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Abstract
A polynomial invariant for multi-knotoids in S 2 is given by an elementary and combinato-

rial method. It is shown that the invariant is an extension of “a” HOMFLY polynomial for
multi-knotoids and that there exist infinitely many non-trivial knotoids with trivial HOMFLY
polynomial. Furthermore, formulas between the polynomials for a given multi-knotoid, its mir-
ror and reverse images are given. By using the formulas, it is revealed that each knotoid with
less than four crossings is invertible.

1. Introduction

1. Introduction
The purpose of this paper is to provide a polynomial invariant for multi-knotoids as a tool

for advancing the study of knotoids. The concept of a knotoid is introduced by Turaev [8]
in 2012. Since the theory of knotoid diagrams suggests a new diagrammatic approach to
knots, it can be expected that the study of knotoids is useful for that of knots. Hence, it is
meaningful to create invariants for knotoids. Turaev gives several invariants for knotoids
in his paper. One of them is a polynomial of “HOMFLY” type, which comes from a skein
algebra of knotoids. In this paper, we define a polynomial which is an extension of a HOM-
FLY polynomial different from Turaev’s one. It is given by an elementary and combinatorial
method which is analogous to that by Lickorish-Millett [5].

First of all, we begin by introducing a multi-knotoid. Let I be the interval [0, 1] and X
a disjoint union of I and a finite number of circles. Let f be a generic immersion of X in
S 2 whose singularities are transversal double points only. Let p be a double point on the
image f (X) ⊂ S 2. Since two arcs form p, in other words, they share p, we can regard p as a
point on each of them. We call the point corresponding to p on one arc the over crossing p+
and the point corresponding to p on the other arc the under crossings p−. A double point is
said to have over/under crossing data if the over and the under crossings are assigned to the
corresponding points on the arcs sharing the double point. A multi-knotoid diagram in S 2

is defined to be the image of X by f with over/under crossing data at each double point. If
X = I, then such an image is said to be a knotoid diagram. A double point with over/under
crossing data is called a crossing of the diagram. We depict a crossing on a diagram in the
same way as in a link diagram. See Fig. 1. The right figure displays a crossing. The over
and the under paths denote the arcs having the over and the under crossings, respectively.

Since the images of the points 0 and 1 in I under the immersion f are distinct from each
other and from the crossings, the diagram is composed of a curve and knots, each of which is
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Fig.1. A crossing on a diagram

called a component of the diagram. In particular, the curve is called the knotoid component
and each knot is called a knot component.

A multi-knotoid diagram, to be precise, the knotoid component has just two endpoints.
They are called the leg and the head of the component.

There exist specific local moves called Reidemeister moves on a multi-knotoid diagram.
The moves are combinations of the three types of Reidemeister moves as shown in Fig. 2
[4, p. 4]. In particular, a move which does not increase the number of crossings is called
a 1-sided Reidemeister move. A Reidemeister move is applied in a disk disjoint from the
endpoints of the diagram. Such a disk is called a stage for the move.

Fig.2. Reidemeister moves

Two multi-knotoid diagrams are said to be equivalent if they are related by a finite se-
quence of Reidemeister moves or ambient isotopies of S 2. Note that an ambient isotopy of
S 2 may displace the endpoints of the diagram. A multi-knotoid is defined to be an equiva-
lence class of multi-knotoid diagrams.

A multi-knotoid diagram is said to be oriented if each component is oriented, provided
that the knotoid component has the orientation from the leg to the head. Equivalence of
two oriented multi-knotoid diagrams and an oriented multi-knotoid are similarly defined as
above except that orientations are taken into consideration.

Let c be a crossing of a multi-knotoid diagram D. If c is composed of two arcs which
belong to the same component, then it is said to be a self crossing. If different components
form c, then c is called a mixed crossing. We denote the sets of the crossings, the self
crossings and the mixed crossings of D by C(D), SC(D) and MC(D), respectively. It is
obvious that C(D) = SC(D) �MC(D).

Suppose that D is oriented. Then, we can define the signature of a crossing c denoted by
sign(c) in a usual way; if c is positive (resp. negative), then sign(c) is +1 (resp. −1). Let
S be a subset of C(D). We put wr(S) =

∑

c∈S
sign(c). Then, wr(S) is called the writhe of S.

In particular, wr(C(D)), wr(SC(D)) and wr(MC(D)) are said to be the writhe, the self writhe
and the mixed writhe of D and are also denoted by wr(D), sw(D) and mw(D), respectively.

If we smooth a crossing of an oriented multi-knotoid diagram according to its orienta-
tion, then we obtain an oriented multi-knotoid diagram again. The similar situation occurs
even if we replace a null crossing with a crossing. These facts ensure existence of a triple
(D+,D−,D0) of oriented multi-knotoid diagrams D+,D− and D0 which differ only in one
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place as shown in Fig. 3. Such a triple of diagrams is called a skein triple.

Fig.3. A skein triple

Let D be a μ-component multi-knotoid diagram with μ ≥ 1. D is said to be trivial if D is
equivalent to a disjoint union of a segment and (μ− 1) trivial circles. A trivial multi-knotoid
diagram is called canonical if the diagram has no crossings, that is, the diagram itself is a
disjoint union of a segment and trivial circles.

Theorem 1.1. Let D be an oriented multi-knotoid diagram. Then there exists a polyno-
mial H(D; a, h, z) ∈ Z[a±1, h±1, z±1] for D satisfying the following:

(1) H(U0; a, h, z) = 1 for a canonical trivial knotoid diagram U0.
(2) H(D; a, h, z) is a regular isotopy invariant, that is, H(D; a, h, z) is invariant under

Reidemeister moves except the move of type I.
(3) If a multi-knotoid diagram D is obtained from a multi-knotoid diagram E by ap-

plying a 1-sided Reidemeister move of type I at a crossing c, then H(D; a, h, z) =
a−sign(c)H(E; a, h, z).

(4) For a skein triple (D+,D−,D0),

H(D+; a, h, z) − H(D−; a, h, z) = zH(D0; a, h, z).

Remark 1.2. The polynomial H(D; a, h, z) in Theorem 1.1 cannot be determined only by
the above four properties.

By using the H-polynomial in Theorem 1.1, we define the R-polynomial for an oriented
multi-knotoid diagram D by R(D; a, h, z) = a−wr(D)H(D; a, h, z). We also define the S R-
polynomial for D by S R(D; a, h, z) = a−sw(D)H(D; a, h, z). Since wr(D) = sw(D) + mw(D),
there exists a relationship

R(D; a, h, z) = a−mw(D)S R(D; a, h, z)

between the R- and the S R-polynomials. The two polynomials are identical for a knotoid
diagram since such a diagram has no mixed crossings.

Remark 1.3. For a skein triple (D+,D−,D0), it holds that

aR(D+; a, h, z) − a−1R(D−, a, h, z) = zR(D0; a, h, z).

Corollary 1.4. Let L be an oriented multi-knotoid and D its diagram. Then, R(L) and
S R(L), which are defined by R(D) and S R(D) respectively, are invariants for L.

The paper is organized as follows. The following section is devoted to preliminaries for
the definition of the H-polynomial. After that, we prove Theorem 1.1 in Section 3 and
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show that the R-polynomial is an extension of a HOMFLY polynomial for multi-knotoids
in Section 4. In Section 5, we give formulas between the R-polynomials for a given multi-
knotoid, its mirror and reverse images. In the final section, we classify knotoids with up to
three crossings and show that each of them is invertible.

2. Preliminaries

2. Preliminaries
Let D be a multi-knotoid diagram and kt(D) the number of the knot components of D.

Then, we denote D by D0 ∪ D1 ∪ · · · ∪ Dkt(D), where D0 is always assigned to the knotoid
component.

A map π : {D0,D1, . . . ,Dkt(D)} → {0, 1, . . . , kt(D)} is called an ordering of D if π is
bijective and π(D0) = 0. A multi-knotoid diagram D is said to be ordered if an ordering of
D is given to D.

For an oriented multi-knotoid diagram D = D0 ∪ D1 ∪ · · · ∪ Dkt(D), kt(D) ≥ 0, let P =

(p0, p1, . . . , pkt(D)) ∈
kt(D)∏

j=0

Dj be a (kt(D)+1)-tuple of points of D such that p0 is the leg of the

knotoid component D0 and p j, 1 ≤ j ≤ kt(D), is distinct from the crossings of D. We call
such a (kt(D) + 1)-tuple of points of D standard. D is said to have a basepoint if a standard
(kt(D) + 1)-tuples of points is specified.

Suppose that an oriented multi-knotoid diagram D is ordered by an ordering π and has a
basepoint P = (p0, p1, . . . , pkt(D)). We denote such a diagram by D[π, P].

Since a crossing of the diagram D[π, P] is a transversal intersection by two arcs, passing
across the crossing may be supposed to go through on one of the arcs. Since there exist the
over crossing on one arc and the under crossings on the other, when we travel the diagram
D[π, P], the order of passing the over and the under crossings at each crossing can be explic-
itly defined according to the oriention of D, the ordering π and the basepoint P. An oriented
multi-knotoid diagram D[π, P] is said to be descending if at each crossing the over crossing
is first encountered when we travel the diagram D[π, P] in the direction of the orientation ac-
cording to the ordering π and the basepoint P. Note that an oriented multi-knotoid diagram
with an ordering and a basepoint gives a unique descending one with respect to the ordering
and the basepoint.

Let D be a multi-knotoid diagram and E a subdiagram of D with 0 < μ(E) < μ(D), where
μ(F) denotes the number of the components of a diagram F. E is said to overlie D − E if at
each mixed crossing formed by a component of E and a component of D − E, its over and
under crossings are on components of E and D− E respectively. If E is disjoint from D− E,
then E can be considered to overlie D − E.

Let k be a non-negative integer. An oriented multi-knotoid diagram D[π, P] is said to be
descending of level k, k < kt(D), if the subdiagram Ek = π

−1(0) ∪ π−1(1) ∪ · · · ∪ π−1(k) of D
has the following two properties:

(1) Ek is descending with respect to the ordering and the basepoint induced from π and
P.

(2) Ek overlies D − Ek.
Note that a descending diagram is also descending of level k for any k, 0 ≤ k < kt(D).

Let λ1, . . . , λm−1 and λm, m ≥ 1, be different crossings of a multi-knotoid diagram D and
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λ = (λm, λm−1, . . . , λ1) their ordered sequence. Then, a new diagram can be obtained from D
by switching each crossing in λ. We denote it by D(λ) and λ is called a switching sequence
for D. We express the set of the crossings λ1, . . . , λm−1 and λm by {λ} and the diagram
obtained from D by switching λ1 by S λ1 D. We denote by Zλ1 D the diagram obtained from D
by smoothing λ1. For example, Zλ2S λ1 D means the diagram obtained from D by smoothing
λ2 after changing λ1. Thus, we see that D(λ) = S λmS λm−1 · · · S λ1 D. We may write it as
S mS m−1 · · · S 1D for convenience of notation.

If an oriented multi-knotoid diagram is equipped with an ordering or a basepoint, then
each equipment is called an option for the diagram.

Let D be an oriented multi-knotoid diagram with an ordering π and a basepoint P. Sup-
pose that D is not descending with respect to the options (π, P). Then, there exists a switch-
ing sequence λ which changes D into the descending diagram D(λ). Such a sequence is
called a descending sequence for D. Note that λ is not unique, but {λ} is unique and is
determined by the options (π, P).

For an oriented multi-knotoid diagram D, we define the weight and the determinant of
D as follows. The weight WD of D is given by the monomial asw(D)hmw(D) ∈ Z[a±1, h±1].
The determinant of D denoted by dD is defined to be the polynomial {(a − a−1)z−1}kt(D) ∈
Z[a±1, z±1].

Let D be an oriented multi-knotoid diagram with an ordering π and c a crossing of D
composed of arcs of Di and Dj, 0 ≤ i, j ≤ kt(D). The classification of c denoted by cls(c)
is defined to be δ(π(Di), π(Dj)) ∈ {0, 1}, where δ(m, n) denotes the Kronecker delta which
takes the value 1 if m = n; otherwise, the value 0. In other words, if c is a self (resp. a mixed
) crossing, then the classification cls(c) of c is 1 (resp. 0). We define the weight of c denoted
by w(c) by the following monomial

w(c) = (acls(c)h1−cls(c))sign(c) ∈ Z[a±1, h±1].

Then, it is obvious that the weight of D is equal to the product of the weights of all crossings
of D, that is, WD =

∏

c∈C(D)

w(c), where
∏

c∈C(D)

w(c) is defined to be 1 if C(D) = ∅.
At the end of this section, we introduce a local move on the diagram. Let D be a multi-

knotoid diagram. Suppose that the connected component of D including the knotoid com-
ponent D0 has at least one crossing. Then, there exists the first crossing c of D encountered
when traveling from the leg of D0. We denote by TcD the multi-knotoid diagram obtained
from D by sliding the leg of D0 just past the crossing c as in Fig. 4. We call the operation
changing D into TcD the tug move at c.

Fig.4. The tug move
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3. Proof of Theorem 1.1

3. Proof of Theorem 1.1
In this section, we will provide the definition of the H-polynomial and the proof of its

invariance. The H-polynomial will be defined under an inductive assumption. Its well-
definedness, which is the independence of choices of the options, and invariance will be
given by a combinatorial method based on an induction on the number of the crossings of
a multi-knotoid diagram. It is similar to approach to the HOMFLY polynomial introduced
by Lickorish and Millett [5]. After that, we will show that the R-polynomial is invariant for
multi-knotoids.

Let D be an oriented multi-knotoid diagram. We denote the number of the crossings of D
by cr(D).

If cr(D) = 0, then D is a canonical trivial multi-knotoid diagram. The H-polynomial
H(D) = H(D; a, h, z) for D is defined to be WDdD for any ordering and any basepoint.

If cr(D) = n ≥ 1, then we assume the following.

Inductive hypothesis (n − 1):
For all multi-knotoid diagrams with less than n crossings,

(a) The H-polynomial is well defined, that is independent of choices of the basepoint
and the ordering.

(b) The H-polynomial has the properties (1) to (4) in Theorem 1.1.
(c) The H-polynomial is independent of the position of a disjoint component.
(d) If a multi-knotoid diagram has a descending function of level 0 and its connected

component including the knotoid component has a crossing, then the H-polynomial
for the diagram coincides with the H-polynomial for the multi-knotoid diagram ap-
plied the tug move at a crossing multiplied by the weight of the crossing.

We define the H-polynomial H(D) for any multi-knotoid diagram D with n crossings,
which has an ordering π and a basepoint P, as follows.

Recursive definition (n):
(a) If D[π, P] is descending with respect to the options (π, P), then H(D[π, P]) = WDdD.
(b) If D[π, P] is not descending, then by a descending sequence λ = (λm, . . . , λ1) for

D[π, P], we define

H(D[π, P]) = H(D(λ)[π, P]) + z
m∑

k=1

sign(λk)H(Aλk D),

where Aλk D = ZkS k−1 . . . S 1D.

For a multi-knotoid diagram D and its switching sequence λ = (λm, . . . , λ1), we denote the

polynomial
m∑

k=1

sign(λk)H(Aλk D) by
∑

D

λ. Thus, the H-polynomial of case (b) in Recursive

definition (n) can be written as

H(D[π, P]) = H(D(λ)[π, P]) + z
∑

D

λ.



A Polynomial Invariant for Knotoids 245

Remark 3.1. According to the definition of H(D) for a diagram D with cr(D) = 0, it is
clear that Inductive hypothesis (0) is satisfied.

We realize the following on Inductive hypothesis (1) (d) . It will be referred to in the
proof for independence of the choice of the ordering.

Lemma 3.2. Let D be a multi-knotoid diagram with a unique crossing c. Suppose that D
is a descending diagram of level 0 with respect to options (π, P). If the connected component
of D including the knotoid component has the crossing c, then D[π, P] is a descending
diagram.

Proof. We have two cases according to the classification of c. First, we assume that c is
a self crossing. Then, c is on the knotoid component D0. Since D is a descending diagram
of level 0, D0 is descending. It follows that D is a descending diagram. Next, we suppose
that c is a mixed crossing. Then, c is composed of two arcs of D0 and Dj, 1 ≤ j ≤ kt(D).
Since D is a descending diagram of level 0, D0 is above Dj. It implies that D is a descending
diagram. Hence, we see that D is descending regardless of the classification of c. �

In the following six steps, we will show that the H-polynomials for multi-knotoid dia-
grams with at most n crossings satisfy Inductive hypothesis (n), on condition that Inductive
hypothesis (n−1) is true for multi-knotoid diagrams with less than n crossings. It completes
most of the proof of Theorem 1.1. Throughout the steps, we suppose that multi-knotoid
diagrams are oriented.

Step 1: The H-polynomial is independent of the choice of the descending sequence.

Lemma 3.3. Let D be a multi-knotoid diagram with n crossings, n ≥ 2. Let λ = (λ2, λ1)
and ϕ = (λ1, λ2) be two switching sequences for D. Then,

∑

D

λ =
∑

D

ϕ.

Proof. Let εi = sign(λi). From the definition, we have

−
∑

D

λ +
∑

D

ϕ = −(ε1H(Aλ1D) + ε2H(Aλ2D)) + (ε2H(Aϕ1 D) + ε1H(Aϕ2 D))

= −(ε1H(Z1D) + ε2H(Z2S 1D)) + (ε2H(Z2D) + ε1H(Z1S 2D))

= −ε1(H(Z1D) − H(S 2Z1D)) + ε2(H(Z2D) − H(S 1Z2D)),

where we use Z2S 1D = S 1Z2D and Z1S 2D = S 2Z1D. Since cr(Z1D) = cr(Z2D) = n − 1,
Inductive hypothesis (n − 1) gives the two equalities H(Z1D) − H(S 2Z1D) = ε2zH(Z2Z1D)
and H(Z2D) − H(S 1Z2D) = ε1zH(Z1Z2D). Since Z1Z2D = Z2Z1D, we have the result. �

Lemma 3.4. Let λ = (λm, λm−1, . . . , λ1) be a switching sequence for a multi-knotoid
diagram D with n crossings, n ≥ 2, and λ′ the switching sequence for D obtained from λ
by changing the order of two crossings λ j and λ j+1, 1 ≤ j < m, where 2 ≤ m ≤ n. Then,∑

D

λ =
∑

D

λ′.

Proof. Let λ′ = (λ′m, λ′m−1, . . . , λ
′
1). We put εk = sign(λk) and ε′k = sign(λ′k), 1 ≤ k ≤ m.

Since λk = λ
′
k and Aλk D = Aλ

′
k D, 1 ≤ k < j, j + 1 < k ≤ m, we have
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∑

D

λ −
∑

D

λ′ = ε jH(Aλj D) + ε j+1H(Aλj+1D)) − ε′jH(Aλ
′

j D) − ε′j+1H(Aλ
′

j+1D)).

Put E = S j−1S j−2 · · · S 1D and let ϕ1 = (λ j+1, λ j) and ϕ2 = (λ j, λ j+1) be two switching
sequences for E. Since Aλj D = Aϕ1

1 E, Aλj+1D = Aϕ1
2 E, Aλ

′
j D = Aϕ2

1 E, and Aλ
′

j+1D = Aϕ2
2 E, by

these equalities and Lemma 3.3, we have
∑

D

λ −
∑

D

λ′ =
∑

E

ϕ1 −
∑

E

ϕ2 = 0. �

Lemma 3.5. Let D be a multi-knotoid diagram which is not descending with respect to
an ordering and a basepoint. Let λ and λ′ be descending sequences for D with respect to
the same options. Then, the H-polynomials of D obtained by using λ and λ′ coincide.

Proof. Let (π, P) be options for D. Let H(D[π, P])[λ] and H(D[π, P])[λ′] be H-
polynomials of D[π, P] obtained by using λ and λ′, respectively. Then, we have

H(D[π, P])[λ] = H(D(λ)[π, P]) + z
∑

D

λ

and

H(D[π, P])[λ′] = H(D(λ′)[π, P]) + z
∑

D

λ′.

Since {λ} = {λ′} and the two descending sequences λ and λ′ are related by a finite se-
quence of changing order of adjacent crossings, Lemma 3.4 gives

∑

D

λ =
∑

D

λ′. Since

D(λ) is the same diagram as D(λ′), we obtain H(D(λ)[π, P]) = H(D(λ′)[π, P]), which yields
H(D[π, P])[λ] = H(D[π, P])[λ′]. �

Step 2: The H-polynomial is independent of the choice of the position of the basepoint.

Lemma 3.6. Let D be a multi-knotoid diagram with n crossings and kt(D) > 0 given
an ordering π and a basepoint P = (p0, p1, . . . , pkt(D)). Let c denote the first crossing of D
encountered when traveling from pk on a knot component Dk, 1 ≤ k ≤ kt(D). Let qk be a
point on Dk obtained by sliding pk just past the crossing c and Q the standard (kt(D) + 1)-
tuple of points of D obtained from P by replacing pk with qk. Suppose that c is a self crossing
of Dk and D is descending with respect to (π, P). Then,

H(D[π, P]) − H(S cD[π,Q]) = sign(c)zH(ZcD).

Proof. Since D[π, P] is descending, we easily find that S cD[π,Q] is descending and ZcD
is also descending with respect to suitable options. Note that cr(ZcD) = n − 1. Recursive
definition (n) and Inductive hypothesis (n − 1) give H(D[π, P]) = WDdD, H(S cD[π,Q]) =
WS cDdS cD and H(ZcD) = WZcDdZcD.

Since c is a self crossing of Dk, the diagram ZcDk has two knot components Ek and Fk,
that is, ZcDk = Ek ∪ Fk. Since Dk is descending with respect to pk, we may assume that Ek

is above Fk. Then, ZcDk is splittable and the linking number lk(Ek, Fk) of the components
Ek and Fk is zero. Hence,

∑

r∈MC(ZcDk)

sign(r) = 2lk(Ek, Fk) = 0. Since the classification of

each crossing r ∈ MC(ZcDk) is zero, we have w(r) = hsign(r). These two equalities give∏

r∈MC(ZcDk)

w(r) = h2lk(Ek ,Fk) = 1.
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It is easy to see that SC(D) = SC(ZcD) �MC(ZcDk) � {c}. We also find that

MC(D) = C(D) − SC(D)

= (C(ZcD) � {c}) − (SC(ZcD) �MC(ZcDk) � {c})
= (C(ZcD) − SC(ZcD)) −MC(ZcDk)

= MC(ZcD) −MC(ZcDk),

and thus, MC(ZcD) = MC(D) �MC(ZcDk). So, we obtain

∏

r∈MC(ZcD)

w(r) =

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈MC(D)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈MC(ZcDk)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠ =
∏

r∈MC(D)

w(r)

and

∏

r∈SC(D)

w(r) =

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈SC(ZcD)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈MC(ZcDk)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠w(c)

= w(c)

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈SC(ZcD)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠ .

It follows that

WD =
∏

r∈C(D)

w(r) =

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈SC(D)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈MC(D)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠

= w(c)

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈SC(ZcD)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
∏

r∈MC(ZcD)

w(r)

⎞⎟⎟⎟⎟⎟⎟⎠ = w(c)WZcD.

Similarly, we have WS cD = w(c∗)WZcD, where c∗ denotes the crossing obtained from c by
switching. Since kt(D) = kt(S cD) = kt(ZcD) − 1, it is obvious that dZcD = ρdD = ρdS cD,
where ρ = (a − a−1)z−1. Hence, since sign(c∗) = −sign(c), we obtain

H(D[π, P]) − H(S cD[π,Q]) − sign(c)zH(ZcD)

= WD dD −WS cD dS cD − sign(c)zWZcD dZcD

= WZcD dD(w(c) − w(c∗) − sign(c)z ρ)

= WZcD dD(asign(c) − a−sign(c) − sign(c)(a − a−1))

= 0. �

Lemma 3.7. Let D be a multi-knotoid diagram of n crossings with an ordering π. Then,
the H-polynomial of D is independent of the position of the basepoint, that is, for any base-
points P and Q, H(D[π, P]) = H(D[π,Q]).

Proof. If D is a knotoid diagram, then D has a unique basepoint. Suppose that kt(D) > 0.
It is enough to show that the H-polynomial of D does not depend on the position of the
basepoint on a knot component Dk, 1 ≤ k ≤ kt(D). Let q be a point on Dk and c the last
crossing of D to the point q. We choose a new point p on Dk such that c is the first crossing
of D from p. Using the points, we give the two basepoints P = (p0, p1, . . . , p, . . . , pkt(D)) and
Q = (p0, p1, . . . , q, . . . , pkt(D)) to D. Note that P and Q differ only the points on Dk.
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First, we suppose that c is a mixed crossing. Let λ and λ′ be descending sequences with
respect to (π, P) and (π,Q), respectively. Since {λ} = {λ′}, we have D(λ) = D(λ′) and, by
Lemma 3.4,

∑

D

λ =
∑

D

λ′. Thus, the H-polynomial remains unchanged even if we make a

change of basepoint form P to Q.
Next, we assume that c is a self crossing of Dk. Let λ = (λm−1, . . . , λ1) be a descend-

ing sequence for D with respect to (π,Q). We have two cases. If c � {λ}, then ϕ =
(λm, λm−1, . . . , λ1) with λm = c is a descending sequence for D with respect to (π, P). Then,

H(D[π,Q]) = H(D(λ)[π,Q]) + z
∑

D

λ

and

H(D[π, P]) = H(D(ϕ)[π, P]) + z
∑

D

ϕ

= H(D(ϕ)[π, P]) + z

⎛⎜⎜⎜⎜⎜⎝
∑

D

λ + sign(λm)H(AϕmD)

⎞⎟⎟⎟⎟⎟⎠

= H(D(ϕ)[π, P]) + z
∑

D

λ + sign(c)zH(Zc(D(λ))).

We denote D(ϕ) by E. Then, we see that D(λ) = S c∗E and Zc(D(λ)) = Zc∗E. Let εc =

sign(c) and εc∗ = sign(c∗). Since E is descending with respect to (π, P) and εc∗ = −εc, by
Lemma 3.6, we have

H(D[π, P]) − H(D[π,Q]) = H(E[π, P]) − H(S c∗E[π,Q]) − εc∗zH(Zc∗E) = 0.

Suppose that c ∈ {λ}. Let λi = c. The switching sequence λ′ which is defined by (λi, . . . , λ1,

λm−1, . . . , λi+1) is a descending sequence for D with respect to (π,Q). We choose ϕ =
(λi−1, . . . , λ1, λm−1, . . . , λi+1) as a descending sequence for D with respect to (π, P). Then,

H(D[π, P]) = H(D(ϕ)[π, P]) + z
∑

D

ϕ

and

H(D[π,Q]) = H(D(λ′)[π,Q]) + z
∑

D

λ′

= H(D(λ′)[π,Q]) + z

⎛⎜⎜⎜⎜⎜⎝
∑

D

ϕ + εcH(Aλ
′

m−1D)

⎞⎟⎟⎟⎟⎟⎠

= H(D(λ)[π,Q]) + z
∑

D

ϕ + εczH(Zc(D(ϕ))).

We denote D(ϕ) by E. Then, we see that D(λ) = S cE. Since E is descending with respect
to (π, P), by Lemma 3.6, we have

H(D[π, P]) − H(D[π,Q]) = H(E[π, P]) − H(S cE[π,Q]) − εczH(ZcE) = 0,

completing the proof. �

By Lemma 3.7, we can express the H-polynomial of a multi-knotoid diagram D with
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options (π, P) as H(D[π]) instead of H(D[π, P]) if it is not necessary to specify the basepoint.

Step 3: The H-polynomials for a skein triple satisfy a skein relation.

Lemma 3.8. Let D be a multi-knotoid diagram with n crossings and c a crossing of D.
Suppose that D and S cD have the same ordering π. Then,

H(D[π]) − H(S cD[π]) = sign(c)zH(ZcD).

Proof. We choose the same basepoint P on D and S cD. Let λ and λ′ be descending
sequences for D and S cD with respect to (π, P), respectively. There are two cases. First, we
consider the case c ∈ {λ}. If λ = (c), then D(λ) = S cD. Recursive definition (n) ensures the
claim. We may assume that λ and λ′ are (λm, λm−1, . . . , λ1) and (λm−1, . . . , λ1), respectively,
with λm = c and m > 1. Let ϕ = (λm−1, . . . , λ1, λm) and εc = sign(c). Then, by Recursive
definition (n) and Lemma 3.5,

H(S cD[π]) = H(S cD(λ′)[π]) + z
∑

S cD

λ′

and

H(D[π]) = H(D(ϕ)[π]) + z
∑

D

ϕ

= H(D(ϕ)[π]) + z

⎛⎜⎜⎜⎜⎜⎜⎝εcH(ZcD) +
m−1∑

j=1

sign(λ j)H(Aλ
′

j (S cD))

⎞⎟⎟⎟⎟⎟⎟⎠

= H(D(ϕ)[π]) + εczH(ZcD) + z
∑

S cD

λ′.

Since D(ϕ) = D(λ) = S cD(λ′), we have H(D[π]) − H(S cD[π]) = εczH(ZcD).
Next, we suppose that c � {λ}. If λ′ = (c∗), then S cD(λ′) = D. The claim follows

from Recursive definition (n). So, we may assume that λ and λ′ are (λm−1, . . . , λ1) and
(λm, λm−1, . . . , λ1), respectively, with λm = c∗ and m > 1. We put ϕ = (λm−1, . . . , λ1, λm) and
εc∗ = sign(c∗). Then, by Recursive definition (n) and Lemma 3.5,

H(D[π]) = H(D(λ)[π]) + z
∑

D

λ

and

H(S cD[π]) = H(S cD(ϕ)[π]) + z
∑

S cD

ϕ

= H(S cD(ϕ)[π]) + z

⎛⎜⎜⎜⎜⎜⎜⎝εc∗H(Zc∗(S cD)) +
m−1∑

j=1

sign(λ j)H(Aλj D)

⎞⎟⎟⎟⎟⎟⎟⎠

= H(S cD(ϕ)[π]) + εc∗zH(ZcD) + z
∑

D

λ.

Since D(λ) = S cD(ϕ) and εc∗ + εc = 0, we have the same formula as the previous case. This
completes the proof. �

Step 4: The H-polynomial is independent of the position of the disjoint component.
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Lemma 3.9. Let D be a multi-knotoid diagram of n crossings with an ordering π. If D
is a disjoint union of a multi-knotoid diagram D1 and a link diagram D2 and E is another
disjoint union of D1 and D2 obtained from D by changing the position of D2, then H(D[π]) =
H(E[π]).

Proof. Let P be a basepoint on D. By Step 2, we may choose P as a basepoint on E.
If D is descending with respect to (π, P), then E is also descending with respect to (π, P).
Since it is clear that WD = WE and dD = dE , the claim is true. Suppose that D[π, P] is not
descending. Let λ = (λm, . . . , λ1) be a descending sequence for D[π, P]. Then, λ is also
descending sequence for E[π, P]. By Recursive definition (n) and Step 2, we have

H(D[π]) = H(D(λ)[π]) + z
∑

D

λ and H(E[π]) = H(E(λ)[π]) + z
∑

E

λ.

Since cr(Aλk D) = cr(Aλk E) = n − 1, 1 ≤ k ≤ m, Inductive hypothesis (n − 1) gives H(Aλk D) =
H(Aλk E), 1 ≤ k ≤ m. It follows that

∑

D

λ =
∑

E

λ. Since D(λ)[π, P] and E(λ)[π, P] are

descending diagrams, we have H(D(λ)[π]) = H(E(λ)[π]) according to the previous case.
Thus, we obtain H(D[π]) = H(E[π]), completing the proof. �

Step 5: The H-polynomial has the properties (2) and (3) in Theorem 1.1.

We discuss invariance of the H-polynomial under Reidemeister moves. We begin with
the Reidemeister move of type I.

Lemma 3.10. Let D be a multi-knotoid diagram of n crossings with an ordering π and E
a diagram obtained from D by applying a 1-sided Reidemeister move of type I at a crossing
c of D. Then, H(D[π]) = w(c)H(E[π]).

Proof. Let B be a stage for the local move. We choose a basepoint P on D outside B. We
may regard P as a basepoint for E.

If D[π, P] is descending, then E[π, P] is also descending. By Recursive definition (n), we
have H(D[π]) = WDdD and H(E[π]) = WEdE . It is obvious that dD = dE and WD = w(c)WE ,
which lead to H(D[π]) = w(c)H(E[π]).

We assume that D[π, P] is not descending. Let λ = (λm, . . . , λ1) be a descending sequence
for D with respect to (π, P). We have two cases.

First, we suppose that c � {λ}. Then, λ is also a descending sequence for E with respect
to (π, P). Recursive definition (n) and Step 2 give

H(D[π]) = H(D(λ)[π]) + z
∑

D

λ and H(E[π]) = H(E(λ)[π]) + z
∑

E

λ.

Since H(Aλk D) = w(c)H(Aλk E), 1 ≤ k ≤ m, by Inductive hypothesis (n − 1), we have
∑

D

λ =

w(c)
∑

E

λ. Since D(λ)[π, P] and E(λ)[π, P] are descending diagrams, by the result of the

previous case, we have H(D(λ)[π]) = w(c)H(E(λ)[π]), and thus, H(D[π]) = w(c)H(E[π]).
Next, we suppose that c ∈ {λ}. By Step 1, we may assume that λm = c. Let ϕ =

(λm−1, . . . , λ1). ϕ is a descending sequence for E with respect to (π, P). Then, we obtain
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H(E[π]) = H(E(ϕ)[π]) + z
∑

E

ϕ

by Recursive definition (n). Let εc = sign(c). We also have

H(D[π]) = H(D(λ)[π]) + z
∑

D

λ

= H(D(λ)[π]) + z

⎛⎜⎜⎜⎜⎜⎜⎝εcH(AλmD) +
m−1∑

j=1

sign(λ j)H(Aλj D)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since AλmD = Zc(D(ϕ)) and

∑

D

ϕ =

m−1∑

j=1

sign(λ j)H(Aϕj D) =
m−1∑

j=1

sign(λ j)H(Aλj D),

we obtain

H(D[π]) = H(D(λ)[π]) + εczH(Zc(D(ϕ)) + z
∑

D

ϕ.

Since E(ϕ) and Zc(D(ϕ)) = E(ϕ) � U1 are descending diagrams of (n − 1) crossings with
respect to suitable options,

H(Zc(D(ϕ))) = WE(ϕ)�U1dE(ϕ)�U1 = WE(ϕ)dE(ϕ) ρ = ρH(E(ϕ)),

where U1 denotes a trivial circle and ρ = (a − a−1)z−1. It is obvious that WD(λ) = w(c∗)WE(ϕ)

and dD(λ) = dE(ϕ). It follows that H(D(λ)[π]) = w(c∗)H(E(ϕ)[π]), and then,

H(D(λ)[π]) + εczH(Zc(D(ϕ))) = H(E(ϕ)[π])(w(c∗) + εcz ρ)

= H(E(ϕ)[π])(a−εc + εc(a − a−1))

= w(c)H(E(ϕ)[π]).

We also find that
∑

D

ϕ = w(c)
∑

E

ϕ because H(Aϕj D) = w(c)H(Aϕj E), 1 ≤ j ≤ m − 1, by

Inductive hypothesis (n − 1). Hence, we obtain H(D[π]) = w(c)H(E[π]). It completes the
proof. �

Next, we deal with the Reidemeister move of type II.

Lemma 3.11. Let D be a multi-knotoid diagram of n crossings with an ordering π and
E a diagram obtained from D by applying a 1-sided Reidemeister move of type II. Then,
H(D[π]) = H(E[π]).

Proof. Let c1 and c2 be the crossings of D eliminated by the Reidemeister move of type
II which changes D into E and B a stage for the local move. We choose a basepoint P on D
outside B. We may regard P as a basepoint for E.

If D[π, P] is descending, then E[π, P] is also descending. By Recursive definition (n),
we have H(D[π]) = WDdD and H(E[π]) = WEdE . It is obvious that dD = dE . Since
classification of c1 is equal to that of c2 and the signature of c1 is different from that of c2,
we obtain w(c1)w(c2) = 1 and WD = WE . It follows that H(D[π]) = H(E[π]).

We assume that D[π, P] is not descending. Let λ = (λm, . . . , λ1) be a descending sequence
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for D with respect to (π, P).
First, we suppose that c1 � {λ}. Then, c2 � {λ} and λ is also a descending sequence for E

with respect to (π, P). Thus,

H(D[π]) = H(D(λ)[π]) + z
∑

D

λ and H(E[π]) = H(E(λ)[π]) + z
∑

E

λ.

Since H(Aλk D) = H(Aλk E), 1 ≤ k ≤ m, by Inductive hypothesis (n − 1), we have
∑

D

λ =

∑

E

λ. Since D(λ)[π, P] and E(λ)[π, P] are descending diagrams, by the above fact on the

descending diagrams, we have H(D(λ)[π]) = H(E(λ)[π]) and thus, H(D[π]) = H(E[π]).
Next, we suppose that c1 ∈ {λ}. Then, c2 is also an element of {λ}. The signatures of c1

and c2 are different, and so we may assume that c1 is positive. By Lemma 3.8, we have

H(S c2 D[π]) − H(D[π]) = sign(c∗2)zH(Zc∗2 D) = zH(Zc2 D)

and

H(S c2 D[π]) − H(S c1S c2 D[π]) = sign(c1)zH(Zc1S c2 D) = zH(Zc1S c2 D).

Since Zc2 D and Zc1S c2 D are either identical or related by Reidemeister moves of type I by
which the numbers of the crossings of diagrams do not exceed n, we find that H(Zc2 D)
and H(Zc1S c2 D) coincide. The result of the previous case gives H(S c1S c2 D[π]) = H(E[π]),
which yields the claim. �

We focus on the Reidemeister move of type III. The Reidemeister move of type III as in
Fig. 2 can be regarded as a passage of one arc over a crossing c between the others. The arc
which pass over c is called the top arc and the remaining arcs are called the middle and the
bottom arcs, where the middle arc and the bottom arc correspond to the overpath and the
underpath at c, respectively.

Lemma 3.12. Let D be a multi-knotoid diagram of n crossings with an ordering π and E
a diagram obtained from D by applying a Reidemeister move of type III. Then, H(D[π]) =
H(E[π]).

Proof. Let B be a stage for the Reidemeister move of type III which changes D into
E. Let c1, c2 and c3 be the crossings of D in B which are composed of the top and the
middle arcs, the top and the bottom arcs, and the middle and the bottom arcs, respectively.
We denote the three crossings of E in B by r1, r2 and r3, similarly. Let εci = sign(ci) and
εri = sign(ri), 1 ≤ i ≤ 3. Note that εci = εri . We choose a basepoint P on D outside B. We
may regard P as a basepoint for E.

If D[π, P] is descending, then E[π, P] is also descending. Since w(ci) = w(ri), 1 ≤ i ≤ 3,
we see that WD = WE and dD = dE . By Recursive definition (n), we have H(D[π]) =
WDdD = WEdE = H(E[π]).

We assume that D[π, P] is not descending. Let λ = (λm, . . . , λ1) be a descending sequence
for D with respect to (π, P).

If D[π, P] is descending in B, then λ is also a descending sequence for E with respect to
(π, P). Then,
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H(D[π]) = H(D(λ)[π]) + z
∑

D

λ and H(E[π]) = H(E(λ)[π]) + z
∑

E

λ.

Since H(Aλk D) = H(Aλk E), 1 ≤ k ≤ m, by Inductive hypothesis (n − 1), we have
∑

D

λ =

∑

E

λ. Since D(λ)[π, P] and E(λ)[π, P] are descending diagrams, we find that H(D(λ)[π]) =

H(E(λ)[π]). Hence, we obtain H(D[π]) = H(E[π]).
Suppose that D[π, P] is not descending in B. Let N be the set of the crossings in λ

switched to change the diagram in B into descending one. Then, the five cases as in Table 1
can occur. The crossing change in Case 1 (resp. Case 2) can be realized by transposing
the top and the middle (resp. the middle and the bottom) arcs in B. Then, we see that
the crossing changes in any other case can be regarded as a combination of the above two
transpositions. The claim is shown by induction on the number of the crossings in N. By
the above description, it is enough to check Cases 1 and 2.

First, we consider Case 1, where c1 and r1 are changed. By Lemma 3.8, we have

H(D[π]) − H(S c1 D[π]) = εc1zH(Zc1 D)

and

H(E[π]) − H(S r1 E[π]) = εr1zH(Zr1 E).

Note that cr(Zc1 D) = cr(Zr1 E) = n − 1. Since Zc1 D and Zr1 E are identical or they are related
by two Reidemeister moves of type II by which the numbers of the crossings of diagrams
do not exceed n, we obtain H(Zc1 D) = H(Zr1 E). This result and the equality H(S c1 D[π]) =
H(S r1 E[π]), which comes from the inductive hypothesis, provide H(D[π]) = H(E[π]).

Next, we consider Case 2, where c3 and r3 are changed. We may assume that H(S c3 D[π])
= H(S r3 E[π]) by the inductive hypothesis. The rest of the proof is similar to that of the
previous case. �

Table 1. The set N in each case

Case 1 2 3 4 5
N {c1} {c3} {c1, c2} {c2, c3} {c1, c2, c3}

Step 6: The H-polynomial is independent of the choice of the ordering.

Lemma 3.13. Let D be a multi-knotoid diagram of n crossings with options (π, P). Let
c denote the first crossing of D encountered when traveling from the leg of the knotoid
component. Let TcD be the multi-knotoid diagram obtained from D by applying the tug
move at c. If D[π, P] is a descending diagram of level 0, then H(D[π]) = w(c)H(TcD).

Proof. Note that by Lemma 3.2, D[π, P] is descending if n = 1. If D[π, P] is descending,
then TcD is also descending with respect to (π, P). Recursive definition (n) and Inductive
hypothesis (n−1) give H(D[π]) = WDdD and H(TcD) = WTcDdTcD, respectively. It is obvious
that dD = dTcD. Since C(D) = C(TcD) ∪ {c}, WD = w(c)WTcD. Thus, the claim is true.

Suppose that D[π, P] is not a descending diagram. Let λ = (λm, . . . , λ1) be a descend-
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ing sequence for D with respect to (π, P). Then, c � {λ} and each λ j, 1 ≤ j ≤ m, is
a self crossing of a knot component or a mixed crossing composed of two different knot
components because D[π, P] is descending of level 0. Thus, Aλj D, 1 ≤ j ≤ m, is de-
scending of level 0 with respect to suitable options. By Inductive hypothesis (n − 1), we
have H(Aλj D) = w(c)H(Tc(Aλj D)). Since D(λ)[π, P] is descending, the previous case gives
H(D(λ)[π]) = w(c)H(Tc(D(λ))), and thus,

H(D[π]) = H(D(λ)[π]) + z
m∑

j=1

sign(λ j)H(Aλj D)

= w(c)

⎛⎜⎜⎜⎜⎜⎜⎝H(Tc(D(λ))) + z
m∑

j=1

sign(λ j)H(Tc(Aλj D))

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since c � {λ} and λ is a descending sequence for TcD with respect to (π, P), we see that
Tc(D(λ)) = (TcD)(λ), Tc(Aλj D) = Aλj (TcD), 1 ≤ j ≤ m, and

H(TcD) = H((TcD)(λ)) + z
∑

TcD

λ

= H(Tc(D(λ))) + z
m∑

j=1

sign(λ j)H(Aλj (TcD))

= H(Tc(D(λ))) + z
m∑

j=1

sign(λ j)H(Tc(Aλj D)).

It follows that H(D[π]) = w(c)H(TcD). �

Lemma 3.14. Let D be a multi-knotoid diagram with n crossings and π and ξ different
orderings of D. If the connected component of D including the knotoid component has a
crossing, then H(D[π]) = H(D[ξ]).

Proof. Let c be the first crossing of D encountered when traveling from the leg of the
knotoid component. We give a basepoint P on D.

If D is descending with respect to (π, P), then D[π, P] and D[ξ, P] are descending of level
0. By Lemma 3.13, we have H(D[π]) = w(c)H(TcD) = H(D[ξ]).

Suppose that D[π, P] is not descending. Let λ = (λm, . . . , λ1) be a descending sequence
for D with respect to (π, P). We have two cases.

First, we suppose that c � {λ}. Recursive definition (n) gives

H(D[π]) = H(D(λ)[π]) + z
m∑

j=1

sign(λ j)H(Aλj D).

On the other hand, the skein relation in Lemma 3.8 shows that

H(D[ξ]) = H(D(λ)[ξ]) + z
m∑

j=1

sign(λ j)H(Aλj D).

Note that c is a crossing of D(λ) because of c � {λ}. Since D(λ)[π, P] is descending, both
D(λ)[π, P] and D(λ)[ξ, P]) are descending of level 0. The result of the previous case implies
H(D(λ)[π]) = H(D(λ)[ξ]), and thus, H(D[π]) = H(D[ξ]).
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Next, we consider the case c ∈ {λ}. By using the recursive formula in Lemma 3.8, we
obtain

H(D[π]) = H(S cD[π]) + sign(c)zH(ZcD)

and

H(D[ξ]) = H(S cD[ξ]) + sign(c)zH(ZcD).

So, we only have to show that H(S cD[π]) = H(S cD[ξ]). If m = 1, that is , λ = (c), then
S cD[π, P] is descending. It follows that H(S cD[π]) = H(S cD[ξ]). We assume that m ≥ 2.
By Step 1, we may assume that λ1 = c. Let λ′ = (λm, . . . , λ2). Then, λ′ is a descending
sequence for S cD with respect to (π, P) and c∗ � {λ′}. It comes down to the previous case.
Hence, we have H(S cD[π]) = H(S cD[ξ]), completing the proof. �

Let D and E be link diagrams in a disk F. Then, E is said to be a reduced diagram of
D if D can be changed into E by a finite sequence of 1-sided Reidemeister moves and the
number of the crossings of D is strictly greater than that of the crossings of E.

The following lemma forms the core of the proof on independence of ordering in com-
binatorial composition of the HOMFLY polynomial for the link by Lickorish and Millett.
Here, we adopt the claim by Rong; see Lemma 3 in [7].

Lemma 3.15. Let D be a connected link diagram of n crossings, n > 0, with an ordering π
in a disk F. Then, with some choice of the basepoint P on D, there exists a reduced diagram
of D(λ), where λ denotes a descending sequence for D with respect to (π, P).

The reader will be familiar with the proof, so we omit it.

Lemma 3.16. Let D be a multi-knotoid diagram of n crossings, n > 0, and π and ξ
different orderings of D. If D is a disjoint union of a canonical trivial knotoid diagram and
link diagrams, then H(D[π]) = H(D[ξ]).

Proof. Let D = D0�E1�· · ·�Es, where D0 denotes the canonical trivial knotoid diagram
and Ek, 1 ≤ k ≤ s, denotes a connected component of D − D0. Then, by Step 4, we may
change D into a disjoint union E of D0, E1, . . . , Es−1 and Es such that there exist mutually
disjoint disks F0, F1, . . . , Fs−1 and Fs with D0 ⊂ F0 and Ek ⊂ Fk, 1 ≤ k ≤ s. We consider
the polynomials of E[π] and E[ξ]. Since D0 has no crossings, there exists a connected
component of E − D0 whose crossing number is positive. We may assume that E1 is such
a component. Then, by Lemma 3.15, there exist a switching sequence λ = (λm, . . . , λ1) for
E such that each λ j, 1 ≤ j ≤ m, is a crossing of E1, E1(λ) is descending with respect to the
ordering induced from π and some basepoint, and E1(λ) has a reduced diagram J1. By the
recursive formula in Step 3, we have

H(E[π]) = H(E(λ)[π]) + z
∑

E

λ and H(E[ξ]) = H(E(λ)[ξ]) + z
∑

E

λ.

Let J be the diagram obtained from E(λ) by replacing E1(λ) with J1. Then, it is obvious
that J is a reduced diagram of E(λ). And we also see that the 1-sided Reidemeister moves
to change E(λ) into J can be applied without regard to the ordering. Since cr(J) < n,
Inductive hypothesis (n−1) and Step 5 ensure that H(E(λ)[π]) = H(E(λ)[ξ]), which implies
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H(E[π]) = H(E[ξ]). It follows that H(D[π]) = H(D[ξ]) from Step 4. �

Lemmas 3.14 and 3.16 give the following proposition, completing Step 6.

Proposition 3.17. Let D be a multi-knotoid diagram with n crossings, n > 0, and π and
ξ different orderings of D. Then, H(D[π]) = H(D[ξ]).

Now, we are ready to prove the main theorem. Steps 1, 2 and 6 give condition (a) of
Inductive Hypothesis (n). The definition of the H-polynomial for a canonical multi-knotoid
diagram and Steps 3 and 5 provide condition (b). Conditions (c) and (d) are shown by Step 4
and Lemma 3.13, respectively. Hence, we find that Inductive hypothesis (n) is true for multi-
knotoid diagrams with at most n crossings. We finish the proofs of existence and invariance
of the H-polynomial.

Proof of Corollary 1.4. The writhe (resp. self writhe) of a multi-knotoid diagram is
invariant under the Reidemeister moves of type II and of type III. A 1-sided Reidemeister
move of type I at a crossing changes the writhe (resp. self writhe) by the signature of the
crossing. These facts and the properties (2) and (3) on the H-polynomial in Theorem 1.1
show that the R-polynomial (resp. S R-polynomial) is invariant under Reidemeister moves.
It completes the proof of invariance of the R-polynomial (resp. S R-polynomial). �

4. HOMFLY polynomial

4. HOMFLY polynomial
A reduced polynomial derived from the R-polynomial is studied in this section.
Here, we review the HOMFLY polynomial for links [2, 5, 6]. The HOMFLY polynomial

P(L; v, z) ∈ Z[v±1, z±1] of an oriented link L is an invariant of the isotopy type of L, which is
defined by the following formulas:

(1) P(U; v, z) = 1 for the trivial knot U.
(2) For a skein triple (L+, L−, L0) as in Fig. 3,

v−1P(L+; v, z) − vP(L−; v, z) = zP(L0, v, z).

An embedded arc in S 2 is called simple if it has no crossings. Let D and α be a multi-
knotoid diagram and a simple arc in S 2, respectively. The arc α is called a shortcut for D
if α connects the endpoints of D and meets D transversely at a finite set of points distinct
from the crossings of D. In particular, a shortcut α is said to be over (resp. under) if α
passes over (resp. under) D. We denote over and under shortcuts by α+ and α−, respectively.
For a multi-knotoid diagram D and an over shortcut α+ for D, we denote by D(α+) the link
diagram obtained from D by joining α+ at the endpoints of D. Then, the link type of D(α+)
does not depend on the choice of the over shortcut α+ because any two over shortcuts for D
are isotopic in the class of embedded arcs in S 2 connecting the endpoints of D. The diagram
D(α−) is defined similarly. If D is oriented, we suppose that D(α) has the induced orientation
from D, that is, α has the orientation from the head to the leg of D.

Proposition 4.1. Let D and α+ be an oriented multi-knotoid diagram and an over shortcut
for D in S 2, respectively. Then, the R-polynomial provides the equation R(D; a, a, z) =
P(D(α+); a−1, z).
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Proof. The proof is by induction on the number cr(D) of the crossings of D.
If cr(D) = 0, then D is a canonical trivial multi-knotoid diagram. The definition of

the H-polynomial gives H(D; a, h, z) = WDdD = ρ
kt(D), where ρ = (a − a−1)z−1. Since

wr(D) = 0, we have R(D; a, a, z) = ρkt(D). Since we see that D(α+) is a trivial link diagram
with (kt(D) + 1) components, we obtain P(D(α+); a−1, z) = ρkt(D). Hence, the claim is true
for this case.

Suppose that cr(D) > 0. We give D an ordering π and a basepoint P. If D is de-
scending with respect to (π, P), then H(D; a, h, z) = WDdD = asw(D)hmw(D)ρkt(D), and thus,
R(D; a, a, z) = ρkt(D). Since D is descending, D(α+) is a trivial link diagram with (kt(D) + 1)
components. Hence, P(D(α+); a−1, z) = ρkt(D), which is equal to R(D; a, a, z). We assume
that D is not descending with respect to (π, P). Let λ = (λm, . . . , λ1) be a descending se-
quence for D with respect to (π, P). Then, by using the recursive formula in Remark 1.3
repeatedly, we have

R(D; a, h, z) = a−2τmR(D(λ); a, h, z) + z
m∑

k=1

sign(λk)asign(λk)−2τk R(Aλk D; a, h, z),

where τk =

k∑

j=1

sign(λ j), 1 ≤ k ≤ m. Since λ j, 1 ≤ j ≤ m, is also a crossing of D(α+), by the

recursive formula on the HOMFLY polynomial, we obtain

P(D(α+); a−1, z) = a−2τm P((D(α+))(λ); a−1, z)

+ z
m∑

k=1

sign(λk)asign(λk)−2τk P(Aλk (D(α+)); a−1, z).

Since Aλk (D(α+)) = (Aλk D)(α+), 1 ≤ k ≤ m, the inductive hypothesis shows that
R(Aλk D; a, a, z) = P(Aλk (D(α+)); a−1, z). Since (D(α+))(λ) = (D(λ))(α+), we see that
R(D(λ); a, a, z) = P((D(α+))(λ); a−1, z) from the result of the previous case. It follows that
R(D; a, a, z) = P(D(α+); a−1, z). This completes the proof. �

A 2-variable polynomial invariant P(L; v, z) ∈ Z[v±1, z±1] of an oriented multi-knotoid L
is defined to be of HOMFLY type if it satisfies the following two identities:

(1) P(U; v, z) = 1 for the trivial knotoid U.
(2) For a skein triple (L+, L−, L0) as in Fig. 3,

v−1P(L+; v, z) − vP(L−; v, z) = zP(L0, v, z).

By Remark 1.3, the reduced polynomial R(D; a, a, z) satisfies the following skein relation:

aR(D+; a, a, z) − a−1R(D−; a, a, z) = zR(D0; a, a, z).

We put Y(D; a, z) = R(D; a−1, a−1, z). Then, we have

a−1Y(D+; a, z) − aY(D−; a, z) = zY(D0; a, z).

This implies that the polynomial Y(D; a, z) is of HOMFLY type. We also see that Y(D; a, z) =
P(D(α+); a, z). The “HOMFLY” polynomial for a multi-knotoid proposed by Turaev [8] is
also of HOMFLY type from its definition. Since Turaev’s HOMFLY polynomial corre-
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sponds to the HOMFLY polynomial for the link obtained from the knotoid and an under
short cut, the two HOMFLY polynomials are distinct. It indicates that there exist not a
unique but at least two polynomials of HOMFLY type.

Corollary 4.2. There exist infinitely many non-trivial oriented knotoids with trivial poly-
nomial of HOMFLY type.

Proof. Let Dn, n > 0, be the oriented knotoid diagram as in Fig. 5, where Tn denotes the
2-string tangle which has horizontal n positive crossings. Then, we have

R(Dn; a, h, z) =

⎧⎪⎪⎨⎪⎪⎩
a−n−1 + (a−1 − a−n−2)h if n is odd,

a−n + (a − a−n+1)h−1 if n is even.

Since R(Dn; a, h, z) � 1, Dn is not trivial. Since R(Dn; a, a, z) = 1, and thus Y(D; a, z) = 1,
Dn has trivial HOMFLY polynomial. For any distinct positive integers m and l, we have
R(Dm; a, h, z) � R(Dl; a, h, z). It follows that Dm and Dl are distinct. This completes the
proof. �

Fig.5. The diagram Dn

5. Mirror and reverse images

5. Mirror and reverse images
Let D be a multi-knotoid diagram in S 2 = R2 ∪ {∞}. Suppose that D ⊂ R2. Let D be

the diagram obtained from D by the reflection of R2 with respect to a line on R2 and D! the
diagram obtained from D by switching all crossings of D. D and D! are usually said to be
mirror images of D. Here, we distinguish them. We call D the horizontal mirror image of D.
D! is called the vertical mirror image of D. For example, in Fig. 9 shown in the following
section, the middle two diagrams are the horizontal and the vertical mirror images of the left
diagram.

Remark 5.1. In [8], Turaev calls D and D! the symmetry and the mirror images of D,
respectively. He uses the notations sym(D) and mir(D) for them.

Remark 5.2. For a multi-knotoid diagram D, D is uniquely determined without regard to
choosing an axis of reflection.

The following proposition specifies a relationship between the polynomials for a multi-
knotoid diagram and its horizontal mirror image.

Proposition 5.3. Let D be an oriented multi-knotoid diagram and D the horizontal mirror
image of D. Then, H(D; a, h, z) = H(D; a−1, h−1,−z), and thus, R(D; a, h, z) =
R(D; a−1, h−1,−z) and S R(D; a, h, z) = S R(D; a−1, h−1,−z).
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Proof. Let c be a crossing of D and c the crossing of D corresponding to c. Note that the
signatures of c and c are opposite and over/under informations at c and c coincide.

The proof is by induction on the number cr(D) of the crossings of D. If cr(D) = 0, then
D = D, which implies H(D) = H(D) = ρkt(D), where ρ = ρ(a, z) = (a − a−1)z−1. Since
ρ(a−1,−z) = ρ(a, z), the claim is true.

Suppose that cr(D) > 0. Let π and P be an ordering and a basepoint for D, respectively.
Let P be the basepoint on D corresponding to P. We give D the same ordering π as D.

First, we suppose that D is descending with respect to (π, P). Then, D is also descending
with respect to (π, P). By the definition of the H-polynomial, we see that H(D) = WDdD

and H(D) = WDdD. Since WD = WD(a, h) = asw(D)hmw(D) = a−sw(D)h−mw(D) = WD(a−1, h−1)
and dD = dD(a, z) = {(a − a−1)z−1}kt(D) = {(a−1 − a)(−z)−1}kt(D) = dD(a−1,−z) because of
kt(D) = kt(D), we obtain

H(D; a, h, z) = WD(a, h) dD(a, z) = WD(a−1, h−1) dD(a−1,−z) = H(D; a−1, h−1,−z).

Next, we suppose that D is not descending with respect to (π, P). Let λ = (λm, . . . , λ1) be
a descending sequence for D with respect to (π, P). Then, λ = (λm, . . . , λ1) is a descending
sequence for D with respect to (π, P), where λ j, 1 ≤ j ≤ m, denotes the crossing of D
corresponding to λ j. Hence,

H(D; a, h, z) = H(D(λ); a, h, z) + z
m∑

j=1

sign(λ j)H(Aλj D; a, h, z)

and

H(D; a, h, z) = H(D(λ); a, h, z) + z
m∑

j=1

sign(λ j)H(Aλj D; a, h, z).

Since Aλj D = Aλj D, 1 ≤ j ≤ m, the inductive hypothesis gives

H(Aλj D; a, h, z) = H(Aλj ; a−1, h−1,−z).

Since D(λ) = D(λ), it follows from the previous case that H(D(λ); a, h, z) =

H(D(λ); a−1, h−1,−z). Since sign(λ j) = −sign(λ j), we have

H(D; a, h, z) = H(D(λ); a−1, h−1,−z) + (−z)
m∑

j=1

sign(λ j)H(Aλj D; a−1, h−1,−z)

= H(D; a−1, h−1,−z).

This completes the proof. �

Remark 5.4. For an oriented multi-knotoid diagram D and its vertical mirror image D!,
we see that (D!)(α+) = D(α−)!. Then, by Proposition 4.1 and [3, Theorem 8.4.1], we have
R(D; a, a, z) = P(D(α+); a−1, z) and R(D!; a, a, z) = P((D!)(α+); a−1, z) = P(D(α−)!; a−1, z) =
(−1)kt(D)P(D(α−);−a, z). Since the two links D(α+) and D(α−) in general are quite different,
it looks like there is no relationship between the R-polynomials of D and D!.

Next, we show a relationship between the polynomials for a multi-knotoid diagram and
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its reverse image defined later. To do that, we explore multi-knotoid diagrams in a disk or
an annulus.

Let F be a disk or an annulus in S 2 or R2 and t a generic immersed arc in F. We call
t an arc shortly and call each double point of t a crossing of t. An arc t is called proper if
t ∩ ∂F = ∂t. In particular, t in an annulus A is called 2-sided proper if t connects the two
boundaries of A. If both endpoints of t are on one of the two boundaries of A, then t is said
to be 1-sided proper.

Let t be a proper arc in a disk or an annulus F and ∂t = {t0, t1}. Let C(t) be the set of
the crossings of t and cr(t) the number of the crossings of t. Suppose that cr(t) > 0. We
define a surjection ft : {1, 2, . . . , 2cr(t)} → C(t) by sending each n ∈ {1, 2, . . . , 2cr(t)} to the
n-th crossing encountered when traveling t from t0. ft is said to be the presentation map of
t. Then, we call the sequence ft(1) ft(2) · · · ft(2cr(t)) of the 2cr(t) crossings the presentation
word of t and denote it by PWt. Since the same crossing appears twice in PWt, for any
crossing c ∈ C(t), the preimage f −1

t (c) ⊂ {1, 2, . . . , 2cr(t)} consists of just two positive
integers which are denoted by n1(c) and n2(c), where n1(c) < n2(c).

For a crossing c ∈ C(t), the subword ft(n1(c)) · · · ft(n2(c)) of PWt is called the cutoff word
by c and is denoted by PWt(c). The cutoff word PWt(c) determines a unique closed subarc
of t which starts from and arrives at c. Then, the closed subarc is said to be associated
with PWt(c). The cutoff word PWt(c) is said to be simple if PWt(c) includes no cutoff word
by any distinct crossing p ∈ C(t) from c. If PWt(c) is simple, then the closed subarc of t
associated with PWt(c) forms a loop without self crossings. It is called the 1-gon with the
vertex c.

Lemma 5.5. Let t be a proper arc in a disk or an annulus and PWt the presentation word
of t. If cr(t) > 0, then there exists a crossing c of t such that PWt(c) is simple.

Proof. We suppose that for any crossing c of t, PWt(c) is not simple. We put |PWt(c)| =
n2(c)− n1(c)+ 1. For any c ∈ C(t), 2 ≤ |PWt(c)| ≤ 2cr(t). Then, there exists a crossing p of t
with |PWt(p)| = min{ |PWt(c)| ; c ∈ C(t)}. Since PWt(p) is not simple, there exists a crossing
q of t such that PWt(q) is a subword of PWt(p). Then, |PWt(q)| ≤ |PWt(p)| − 2 < |PWt(p)|,
which is a contradiction. �

Let D be a disk and B a disk in D with B ∩ ∂D = ∅. We denote the annulus D − intB
in D by A(D, B), where intB denotes the interior of B. Let t be an arc in D or A(D, B) and
Γ ⊂ t − ∂t a 1-gon. The 1-gon Γ bounds a disk in D. We denote it by DΓ. Let p be the vertex
of Γ. Then, the 1-gon Γ is called standard if there exists a neighborhood Up of p such that
(t − Γ) ∩ DΓ = ∅ in Up. If Γ is not standard, then it is said to be non-standard. The left and
the right drawings in Fig. 6 show standard and non-standard 1-gons, respectively.

Fig.6. Standard and non-standard 1-gons
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Lemma 5.6. Let D be a disk and t a proper arc in D. If t has a non-standard 1-gon, then
cr(t) ≥ 3.

Proof. We choose a non-standard 1-gon Γ. Since Γ is non-standard, (DΓ − Γ) ∩ t � ∅.
Since ∂t ⊂ ∂D, both endpoints of t are outside DΓ. Hence, there should exist at least two
crossings on Γ except the vertex of Γ. It completes the proof. �

Let t be an arc in S 2 and p and q points on t. We denote by at[p, q] a subarc of t whose
endpoints are p and q. We also denote by at(p, q) the open arc obtained from the arc at[p, q]
by removing the endpoints p and q.

Lemma 5.7. Let D be a disk and t a proper arc in D. If cr(t) > 0, then t has a standard
1-gon in D.

Proof. The proof is by induction on the number cr(t) of the crossings of t. By Lemma 5.5,
there exists a crossing p of t such that PWt(p) is simple. Hence, there exists the 1-gon Γ with
the vertex p associated with PWt(p). If Γ is non-standard, then cr(t) ≥ 3 by Lemma 5.6.
This means that the claim is true for cr(t) ≤ 2. Suppose that cr(t) > 2. We assume that t
has no standard 1-gons. Then, Γ is non-standard. Let ∂t = {t0, t1}. We divide t into the three
subarcs at[t0, p], Γ and at[p, t1] associated with the subword ahead of PWt(p), PWt(p) and
the subword behind PWt(p) in PWt, respectively. Note that t− (Γ∪ ∂t) = at(t0, p)∪ at(p, t1).
Let q be the first crossing where at[p, t1] meets Γ when traveling at[p, t1] from p to t1. Note
that there exists such a crossing since Γ is non-standard. Then, the subarc at[p, q] of the arc
at[p, t1] is proper in DΓ. If cr(at[p, q]) = 0, then t has the standard 1-gon whose vertex is q.
It is a contradiction. We suppose that cr(at[p, q]) > 0. Since cr(at[p, q]) ≤ cr(t) − 2 < cr(t),
the inductive hypothesis ensures that the arc at[p, q] has a standard 1-gon in DΓ. It follows
that t has a standard 1-gon in D, which is a contradiction. Hence, the claim is true for
cr(t) > 0. �

An arc in a disk D or an annulus A ⊂ D is said to be simple if it has no self crossings. Let
t be a non-simple arc and V1(t) the set of the vertices of 1-gons on the arc t. For a crossing
c of t, it is clear that PWt(c) is simple if and only if c ∈ V1(t). By Lemma 5.5, we see that
V1(t) � ∅.

Lemma 5.8. Let t be a non-simple 2-sided proper arc in an annulus A(D, B) with t0 =
∂t ∩ ∂B and ft the presentation map of t. Let mt = min{n1(c); c ∈ V1(t)} and Γ the 1-gon in
A(D, B) associated with PWt( ft(mt)). Then,

(i) If Γ is standard, then DΓ ⊂ A(D, B), otherwise DΓ ⊃ B,
(ii) at[t0, ft(mt)] ∩ Γ = { ft(mt)} and cr(at[t0, ft(mt)]) = 0,

where at(t0, ft(mt)) ⊂ t − Γ.
Proof. Let p = ft(mt). First, we assume that Γ is standard. Suppose that B ⊂ DΓ. Since

t0 ∈ B, at[t0, p] ∩ Γ � {p}. Let q be a crossing in at[t0, p] ∩ Γ − {p}. Then, we see that
n1(q) < n1(p) = mt < n2(q) < n2(p). Since n1(q) < mt, PWt(q) is not simple, and thus,
there exists a crossing r ∈ C(t) such that PWt(r) is simple and a subword of PWt(q). Since
n2(q) < n2(p), we have n2(r) < n2(p). Then, the following three cases can occur among the
four integers n1(r), n2(r), n1(p) and n2(p).
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Case 1. n1(r) < n2(r) < n1(p) = mt < n2(p).
Case 2. n1(r) < n1(p) = mt < n2(r) < n2(p).
Case 3. n1(p) = mt < n1(r) < n2(r) < n2(p).

The first two cases show n1(r) < mt, which is a contradiction. The last one implies that
PWt(p) is not simple, which is a contradiction. Hence, B � DΓ, that is, B ∩ DΓ = ∅. It
follows that DΓ ⊂ A(D, B).

Next, we assume that Γ is non-standard. Suppose that DΓ∩B = ∅. Since DΓ∩ (t−Γ) � ∅,
at[t0, p] ∩ Γ � {p}. Let q be a crossing in at[t0, p] ∩ Γ − {p}. Then, we find that n1(q) <
n1(p) = mt < n2(q) < n2(p). The rest of the proof is similar to that of the previous case. We
conclude that B ⊂ DΓ and complete the proof of the first claim.

We proceed to the proof of the second claim. Suppose that at[t0, p] ∩ Γ � {p}. Then,
there exists a crossing q ∈ at[t0, p] ∩ Γ with n1(q) < n1(p) = mt < n2(q) < n2(p). It leads to
a contradiction. To show the second claim of (ii), we suppose that cr(at[t0, p]) > 0. Then,
there exists a self crossing c of the arc at[t0, p] with n1(c) < n2(c) < n1(p) = mt. Hence,
PWt(c) is not simple, and thus, there exists a crossing r ∈ V(t) such that PWt(r) is a simple
subword of PWt(c). It follows that n1(r) < n2(r) < n2(c) < n1(p) = mt, a contradiction. �

A figure with two sides formed by two simple arcs meeting only at their endpoints in a
disk D or an annulus A ⊂ D as in Fig. 7 is called a 2-gon. A 2-gon Δ bounds a disk in D.
We denote it by DΔ. Similarly, a 3-gon denoted by Ω and a disk DΩ bounded by Ω in D are
defined.

Lemma 5.9. Let A(D, B) be an annulus. Let p and q be different points on ∂D and b a
point on ∂B. Let s be a simple 2-sided proper arc in A(D, B) with the endpoints b and p and
t a 1-sided proper arc in A(D, B) with the endpoints p and q. Suppose that s∩ t−{p} consists
of a finite number of crossings. Then, at least one of the following four claims holds:

(1) The arc t has a standard 1-gon Γ with DΓ ⊂ A(D, B).
(2) The arcs s and t form a 2-gon Δ with DΔ ⊂ A(D, B).
(3) The arc t and ∂D form a 2-gon Δ with DΔ ⊂ A(D, B).
(4) The arcs s and t and ∂D form a 3-gon Ω with DΩ ⊂ A(D, B).

Proof. We orient the arcs s and t from b and p to p and q, respectively. We assume that
there are n crossings composed of s and t except p. We denote the crossings by p1, p2, . . . , pn

in order of passage when traveling t from p according to its orientation.
If n = 0, then t is a proper arc in the disk E obtained from A(D, B) by cutting A(D, B)

along s. If cr(t) > 0, then by Lemma 5.7, t has a standard 1-gon Γ in E. It follows that there
exists a standard 1-gon Γ in A(D, B) with DΓ ⊂ A(D, B). If cr(t) = 0, then there exists the
2-gon formed by t and an arc on ∂D whose endpoints are p and q.

Suppose that n > 0. We divide the arc t = t[p, q] into the (n + 1) subarcs which are
denoted by at[p, p1], at[p1, p2], . . . , at[pn−1, pn] and at[pn, q]. Let E be the disk obtained
from A(D, B) by cutting A(D, B) along s. Then, ∂E = ∂B ∪ s+ ∪ ∂D ∪ s−, where s+ and s−

denote copies of s. Since each of the (n+1) subarcs of t is proper in E, by Lemma 5.7 it has a
standard 1-gon in E if it has a self crossing. It follows that there exists a standard 1-gon Γ in
A(D, B) with DΓ ⊂ A(D, B). We suppose that each of the (n+ 1) subarcs of t is simple. Each
arc except at[pn, q] has the endpoints on s+∪ s−. If there exists an arc at[pk, pk+1], 0 ≤ k < n,
where p0 = p, whose endpoints are on either s+ or s−, then a 2-gon with vertices pk and pk+1
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is formed in E by the arc at[pk, pk+1] and the copy of s. It ensures that there exists a 2-gon Δ
in A(D, B) with DΔ ⊂ A(D, B). If each arc except at[pn, q] has the endpoints on both s+ and
s−, then we find a 3-gon in E whose sides are the arc at[pn, q], the subarc as[pn, p] of s and
a subarc of ∂D whose endpoints are p and q. Hence, there exists a 3-gon Ω whose vertices
are p, q and pn with DΩ ⊂ A(D, B). This completes the proof. �

Lemma 5.10. Let t be a 2-sided proper arc in an annulus A(D, B). If t has a non-standard
1-gon, then cr(t) > 1.

Proof. Let Γ be a non-standard 1-gon and p the vertex of Γ. We divide t into the three
arcs at[t0, p], Γ and at[p, t1], where t0 = t ∩ ∂B, t1 = t ∩ ∂D. Since Γ is non-standard and
DΓ ⊂ D − ∂D, the open arc at(p, t1) and Γ cross each other. It implies that cr(t) ≥ 2. �

A 2-gon Δ formed by two subarcs of an arc t in a disk D or an annulus A ⊂ D is standard
if for each vertex p of Δ, there exists a neighborhood Up of p such that (t − Δ) ∩ DΔ = ∅ in
Up. If Δ is not standard, then it is said to be non-standard. Fig. 7 illustrates 2-gons. The left
drawing displays a standard 2-gon and the middle and the right ones exhibit non-standard
2-gons.

Fig.7. Standard and non-standard 2-gons

Proposition 5.11. Let t be a 2-sided proper arc in an annulus A(D, B). If t is not simple,
then t has a standard 1- or 2-gon Γ with DΓ ⊂ A(D, B).

Proof. The proof is by induction on the number cr(t) of the crossings of t. If cr(t) = 1,
then it is clear that t has a unique 1-gon Γ in A(D, B). By Lemmas 5.8 and 5.10, Γ is standard
and DΓ ⊂ A(D, B).

Suppose that cr(t) > 1. Let t0 = t∩∂B and t1 = t∩∂D. Lemma 5.5 implies that V1(t) � ∅.
We put mt = min{n1(c); c ∈ V1(t)} and p = ft(mt) ∈ V1(t). Let Γ be the 1-gon in A(D, B)
associated with PWt(p).

If Γ is standard, then Lemma 5.8 implies DΓ ⊂ A(D, B).
Suppose that Γ is non-standard. We divide t into the three subarcs at[t0, p],Γ and at[p, t1].

Then, by Lemma 5.8, we have B ⊂ DΓ, at[t0, p] ∩ Γ = {p} and cr(at[t0, p]) = 0. Since
Γ is non-standard, the open arc at(p, t1) and Γ cross each other. Let q be the first crossing
where we meet Γ when traveling at[p, t1] from p to t1. We divide s = at[p, t1] into the two
subarcs as[p, q] and as[q, t1]. Let u be the subarc of t obtained from the three arcs at[t0, p], Γ
and as[p, q] by connecting them at p. First, we assume that cr(u) < cr(t). If we choose an
appropriate disk E which is a small neighborhood of DΓ, then by the inductive hypothesis,
we find that u has a standard 1- or 2-gon Δ in A(E, B) with DΔ ⊂ A(E, B). Hence, the claim
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is true since E ⊂ D. Next, we suppose that cr(u) = cr(t). Then, we have the desired result
by Lemma 5.9 with regarding DΓ as the disk D in Lemma 5.9. Note that each 2-gon in cases
(2) and (3) in Lemma 5.9 is standard and the 3-gon Ω appearing in case (4) can be regarded
as a standard 2-gon in this case because appropriate two sides of Ω can be replaced with one
side. The proof is complete. �

A multi-knotoid diagram D in S 2 is called normal if D is in R2 = S 2 − {∞} and the head
of D can be connected to the point∞ by a path avoiding the rest of D.

Remark 5.12. Any multi-knotoid diagram D can be changed into a normal diagram with
the same number of the crossings as D by using a finite sequence of isotopies of S 2. Hence,
any multi-knotoid can be represented by a normal diagram.

A normal diagram of a multi-knotoid can be regarded as a 2-sided proper arc with over/
under information at each crossing and a link diagram in an annulus.

The following proposition is an immediate consequence of Proposition 5.11.

Proposition 5.13. Let D be a normal diagram of a multi-knotoid in S 2. If the knotoid
component D0 of D has a self crossing, then there exists a standard 1- or 2-gon on D0 which
bounds a disk in R2 away from the endpoints of D.

For a multi-knotoid diagram D in S 2, we denote by r(D) the diagram obtained from D by
reversing the orientations of all components of D and call it the reverse image of D. For a
crossing c of D, we denote by r(c) the crossing of r(D) corresponding to c. We will give a
relationship between the H-polynomials for a multi-knotoid diagram and its reverse image.

Lemma 5.14. Suppose that a multi-knotoid diagram with less than n crossings, n > 0,
and its reverse image have the same H-polynomial. If a multi-knotoid diagram D of n
crossings is a disjoint union of its knotoid component D0 with cr(D0) = 0 and the link
diagram D − D0, then H(D) = H(r(D)).

Proof. We give D an ordering π. By Lemmas 3.9 and 3.15, with some choice of the
basepoint P and the descending sequence λ = (λm, . . . .λ1) for D, we have a reduced dia-
gram J of D(λ). Let r(λ) be the switching sequence (r(λm), . . . , r(λ1)) for r(D). Note that
sign(λ j) = sign(r(λ j)), 1 ≤ j ≤ m. By the recursive formula in Lemma 3.8, we obtain

H(D) = H(D(λ)) + z
∑

D

λ

= H(D(λ)) + z
m∑

j=1

sign(λ j)H(Aλj D)

and

H(r(D)) = H(r(D)(r(λ))) + z
∑

r(D)

r(λ)

= H(r(D)(r(λ))) + z
m∑

j=1

sign(r(λ j))H(Ar(λ)
j r(D))
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= H(r(D)(r(λ))) + z
m∑

j=1

sign(λ j)H(Ar(λ)
j r(D))

Since Ar(λ)
j r(D) = r(Aλj D), 1 ≤ j ≤ m, the hypothesis of the lemma gives

H(Ar(λ)
j r(D)) = H(r(Aλj D)) = H(Aλj D), 1 ≤ j ≤ m,

and thus,
∑

D

λ =
∑

r(D)

r(λ).

Let χ be a finite sequence of 1-sided Reidemeister moves to change D(λ) into J. Then,
there exists the corresponding sequence r(χ) of 1-sided Reidemeister moves which yields
r(J) from r(D)(r(λ)) because the two diagrams D(λ) and r(D)(r(λ)) differ only their orienta-
tions. The sequence χ has at most one Reidemeiseter move of type I, which comes from the
proof of Lemma 3.15. Suppose that such a move does not appear in the sequence χ. Then,
the sequence r(χ) also has no Reidemeister move of type I. Hence, by the hypothesis of the
lemma, we obtain H(D(λ)) = H(J) = H(r(J)) = H(r(D)(r(λ))). We assume that there exists
a unique 1-sided Reidemeister move of type I, which eliminates a crossing c of D(λ), in the
sequence χ. Then, the sequence r(χ) has the corresponding local move which eliminates
the crossing r(c). Since the contribution of a 1-sided Reidemeister move of type I to the
H-polynomial depends only on the signature of the crossing eliminated by the local move,
we see that H(D(λ)) = w(c)H(J) = w(r(c))H(r(J)) = H(r(D)(r(λ))), completing the proof.

�

It is easy to see the following.

Lemma 5.15. Let D be a multi-knotoid diagram with options (π, P). Let c denote the first
crossing where is encountered when traveling the knotoid component from its leg. If D[π, P]
is a descending diagram of level 0, then (TcD)[π, P] is also a descending diagram of level 0.

Lemma 5.16. Suppose that a multi-knotoid diagram with less than n crossings, n > 0,
and its reverse image have the same H-polynomial. If a multi-knotoid diagram D of n
crossings with options (π, P) is descending of level 0 and its knotoid component has no self
crossings, then H(D) = H(r(D)).

Proof. Let P = (p0, p1, . . . , pkt(D)) and Q = (q, p1, . . . , pkt(D)), where q denotes the head
of the knotoid component D0. Note that p0 denotes the leg of the knotoid component D0.
We choose Q as a basepoint for r(D). If D is a disjoint union of D0 and the link diagram
D − D0, then Lemma 5.14 ensures the claim.

Suppose that D0∩ (D−D0) � ∅. Let c1, . . . , cm−1 and cm,m ≥ 1, be all mixed crossings of
D which belong to D0∩(D−D0). By repeating the tug move at each crossing c j, 1 ≤ j ≤ m, in
appropriate order, D can be changed into a disjoint union of D0 and D−D0. By Lemmas 3.13
and 5.15, we see that

H(D) =

⎛⎜⎜⎜⎜⎜⎜⎝
m∏

j=1

w(c j)

⎞⎟⎟⎟⎟⎟⎟⎠H(D0 � (D − D0)).

Since the knotoid component D0 has no self crossings, r(D)[π,Q] is descending of level 0.
Thus, by Lemmas 3.9, 3.13 and 5.15 and the equalities w(c j) = w(r(c j)), 1 ≤ j ≤ m, we also
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obtain the following similar result for r(D):

H(r(D)) =

⎛⎜⎜⎜⎜⎜⎜⎝
m∏

j=1

w(r(c j))

⎞⎟⎟⎟⎟⎟⎟⎠H(r(D0) � (r(D) − r(D0)))

=

⎛⎜⎜⎜⎜⎜⎜⎝
m∏

j=1

w(c j)

⎞⎟⎟⎟⎟⎟⎟⎠H(r(D0 � (D − D0))).

Since cr(D0� (D−D0)) = cr(D)−m < cr(D), the hypothesis of the lemma shows H(r(D0�
(D − D0))) = H(D0 � (D − D0)). It follows that H(D) = H(r(D)). �

Proposition 5.17. For a multi-knotoid diagram D, H(D) = H(r(D)) and thus, R(D) =
R(r(D)) and S R(D) = S R(r(D)).

Proof. The proof is by induction on the number cr(D) of the crossings of D. We may
assume that D is normal by Remark 5.12.

If cr(D) = 0, then by the definition of the H-polynomial, H(D) depends only on the
number of knot components. It implies that the claim is true.

Suppose that cr(D) > 0. First, we consider the case cr(D0) = 0. We choose an ordering
π and a basepoint P for D. Let λ = (λm, . . . , λ1) be the descending sequence for D with
respect to (π, P). Then, we have H(D) = H(D(λ))+ z

∑

D

λ. For a switching sequence r(λ) =

(r(λm), . . . , r(λ1)) for r(D), by the recursive formula in Lemma 3.8, we obtain H(r(D)) =
H(r(D)(r(λ))) + z

∑

r(D)

r(λ). Since Ar(λ)
j r(D) = r(Aλj D) and sign(r(λ j)) = sign(λ j), 1 ≤ j ≤ m,

the inductive hypothesis ensures
∑

D

λ =
∑

r(D)

r(λ). Since r(D)(r(λ)) = r(D(λ)) and D(λ)

is descending of level 0 with respect to (π, P), by Lemma 5.16, we see that H(D(λ)) =
H(r(D)(r(λ))). It follows that H(D) = H(r(D)).

Next, we suppose that cr(D0) > 0. Then, by Proposition 5.13, D0 has a standard 1- or
2-gon Γ in a disk F away from the endpoints of D. If necessary, we may move disjoint
components from DΓ outside F.

Suppose that Γ is a local curl. Since D can be changed into the diagram E with cr(E) =
cr(D) − 1 by the 1-sided Reidemeister move of type I which eliminates the vertex c of Γ,
we have H(D) = w(c)H(E). Since the Reidemeister move can be applied to r(D), we also
have H(r(D)) = w(r(c))H(r(E)). The inductive hypothesis shows H(E) = H(r(E)). Since
w(c) = w(r(c)), we obtain H(D) = H(r(D)).

We assume that Γ is not a local curl. We give D options (π, P).
First, we suppose that D[π, P] is descending of level 0. If Γ is a standard 1-gon, then Γ

can be reduced to a small one near the vertex of Γ by Reidemeister moves except the move
of type I. Note that each of these Reidemeister moves is not necessarily 1-sided. Then,
the resultant diagram E has smaller crossings than D and H(E) = H(D). Since r(D) is
the same diagram as D if their orientations are ignored, the same deformation as for D can
be applied to r(D). Hence, we have H(r(D)) = H(r(E)). Since the inductive hypothesis
gives H(E) = H(r(E)), we see that H(D) = H(r(D)). If Γ is a standard 2-gon, then we
apply a 1-sided Reidemeister move of type II, which can be realized by a finite sequence
of Reidemeister moves except the move of type I, to Γ. Hence, the H-polynomial for the
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resultant diagram E corresponds to that of D. Since the same deformation as for D can be
applied to r(D), we obtain H(r(D)) = H(r(E)). Since the number of the crossings of E is
less than that of the crossings of D by two, the inductive hypothesis shows H(E) = H(r(E)).
It follows that H(D) = H(r(D)).

Next, we suppose that D[π, P] is not descending of level 0. Let λ = (λm, . . . , λ1) be a
descending sequence of level 0 for D with respect to (π, P), where a descending sequence
of level 0 means a switching sequence for D changing D into a descending diagram of level
0. We also denote the switching sequence (r(λm), . . . , r(λ1)) for r(D) by r(λ). Then, by the
recursive formula in Lemma 3.8, we have

H(D) = H(D(λ)) + z
∑

D

λ

and

H(r(D)) = H(r(D)(r(λ))) + z
∑

r(D)

r(λ) = H(r(D(λ)) + z
∑

r(D)

r(λ).

By the same reason as the case cr(D0) = 0, the equality
∑

D

λ =
∑

r(D)

r(λ) holds. Since

D(λ)[π, P] is descending of level 0, it follows from the previous case that H(D(λ)) =
H(r(D(λ))). Hence, we have H(D) = H(r(D)). The proof is completed by the fact that
the signature of a crossing c of a diagram D is equal to that of the corresponding crossing
r(c) of r(D). �

6. Knotoids with up to 3 crossings

6. Knotoids with up to 3 crossings
The crossing number of a knotoid K denoted by cr(K) is defined to be the minimum

number of the crossings of all diagrams of K.
Bartholomew gives a list of distinct knotoids with up to 5 crossings in [1]. The list

is produced by a computer search. In this section, a theoretical approach is provided to
determine and completely classify knotoids with up to 3 crossings. It is elementary, but
explicit.

A knotoid K is called trivial if K is the equivalence class of a trivial knotoid diagram.
Let K be the trivial knotoid. Since a canonical trivial knotoid diagram has no crossings,

we have cr(K) ≤ 0. Since cr(K) ≥ 0 by the definition of the crossing number of a knotoid,
we obtain cr(K) = 0.

Let K be a knotoid with cr(K) = 0. Then, there exists a knotoid diagram D of K with
cr(D) = 0. Since a knotoid diagram without crossings is equivalent to a segment which is a
canonical trivial knotoid diagram, the diagram D is trivial, and thus, K is trivial. Hence, we
have the following.

Lemma 6.1. Let K be a knotoid. Then, K is trivial if and only if cr(K) = 0.

Lemma 6.2. Let D be a knotoid diagram. If cr(D) = 1, then D is trivial.

Proof. By Remark 5.12, we may assume that D is normal. Since 1 ≤ cr(D) < 2, Propo-
sition 5.13 shows that D has a standard 1-gon. Since cr(D) = 1, the 1-gon is a local curl.
Applying a 1-sided Reidemeister move of type I to the 1-gon, we have a diagram without
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crossings. It follows that D is trivial. �

Corollary 6.3. There is no knotoid with cr(K) = 1.

For an arc t in an annulus, we denote by t̃ the arc t with over/under information at each
crossing. Hence, t̃ represents a knotoid diagram.

Lemma 6.4. Let t be a 2-sided proper arc in an annulus A(D, B). If cr(t) = 2 and t has
no local curls which bound disks in A(D, B), then t̃ forms either of the two diagrams as in
Fig. 8, where p and q denote crossings.

Fig.8. Knotoid diagrams with 2 crossings

Proof. Let t0 = t ∩ ∂B and t1 = t ∩ ∂D. Let mt = min{n1(c); c ∈ V1(t)} and Γ the 1-
gon in A(D, B) associated with PWt(p), where p = ft(mt). Suppose that Γ is standard. By
Lemma 5.8, DΓ ⊂ A(D, B). Then, by the assumption of the lemma, Γ∩ (t−Γ) consists of just
one point. It follows that ∂t∩DΓ � ∅, a contradiction. Hence, Γ should be non-standard. We
divide t into the three subarcs at[t0, p], Γ and at[p, t1]. Since Γ is non-standard and cr(t) = 2,
at[p, t1] ∩ Γ consists of just one point, which is denoted by q. Hence, we have the diagrams
as in Fig. 8. �

We can regard each t̃ in Fig. 8 as an oriented normal knotoid diagram with the leg on ∂B
and the head on ∂D.

Let E(εp, εq) be the right diagram of Fig. 8, where εc denotes the signature sign(c) of a
crossing c. Then, E(−εp,−εq) = E(εp, εq)! and (E(εp, εq)!) = E(εp, εq)!. We also find that
each diagram on the left of Fig. 8 may be considered as the horizontal mirror image of one
of the right diagrams.

It is easy to see the following.

Lemma 6.5. If E(εp, εq) is a diagram of a knotoid K with cr(K) = 2, then εp = εq.

Computing the R-polynomials for the four knotoid diagrams E(1, 1), E(1, 1), E(1, 1)! and
E(1, 1)!, we obtain the following.

Lemma 6.6.

R(E(1, 1); a, h, z) = a−2 + (a−1 − a−3)h,

R(E(1, 1); a, h, z) = a2 − (a3 − a)h−1,

R(E(1, 1)!; a, h, z) = a2 − (a3 − a)h + a2z2,
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R(E(1, 1)!; a, h, z) = a−2 + (a−1 − a−3)h−1 + a−2z2.

Proposition 6.7. There exist just four knotoids with two crossings.

Proof. Let K be a knotoid with cr(K) = 2. Then, K has a normal diagram D with
cr(D) = 2. By Lemmas 6.4 and 6.5 and the above observation on diagrams in Fig. 8, D
is equivalent to one of the four diagrams E(1, 1), E(1, 1), E(1, 1)! and E(1, 1)!. Lemma 6.6
implies that the equivalence classes whose representatives are the four diagrams are mutually
distinct. This completes the proof. �

We put the four knotoids in Proposition 6.7 on display in Fig. 9. The drawn diagrams,
which are not normal, are called bifoils [8].

Fig.9. Knotoids with 2 crossings

A 2-string tangle diagram T = (B, t) is a pair of a disk B and two proper arcs t. Let T1 =

(B, t1) and T2 = (B, t2) be the left and the right tangles in Fig. 10, respectively, where p, q and
r denote crossings. Then, T1 can be changed into T2 by a finite sequence of Reidemeister
moves in B, provided that the boundaries of t1 are fixed. It implies the following.

Fig.10. Equivalent tangles

Lemma 6.8. Two knotoid diagrams which differ only in one 2-string tangle as in Fig. 10
are equivalent.

Lemma 6.9. Let t be a 2-sided proper arc in an annulus A(D, B). If cr(t) = 3 and t has
no local curls which bound disks in A(D, B), then t̃ forms one of the four diagrams except
the right column as in Fig. 11.

Proof. Let t0 = t ∩ ∂B and t1 = t ∩ ∂D. Let mt = min{n1(c); c ∈ V1(t)} and Γ the
1-gon in A(D, B) associated with PWt(p), where p = ft(mt). We divide t into the three
subarcs at[t0, p], Γ and at[p, t1]. Then, By Lemma 5.8, we have at[t0, p] ∩ Γ = {p} and
cr(at[t0, p]) = 0.

First, we suppose that Γ is standard. The assumption of the lemma and the fact DΓ ⊂
A(D, B) coming from Lemma 5.8 give Γ ∩ at(p, t1) � ∅. Since Γ is standard, the arc at(p, t1)
meets Γ at even points. Since cr(t) = 3, at(p, t1)∩Γ consists of two points, which are denoted
by q and r, and at[t0, p] ∩ at[p, t1] = {p}. Realizing such conditions, we can obtain the four
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Fig.11. Knotoid diagrams with 3 crossings

types of knotoid diagrams depicted in two columns from the left of Fig. 11.
Next, we suppose that Γ is non-standard. Since at(p, t1) ∩ DΓ � ∅ and t1 � DΓ, at(p, t1)

meets Γ at odd points. Since cr(t) = 3, at(p, t1) ∩ Γ consists of only one point, which
is denoted by q. Assume that at[t0, p] ∩ at[p, t1] = {p}. Then, cr(at[p, t1]) = 1 since
cr(at[t0, p]) = cr(Γ) = 0. We divide s = at[p, t1] into the two subarcs as[p, q] and as[q, t1].
Since as[p, q] ⊂ DΓ and as[q, t1] ∩ DΓ = {q}, we see that as[p, q] ∩ as[q, t1] = {q}. It follows
that cr(as[p, q]) = 1 or cr(as[q, t1]) = 1. By Lemma 5.7 and Proposition 5.11, we have a
local curl which bounds a disk in A(D, B). It is a contradiction. Hence, at(t0, p) and at(p, t1)
cross only once. Drawing a diagram with these conditions, we have the two types of knotoid
diagrams described in the right column of Fig. 11. Since these diagrams are equivalent to the
two types of diagrams in the middle column of Fig. 11 by Lemma 6.8, we have the result.

�

We can regard each t̃ in Fig. 11 as an oriented normal knotoid diagram with the leg on ∂B
and the head on ∂D.

Let G1(εp, εq, εr) and G2(εp, εq, εr) be the two diagrams from the left in the top row of
Fig. 11, respectively. Then, the two diagrams from the left in the bottom row of Fig. 11 may
be considered as the horizontal mirror images of the two diagrams from the left in the top
row, respectively.

It is easy to see the following lemmas.

Lemma 6.10. If G1(εp, εq, εr) is a diagram of a knotoid K with cr(K) = 3, then εp, εq

and εr have the same value.

Lemma 6.11. G1(1, 1, 1) and G1(−1,−1,−1) are equivalent to G1(−1,−1,−1) and
G1(1, 1, 1), respectively.

Lemma 6.12. If G2(εp, εq, εr) is a diagram of a knotoid K with cr(K) = 3, then (εp, εq, εr)
= (1,−1,−1) or (−1, 1, 1).
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Proof. If εq � εr, then we have a reduced diagram. It follows that εq = εr. Suppose that
εp = εq. Then, we can obtain a reduced diagram by applying Reidemeister moves of type I
and of type III. Hence, εp � εq. �

Remark 6.13. G1(−1,−1,−1) = G1(1, 1, 1)! and G2(−1, 1, 1) = G2(1,−1,−1)!.

Computing the R-polynomials for the six knotoid diagrams G1(1, 1, 1), G1(1, 1, 1)!,
G2(1,−1,−1), G2(1,−1,−1), G2(1,−1,−1)! and G2(1,−1,−1)!, we obtain the following.

Lemma 6.14.

R(G1(1, 1, 1); a, h, z) = (2a−2 − a−4) + a−2z2,

R(G1(1, 1, 1)!; a, h, z) = (2a2 − a4) + a2z2,

R(G2(1,−1,−1); a, h, z) = a2 − (a − a−1)h−1 − z2,

R(G2(1,−1,−1); a, h, z) = a−2 + (a − a−1)h − z2,

R(G2(1,−1,−1)!; a, h, z) = a−2 + (a − a−1)h−1,

R(G2(1,−1,−1)!; a, h, z) = a2 − (a − a−1)h.

Proposition 6.15. There exist just six knotoids with three crossings.

Proof. Let K be a knotoid with cr(K) = 3. Then, K has a normal diagram D with
cr(D) = 3. By Lemmas 6.9 – 6.12 and Remark 6.13, D is equivalent to one of the six
diagrams which are G1(1, 1, 1), G1(1, 1, 1)!, G2(1,−1,−1), G2(1,−1,−1), G2(1,−1,−1)! and
G2(1,−1,−1)!. Lemma 6.14 reveals that the equivalence classes whose representatives are
the six diagrams are mutually distinct. This completes the proof. �

At the end of the paper, we deal with inverse of a knotoid in brief. A knotoid K is said to
be invertible if K is equivalent to r(K), that is, for a digram D of K, D is equivalent to r(D).
It is clear that the trivial knotoid is invertible.

Proposition 6.16. A knotoid K with cr(K) = 2 is invertible.

Proof. For each diagram D as in Fig. 9, its reverse image r(D) can be obtained by rotating
D through angle π around an axis perpendicular to the projection plane. It shows that D is
equivalent to r(D), completing the proof. �

Proposition 6.17. A knotoid K with cr(K) = 3 is invertible.

Proof. Since cr(K) = 3, there exists a diagram D of K with cr(D) = 3. Then, cr(r(D)) = 3
and thus, cr(r(K)) ≤ 3. If cr(r(K)) < 3, then there exists a diagram E of r(K) with cr(E) < 3.
Since E is equivalent to r(D), r(E) is equivalent to r(r(D)) = D. It follows that r(E) is a
diagram of K with less than three crossings. This contradicts the assumption cr(K) = 3.
Hence, cr(r(K)) = 3. Since R(D) = R(r(D)) by Proposition 5.17, Lemma 6.14 gives K =
[D] = [r(D)] = r(K) because the six polynomials given by the lemma are different one
another, where [D] denotes the equivalence class of D. Hence, K is invertible. �

In fact, G2(1,−1,−1) can be changed into r(G2(1,−1,−1)) as in Fig. 12.
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Fig.12. G2(1,−1,−1) to r(G2(1,−1,−1))
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