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2+1-MOULTON CONFIGURATION
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Abstract. We pose a new problem of collinear central configuration in Newtonian
n-body problem. For a given two-body, we ask whether we can add a new body in
a way such that i) the configuration of the total three-body is also collinear central
with the configuration of the initial two-body being fixed and further ii) the initial
two-body keeps its motion without any change during the process. We find three
solutions to the above problem. We also consider a similar problem such that while
the condition i) is satisfied but by modifying the condition ii) the motion of the
initial two-body is not necessarily equal to the original one. We also find explicit
solutions to the second problem.
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1. Introduction

Leonard Euler had found the first solution of the three-body problem on a line, the
collinear three-body problem [2]. In general, solutions of the n-body problem on
a line, called a collinear n-body problem, become collinear central configuration,
that is, the ratios of the distances of the bodies from the center of mass are con-
stants. Moulton [5] proved that for a fixed mass vector m = (m1, . . . ,mn) and a
fixed ordering of the bodies along the line, there exists a unique collinear central
configuration q = (q1, . . . , qn) with mass m = (m1, . . . ,mn) (up to translation
and scaling), where qi denotes the position of the i th-body on a line i = 1, . . . , n.
The configuration is called a Moulton Configuration, which will be abbreviated as
MC.

In this paper, we consider the following problem. We assume we are given a MC
qA = (qA1

, qA2
) of two bodies A1, A2 such that qA1

< qA2
with mass mA =

(mA1
,mA2

). We consider to add a bodyB of position qB with massmB , toA1, A2

on the same line containing A1, A2 so that i) the configuration of A1, A2 and B
is MC with the configuration of the initial two-body being fixed and ii) the motion
of A1, A2 are kept invariant during the process. More precisely, let qi denote one
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of the positions of A1, A2, B such that q1 < q2 < q3 and mi denote its mass,
respectively,

Definition 1 (2+1-Moulton Configuration, Fig. 1) . We call q = (q1, q2, q3) with
mass vector m = (m1,m2,m3) a 2+1-Moulton Configuration for two bodies A1,
A2 when it satisfies the following conditions:

i) A1,A2 andB are in Moulton Configuration and the configuration ofA1, A2

is equal to the original one qA with mA .
ii) The center of mass and the angular velocity (see for details, Definition 5 be-

low) of A1, A2, B are equal to the initial ones given by A1, A2, respectively.

A1 A2

center of A1 and A2

center of A1, A2

Figure 1. 2+1-Moulton Configuration.

Then we show in this paper

Theorem 2. For a given Moulton Configuration qA = (qA1
, qA2

) with mA =

(mA1
,mA2

)

i) there exist three 2+1-Moulton Configurations for qA with mA

ii) the mass of the added body is zero.

We also consider the situation such that only the condition i) of Definition 1 is
satisfied, namely A1, A2 and B is in Moulton Configuration and the configuration
ofA1, A2 is the same as the original one, while their center of mass and the motion
are not necessarily equal to the original ones.

Definition 3 (Weak-2+1-Moulton Configuration, Fig. 2) . We call q with m a weak-
2+1-Moulton Configuration for qA with mA when it satisfies only the condition i)
of Definition 1.

We also prove

Theorem 4. Under the same assumption as in Theorem 2, we have the following.
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A1 A2

center of A1 and A2

center of A1, A2

Figure 2. Weak-2+1-Moulton Configuration.

i) When the masses of A1 and A2 are not equal, that is, mA1
6= mA2

, we have
intervals I1 ⊂ (−∞, qA1

), I2 ⊂ (qA1
, qA2

) and I3 ⊂ (qA2
,∞) such that if

the position qB of the added body B belongs to Ii, i = 1, 2, 3, the mass mB

is uniquely determined and is positive, and B gives a weak-2+1-Moulton
Configuration for qA with mA .

ii) When mA1
= mA2

, we have intervals I1 ⊂ (−∞, qA1
) and I3 ⊂ (qA2

,∞)
such that for every qB ∈ Ii, i = 1, 3, we have the same results as in i) above.
As to the interval (qA1

, qA2
), we also have a unique point qB ∈ (qA1

, qA2
)

and its positive mass mB which is parametrized by angular momentum in
some interval such that B gives a weak-2+1-Moulton Configuration for qA

with mA .

In previous paper [6], the first author has considered 2+2-Moulton Configuration
for two bodies and had obtained three solutions for a given qA = (qA1

, qA2
) with

mA = (mA1
,mA2

).

The present paper is organized as follows. In Section 2, we define a Moulton
manifold and give its parametrization for n = 2 and 3. In Section 3, we prove
Theorems 1, 2, and in Section 4 we present examples of 2+1-MC and weak-2+1-
MC.

2. Manifold of Moulton Configurations

2.1. Collinear Central Configuration

We consider the Newtonian n-body problem

miq̈i(t) =

n∑
j=1 i 6=j

mimj(qj(t)− qi(t))

‖qi(t)− qj(t)‖3
=

∂

∂qi
U(q(t)), 1 ≤ i ≤ n (1)

where U(q) is the Newtonian potential function

U(q) =
∑

(i,j) i<j

mimj

‖qi − qj‖
, i, j = 1, · · · , n
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in which mi ∈ R+, i = 1, 2, . . . , n are the masses of the bodies and q(t) =
(q1(t), . . . ,qn(t)) ∈ (Rd)n, 1 ≤ d ≤ 3 is their configuration. Here we assume
that qi(t) 6= qj(t) for i 6= j.

It is well-known that the equation (1) is scale and translation invariant. That is,
for a solution q(t) = (q1(t),q2(t), . . . ,qn(t)) of (1), a vector-valued function
κq(κ−3/2t)+ ũt+ ṽ = (κq1(κ

−3/2t)+ut+v, . . . , κqn(κ
−3/2t)+ut+v) is also

a solution, where κ is a positive constant and u = (u1, . . . , ud), v = (v1, . . . , vd)
are constant d-vectors.

If we consider a solution of the form q(t) = c̃ + φ(t)(q − c̃), we easily see that
q satisfies the equation (2) below, where φ(t) is a scalar-valued function, q =
(q1, . . . ,qn) ∈ (Rd)n is a constant vector, c is the center of mass of the system
c =

∑n
i=1miqi/

∑n
i=1mi and c̃ is its diagonal vector c̃ = (c, . . . , c). Then we

naturally obtain the following concept.

Definition 5 (Central Configuration [4, Section 2.1.3]) . We call a configuration
q = (q1,q2, . . . ,qn) ∈ (Rd)n with mass m = (m1,m2, . . . ,mn) ∈ (R+)n a
central configuration if q satisfies

n∑
j=1

mj(qj − qi)

r3ij
+ λ(qi − c) = 0, i = 1, 2, . . . , n (2)

for some λ ∈ R, where rij = ‖qi − qj‖ is a distance of two bodies.

We easily see that the equations (5) yields λ = U(q)/(2I) > 0, where I =∑n
i=1mi‖qi − c‖2/2. Thus, the motion of n-body is determined by the position

of the center of mass and φ(t), hence by λ. Here we remark λ represents the square
of the angular velocity (see [5]).

Conversely, we see that for a central configuration q = (q1, . . . ,qn) with mass
m = (m1 , . . . ,mn) and a real valued function φ(t) satisfying φ̈ = −λφ/|φ|3, the
curve q(t) = c̃+ φ(t)(q− c̃) is a solution of the equation (1).

The invariance of the equation (1) naturally induces an equivariance of the equation
(2) under the scaling and parallel transform. Let κ be a positive number and u
be a vector in Rd. For a solution q = (q1, . . . ,qn) of the equation (2), we set
q̂ = (q̂1, q̂2, . . . , q̂n) = κq + ũ = (κq1 + u, . . . , κqn + u) ∈ (Rd)n. Then q̂
satisfies

n∑
j=1 i 6=j

mj(q̂j − q̂i)

‖q̂i − q̂j‖3
+ λ̂(q̂i − ĉ) = 0, i = 1, 2, . . . , n

where λ̂ = κ−3λ and ĉ = (κc+ u, . . . , κc+ u).
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Now we consider the case d = 1, which means that all bodies lie on a straight line,
that is, collinear. Then we call a solution q of (2) a collinear central configuration,
or a Moulton Configuration. Since the configuration of the bodies are collinear, the
equation (2) is rewritten in the form

A tm+ λt(q− c̃) = t0 for some λ ∈ R (3)

where q = (q1, . . . , qn) ∈ Rn and A is a skew-symmetric matrix defined by
A = (aij), aij = (qi − qj)−2 for i < j, and aii = 0, aji = −aij .

Remark 6. It is known that any solution of two-body problem is always reduced
to a collinear central configuration.

2.2. Moulton Manifold

In this subsection, we consider the equation (3) of Moulton Configuration of n-
bodies in a geometric way.

Let us consider a 2n + 2-dimensional Euclidean spase R2n+2 with coordinates
(q, λ, c,m) = (q1, . . . , qn, λ, c,m1, . . . ,mn) and consider the open domain

On = {(q1, . . . , qn,λ, c,m1, . . . ,mn) ∈ R2n+2 ;

q1 < q2 < · · · < qn, λ > 0, q1 < c < qn,m1, . . . ,mn > 0}.

Then the equation (3) defines manifold

Mn = {(q, λ, c,m) ∈ On ; A
tm+ λt(q− c̃) = t0}

called an n-Moulton manifold, which can be regarded as the set of all Moulton
Configurations of n-bodies. The manifold Mn has a parametrization whose ex-
pression depends on the case where n is even or n is odd (cf. [1], [5]). In this
paper we discuss the cases n = 2 and n = 3, and the general cases for n = 2k,
n = 2k + 1 is given in a similar way.

2-Moulton manifold. The equation (3) for n = 2 shows that 2-Moulton mani-
fold is given by

M2 =

{
(qA1

, qA2
, λA , cA ,mA1

,mA2
) ∈ O2 ;

(
mA1

mA2

)
=
λA

a12

(
qA2
− cA

cA − qA1

)}
.

We consider the open domain

D2 = {(qA1
, qA2

, cA , λA) ∈ R4 ; qA1
< cA < qA2

, λA > 0}
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and define the maps mAi
: D2 → R+, mAi

= mAi
(qA1

, qA2
, λA , cA), i = 1, 2(

mA1

mA2

)
=
λA

a12

(
qA2
− cA

cA − qA1

)
which are naturally derived from (3). Then the 2-Moulton manifoldM2 is given
as the graph of the map mA = (mA1

,mA2
), i.e.,M2 = mA(D2).

The scale and translation invariance of the n-body problem naturally induces the
action of a positive number κ and the real number µ onM2 as

(qA1
, qA2

, cA , λA ,mA1
,mA2

)

7→ (κqA1
+ µ, κqA2

+ µ, κ−3λA , κcA + µ,mA1
,mA2

).

3-Moulton manifold. The parametrization of 3-Moulton manifoldM3 is slightly
different fromM2. For n = 3, the matrix A in the equation (3) is not invertible.
Regarding (3) as an equation with respect to m = (m1,m2,m3) we consider an
augmented matrix of the equation 0 a12 a13 −λ(q1 − c)

−a12 0 a23 −λ(q2 − c)
−a13 −a23 0 −λ(q3 − c)


where aij = (qi − qj)−2 (i < j) and we obtain by the sweep-out methoda12 0 −a23 −λ(q2 − c)

0 a12 a13 −λ(q1 − c)
0 0 0 ∗


where ∗ = λ(−a12(q3− c)+a13(q2− c)−a23(q1− c)). Then the equation ∗ = 0,
that is

c = (a12q3 − a13q2 + a23q1) /P (4)

where P = a12 − a13 + a23 is the necessary and sufficient condition for equation
(3) to have a solution. Thus the equation (3) reduces to the system

a12m2 + a13m3 + λ(q1 − c) = 0

−a12m1 + a23m3 + λ(q2 − c) = 0.

In order to parametrize the solutions (m1,m2,m3), we introduce a parameter
M = m1 +m2 +m3 which represents the total mass. We consider the system

a12m2 + a13m3 + λ(q1 − c) = 0

−a12m1 + a23m3 + λ(q2 − c) = 0

m1 +m2 +m3 = M.
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Then the solution is unique for each M and using (4) we have

m1 = (a23M + λ(q2 − q3))/P
m2 = (−a13M + λ(q3 − q1))/P
m3 = (a12M + λ(q1 − q2))/P.

(5)

Thus, the parameter space ofM3 can be taken as

D3 = {(q1, q2, q3, λ,M) ∈ R5 ; q1 < q2 < q3, λ,M > 0}

and a map

µ : D3 →M3, µ(q, λ,M) = (q, λ, c(q),m(q, λ,M))

where m(q, λ,M) = (m1,m2,m3) is given by (5) and c(q) by (4), gives the
parametrization of the 3-Moulton manifoldM3.

3. Proof of Theorems

Now suppose we are given a two-body A1, A2 which is a Moulton Configuration
qA = (qA1

, qA2
) and mass mA = (mA1

, mA2
) such that qA1

< qA2
, mA1

,
mA2

> 0. We consider to add a body B with a mass mB in the same line of A1,
A2 so that A1, A2 and B form a 2+1-Moulton Configuration for two bodies A1

and A2.

We set the distance of qA1
and qA2

is the unit such that qA2
− qA1

= 1 by scaling
for simplicity and then the parametrization map is written as(

mA1

mA2

)
= λA

(
qA2
− cA

cA − qA1

)
(6)

because a12 = (qA2
− qA1

)−2 = 1.

As a possibility, we have three distinct cases. Case 1: qB < qA1
< qA2

, Case 2:
qA1

< qB < qA2
and Case 3: qA1

< qA2
< qB . We will present proofs for each

case.

3.1. Case 1 and Case 3

Case 1. We set (q1, q2, q3) = (qB , qA1
, qA2

), q1 < q2 < q3 with (m1,m2,m3) =

(mB ,mA1
,mA2

), see Fig. 3.
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A1B A2

Figure 3. Case 1.

Now we consider the condition i) of Definition 1. Note that qA2
− qA1

= 1 by
scaling. Then A1, A2, B are in MC, (5) gives

mB = (M − λ)/P
mA1

= −a13M + λ(qA2
− qB ))/P

mA2
= a12M + λ(qB − qA1

))/P

since a23 = (qA1
− qA2

)−2 = 1, q2 − q3 = qA1
− qA2

= −1. The identity (4)
shows c can be expressed as a function of qB which is denoted by c1(qB ) such that

c = c1(qB ) = (a12(qB )qA2
− a13(qB )qA1

+ qB )/P (7)

where a12 = (qB − qA1
)−2, a13 = (qB − qA2

)−2, P = a12 − a13 + a23 =
a12− a13 +1. Since the configuration of A1, A1 is equal to the original one, mA1

,
mA2

satisfy the equation (6) and then we have the equation for M , λ, qB such that

(−a13M + λ(qA2
− qB ))/P = λA(qA2

− cA)
(a12M + λ(qB − qA1

))/P = λA(cA − qA1
)

or

K1

(
M
λ

)
= λAP

(
qA2
− cA

cA − qA1

)
, where K1 =

(
−a13 qA2

− qB
a12 qB − qA1

)
.

We have

detK1=
(
−a13(qB − qA1

)− a12(qA2
− qB )

)
=

(
qA1
− qB

(qB − qA2
)2
−

qA2
− qB

(qB − qA1
)2

)
<0

since qB < qA1
< qA2

. Thus for each qB < qA1
, M , λ are expressed as functions

of qB such that(
M
λ

)
=

λAP

detK1

(
qB − qA1

qB − qA2

−a12 −a13

)(
qA2
− cA

cA − qA1

)
.

From the equation (7) we obtain detK1 = P (qB − c1(qB )) and then we can write
the above equation as

λ =
λAP

qB − c1(qB )
(cA − c1(qB )) + λA

qB − cA
qB − c1(qB )

(8)

M = λA

qB − cA
qB − c1(qB )

· (9)
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Then we obtain

mB = (M − λ)/P = − λA

qB − c1(qB )
(cA − c1(qB )) = −λA

c1(qB )− cA
c1(qB )− qB

· (10)

Now we consider the condition ii) of Definition 1. We investigate the equation
c1(qB ) = cA . It is easy to see that

c1(qB ) = qA1
+
a12(qB )− qA1

+ qB
P

·

Then since qA1
< cA < qA2

, it is necessary that qA1
< c1(qB ) < qA2

= qA1
+ 1

which is equivalent to the inequality qA1
− qB < a12 and a13 < qA1

+ 1 − qB so
that we obtain qA1

− 1 < qB < qA1
. In this interval we have

c′1(qB ) =
1

P 2

(
(a′12 + 1)P − (a12 + qB − qA1

)P ′
)

=
1

P 2

(
a′12(1− a13 + qA1

− qB ) + a′13(a12 − (qA1
− qB )) + P

)
> 0

because a′12, a′13 > 0, 1−a13 > 0, and a12−(qA1
−qB ) > 0 in qA1

−1 < qB < qA1
,

P > 0, where c′1(qB ) = dc1(qB )/dqB . Then we have

Lemma 7. There exists a unique qB satisfying c1(qB ) = cA in (qA1
− 1, qA1

).

Proof: The function c1(qB ) is increasing monotonically. Since lim c1(qB )q
B
→q

A1
−1

= qA1
and lim c1(qB )q

B
→q

A1

= qA1
+ 1, there exists a unique solution qB = q0

B

which satisfies the equation c1(qB ) = cA . �

Now we are in a position to give the proofs of our Theorems 2 and 4. The condition
i) of Definition 1 is satisfied by (8), (9) for each qB < qA1

, and moreover, there
exists unique qB = q0

B
< qA1

such that the center c = c1(qB ) is equal to cA and
also λ = λA holds by (8), then the motion of the three bodies A1, A2 and B, hence
its part A1, A2, is equal to the original one, and in addition, we have mB = 0 by
(10). Then for the Case 1 we obtain Theorem 2.

As to Theorem 2, we consider the following way. In addition to the fact that
the condition i) of Definition 1 is satisfied by (8), (9) for each qB < qA1

, the
equation (10) yields that if qB < q0

B
, mB is positive because c1(qB )− qB > 0 and

c1(qB ) − cA < 0. Thus, for all qB < q0
B

, A1, A2, B give the weak-2+1 Moulton
Configuration for two bodies A1, A2 where the mass of B is positive. Then we
have Theorem 2 for the Case 1.



88 Naoko Yoshimi and Akira Yoshioka

A1 A

Figure 4. Case 3.

Case 3. We consider it in a parallel manner to the Case 1. Let (q1, q2, q3) =
(qA1

, qA2
, qB ), q1 < q2 < q3 with (m1, m2, m3) = (mA1

,mA2
,mB ). Then by

scaling we have in (5), a12 = (qA1
− qA2

)−2 = 1, q1 − q2 = qA1
− qA2

= −1. If
A1, A2, B satisfy the condition i) of Definition 1, we have as well

mA1
= (a23M + λ(qA2

− qB ))/P
mA2

= (−a13M + λ(qB − qA1
))/P

mB = (M − λ)/P

and the equation (4) reads

c = c3(qB ) =
1

P

(
−a13qA2

+ a23qA1
+ qB

)
in which a13 = (qA1

− qB )−2, a23 = (qA2
− qB )−2, P = a12 − a13 + a23 =

a23 − a13 + 1. Then similarly to Case 1 we have the following relation

(a23M + λ(qA2
− qB ))/P = λA(qA2

− cA)
(−a13M + λ(qB − qA1

))/P = λA(cA − qA1
).

Therefore, for each qA2
< qB , we obtain(

M
λ

)
=
λAP

D3

(
qB − qA1

qB − qA2

a13 a23

)(
qA2
− cA

cA − qA1

)
where D3 is a determinant of the coefficient matrix and we see D3 = a23(qB −
qA1

) + a13(qA2
− qB ) > 0. We easily see that D3 = P (qB − c3(qB )). Then we

have the following result similarly to the Case 1.

Lemma 8. There exists a unique qB in (qA2
, qA2

+ 1) satisfying c3(qB ) = cA .

The proof is obtained by similar manner in Lemma 7 by considering

c3(qB ) = qA2
+
qB − a23(qB )− qA2

P
(11)
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which is strictly increasing for qA2
< qB < qA2

+ 1. Moreover we have

λ = −λAP
c3(qB )− cA
qB − c3(qB )

+ λA

qB − cA
qB − c3(qB )

M = λA

qB − cA
qB − c3(qB )

·

and

mB (qB ) = (M − λ)/P = λA

c3(qB )− cA
qB − c3(qB )

·

Thus mB (qB ) = 0 for qB satisfying c3(qB ) = cA . We also have λ = λA when
c3(qB ) = cA . Then we have Theorem 2 for Case 3.

We set qB = q0
B
∈ (qA2

, qA2
+ 1) satisfying c3(qB ) = cA given in Lemma 8.

Therefore, if qB < qB
0, mB is positive because qB − c3(qB ) > 0 for qA2

< qB <

qA2
+ 1 and c3(qB ) − cA > 0 when qB < qB

0. Then similarly to the Case 1 we
have Theorem 2 for Case 3.

3.2. Case 2

We set (q1, q2, q3) = (qA1
, qB , qA2

), q1 < q2 < q3 with (m1,m2,m3) =

(mA1
,mB ,mA2

), see Fig. 5.

A1 B A2

Figure 5. Case 2.

Now we consider the condition i) of Definition 1. Since A1, B,A2 are in Moulton
Configuration, we have

mA1
= a23M + λ(qB − qA2

))/P

mB = (λ−M)/P
mA2

= a12M + λ(qA1
− qB ))/P

and (4) yields

c = c2(qB ) =
1

P

(
a12qA2

+ a23qA1
− qB

)
(12)
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where a12 = (qA1
− qB )

−2, a23 = (qB − qA2
)−2, P = a12 − a13 + a23 =

a12 + a23 − 1. By the condition i) of Definition 1, the configuration of A1, A2 is
the same as the original one and then we obtain the following

(a23M + λ(qB − qA2
))/P = λA(qA2

− cA)
(a12M + λ(qA1

− qB ))/P = λA(cA − qA1
).

(13)

Similarly to Case 1, we write the equation as

K2

(
M
λ

)
= λAP

(
qA2
− cA

cA − qA1

)
, K2 =

(
a23 qB − qA2

a12 qA1
− qB

)
.

From equation (12) we obtain detK2 = a23(qA1
− qB ) − a12(qB − qA2

) =

P (c2(qB ) − qB ). We remark here that the difference from the previous cases,
Case 2 is that one has a point where the determinant of the matrix K2 vanishes.

The singular point is given as follows. By a direct calculation, we have

c2(qB )− qB = −(qB − q
0
A
)

(
1 +

a12a23 + 1

P

)
(14)

where q0
A

is the midpoint ofA1 andA2, namely, q0
A
= (qA1

+qA2
)/2 = qA1

+1/2.
Here we set

R(qB ) = 1 +
a12a23 + 1

P

and this obviously satisfies R(qB ) ≥ 1. Thus detK2 vanishes at qB = q0
A

, and
then for each qB such that qA1

< qB < qA2
and qB 6= q0

A
, the variables M , λ can

be found as functions of qB such that(
M
λ

)
=

λAP

detK2

(
qA1
− qB qA2

− qB
−a12 a23

)(
qA2
− cA

cA − qA1

)
or

λ = λAP
cA − c2(qB )
c2(qB )− qB

+ λA

cA − qB
c2(qB )− qB (15)

M = λA

cA − qB
c2(qB )− qB

·

Then mB is given as a function of qB such that

mB (qB ) = (λ−M)/P = λA

cA − c2(qB )
c2(qB )− qB

(16)
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for qA1
< qB < qA2

and qB 6= q0
A

. Here by (14) we have also

cA − c2(qB )
c2(qB )− qB

=
1

R(qB )

c2(qB )− cA
qB − q0A

·

Let us notice that c2(q0A) = q0
A

, then c2(q0A) − cA 6= 0 if q0
A
6= cA , hence mB

is divergent when c2(qB ) − qB = 0, or qB = q0
A

. It is easy to see cA 6= q0
A

is
equivalent to mA1

6= mA2
.

Lemma 9. c2(qB ) is a strictly monotone decreasing function of qB , qA1
< qB <

qA2
such that limq

B
→q

A1
c2(qB ) = qA2

, limq
B
→q

A2
c2(qB ) = qA1

.

Proof: We have

c2(qB ) = qA1
+
a12 − (qB − qA1

)

P

which gives the limit of c2(qB ) for qB → qA1
and qB → qA2

, respectively. We
have also

c′2(qB ) =
1

P 2

(
a′12(a23 − 1 + qB − qA1

)− a′23(a12 − (qB − qA1
))− P

)
.

Since

a′12 = −
2

(qB − qA1
)3
< 0, a′23 = −

2

(qB − qA1
− 1)3

> 0

for qA1
< qB < qA1

+ 1, and a23 − 1 + qB − qA1
> 0, a12 − (qB − qA1

) > 0,
P > 0, we obtain c′2(qB ) < 0. �

Since qA1
< cA < qA2

, Lemma 9 gives the unique q0
B

such that qA1
< qB < qA2

satisfying c2(q0B ) = cA , and also shows that q0
B
6= q0

A
when cA 6= q0

A
.

Figure 6. q0
B
∈ (q0

A
, q

A2
). Figure 7. q0

B
∈ (q

A1
, q0

A
).
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Now we prove Theorems 2 and 4. Theorem 2 can be proven for the case cA 6= q0
A

in the following way. For each qB such that qA1
< qB < qA2

and qB 6= q0
A

,
the condition i) of Definition 1 is satisfied since qB gives λ, M by the equations
(15). Moreover, the identity (16) yields, if cA 6= q0

A
, that the graph of the function

mB is given in Fig. 6, for the case where cA < q0
A

, and Fig. 7, for cA > q0
A

,
respectively, from which we obtain an interval where mB is positive, and then
follows Theorem 4.

Further we consider the condition ii) of Definition 1. It is easy to see that for
qB = q0

B
, it holds c2(q0B ) = cA and λ = λA which yields that the motion is not

changed, and then we obtain Theorem 1.

For the exceptional case cA = q0
A

, we go back to the equation (13) and we have

(a23M + λ(qB − qA2
))/P = λA(qA2

− cA) = λA/2

(a12M + λ(qA1
− qB ))/P = λA(cA − qA1

) = λA/2.

Then taking into account that a23 − a12 = 2(qB − q0A)a12a23 we have

0 = (a23 − a12)M + 2λ(qB − q
0
A
) = 2(qB − q

0
A
)(a12a23M + λ).

Since M,λ > 0 we obtain qB = q0
A

.

Remark that c2(q0B ) = cA = q0
A

and the monotone property of the function c2(qB )
shows q0

B
= q0

A
. Then substituting qB = q0

A
gives a12 = a23 = 4 and P = 7. Then

the equation (13) is equivalent to the relation

M =
1

8
(λ+ 7λA)

which yields

mB =
1

8
(λ− λA).

Thus, for the exceptional case, the configuration (qA1
, q0

B
, qA2

) with mass (mA1
,

mB ,mA2
) is the weak-2+1-Moulton Configuration for two bodies A1, A2 and the

mass of B is given as a function of λ such that mB = (λ − λA)/8 and is positive
for every λ > λA . Thus we obtain Theorem 4. Further putting λ = λA , we
obtain mB = 0 and we have the 2+1-Moulton Configuration (qA1

, q0
B
, qA2

) with
(mA1

,mB ,mA2
) for two bodies A1 and A2 such that mB = 0, and thus we have

Theorem 2.
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4. Example

4.1. 2+1-Moulton Configuration – Procyon –

Procyon is the α star in Canis Minor. It is a binary star system consisting of,
Procyon A and B, which are heavenly bodies. The two stars work on an orbit
around the center of gravity of both. The mass of Procyon A is 1.42± 0.04Ms and
of Procyon B is 0.575± 0.017Ms [3], where Ms is a symbol denoting the weight
of the sun i.e., Ms = 1.989× 1030 kg.

We consider a system of Procyon A and B as a two-body MC such that we assume
Procyon A to be A1, Procyon B to be A2. We suppose it not to come under an
influence from others. We assume qA1

= 1, then we obtain cA ; 1.29, λA ; 2.00

by solving simultaneous equations (6), mA1 = λA(qA2
− cA) = 1.42 and mA2

=

λA(cA − qA1
) = 0.575, where we put the mass of A is 1.42Ms and one of B is

0.575Ms.

We calculate using Mathematica then we obtain qB ; 0.171 from the equation of
(4), c = cA in case 1. Similarly, we can get their positions in the Cases 2 and 3
(see Table 1).

Table 1. 2+1-Moulton Configuration.

q1 q2 q3
case 1 position 0.171 1.00 2.00

mass (Ms) 0.00 0.575 1.42
case 2 position 1.00 1.59 2.00

mass (Ms) 0.575 0.00 1.42
case 3 position 1.00 2.00 2.55

mass (Ms) 0.575 1.42 0.00

Table 2. Weak-2+1-Moulton Configuration.

q
B

m
B

c M λ
case 1 1.6 0.42 2.67 3.92 3.10
case 2 3.05 1.66 2.88 5.16 17.2
case 3 4.3 1.11 3.16 4.61 2.10

4.2. Weak-2+1 Moulton Configuration

We show an example for weak-2+1 Moulton Configuration in each case. Firstly
we give (qA1

, cA , λA) = (2.5, 2.8, 3.5) so that we easily compare each case, then
we obtain (mA1

,mA2
) = (2.45, 1.05). Secondly we solve the equation c = cA on

qB . Then we select the value of qB so that it makes mB be positive. Moreover we
calculate c, M and λ, where we rounded off to fourth figure. We present the result
as Table 2 and Figs. 8, 9 and 10).
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position

mass
A1 A2B cA

c
2.5 3.51.6

2.45 1.050.42

Figure 8. Case 1 (c,M, λ) = (2.67, 3.92, 3.10).

position

mass
A1 A2B

2.5 3.53.05

2.45 1.051.66

cA

c

Figure 9. Case 2 (c,M, λ) = (2.88, 5.16, 17.2).

position

mass
A1 A2 B

2.5 3.5 4.3

2.45 1.05 1.11

cA

Figure 10. Case 3 (c,M, λ) = (3.16, 4.61, 2.10).
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