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Abstract
We develop a method to compute the genera and slopes of essential surfaces in 2-bridge link

exteriors with one longitudinal boundary component. The tools we use are those developed by
Floyd and Hatcher in [4]. Such computations allow us to compute the genera of satellite tunnel
number one knots and torti-rational knots.

1. Introduction

1. Introduction
A family of knots widely studied is the one known as (1, 1)-knots, these are knots which

can be put in 1-bridge position with respect to a standard torus in S 3. This family contains
all 2-bridge knots, all satellite tunnel number one knots, and it is contained in the family
of tunnel number one knots. Genus one and genus two (1, 1)-knots have been classified
in [9] and [2], respectively. It is natural to ask for a classification of (1, 1)-knots of any
genus g. Such knots are divided into the satellite and the non-satellite cases. For the non-
satellite case we expect to have a description similar to that in [2], as special banding of
two (1, 1)-knots of smaller genus. In the case that the knot is satellite, we need to determine
the 4-tuple α, β, p, q of the Morimoto-Sakuma construction that produces satellite genus g
tunnel number one knots [10]. The parameters α, β describe a 2-bridge link Lβ/α and p, q a
companion torus knot. These knots are denoted by K(α, β; p, q). For genus g ≥ 3 a minimal
genus Seifert surface F may intersect the companion torus in a non-empty collection of
longitudes, hence the surface is broken into two pieces, one piece consists of Seifert surfaces
for the companion torus, the other piece is a surface F̃ contained in the neighborhood of the
torus knot with one boundary parallel to the satellite knot and boundary components which
are slopes on the companion torus. Such a surface defines an essential surface F′ for the
link Lβ/α, with one boundary parallel to a component of the link and a number of boundary
components on the other component. Floyd and Hatcher [4] classified essential surfaces
for 2-bridge links. Later Hoste and Shanahan [7] described an algorithm for computing the
slopes of such surfaces. However the calculation of genera of the surfaces is not given there.
Furthermore Goda, Hayashi, and Song computed the Euler characteristic of a certain family
of such surfaces, see [5].

We were able to determine that an essential surface F′ for a 2-bridge link with one bound-
ary on one component of the link and a number of boundary slopes on the other component
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of the link arises from at most two minimal edge-paths of the Floyd-Hatcher construction
by means of continued fraction expansions for β/α. This gives a constructive description of
the surfaces and allows us to compute genus and slope of the surface as well as to determine
whether or not the surface is a fiber of a fibering over the circle for the link.

Applying these ideas to satellite tunnel number one knots we obtain the following result:

Theorem 1. Let Lβ/α = K1 ∪ K2 be the 2-bridge link given by the tunnel number one
satellite knot K(α, β; p, q). And let F′ be the essential surface for Lβ/α that arises from F, a
minimal genus Seifert surface for K(α, β, p, q). Suppose lk(K1,K2) � 0. Then

(1) If 0 ≤ β ≤ α, pq ≥ 0 and [0; 2n1, ..., 2n j] is the unique continued fraction for β/α
with j odd, the genus of F′ is:

1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
k:odd

|nk|
⎞⎟⎟⎟⎟⎟⎠ (|lk(K1,K2)pq| − 1) + ( j + 1) − (|lk(K1,K2)| + 1)

]

where k ∈ {1, ..., j}
(2) If 0 ≤ β ≤ α, pq ≤ 0 and [1; 2m1, ..., 2mi] is the unique continued fraction for β/α

with i odd, the genus of F′ is:

1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
h:odd

|mh|
⎞⎟⎟⎟⎟⎟⎠ (|lk(K1,K2)pq| − 1) + (i + 1) − (|lk(K1,K2)| + 1)

]

where h ∈ {1, ..., i}.
Corollary 2. Let K = K(α, β, p, q) be a tunnel number one satellite knot such that

lk(K1,K2) � 0. Then the genus of K is:

g(K) = g(F′) + |lk(K1,K2)| (|p| − 1)(|q| − 1)
2

Where F′ is as in Theorem 1.

It is worth mentioning that Hirasawa and Murasugi [6] obtained similar results using the
Alexander polynomial.

We can also apply our technique to compute the genus of torti-rational knots, which are
obtained from a 2-bridge link as follows: Let Lβ/α = K1 ∪K2 be a 2-bridge link in S 3. Since
K1 is a trivial knot in S 3, K2 can be considered as a knot in an unknotted solid torus V , the
exterior of K1. A copy of K1 can be considered as a meridian of V . Then by applying Dehn
twists along a meridian disk of V in an arbitrary number of times, say r, we obtain a new
knot K from K2. We call this knot a torti-rational knot and it is denoted by K(β/α; r).

Theorem 3. Let K(β/α; r) be a torti-rational knot and F a minimal genus Seifert surface
for it. Suppose that lk(K1,K2) � 0. Then:

(1) Suppose that r > 1 and [1; 2m1, ..., 2mi] is the unique continued fraction for β/α
with i odd, the genus of F is:

1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
h:odd

|mh|
⎞⎟⎟⎟⎟⎟⎠ (|lk(K1,K2)r| − 1) + (i + 1) − (|lk(K1,K2)| + 1)

]

where h ∈ {1, ..., i}
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(2) Suppose that r < −1 and [0; 2n1, ..., 2n j] is the unique continued fraction for β/α
with j odd, the genus of F is:

1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
k:odd

|nk|
⎞⎟⎟⎟⎟⎟⎠ (|lk(K1,K2)r| − 1) + ( j + 1) − (|lk(K1,K2)| + 1)

]

where k ∈ {1, ..., j}
(3) Suppose that |r| = 1 and |lk(K1,K2)| > 1. Let [s; 2r1, ..., 2rk] be the continued

fraction expansion for β/α with s = 0 or 1 such that k ≥ 3 and |rt| ≥ 2 for all t. The
genus of F is:

1 +
(|lk(K1,K2)| + 1)(k − 3)

4
(4) Suppose that |r| = 1 and |lk(K1,K2)| = 1 and [0; 2n1, ..., 2n j] and [1; 2m1, ..., 2mi]

are the continued fraction for β/α with j, i odd. The genus of F is:

min
{

i − 1
4
,

j − 1
4

}

In case that lk(K1,K2) = 0 we prove:

Theorem 4. If lk(K1,K2) = 0, the genus of a satellite tunnel number one knot K(α, β; p, q)
is one half the wrapping number of K2 in E(K1). Moreover, if [s; 2r1, ..., 2rk] is the continued
fraction expansion for β/α with s = 0 or 1 such that k odd, the genus of K(α, β, p, q) is
Σi:odd |ri|. The same is true for a torti-rational knot.

Theorems 1 and 3 required a description of β/α as a continued fraction and some compu-
tations. We have written an algorithm that receives as inputs α, β, p, q, r and outputs genus,
slopes and number of boundary components for the surface, in some cases it can be deter-
mined the fiberedness of the knot.

Our algorithm is based on that given by Hoste and Shanahan in [7] . We found a fault for
rationals β/α > 1/2, thus it was necessary to reprogram this algorithm to compute the paths
and to incorporate computations of genus, slopes and number of boundary components. Our
modification of their algorithm can be found at https://github.com/viorato/compute rational
links genus.

In Section 2 we review the concepts from the paper [4] of Floyd and Hatcher which are
necessary to develop our techniques. In Section 3 we state the basic results that allow to
describe the specific type of edge-paths associated to the surfaces of our interest. Using
continued fraction expansions for β/α we compute the genera and slopes for the surfaces
in Section 3.1. We revisit [4] to give their criteria for a surface to be a fiber of a fibering
for a 2-bridge link and give a criteria in terms of the continued fraction expansions for our
surfaces to be fibers in Section 4. Finally in Section 5 we compute the genus for satellite
tunnel one knots and for torti-rational knots.

2. Preliminaries

2. Preliminaries2.1. The diagram of slope system in the four puncture sphere.
2.1. The diagram of slope system in the four puncture sphere. For the sake of helping

the reader, in this section we quote literally parts of Section 1 in [4]. Let Lβ/α be a 2-bridge
link in S 3, it is represented by a rational number β/α. We may suppose 0 < β < α, α even,
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and gcd(α, β) = 1. Let n(Lβ/α) be a regular neighborhood of Lβ/α in S 3. The exterior of
Lβ/α is E(Lβ/α) = S 3 − n(Lβ/α). We say that a surface S properly embedded in E(Lβ/α) is
essential if it is incompressible, ∂-incompressible and not boundary parallel. The main idea
of Floyd and Hatcher’s construction given in [4] is to associate to an essential surface S in
E(Lβ/α) an edge-path from 1/0 to β/α in the Diagram Dt, t ∈ [0,∞], shown in Figure 1.
Observe that D0 = D∞.

The diagram D1 is an embedded graph on the upper half plane H with the real line R and
the point at infinity 1/0. Its vertices are the rational points in R ∪ {1/0} and its edges are
hyperbolic lines in the upper half model of H joining two vertices a/c, b/d, (a, b, c, d ∈ Z) if
and only if ad−bc = ±1. These lines are the edges of ideal triangles in H and PSL2(Z) is the
group of orientation-preserving symmetries of this ideal triangulation. The diagram D1 is
transformed onto the Poincaré disk model by − z− 1+i

2

z− 1−i
2

, see Figure 1. Let G ⊂ PSL2(Z) be the
subgroup of Möbius transformations (az + b)/(cz + d) with c even. Its fundamental domain
is the triangle 〈1/0, 0/1, 1/1〉. Consider the ideal quadrilateral Q = 〈1/0, 0/1, 1/2, 1/1〉. The
G-images of this quadrilateral tessellate H. We form the diagram D0 from D1 by deleting
the G-orbit of the diagonal 〈0/1, 1/1〉 of 〈1/0, 0/1, 1/2, 1/1〉 and adding the G-orbit of the
opposite diagonal 〈1/0, 1/2〉. The diagram Dt, 0 < t < ∞, t � 1, is obtained from D1 by
deleting the diagonal 〈0/1, 1/1〉 in each quadrilateral Q and adding a small rectangle having
a vertex in the interior of each edge of Q so that g(Dt) = Dt for g ∈ G. The edges of Dt fall
into four G-orbits, labelled A, B, C, D.

Remark 5. As t approaches to 0 and 1, the inscribed rectangle collapses to the diagonals
〈1/0, 1/2〉 and to the diagonal 〈0/1, 1/1〉, respectively. See Figure 2.

For a given reduced rational number β/α, let γ denote an oriented edge-path from 1/0 to
β/α in Dt with 0 ≤ t ≤ ∞.

Definition 6. An edge-path γ is called minimal if no two consecutive edges in γ lie on
the boundary of the same triangle face or rectangle face in Dt.

Then for every minimal edge-path γ in Dt, Floyd-Hatcher construct a corresponding
branched surface Σγ. Four basic branched surfaces, ΣA, ΣB, ΣC , and ΣD are assigned to
the labelled edges. See Figure 3.

We regard S 3 as the two point compactification of S 2 × R and we place the link Lβ/α ⊂
S 2 × I so that it meets S 2 × {0} and S 2 × {1} each in two arcs and each intermediate level
in four points. We think of each level S 2 × {r} as the quotient R2/Γ, where Γ is the group
generated by 180◦ rotations of R2 about the integer lattice points Z2. The four points of the
link at each intermediate level are precisely the four points of Z2/Γ. The two arcs at level
r = 1 have slope β/α and those arcs at level r = 0 have slope 1/0. PSL2(Z) acts linearly on
the level sphere S 2 × {r} = R2/Γ, leaving Z2/Γ invariant.

The vertices of the diagrams D1,D0 = D∞,Dt correspond to the slopes of arcs in the level
spheres.

Let e1, . . . , ek be the sequence of edges of a minimal edge-path γ. An edge ei is the
image of one edge e0 ∈ {A0, B0, C0, D0} (see Figure 1(c)) under a unique gi ∈ G. Each
ei determines a branched surface Σei in S 2 × [(i − k)/k, i/k] and the desired Σγ is the union
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Fig.1.

of these Σei’s. If the orientations of ei and gi(e0) match, then Σei = (gi × ϕ)(Σe0 ) where
ϕ : [0, 1] → [(i − 1)/k, i/k] is ϕ(t) = i+t−1

k . If the orientations do not match, we reflect Σei

upsidedown. See [5].
Finally, a surface carried by one of the branched surfaces Σγ is determined by μ and ρ,

the numbers of sheets of the surface along ∂n(K1) and ∂n(K2), respectively, and by how the
surface branches in each segment ΣA, ΣB, ΣC , or ΣD of Σγ. We set t = μ/ρ, which is the
subscript of Dt .

Theorem 3.1(a) of [4] implies that every orientable essential surface in E(Lβ/α) with μ, ρ �
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Fig.2. Collapsing a Dt diagram.

Fig.3. Branched pieces for edges A, B,C and D

0 is carried by some branched surface corresponding to a minimal edge-path from 1/0 to β/α
in Dt. Conversely, an orientable surface carried by such a branched surface is essential.

A branched surface may carry non-orientable surfaces. Moreover, as noted in [5] there
may be an essential non-orientable surface which is not carried by any branched surface.

There is a unique finite sequence of quadrilaterals Qβ/α such that the first one contains the
vertex 1/0, the last one contains the vertex β/α and every pair of consecutive ones intersects
in a single edge.

Remark 7. In a Dt diagram with t � 0,∞, the first and the last edges in any edge-path are
of type A.

2.2. Edge-paths and essential saddles.
2.2. Edge-paths and essential saddles. Let S ⊂ E(Lβ/α) be a compact orientable essen-

tial surface with boundary on ∂E(Lβ/α) ⊂ S 2 × I ⊂ S 3.
We may isotope S so that:

(1) Each component of ∂S is either a meridian of ∂E(Lβ/α) in S 2×(0, 1), or is transverse
to all meridians of ∂E(Lβ/α).

(2) S is transverse to S 2 × ∂I and lies in S 2 × I near E(Lβ/α) ∩ (S 2 × ∂I).
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(3) The projection S ∩ (S 2 × I)→ I is a Morse function with all its critical points in the
interior of S .

Let S 2
r denote S 2 × {r} for 0 < r < 1. A transverse intersection S ∩ S 2

r can contain no arcs
which are peripheral in S 2

r − n(Lβ/α) in view of (1) and the ∂-incompressibility of S . As
r varies from 0 to 1, the point λr ∈ Dt can change only at critical levels of the projection
S ∩ (S 2 × I) → I, in fact, only at saddles. A saddle where λr changes is called an essential
saddle. So we obtain a finite sequence of λ′rs, say λ0, ..., λk, with λi+1 � λi for all i. By (2)
λ0 is the vertex 1/0 of Dt and λk is the vertex β/α.

We can isotope S to lie in S 2 × I and have all its critical points lying on essential saddles,
and also still satisfy (1) − (3) above, see Section 7 of [4].

The possibilities, up to level-preserving isotopy, for an essential saddle corresponding to
a segment 〈λi, λi+1〉 on an A−, B−,C− or D−type edge of Dt are shown in Figure 4. The two
leftmost vertices depict ∂n(K2) ∩ S 2

r and the rightmost vertices depict ∂n(K1) ∩ S 2
r .

Fig.4. Saddle types: The two leftmost vertices depict ∂n(K2) ∩ S 2
r and the

rightmost vertices depict ∂n(K1) ∩ S 2
r .

The corresponding saddle to an A−, B−,C− or D−type edge of Dt, will be called an
A−, B−,C− or D−type saddle, respectively.

3. General results

3. General results
Let Lβ/α = K1 ∪K2 be a 2-bridge link in S 3 and let S ⊂ E(Lβ/α) be a connected, compact,

essential and orientable surface, both as in Section 2.2. Assume that S has n boundary
components in ∂n(K1), which are non-meridional and n � 0, i.e., μ is a multiple of n, and
has one boundary component in ∂n(K2) parallel to K2, i.e, ρ = 1. Let us denote by ∂iS the
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set of boundary components of ∂n(Ki) ∩ S , for i = 1, 2. Observe that ∂2S consists only of
one curve whose slope is an integer and ∂1S of n parallel curves with slope p/q, with respect
to a meridian and preferred longitude in each component of the link. We denote the linking
number of Lβ/α = K1 ∪ K2 by lk(K1,K2).

In the following lemmas we will determine the saddle types corresponding to a minimal
edge-path associated to S . Since there is a bijective correspondence between edges, saddles
and pieces of branched surfaces, the results can be applied to the three concepts.

Since μ/ρ � 0,∞ and by Remark 7 the first and last saddles are of type A. By Lemma 7.1
and Figure 7.2 of [4], we have the following statement:

Lemma 8. Suppose that μ � 1.

(1) B−type saddles come in groups of (μ − 1)/2 saddles.
(2) D−type saddles come in groups of (μ − 1) saddles.

Next we will prove that only edges of type A, B and D can occur. Choosing an orientation
for S will induce an orientation on the boundary components of S and on the arcs of S ∩ S 2

ε

for ε before the first A−type saddle; choose one. When two arcs are being fused by a saddle,
in a small neighborhood before the fusion occurs, we see two small arcs with opposite
orientations.

Lemma 9. There are no C-type saddles.

Proof. At the first level S 2
ε , there is only one arc of S ∩ S 2

ε connecting the vertices
of ∂n(K2) ∩ S 2

ε . This implies that in a small neighborhood around one of the vertices of
∂n(K2) ∩ S 2

ε , we see only one arc pointing out and around the other vertex we see only one
arc pointing in; we see opposite orientations around these vertices. This property must be
preserved for all the different levels S 2

r .
If a C-type saddle exists then after a G-transformation, it looks like in Figure 4(c) . But

that will imply that the orientations around the vertices K2 ∩ S 2
r , at some r, are no longer

opposite. �

One crucial object that we used on the proof of Lemma 9 and that we will use is the
orientation of S ∩ S 2

ε around a small neighborhood of a vertex. Once that we orientate S ,
it induces an orientation on the arcs S ∩ S 2

ε around a vertex, we can assign a +1 to each
arc pointing out and a −1 to an arc pointing in. We can then compute the sum of the signs
around a vertex v, we denote it by Σv. Observe that Σv is independent of the level S 2

r and it
reverses its sign if we change the orientation of S . Thus |Σv| is a constant that is independent
of the level S 2

r and the orientation of S .

Lemma 10. If the boundary slope of ∂1S is of the form p/q with p, q ∈ Z − {0}. Then
|(p/q)Σv| = |lk(K1,K2)| for each vertex v in ∂n(K1) ∩ S 2

ε

Proof. Let mi and li be a meridian and preferred longitude of ∂n(Ki), respectevely, for
i = 1, 2. By definition we can calculate |Σv| around m1, computing the intersections with
signs of ∂1S and m1. As the slope of ∂1S is p/q, each boundary component of ∂1S intersects
m1 exactly q times. Let n+ be the number of the components intersecting positively m and
n− the number of components which intersect m negatively, then Σv = q(n+ − n−).

Now, we only need to prove that p(n+ − n−) = lk(K1,K2). This can easily be done by
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observing that S represents an equivalence between ∂2S = km2 + l2 and ∂1S = (n+ −
n−)(pm1 + ql1) on H1(E(Lβ/α)). Combining these with the relations l1 = lk(K1,K2)m2 and
l2 = lk(K1,K2)m1 we obtain the required equality. �

From the previous proof, it seems that we could get rid of the absolute values from the
statement. But the problem is that our definition of Σv has an ambiguity on its sign. It is
possible to avoid it by being more specific on its definition, but we wouldn’t win much it is
more convenient to use and compute |Σv|.

Lemma 11. Suppose that μ > 1, and let S be a surface given by an edge-path in Dt.

(1) If there is a B−type saddle, then |Σv| = 1 for all v in ∂n(K1) ∩ S 2
ε . Moreover, each

boundary component of S on ∂n(K1) is longitudinal and μ = n.
(2) If there is a D−type saddle, then |Σv| = μ for all v in ∂n(K1) ∩ S 2

ε . Moreover, all the
boundary components of S have the same orientation on the boundary ∂n(K1).

Proof. (1) By Lemma 8 the number of arcs in S∩S 2
ε joining the components of ∂n(K1)∩S 2

ε

is odd. Before a B−type saddle appears, there must be an A−type saddle. After passing it,
we see an even number of arcs joining the components of ∂n(K1)∩S 2

ε . In order to perform a
B−type saddle, two arcs of the same slope must be joined, thus their orientation are opposite.
Then all the arcs joining the components of ∂n(K1) ∩ S 2

ε can be paired together on opposite
orientation pairs. This implies that |Σv| = 1 for each vertex v ∈ ∂n(K1) ∩ S 2

ε .
By Lemma 10 we have that the slope ∂1S = p/q is equal to lk(K1,K2), hence ∂1S is an

integer (its components are longitudinal).
(2) After a G transformation, a D−type saddle looks like in Figure 4(d). When performing

a D−type saddle, the configuration of arcs that we obtain contains two arcs of slope zero
whose orientations coincide with the one on the previous arcs of slope zero. This occurs
every time we perform a D−type saddle and by Lemma 8 this happens μ − 1 times, thus the
arcs S ∩S 2

ε joining the components of K1∩S 2
ε have the same orientation. Therefore |Σv| = μ.

�

An immediate consequence of Lemmas 11 and 10 is the following.

Corollary 12. If there is a B−type saddle and if the boundary slope of S ∩ ∂n(K1) equals
1/r then |lk(K1,K2)| = 1 and r = 1.

Summarizing we have:

Corollary 13. Let Lβ/α = K1 ∪ K2 be a 2-bridge link in S 3 and let S ⊂ E(Lβ/α) be a
properly embedded, connected, compact, essential and orientable surface. Assume that S
has n boundary components on ∂n(K1), which are non-meridional and n � 0, i.e., μ is a
multiple of n, and has one boundary component on ∂n(K2) parallel to K2, i.e., ρ = 1. We
have the following:

(1) If μ > 1 then the sequence of saddles corresponding to a minimal edge-path as-
sociated to S consists only of A− and B−type saddles, or only of A− and D−type
saddles.

(2) If μ = 1 then the sequence of saddles corresponding to a minimal edge-path associ-
ated to S consists only of A−type saddles.
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Proof. If μ > 1, by Lemma 11 we have part (1). In the case that μ = 1, then the
corresponding path associate to the surface S lies in the D1 diagram and there are no C−types
saddles by Lemma 9, therefore the sequence of saddles are only of type A. �

Definition 14. We will use the notation AB−edge-path to refer to an edge-path consisting
of only A− and B−type saddles. Similarly we use the notation AD- and A−edge-path.

By Corollary 13 the only orientable surfaces considered in this article come from AD−,
AB− or A− edge-paths. Nevertheless not all such edge-paths correspond to an orientable
surface.

For instance, consider the edge-path 〈1/0, 0/1〉, 〈0/1, 1/2〉, 〈1/2, 1/3〉, 〈1/3, 3/8〉, the
corresponding sequence of saddles is ADAADA, see Figure 5. In Figure 6 we show the first
part of the saddle sequence (recall that we are using μ − 1 type D saddle). Observe that
passing to the third saddle of type A gives rise a nonorientable surface.

Fig.5. An edge-path from 1
0 to 3

8

Fig.6. A-type saddles for the edge-path from 1
0 to 3

8

The same observation is valid for AB− or A−edges-paths, namely there are such edge-
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paths that correspond to non-orientable surfaces. The next lemma rules out edge-paths corre-
sponding to non-orientable surfaces. In order to state the result we introduce some notation.

Each reduced fraction p/q in Q can be identified with 0/1, 1/0 or 1/1 by reducing p and
q mod 2. An A−type edge in Dt is contained in an edge 〈p1/q1, p2/q2〉. If {p1/q1, p2/q2} is
identified with {0/1, 1/0} mod 2, we say that such an edge is of type A0. On the other hand
if {p1/q1, p2/q2} is identified with {1/1, 1/0} mod 2 the edge is said to be of type A1.

By an AiX−edge-path we will mean an AX−edge-path in Dt that consists only of edges
of type X and Ai with i = 0, 1 and X = B,D. Similarly we use the notation Ai−edge-path for
an edge-path in D1 that contains only Ai−type edges with i = 0, 1.

Lemma 15. Let S be an orientable surface and γ be an edge-path in Dt associated to
S . Suppose that γ is an AX−edge-path with X = B,D. Then γ is an AiX−edge-path with
i = 0, 1. The same result is valid for A−edge-paths.

Proof. Assume that γ contains edges of type A0 and A1. We are going to find a contradic-
tion.

Case 1: γ is an A-edge-path in D1. As γ is made of only A type saddles, there must be
two consecutive saddles of type A0 and A1. Without loss of generality, we can assume that
A1 follows A0. We draw the sequence of pictures mod 2 for these two saddles in Figure 7.
Notice that this is impossible due to orientability of S .

Fig.7. No orientability of A-edge-path containing both A0 and A1 edges.

Case 2: γ is an AD-edge-path in Dt. Again, in this case we will have two consecutive
saddles of type A0 and A1, because the edge-path comes in blocks of the form AD . . . A
where the two A′s are of the same type. The sequence of levels mod 2 is similar to the
previous one, see Figure 8, but with some extra μ − 1 parallel arcs.

By Lemma 11(1) those μ − 1 parallel arcs must have all the same orientation; moreover,
around the vertices in ∂n(K1) ∩ S ε , all the arcs are oriented in the same direction. It is not
hard to see from Figure 8 that it is impossible to give a coherent orientation to all the arcs
with the condition that all the μ parallel arcs have the same orientation, contradicting the
orientability of S .

Case 3: γ is an AB-edge-path in Dt. A similar phenomenon to the previous case happens
here. In fact, we get the same picture as in Figure 8. The reason is that the AB−edge-paths
come in blocks of the form ABBA where the two A’s are of the same type. So, if we have
two A’s of a different type on γ, there must be two consecutive blocks with different A-types.

As consequence of Lemma 11(2), all the μ − 1 arcs in the first and last level in Figure 8
need to be cancelled in pairs. And it is impossible to give a coherent orientation satisfying
these conditions. �
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Fig.8. No orientability of AD-edge-path containing both A0 and A1 edges.

Remark 16. When an AB−edge-path happens it must be of the form ABBA . . . ABBA,
where the A− and B−type edges lie in different polygons, see Figure 1(c). Since the surfaces
considered in this work are connected, an AB−edge-path consists of at least two ABBA
blocks.

Remark 17. In the case that S ⊂ E(Lβ/α) has meridional boundary components on ∂n(K1)
and one boundary component on ∂n(K2) parallel to K2, then the edge-path corresponding to
the branched surface that carries S belongs to the diagram D0. Thus it is an BD−edge-path.
For B−type edges to exist and to obtain an orientable surface it must happen that ρ is greater
than 1. See Figures 9(a) and 9(b) of B− and D− type saddle for t = 0. We conclude that in
this case, the edge-path consists only of D−type edges.

Fig.9.

3.1. Continued fractions and genus of surfaces.
3.1. Continued fractions and genus of surfaces. An edge-path from 1/0 to β/α in the

diagram D1 corresponds uniquely to a continued fraction expansion β/α = [r; b1, ..., bk],
where the partial sums βi/αi = [r; b1, ..., bi] are the successive vertices of the edge-path.
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β

α
= r +

1

b1 +
1

b2 +
1

. . . +
1

bk

Remark 18. At the vertex βi/αi the path turns left or right across |bi| triangles. For i−odd,
right if bi > 0 and left if bi < 0. For i−even left if bi > 0 and right if bi < 0. The number of
C diagonals is |bi|/2

By Remark 5, in Dt the diagonals C of the diagram D1 are changed by inscribed rectan-
gles. So for each diagonal C we obtain a D−edge around the vertex βi/αi, see Figure 1(a).
Thus the number of D−edges around βi/αi is |bi|/2.

In this paper we use two special types of continued fraction expansions: β/α = [0; 2n1,

2n2, . . . , 2n j] and β/α = [1; 2m1, 2m2, . . . , 2mi]. These are the unique continued fraction
where each entry is an even number and j, i are odd.

We will describe the edge-path in Dt associated to these continued fractions, such that the
branched surface associated carries a connected, compact, essential and orientable surface S
properly embedded in E(Lβ/α) with one boundary component on ∂n(K2) parallel to K2 and
n-boundary components on ∂n(K1), which are non-meridional and n � 0; i.e, ρ = 1 and μ is
a multiple of n. For now on we assume that t � 0,∞.

For short we will say that the surface S is associated to the edge-path. We will compute
the genus of S as well.

For both continued fraction expansions, the vertices βi/αi, given by the partial sums,
satisfy that α2k+1 is even and α2k is odd.

In the diagram D1, the edge-path for [0; 2n1, 2n2, . . . , 2n j] passes by 0/1 and the edge-path
for [1; 2m1, 2m2, . . . , 2mi] passes by 1/1. These are A−edge-paths.

The edge-path corresponding to the continued fraction [0; 2n1, 2n2, . . . , 2n j] is an A0−
edge-path, and the corresponding to the continued fraction [1; 2m1, 2m2, . . . , 2mi] is an A1−
edge-path.

If μ = 1, the edge-path just obtained is the one that corresponds to S . Hence we obtain an
edge-path of length j+1 ( or i+1), where each edge lies in different triangles by construction.
For each A−type edge we have an A−type saddle, thus we can compute the genus of S using
Euler characteristic.

Proposition 19. Let [r; 2r1, ..., 2rk] be one of the two continued fraction expansions for
β/α. If μ = 1, the associated A−edge-path consisting of k + 1 edges corresponds to a
connected, compact, essential and orientable surface S ⊂ E(Lβ/α) with one boundary com-
ponent on ∂n(Ki) parallel to Ki for i = 1, 2. Then the genus of S is

1
2

(k − 1)

�
If μ � 1, we pass to the Dt diagram with t � 1. Each edge A in D1 is changed into

an A−edge and a B−edge. The edge path in D1 is transformed into an AB-edge-path in
a diagram Dt. Around a vertex with even denominator there are only A−type edges, and



396 M. Eudave-Muñoz, F. Manjarrez-Gutiérrez, E. Ramı́rez-Losada and J. Rodrı́guez-Viorato

around a vertex with odd denominator there are only B−type edges. Thus the pattern ABBA
is repeated 1

2 (i + 1)-times or 1
2 ( j + 1)-times.

Observe that an AB−edge-path obtained as above may not correspond to a minimal edge-
path in Dt, nevertheless a minimal AB−edge-path associated to a connected, compact, es-
sential and orientable surface is in correspondence with an Ai−edge-path with i = 0, 1. A
condition on the continued fraction expansion [r; 2r1, ..., 2rk] for β/α for an AB−edge-path
to be minimal is that |r j| > 1 for all j.

If an orientable surface S is carried by this kind of path, Lemma 11 implies μ = n and by
Remark 16 we have 1

2 (i+1) ≥ 2 or 1
2 ( j+1) ≥ 2, since we require a connected surface, where

i, j are the lengths of the continued fraction expansions for β/α. Hence an AB-edge-path
that passes trough the vertices 0/1 or 1/1 associated to an orientable surfaces must contain
at least two blocks of the pattern ABBA, thus the continued fraction expansion contains at
least three even terms, after the 0 or 1 entries.

In order to compute the genus of S , the associated surface to this edge-path, we count
the number of saddles corresponding to the edge-path. Observe that each A−type edge
corresponds to one saddle and each B−type edge to 1

2 (n − 1)-saddles. Each block of ABBA
contributes with (n + 1) saddles. Again, using Euler characteristic we find:

Proposition 20. Let [r; 2r1, ..., 2rk] be one of the two continued fraction expansions for
β/α, with k ≥ 3 and |rt| ≥ 2 for all t. If μ = n and the associated AB-edge-path consisting
of 1

2 (k − 1) ABBA blocks corresponds to a connected, compact, essential and orientable
surface S ⊂ E(Lβ/α) with one boundary component on ∂n(K2) parallel to K2 and n boundary
components on ∂n(K1) parallel to K1. Then the genus of S is:

1 +
(n + 1)(k − 3)

4
�

If S is oriented and μ � n then the edge-path for S is an AD-edge-path. In this case, we
substitute each pair BB in the above edge-path by a sequence DD...D, where the number
of D’s is given by the number of diagonals C in the diagram D1 around the corresponding
vertex. For instance, if β2k/α2k = [0; 2n1, 2n2, . . . , 2n2k], the number of D’s is |n2k+1|.

Summarizing, the AD−edge-type in Dt associated to the continued fraction expansion
[0; 2n1, 2n2, . . . , 2n j] is A DD...D︸��︷︷��︸

|n1 |
AA DD...D︸��︷︷��︸

|n3 |
AA...AA DD...D︸��︷︷��︸

|n j |
A. Notice that the two consec-

utive A−type edges belong to different triangles, and the D−type edges belong to different
quadrilaterals by construction. Thus we obtain a minimal edge-path. Analogously, for the
continued fraction expansion [1; 2m1, 2m2, . . . , 2mi] we associate an AD−edge-path.

Next we compute the genus of such S .

Proposition 21. Let [r; 2r1, ..., 2rk] be one of the two continued fraction expansions for
β/α. If μ � n and the associated path A DD...D︸��︷︷��︸

|r1 |
AA DD...D︸��︷︷��︸

|r3 |
AA...AA DD...D︸��︷︷��︸

|rk |
A corresponds

to a connected, compact, essential and orientable surface S ⊂ E(Lβ/α) with one boundary
component on ∂n(K2) parallel to K2 and n non-meridional boundary components on ∂n(K1).
Then the genus of S is:
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1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
h:odd

|rh|
⎞⎟⎟⎟⎟⎟⎠ (|μ| − 1) + (k + 1) − (n + 1)

]

where h ∈ {1, ..., k}
Proof. Use Euler characteristic, considering that each A−type edge corresponds to one

saddle and each D−type edge corresponds to μ − 1 saddles. �

3.2. Boundary slopes.
3.2. Boundary slopes. The boundary of a branched surface derived from the Floyd-

Hatcher construction defines a train track on the boundary of the regular neighborhood of
the link. Thus the boundary of any essential surface S carried by the branched surface is car-
ried by this train track. Lash, [8], calculated the space of boundary slopes for the Whitehead
link.

In the following paragraph we explain Lash algorithm. We base the explanation on the
article [5]:

To compute the boundary slopes of the surfaces the frame used consists of the meridian
μi and a non-standard longitude λi of ∂n(Ki). In S 2 = R2/Γ, we take the arc s of slope 0
connecting Γ(0, 0) and Γ(0, 1). λ1 is the union of the arc (s × [0, 1]) ∩ ∂n(K1) and an arc in
(S 2×[1,∞))∩∂n(K1). λ1 is oriented toward increasing r ∈ [0, 1] along the axis Γ(0, 0)×[0, 1].
The meridian μ1 is oriented as a right-handed circle around the axis Γ(0, 0) × [0, 1] oriented
upward. We obtain λ2, μ2 from λ1, μ1 by rotating by 180◦ about the axis Γ(1/2, 1/2)× [0, 1].

Let i j be the algebraic intersection number ∂S ·λ j in ∂n(Kj). Let ϕ be the map such that for
s ∈ [0, 1], ϕ(s) = (i+ s−1)/k ∈ [(i−1)/k, i/k]. Recall that in Section 2 a surface S ⊂ E(Lβ/α)
corresponds to a minimal edge-path γ with edges e1, ..., ek each one is the image of an edge
e0 ∈ {A0, B0,C0,D0} under a unique g ∈ G, and it is associated to a branched surface Σe0 .

For 0 ≤ t < 1, ∂Σei = ∂(g × ϕ)(Σe0 ), g =
(

a b
c d

)
∈ G contributes to the number i j as in

Table 1, if the orientations of ei and g(e0) agree. If they disagree, we change the signs of the
number in Table 1.

We calculate the boundary slope of a surface S ⊂ E(Lβ/α) corresponding to an AD-edge-
path.

Taking the sum of the entries of the row of i1 and i2 of Table 1, we can see that the
slope on ∂n(K1) is (μ, r(μ − ρ) + sρ) and that on ∂n(K2) is (ρ, v(μ − ρ) + sρ), where the
first coordinate is the longitudinal entry, the second coordinate is the meridional entry with
respect to the unusual longitude λi. The parameters r, s, v are integer numbers and r is the
total contribution of (μ − ρ) given by D-edges in column i1, v is the total contribution of
(μ−ρ) given by D-edges in column i2 and s is the total contribution of ρ given by A-edges in
each column. To obtain the real slope, we need to know the slope of the preferred longitude,
which is obtained by substituting 1 for μ and 0 for ρ in ∂n(K1) and turns out to be (1, r). The
preferred longitude of K2 is of slope (1, s − v), which is obtained by substituting ρ = 1 and
μ = 0 in ∂n(K2). But the preferred longitude of K2 is the same for K1, recall that we take λ2 as
the image of λ1 by rotating 180◦ about the axis Γ(1/2, 1/2) × [0, 1]. Thus, (1, r) = (1, s − v)
and s − r = v. The slopes with respect to the preferred longitude can be obtained from
(μ, r(μ−ρ)+sρ−rμ) = (μ, (s−r)ρ) = (μ, vρ) on ∂n(K1), and (ρ, v(μ−ρ)+sρ−(s−v)ρ) = (ρ, vμ)
on ∂n(K2).

Recall that we are considering two types of continued fraction expansions for β/α, namely
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Table 1.

Label condition on −d/c i1 i2

A
−∞ < − d

c < 0 ρ ρ

0 < − d
c < ∞ −ρ −ρ

− d
c = 0,±∞ 0 0

B
−∞ < − d

c < 0 −(μ − ρ) 0

0 < − d
c < ∞ μ − ρ 0

− d
c = 0,±∞ 0 0

C
0 < − d

c < 1 −2ρ 0

− d
c = 0, 1 −ρ ρ

otherwise 0 2ρ

D

1
2 < − d

c < ∞ μ − ρ μ − ρ
− d

c =
1
2 ,±∞ 0 μ − ρ

otherwise −(μ − ρ) μ − ρ

F0 = [0; 2n1, 2n2, . . . , 2n j] and F1 = [1; 2m1, 2m2, . . . , 2mi]. As discussed in Section 3.1, for
each continued fraction there is an AD-edge-path corresponding to an essential surface. We
will determine the contribution of v.

The edge path for F0 is A DD...D︸��︷︷��︸
|n1 |

AA DD...D︸��︷︷��︸
|n3 |

AA...AA DD...D︸��︷︷��︸
|n j |

A, the orientations of the

edges A and D need to be determined in order to compute v. If the orientation of ei ∈ {A,D}
and g(e0) with e0 ∈ {A0,D0} agree we denote the edge by −→ei , if they disagree we denote it by←−ei .

By the construction of the edge path it is not hard to see, as shown in Figure 10, that:

(1) The first A−type edge is of type
−→
A .

(2) The first |n1| D−type edges are of type
←−
D.

(3) Each intermediate pair AA is of the form
←−
A
−→
A .

(4) The last A−type edge is of type
←−
A

For the remaining D−type edges we have:

Proposition 22. For the continued fraction expansion F0 and i odd.

(1) If ni > 0 then the sequence of D−type edges are of type
←−
D .

(2) If ni < 0 then the sequence of D−type edges are of type
−→
D.

Proof. For both cases we need to verify the agreement or disagreement of the D−types
edges with g(D0) at the i−th position for i odd. Since we are considering the continued frac-
tion F0 all the vertices βi/αi, for i odd, are congruent with 0/1 mod 2, up to transformations
of elements of PSL(2,Z). Thus the D−type edge at such vertex βi/αi is of type

←−
D as shown

in Figure 10. From Remark 18 the quadrilateral turns right if ni > 0 and left if ni < 0.
Hence, if ni > 0 the sequence of D−type edges are are of type

←−
D and if ni < 0 the sequence

of D−type edges of type
−→
D. See Figures 10 and 11 for the turns around βi/αi mod 2. �
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Fig.10. Path
−→
A
←−
D
←−
D . . .

←−
D
←−
A

Fig.11. Path
−→
D
−→
D · · · −→D

The value of v for the edge path corresponding to the continued fraction expansion F0 is
v = −(n1 + n3 + ... + n j) because when ni > 0 we see

←−
D−type edges, so the contribution in

the Table 1 is −ni, and if ni < 0 we see
−→
D−type edges, so they contribute with −ni in Table

1. Since lk(K1,K2) = n1 + n3 + ... + n j, we conclude the following:

Corollary 23. Let S ⊂ E(Lβ/α) be a surface associated to the edge path
A DD...D︸��︷︷��︸

|n1 |
AA DD...D︸��︷︷��︸

|n3 |
AA...AA DD...D︸��︷︷��︸

|n j |
A, arising from [0; 2n1, 2n2, . . . , 2n j]. The boundary

slopes of S with respect to the preferred longitude on ∂n(K1) is (μ,−lk(K1,K2)ρ) and on
∂n(K2) is (ρ,−lk(K1,K2)μ).

On the other hand, for the continued fraction expansion F1 = [1; 2m1, 2m2, . . . , 2mi] the
corresponding edge path in the diagram Dt is A DD...D︸��︷︷��︸

|m1 |
AA DD...D︸��︷︷��︸

|m3 |
AA...AA DD...D︸��︷︷��︸

|mi |
A. This

path lies in the same sequence of quadrilaterals as the corresponding path for the continued
fraction expansion F0, but it is made of the A− and D−type edges which do not belong to
the path for F0. Reasoning as before, we have that for the AD−edge-path corresponding to
F1:
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(1) The first A−type edge is of type
−→
A .

(2) The first |n1| D−type edges are of type
−→
D.

(3) Each intermediate pair AA is of the form
←−
A
−→
A .

(4) The last A−type edge is of type
←−
A

Proposition 24. For the continued fraction expansion F1 and i odd.

(1) If ni > 0 then the sequence of D−type edges are of type
−→
D .

(2) If ni < 0 then the sequence of D−type edges are of type
←−
D.

Corollary 25. Let S ⊂ E(Lβ/α) be a surface associated to the edge path
A DD...D︸��︷︷��︸

|m1 |
AA DD...D︸��︷︷��︸

|m3 |
AA...AA DD...D︸��︷︷��︸

|mi |
A, arising from [1; 2m1, 2m2, . . . , 2mi]. The boundary

slopes of S with respect to the preferred longitude on ∂N(K1) is (μ, lk(K1,K2)ρ) and on
∂N(K2) is (ρ, lk(K1,K2)μ).

Analogously, we can compute the boundary slopes for A-edge-path and AB-edge-path, in
both cases the resulting boundary slopes are equal to zero.

4. Fiberings

4. Fiberings
Floyd and Hatcher give a criterion to determine when a surface S in E(Lβ/α) is a fiber of

a fibering E(Lβ/α)→ S 1.

Definition 26. Let γ be a path in Dt, with t ∈ [0,∞]. A maximal sequence of consecutive
A− and D−type edges in γ each separated from the next by only one edge in Dt, is called a
string.

Figure 12(a) shows an example of a string and Figure 12(b) depicts a path which is not a
string.

Proposition 6.1 of [4] states sufficient and necessary conditions for fibering:

Proposition 27. A surface S ⊂ E(Lβ/α) is a fiber of a fibering E(Lβ/α) → S 1 if and only
if it is isotopic to a surface carried by a branched surface Σγ whose associated edge-path γ
from 1/0 to β/α, in a determined Dt, consists of a single string of A− and D− type edges.

The following theorem tells us conditions on the continued fraction expansion, considered
in this work, for a surface S to correspond to a fiber of a fibering E(Lβ/α)→ S 1.

Theorem 28. Let Lβ/α be a 2-bridge link and S a connected, compact, essential and
orientable surface in E(Lβ/α) with one boundary component on ∂n(K2) parallel to K2 and
n-boundary components on ∂n(K1), which are non-meridional and n � 0.

(1) Suppose S is associated to an AD-edge-path. S is a fiber of a fibering E(Lβ/α)→ S 1

if and only if the continued fraction expansion for β/α has the form [r; 2r1, 2ε2,
2r3, ..., 2εn−1, 2rn] with r = 0, 1 and |εi| = 1.

(2) Suppose S is associated to an A-edge-path. S is a fiber of a fibering E(Lβ/α)→ S 1 if
and only if the continued fraction expansion for β/α has the form [r; 2ε1, 2ε2, ..., 2εn]
with r = 0, 1 and |εi| = 1 for all i.

(3) Suppose S is associated to a D-edge-path. S is a fiber of a fibering E(Lβ/α)→ S 1 if
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Fig.12.

and only if the continued fraction expansion for β/α has the form [0; 2r1,−2, 2r2, ...−
2, 2rn] with 2ri positive for all i. Thus the fraction starting with 1 is of the form
[1; 2n1, 2, 2n2, ..., 2, 2n j] with 2nk negative for all k.

Proof. In each case we need to verify that the corresponding path in the adequate diagram
Dt is a string.

(1) Let γ = A DD...D︸��︷︷��︸
|r1 |

AA DD...D︸��︷︷��︸
|r3 |

AA...AA DD...D︸��︷︷��︸
|rk |

A be the edge-path arising from the

continued fraction expansions [r; 2r1, 2r2, . . . , 2rk]. Observe that any two consecu-
tive A and D are separated by exactly one C−type edge in Dt, with t � 0, 1,∞. And
any two consecutive D−type edges are separated by exactly one A− or B−type edge
as in Figures 12(a) and 12(b). To guarantee that γ is a single string, it is necessary
to check when two consecutive A−type edges are separated by only one edge. By
inspecting Figure 12(b), it is easy to observe that two A−type edges are separated by
only one edge if 2r2 = 2,−2. This pattern is extended to the whole path γ. Thus, the
condition is that rl = 2ε with ε = −1, 1 for l even in the continued fraction expansion
[r; 2r1, 2r2, . . . , 2rk].

(2) Consider the continued fraction expansion [r; 2r1, ..., 2r j], since S is associated an A-
edge-path γ in the D1 diagram, γ goes through all the vertices 1/0, β0/α0, β1/α1, ...,

β j/α j = β/α. For γ to be a string, every two consecutive A-type edges must be
separated by exactly one C-type edge or by exactly one A-type edge. There are two
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possibilities depicted in Figures 13(a) and 13(b), we see that |2ri| = 2 for all i. Thus,
the continued fraction expansion has the form [r; 2ε1, 2ε2, ..., 2εn] with εi = ±1.

(3) Let us consider the continued fraction expansion [0; 2r1, ..., 2r j], in this case the
surface S is in correspondence with a D-edge-path γ in the D0 diagram. The first
r1 edges of type D pass through vertices 1/0, 1/2, 1/4, ...1/2r1 = β1/α1. Each two
consecutive D-type edges are separated by exactly one B-type edge. Thus, that piece
of γ satisfies the condition to be a string. See Figure 14(a). A similar phenomenon
occurs around a vertex βi/αi with i even. It is necessary to determine when two
consecutive D-edges with common vertex βi/αi with i odd are separated by exactly
one B-edge.

Next we will determine conditions for r2, r3 in order to keep γ being a string, up
to PSL2(Z) transformation, we will be able to argue that the conditions for r2, r3 can
be extended to the following r′i s.

First let us consider 2r2, 2r3 both positive. The B-edge connecting 0/1 and 1/2r1

has to turn left 2r2 edges to reach the vertex β2/α2. Then the edge connecting 1/2r1

and β2/α2 has to turn right 2r3 edges to reach vertex β3/α3. Recall that the turns
at each vertex were described in Remark 18. For this case see Figure 14(a). The
two consecutive D-edges with common vertex 1/2r1 are separated by (2r2+2r3−1)
B-edges, since 2r2, 2r3 ≥ 2, there are at least three B-edges in between. Hence, this
situation will not give a string.

Secondly consider 2r2 positive and 2r3 negative. In this case, the B-edge connect-
ing 0/1 and 1/2r1 has to turn left 2r2 edges to reach the vertex β2/α2. Then the edge
connecting 1/2r1 and β2/α2 has to turn left 2r3 edges to reach vertex β3/α3. The
two consecutive D-edges with common vertex 1/2r1 are separated by 2r2 B-edges,
since 2r2 ≥ 2, there are at least two B-edges in between. Hence, this situation will
not give a string. See Figure 14(b).

Thirdly suppose 2r2 and 2r3 are negative. The B-edge connecting 0/1 and 1/2r1

has to turn right 2r2 edges to reach the vertex β2/α2. Then the edge connecting 1/2r1

and β2/α2 has to turn left 2r3 edges to reach vertex β3/α3. See Figure 14(c). The two
consecutive D-edges with common vertex 1/2r1 are separated by (|2r2| + |2r3| − 1)
B-edges, since 2r2, 2r3 ≥ −2, there are at least three B-edges in between. Thus, this
case will not give a string.

Finally, if 2r2 is negative and 2r3 is positive. The B-edge connecting 0/1 and
1/2r1 has to turn right 2r2 edges to reach the vertex β2/α2. Then the edge connecting
1/2r1 and β2/α2 has to turn right 2r3 edges to reach vertex β3/α3. See Figure 14(d).
In this case the edges with common vertex 1/2r1 are separated by (|2r2|−1) B-edges,
so to obtain a string it is necessary that 2r2 = −2.

At this point we have that the continued fraction expansion looks like [0; 2r1,−2,
2r3, x4, ..., xn].

Using a transformation in PSL2(Z), we can put in correspondence β1/α1 → 1/0,
β2/α2 → 0/1 and β3/α3 → β1/α1. Analysing as above we are able to conclude
that 2r4 = −2 and 2r5 is positive. Thus, if we keep doing the correspondence for
the remaining vertices, we conclude that the continued fraction expansion has the
form [0; 2r1,−2, 2r3,−2, ...,−2, 2rn] with 2ri positive for all i odd. A similar analysis
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shows that the other continued fraction expansion must be [1; 2n1, 2, 2n2, ..., 2, 2n j]
with 2nk negative for all k. �

Fig.13. Possibilities for A-edges in D1 to belong to a string.

Corollary 29. Let Lβ/α = K1 ∪ K2 be a 2-bridge link with lk(K1,K2) = 0. A surface
S ⊂ E(Lβ/α) associated to a D-edge-path is not a fiber of a fibering E(Lβ/α)→ S 1.

Proof. The third part of Theorem 28 implies that if the the surface S is carried by a D-
edge-path, then the continued fraction expansion for β/α is of the form [0; 2r1,−2, 2r2, ... −
2, 2rn] with 2ri positive for all i. Thus the linking number is not equal to zero, a contradiction.

�

5. Applications

5. Applications
In this section we compute the genus of tunnel number one satellite knots, as well as

torti-rational knots. Hirasawa and Murasugi, [6] have computed the genus of such knots
using algebraic techniques, namely the Alexander polynomial. We give criteria to determine
fiberedness of satellite tunnel number one knots only when lk(K1,K2) � 0.

5.1. Tunnel number one satellites knots.
5.1. Tunnel number one satellites knots. Morimoto and Sakuma [10] determined the

knot types of satellite tunnel number one knots in S 3. These knots are constructed as follows.
Let K0 be a (p, q)-torus knot in S 3 with p � 1 and q � 1, and let Lβ/α = K1 ∪ K2 be a 2-
bridge link in S 3 with α ≥ 4. Note that K0 is a non-trivial knot, and Lβ/α is neither a
trivial link nor a Hopf link. Since K1 is the trivial knot in S 3, there is a an orientation
preserving homeomorphism f : E(K1)→ N(K0) which takes a meridian m1 ⊂ ∂E(K1) of K1
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Fig.14. Analyse of D-edge-path in D0 to belong to a string.
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to a fiber h ⊂ ∂N(K0) = ∂E(K0) of the unique Seifert fibration of E(K0). The knot f (K2) ⊂
N(K0) ⊂ S 3 is denoted by the symbol K(α, β; p, q). Every satellite knot of tunnel number one
has the form K(α, β; p, q) for some integers α, β, p, q. Eudave-Muñoz [3] obtained another
description of these knots.

Let l and m be a preferred longitude and a meridian for ∂N(K0), respectively. Notice that
Δ(l, h) = pq and then Δ( f −1(l),m2) = pq, where Δ stands for the geometric intersection of
two curves.

The next lemma is a variation of Lemma 2.11 in [1], applied to our context.

Lemma 30. Let K = K(α, β; p, q) be a satellite tunnel number one knot. Let F be a
minimal genus Seifert surface for K. The surface F can be isotoped in such a way that
F ∩ ∂N(K0) consists of |lk(K1,K2)| preferred longitudes and F ∩ (S 3 − N(K0)) is made of
|lk(K1,K2)| components which are Seifert surfaces for K0.

First we consider the case when lk(K1,K2) = 0.
Suppose the 2-bridge presentation of Lβ/α is given relative to some 2-sphere S in S 3

bounding 3-balls W0,W1 such that Lβ/α intersects S transversely and Lβ/α ∩Wi is a disjoint
union of two arcs. Consider S × I be a product regular neighborhood of S in S 3, and let
h : S × I → I be the height function. We denote the level surfaces h−1(r) = S × {r} by
S r for each 0 ≤ r ≤ 1. S 0 bounds a 3-ball H0, and S 1 bounds a 3-ball H1, such that
S 3 = H0 ∪ (S × I) ∪ H1. Assume that S 0 ⊂ W0, S 1 ⊂ W1, and that h|(S × I) ∩ Lβ/α has no
critical points (so (S × I) ∩ Lβ/α consists of monotone arcs).

Let F be an essential surface properly embedded in the exterior E(Lβ/α).
By general position, an essential surface can always be isotoped in E(Lβ/α) so that:

(M1): F intersects S 0 ∪ S 1 transversely. We denote the surfaces F ∩ H0, F ∩ H1,
F ∩ (S × I) by F0, F1, F̃, respectively;

(M2): each component of ∂F is either a level meridian circle of ∂E(Lβ/α) lying in some
level set S r or it is transverse to all the level meridians circles of ∂E(Lβ/α) in S × I;

(M3): for i = 0, 1, any component of Fi containing parts of Lβ/α is a cancelling disk
for some arc of Lβ/α ∩ Hi. In particular such cancelling disks are disjoint from any
arc of Lβ/α ∩ Hi other than the one they cancel;

(M4): h|F̃ is a Morse function with a finite set Y(F) of critical points in the interior of
F̃, located at different levels. In particular F̃ intersects each noncritical level surface
transversely.

We define the complexity of any surface satisfying (M1)–(M4) as the number
c(F) = |∂F0| + |∂F1| + |Y(F)|,

where |Z| stands for the number of elements in the finite set Z, or the number of components
of the topological space Z.

We say that F is meridionally incompressible if whenever F compresses in S 3 via a disk
D with ∂D = D ∩ F and D intersects Lβ/α in one point interior to D, then ∂D is parallel in
F to some boundary component of F which is a meridian circle in ∂E(Lβ/α). Otherwise F
is meridionally compressible. Observe that if F is essential and meridionally compressible
then a meridional surgery on F produces a new essential surface in E(Lβ/α).

The following is Lemma 3.2 of [11].
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Lemma 31. Let F be a surface in S 3 spanned by K2 (orientable or not) and transverse
to K1, such that F′ = F ∩ E(Lβ/α) is essential and meridionally incompressible in E(Lβ/α).
If F′ is isotoped so as to satisfy (M1)–(M4) with minimal complexity c(F), then |Y(F′)| =
2 − (χ(F′) + |∂F′|) and

(1) each critical point of h|F̃ is a saddle,
(2) for 0 ≤ r ≤ 1 any circle of S r ∩ F is nontrivial in S r − E(Lβ/α) and F, and
(3) F0 and F1 each consists of one cancelling disk.

When lk(K1,K2) = 0, Lemma 30 implies that F′ = f −1(F) ⊂ E(K1). Moreover F′ is an
incompressible genus g Seifert surface for K2.

Lemma 32. The surface F′ can be meridionally compressed g-times to obtain a disk Σ
that satisfies the conditions of Lemma 31. And g is one half the wrapping number of K2 with
respect to E(K1). Moreover, if [s; 2r1, ..., 2rk] is the continued fraction expansion for β/α
with s = 0 or 1 such that k odd, the genus of K(α, β, p, q) is Σ|ri|.

Proof. We will proceed by induction on the pair (g(F′), |Y(F′)|). By Lemma 21 of [2]
we know that a surface S with (g(S ), |Y(S )|) ≤ (2, 4) meridionally compresses g(S )-times
to a disk satifiying Lemma 31. Let us assume that the result is true for any surface S with
(g(S ), |Y(S )|) ≤ (g(F′), |Y(F′)|). Suppose that F′ is meridionally incompressible, we can
apply Lemma 31, and using the same arguements in Lemma 21 of [2], we obtain a con-
tradiction and thus F′ must be meridionally compressible. Moreover after performing the
meridional compression a connected surface F2 is obtained, and g(F2) = g(F′) − 1 and
|Y(F2)| = |Y(F′)| − 2. By induction hypothesis F2 compresses meridionally g(F2) times to
a disk satisfying Lemma 31. But F2 was obtained by compressing F′ once, thus F′ com-
presses meridionally g(F′) times to the required disk Σ. Thus K2 spans Σ which intersects
meridionally K1 in 2g(F′) points, this implies that the wrapping number of K2 in the solid
torus E(K1) is equal to 2g(F′). Now, to recover F′ from Σ we must attached g(F′) tubes,
therefore the last part of the statement is true. �

Theorem 33. If lk(K1,K2) = 0, the genus of a satellite tunnel number one knot is one
half the wrapping number of K2 in E(K1).

Proof. Since lk(K1,K2) = 0 a minimal genus Seifert surface F for K(α, β; p, q) of genus g
determines a minimal genus Seifert surface F′ = f −1(F) of genus g for K2 in E(K1). Lemma
32 implies that genus of F′ is one half the wrapping number of of K2 with respect to E(K1).
And the genus of F equals the genus of F′. �

Next we consider the case when lk(K1,K2) � 0.
Let F be a minimal genus Seifert surface for K = K(α, β; p, q). By Lemma 30 the surface

F can be isotoped in such a way that F∩∂N(K0) consists of |lk(K1,K2)| preferred longitudes
and F ∩ (S 3 − N(K0)) is made of |lk(K1,K2)| components which are Seifert surfaces for K0.
Let F̃ = F ∩N(K0), notice that once we determine the genus of F̃ the genus of F is obtained
by adding |lk(K1,K2)| times (|p| − 1)(|q| − 1)/2, which is the genus of the torus knot K0.

The surface F′ = f −1(F̃) is an incompressible surface spanned by Lβ/α = K1 ∪ K2 whose
boundary consists of one component on ∂n(K2) and |lk(K1,K2)| boundary components on
∂n(K1).
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Lemma 34. The boundary slope of surface F′ on ∂n(K2) equals −lk(K1,K2)2 pq and the
boundary slope of F′ on ∂n(K1) equals −1/pq.

Proof. Let l1 and m1 be the standard longitude and meridian of ∂n(K1) (chose any
orientation of K1) and let λ and μ the longitude and meridian of ∂n(K0), the morphism
f : ∂E(K1) → ∂n(K0) sends m1 to pqμ + λ (which is the fiber of the Seifert fibration of
E(K0)) and l1 to μ so, the longitude λ is identified with −pql1 +m1 this means that the slope
of F′ on ∂n(K1) is equals to −1

pq .
Let ∂2F′ be the boundary of F′ on ∂n(K2) and ∂1F′ be the one on ∂n(K1). It follows

that ∂2F′ is homologous to ∂1F′ on E(Lβ/α). Observe that the inclusion ∂N(K2) → E(Lβ/α)
induces an injection between the first homology groups, so ∂1F′ would be equivalent to only
one class on H1(∂N(K2)) that has to be ∂2F′.

Now, let l2 and m2 be the standard longitude and meridian of ∂n(K2) and lk = lk(K1,K2).
In E(Lβ/α), l2 is homologous to lk · m1 (consider the disk bounded by l2) and also l1 is
homologous to lk · m2. Then, ∂2F′ ∼ ∂1F′ ∼ lk · (−pql1 + m1) = −pq · lk · l1 + lk · m1 =

−pq · lk2 ·m2+ l2, this implies that the boundary of F′ in K2 is homologous to −pq · lk2 ·m2+ l2
so its slope is −pq · lk2 �

In order to find the minimal genus of K = K(α, β; p, q), first we need to determine the min-
imal genus of the surface F′ for the 2-bridge link Lβ/α = K1 ∪ K2 with the above character-
istics. That is to say, a surface F′ with one boundary component on ∂N(K2) and |lk(K1,K2)|
boundary components on ∂N(K1), with boundary slopes as in Lemma 34, i.e, ρ = 1 and
μ = |(pq)lk(K1,K2)|. Since p, q � 1, then μ � 1 even if |lk(K1,K1)| = 1. Observe that if
pq ≥ 0 then the boundary slopes turned out to be negative, and if pq ≤ 0 they are posi-
tive. In both cases, the path associated to the continued fraction expansion [r; 2r1, ..., 2rk]
for β/α, with r = 0 or 1 and k odd, consists only of A and D−type edges by Lemma 11. By
Proposition 21 it is possible to compute the genus of the orientable surface carried by such
path. Moreover, when r = 0 the corresponding continued fraction is the one that gives rise
to the surface with negative boundary slopes in both components of E(Lβ/α), by Corollary
23. When r = 1 we obtain a surface with positive boundary slopes on both components of
E(Lβ/α), by Corollary 25. Summarizing we have the following result.

Theorem 35. Let Lβ/α = K1 ∪ K2 be the 2-bridge link given by the tunnel number one
satellite knot K(α, β; p, q). And let F′ be the essential surface for Lβ/α that arises from a
minimal genus Seifert surface F for K(α, β; p, q). Suppose lk(K1,K2) � 0. Then

(1) If 0 ≤ β ≤ α, pq ≥ 0 and [0; 2n1, ..., 2n j] is the unique continued fraction for β/α
with j odd, the genus of F′ is:

1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
k:odd

|nk|
⎞⎟⎟⎟⎟⎟⎠ (|lk(K1,K2)pq| − 1) + ( j + 1) − (|lk(K1,K2)| + 1)

]

where k ∈ {1, ..., j}
(2) If 0 ≤ β ≤ α, pq ≤ 0 and [1; 2m1, ..., 2mi] is the unique continued fraction for β/α

with i odd, the genus of F′ is:

1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
h:odd

|mh|
⎞⎟⎟⎟⎟⎟⎠ (|lk(K1,K2)pq| − 1) + (i + 1) − (|lk(K1,K2)| + 1)

]
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where h ∈ {1, ..., i}
Corollary 36. Let K = K(α, β; p, q) be a tunnel number one satellite knot, the genus of

K is:

g(K) = g(F′) + |lk(K1,K2)| (|p| − 1)(|q| − 1)
2

Where F′ is as in Theorem 35.

We can also determine if a satellite tunnel number one knot K = K(α, β; p, q) is fibered in
the case that lk(K1,K2) � 0. Recall that the (p, q)-torus knot K0 is fibered. A Seifert surface
F for E(K) is broken into pieces: F̃ = F ∩ ∂n(K0) and |lk(K1,K2)| components which are
Seifert surfaces for E(K0). These pieces are glued along a fiber of the Seifert fibration of the
knot K0. Thus, if F′ = f −1(F̃) is a fiber of a fibering of E(Lβ/α)→ S 1 then F will be a fiber
of a fibering E(K) → S 1. Theorem 28 part (1) gives us the condition to recognize when F′

is a fiber for E(Lβ/α).

Proposition 37. A tunnel number one satellite knot K(α, β; p, q), with lk(K1,K2) � 0, is
fibered if and only if β/α has a continued fraction expansion of type [r; 2r1, 2ε1, 2r3, ..., 2εk,
2rk], with r = 0 or 1, |εi| = 1 (i = 1, ..., k) and k odd.

5.2. Torti-rational knots.
5.2. Torti-rational knots. Let Lβ/α = K1 ∪ K2 be a 2-bridge link in S 3. Since K1 is a

trivial knot in S 3, K2 can be considered as a knot in an unknotted solid torus V , the exterior
of K1. A copy of K1 can be considered a meridian of V . Then by applying Dehn twists
along a meridian disk of V in an arbitrary number of times, say r, we obtain a new knot K
from K2. We call this knot a torti-rational knot and it is denoted by K(β/α; r). In particular
K(β/α; r) is contained in V . Let F be a minimal genus Seifert surface for K(β/α; r) of genus
g. Consider the case when lk(K1,K2) = 0 if we can prove that F ⊂ V , this will let us compute
the genus of F as in the case of satellite tunnel number one knots.

Lemma 38. Let F be a minimal genus Seifert surface for the torti-rational knot K(β/α; r).
Suppose lk(K1,K2) = 0, then F ⊂ V.

Proof. Assume that F ∩ ∂V � ∅, F can be isotoped to intersect ∂V in n longitudes and
F ∩ (S 3 − V) consisting of n disjoint disks. Let F̃ = F ∩ V , after undoing the r Dehn twists
along K1, an essential spanning surface F′ for E(Lβ/α) is obtained. The surface F′ has one
boundary component ∂2F′ parallel to K2 and n boundary components ∂1F′ of slope 1/r.
Lemma 10 states that |(1/r)Σv| = |lk(K1,K2)|, then we have that |Σv| = 0. In particular the
boundary components of F along ∂n(K1) have different orientations. Lemma 11 implies that
if μ > 1 and if a B-type saddle occurs then |Σv| = 1, which is a contradiction. Or if a D-type
saddle appears then all boundary components of F′ have the same orientation, which is not
true. If μ = 1 then |Σv| = 1, but it equals zero. Thus μ = 0 implies that F′ does not have
boundary components on ∂n(K1), applying the r Dehn twist we recover F which is contained
in V . �

Similarly to Lemma 32, the surface F′ can be compressed meridionally g times to obtain
a disk satisfying the conditions of Lemma 31. Thus we have the following result.
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Proposition 39. Let F be minimal Seifert genus surface for the torti-rational knot
K(β/α; r) such that lk(K1,K2) = 0. The genus g of F is equal to one half the wrapping
number of K2 with respect to E(K1).

Now consider the case lk(K1,K2) � 0, then F ∩ ∂V � ∅. We will determine the genus of
F in terms of the parameters β, α, r and lk(K1,K2).

Theorem 40. Let K(β/α; r) be a torti-rational knot and F a minimal genus Seifert surface
for it. Suppose that lk(K1,K2) � 0. Then:

(1) If r > 1 and [1; 2m1, ..., 2mi] is the unique continued fraction for β/α with i odd, the
genus of F is:

1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
h:odd

|mh|
⎞⎟⎟⎟⎟⎟⎠ (|lk(K1,K2)r| − 1) + (i + 1) − (|lk(K1,K2)| + 1)

]

where h ∈ {1, ..., i}
(2) If r < −1 and [0; 2n1, ..., 2n j] is the unique continued fraction for β/α with j odd,

the genus of F is:

1
2

[⎛⎜⎜⎜⎜⎜⎝−1 +
∑
k:odd

|nk|
⎞⎟⎟⎟⎟⎟⎠ (|lk(K1,K2)r| − 1) + ( j + 1) − (|lk(K1,K2)| + 1)

]

where k ∈ {1, ..., j}
(3) If |r| = 1 and |lk(K1,K2)| > 1. Let [s; 2r1, ..., 2rk] be the continued fraction expansion

for β/α with s = 0 or 1 such that k ≥ 3 and |rt| ≥ 2 for all t. The genus of F is:

1 +
(|lk(K1,K2)| + 1)(k − 3)

4
(4) If |r| = 1 and |lk(K1,K2)| = 1 and [0; 2n1, ..., 2n j] and [1; 2m1, ..., 2mi] are the con-

tinued fraction for β/α with j, i odd. The genus of F is:

min
{

i − 1
4
,

j − 1
4

}

Proof. The surface F can be isotoped to intersect ∂V in n longitudes and F ∩ (S 3 − V)
consisting of n disjoint disks. Let F̃ = F ∩ V , after undoing the r Dehn twists along K1,
an essential spanning surface F′ for E(Lβ/α) is obtained. The surface F′ has one boundary
component ∂2F′ parallel to K2 and n boundary components ∂1F′ of slope 1/r. If we deter-
mine the genus of F′ it will be the genus of F. By performing the corresponding r Dehn
twists along K1 we recover F̃, after capping of the n boundary components of F̃ we have F,
thus F and F′ have the same genus.

For the essential surface F′, ρ = 1 and μ = |r|n. By the formula of Lemma 10 we get
n = |lk(K1,K2)|. The surface F′ corresponds to some edge-path γ on a Dt diagram. Since
lk(K1,K2), ρ, n � 0 then t � 0,∞. If μ > 1 Corollary 13 implies that γ is either an AD-edge-
path or an AB-edge-path.

Suppose r > 1, the boundary components ∂1F′ have positive slope 1/r, thus the slope
is in correspondence with the slope given by the surface defined by the continued fraction
expansion [1; 2m1, ..., 2mi] for β/α, by Corollary 25. Applying Proposition 21 we obtain the
result claimed in (1) .
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Similarly, if r < −1 the boundary slopes of ∂1F′ are negative and by Corollary 23, F′ is
in correspondence with the path given by the continued fraction expansion [0; 2n1, ..., 2n j].
The genus of F′ is given by Proposition 21 and hence we have proof (2).

If |r| = 1, then μ = n. If |lk(K1,K2)| > 1 then γ is a minimal AB-edge-path. Let
[s; 2r1, ..., 2rk] be the continued fraction expansion for β/α with s = 0 or 1 and such that
k ≥ 3 and rt ≥ 2 for all t. The genus of F′ is computed using Proposition 20. We have
proved (3).

In the case that |r| = 1 and |lk(K1,K2)| = 1, the path γ is an A-edge-path. Let [0; 2n1, ...,

2n j] and [1; 2m1, ..., 2mi] be the continued fraction for β/α with j, i odd. Using Proposition
19, we can compute the genus of the two surfaces corresponding to both continued fractions.
We pick the minimum between them, and we get part (4) of the Theorem. �
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