0 = λδ
i
jµkδ

h
l −λδ

i
kµ jδ

h
l +λ jδ

i
kδ

h
l −λkδ

i
jδ

h
l (3.12)

+λδ
i
kµlδ

h
j −λδ

i
lµkδ

h
j +λkδ

i
lδ

h
j −λlδ

i
kδ

h
j

+λδ
i
lµ jδ

h
k −λδ

i
jµlδ

h
k +λlδ

i
jδ

h
k −λ jδ

i
lδ

h
k .

Contracting indices h and l in (3.12), we derive

(n−2)(λδ
i
jµk −λδ

i
kµ j +λ jδ

i
k −λkδ

i
j) = 0, (3.13)

Contracting indices i and k in (3.13), we drive

(n−2)(n−1)(λ j −λµ j) = 0. (3.14)

for n > 2, the equation (3.14) yields

λ j = λµ j. (3.15)
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Differentiating (3.15) partially with respect to ẋl and using (2.5), we find

∂̇lµ j = 0. (3.16)

In view of (3.16), the equation (3.8) immediately reduces to

Ni
jkhvh = 0. (3.17)

Applying (2.1), (2.2), (1.1)(c), (3.6) and (3.15) in (1.3), we obtain

δ
i
j pk +δ

i
k p j = viµ jµk +λδ

i
jµk +λµ jδ

i
k +Ni

h jkvh +Π
i
h jkvhµ, (3.18)

where µl ẋ
l = µ.

Transvecting (3.18) by ẋh and using (1.1)(c), we get

(δi
j pk +δ

i
k p j)ẋh = (viµ jµk +λδ

i
jµk +λµ jδ

i
k)ẋ

h +Ni
h jkvhẋh. (3.19)

Differentiating (3.19) partially with respect to ẋl , we have

(δi
j plk +δ

i
k pl j)ẋh +(δi

j pk +δ
i
k p j)δ

h
l = (viµ jµk +λδ

i
jµk +λµ jδ

i
k)δ

h
l (3.20)

(∂̇lNi
h jk)ẋ

hvh +Ni
l jkvh.

Transvecting (3.20) by ẋl and using (1.5)(b) and (2.4)(b), we derive

(δi
j pk +δ

i
k p j)ẋh = (viµ jµk +λδ

i
jµk +λµ jδ

i
k)ẋ

h +Ni
l jkvhẋl. (3.21)

Contracting the indices h and k in (3.21), we get

δ
i
j p+ ẋi p j = viµ jµ+λδ

i
jµ+ ẋi

λµ j, (3.22)

in view of (3.17).
Differentiating (3.22) partially with respect to ẋk, we obtain

δ
i
j pk +δ

i
k p j + ẋi pk j = viµ jµk +λδ

i
jµk +λµ jδ

i
k. (3.23)

Contracting i and k in equation (3.23) and using (2.4)(b), we have

(n+1)(p j) = vhµ jµh +(n+1)λµ j. (3.24)

Differentiating (3.24) covariantly with respect to indices xk and using equations (2.5) and
(3.16), we get

(n+1)(pk j) = 0,

which implies
pk j = 0. (3.25)

In view of equation (3.25), the equation (3.23) may be written as

δ
i
j pk +δ

i
k p j = viµ jµk +λδ

i
jµk +λµ jδ

i
k. (3.26)
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Equations (3.18) and (3.26) gives

(Ni
h jk = Π

i
h jkµ)vh = 0. (3.27)

Since vh is non zero, therefore the equation (3.27) implies

Ni
h jk = Π

i
h jkµ. (3.28)

Interchanging the indices j and k in equation (3.28) and subtracting the equation thus ob-
tained to (3.28), we obtain

(Ni
h jk −Ni

hk j) = 0. (3.29)

Transvecting (3.29) by v j and using (3.17), we get

v jNi
h jk = 0. (3.30)

Since vh is a non zero Lie-invariant vector for infinitesimal transformation (1.2), we have

£v j = 0. (3.31)

Taking the Lie derivative of (3.30) and noting (3.31), we get

v j£Ni
h jk = 0. (3.32)

which implies
£Ni

h jk = 0. (3.33)

Thus we state:

Theorem 3.1. In NP−Fn(n > 2), the torse-forming transformation (2.1), which admits
projective motion, is the torse-forming projective N−curvature collineation.

4 The study of some other transformations

Case 1 In NP−Fn, the contra transformation (2.6), which defines projective motion and
admits the relation (3.1), is called contra projective N−curvature collineation.

In view of (2.6) the commutation formula (1.8) gives

Ni
jkhvh = 0. (4.1)

Contracting (4.1) with respect to indices i and j and using (1.5)(d), we get

Nkhvh = 0. (4.2)

Using equations (2.2) and (2.6) in (1.3), we obtain

δ
i
j pk +δ

i
k p j = Ni

h jkvh. (4.3)

Contracting indices i and j in (4.3) and using (1.5)(e) and (1.5)(d), we get

(n+1)pk = Nhkvh. (4.4)
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Transvecting (4.4) by vk and using (4.2), we get

(n+1)pkvk = 0. (4.5)

Since vk is non zero, therefore the equation (4.5) implies

(n+1)pk = 0, (4.6)

for n ≥ 1, (4.6) gives
pk = 0. (4.7)

In view of (2.2) and (4.7), the equation (2.3) reduces to

£Ni
k jh = 0. (4.8)

Accordingly we state:

Theorem 4.1. In NP−Fn(n ≥ 1), the contra transformation (2.6), which admits projective
motion, is the contra projective N−curvature collineation.

Case 2 In NP−Fn, the concurrent transformation (2.7), which defines projective mo-
tion and admits the relation (3.1), is called concurrent projective N−curvature collineation.

Theorem 4.2. In NP− Fn(n ≥ 1), the concurrent transformation (2.7), which admits
projective motion, is the concurrent projective N−curvature collineation.

Proof. The proof is analogous to theorem (4.1).

Case 3 In NP−Fn, the special concircular transformation (2.8), which defines projec-
tive motion and admits the relation (3.1), is called special concircular projective N−curvature
collineation.

In view of (2.8) the commutation formula (1.8) gives

λ jδ
i
k −λkδ

i
j = Ni

jkhvh. (4.9)

Transvecting (4.9) by ẋh and using (1.5)(f), we get

(λ jδ
i
k −λkδ

i
j)ẋ

h = H i
jkvh. (4.10)

Differentiating (4.10) Partially with respect to ẋl , we have

(λ jδ
i
k −λkδ

i
j)δ

h
l = H i

l jkvh, (4.11)

in view of (1.6)(a) and (2.5).
Adding the expressions obtained by cyclic change of (4.11) with respect to indices l, j and
k in cyclic order and using equation (1.7), we have

(λ jδ
i
k −λkδ

i
j)δ

h
l +(λkδ

i
l −λlδ

i
k)δ

h
j +(λlδ

i
j −λ jδ

i
l)δ

h
k = 0. (4.12)

Contracting (4.12) with respect to indices h and l , we drive

(n−2)(λ jδ
i
k −λkδ

i
j) = 0, (4.13)
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for n > 2, the equation (4.13) gives

λ jδ
i
k = λkδ

i
j. (4.14)

From (4.9) and (4.14), we get
Ni

jkhvh = 0. (4.15)

Using (2.2) and (2.8) in (1.3), we obtain

δ
i
j pk +δ

i
k p j = λ jδ

i
k +Ni

h jkvh. (4.16)

Transvecting (4.16) by vk and using (4.15), we get

δ
i
j pkvk + p jvi = λ jvi. (4.17)

Transvecting (4.17) by ẋk and using (2.4)(a), we obtain

δ
i
j pvk + p jviẋk = λ jẋkvi. (4.18)

Contracting indices j and k in (4.18) and using (2.4)(a), we get

(2p−λ jẋ j)vi = 0,

which implies
2p = λ jẋ j. (4.19)

In view of (4.19) and (4.14) the equation (4.16) reduces to

Ni
h jkvh = 0. (4.20)

Contracting indices i and k in equation (4.14), we get

(n−1)λ j = 0, (4.21)

for n > 1, equation (4.21) give
λ j = 0. (4.22)

From equations (4.16), (4.20), (4.22)and (2.2), we get

£Π
i
jk = δ

i
j pk +δ

i
k p j = 0. (4.23)

In view of equation (4.23), the equation (1.4) immediately reduces to

£Ni
k jh = 0. (4.24)

Accordingly we have:

Theorem 4.3. In NP−Fn(n > 2), the special concircular transformation (2.8), which ad-
mits projective motion, is the special concircular projective N−curvature collineation.
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