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CASSINI OVALS IN HARMONIC MOTION ORBITS∗
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Abstract. We discover the appearance of interesting Cassinian ovals in the motion
of a two-dimensional harmonic oscillator. The trajectories of the oscillating points
are ellipses depending on a parameter. The locus of the foci of these ellipses is a
Cassini oval. The form of this oval depends on the magnitude of the initial velocity.
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1. Introduction

In this note we point out an interesting geometric phenomenon. We consider me-
chanical vibrations on the plane where the vibrating point traces various ellipses.
We show that the foci of these ellipses trace different Cassini ovals. The forms of
these ovals depend only on the initial velocity.

The simple free non-damped harmonic oscillator is governed by the differential
equation

x′′ + ω2x = 0 (1)

where x(t) is the position function, t ≥ 0 is time, and ω is the angular frequency.
This equation results from Newton’s law F = ma by using the force F = −kx ,
where k > 0 is a constant. Then we have mx′′ = −kx or (1) with ω2 = k/m.

Suppose the initial position is the point (̊x, 0) in the xy-plane and the initial veloc-
ity is v̊ = x′(0). The law of motion is

x(t) = x̊ cos(ωt) +
v̊

ω
sin(ωt). (2)

The point M(x(t), 0) oscillates over the interval [−c, c], where c =

√
x̊2 +

v̊2

ω2
·

Now we extend this motion to two dimensions by assuming that the initial velocity
is a vector v̊ = (̊v cosα, v̊ sinα), cutting angle α with the x-axis. The motion
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is described by the vector function r(t) = (x (t), y (t)) whose coordinates satisfy
the equations

x′′ + ω2x = 0, y′′ + ω2y = 0 (3)

with initial position (̊x, 0) and initial velocity v̊ = (̊v cosα, v̊ sinα). Solving for
x and y separately we find the parametric equations

x = x̊ cos(ωt) +
v̊

ω
cosα sin(ωt), y =

v̊

ω
sinα sin(ωt) (4)

and the trajectory is an ellipse. Setting for convenience p = v̊/ω and replacing this
in the second equation in (4) we write

sin(ωt) =
y

p sinα
· (5)

From the first equation in (4) x = x̊ cos(ωt) + y cotα we can solve for cos(ωt)

cos(ωt) =
x− y cotα

x̊
· (6)

Now from (5) and (6) we find the equation of the elliptical trajectory in Cartesian
coordinates (

x− y cotα

x̊

)2

+

(
y

p sinα

)2

= 1. (7)

When α changes we have a family of ellipses with center (0 , 0) (notice the sym-
metry with respect to (0, 0)). One simple representative of this family is the ellipse
corresponding to α =

π

2
x2

x̊2
+

y2

p2
= 1

with semi axes x̊ and p = v̊/ω .

For a dynamic illustration see the applet at https://ggbm.at/AhqHxxBF.

Now we shall try to identify the region G filled by all these ellipses when we
change α in (0 , π). For this purpose we rewrite equation (7) as a quadratic equation
for cotα.

With the help of the identity
1

sin2 α
= 1 + cot2 α the equation becomes

(x− y cotα)2p2 + x̊2y2(1 + cot2 α)− x̊2p2 = 0 or

y2(p2 + x̊2) cot2 α− 2xyp2 cotα+ (x2 − x̊2)p2 + x̊2y2 = 0. (8)

We reason that a point (x, y) is on the boundary of G if it can be reached by only
one ellipse in the above set of ellipses. This means that for points (x, y) on the
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Figure 1. Orbits with the same speed, v̊ < x̊. Figure 2. Trajectories of the vertices.

boundary, equation (8) has only one solution for cotα. In this case the discriminant
is zero, i.e.,

4x2y2p4 − 4y2(p2 + x̊2)[(x2 − x̊2)p2 + x̊2y2] = 0.

Simplifying this we obtain

x2

x̊2 + p2
+

y2

p2
= 1 (9)

which is an ellipse with center at the origin, foci at (−x̊, 0)and (̊x, 0), big axis√
x̊2 + p2 and small axis p, i.e., the axes are a =

√
x̊2 + v̊2

ω2 =
√
x̊2 + mv̊2

k

(which is the maximal amplitude) and p =
v̊

ω
= v̊

√
m

k
· The enveloping ellipse

can be seen in Figs. 3, 5 and 6.

The ellipse (9) is called ellipse of safety. All points in the plane beyond this ellipse
cannot be hit by the oscillating particle.

If we rotate this ellipse about the x-axis, it will generate the ellipsoid of safety, with
the same center and same foci. Beyond this ellipsoid is the “safe” space, where the
oscillating point Mwith initial speed |̊v| cannot reach.

For ellipses of safety and other similar results see [3].

2. Cassini Ovals

In this section we present an interesting fact: when the angle α varies, the foci
of the orbits (4) trace a remarkable curve, a Cassini oval. The Cassinian oval is
defined as the locus of all points (u, v) whose distances to two fixed points (foci)
(−λ, 0) and (λ, 0) have a constant product µ2, i.e.,

[u+ λ)2 + v2] [(u− λ)2 + v2] = µ4.
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We prove the following theorem. Without loss of generality we assume that the
frequency ω = 1.

Theorem 1. The foci of the elliptical trajectories

x = x̊ cos(t) + v̊ cosα sin(t), y = v̊ sinα sin(t), 0 ≤ t ≤ 2π

with initial position (̊x, 0) and initial velocity v̊ = (̊v cosα, v̊ sinα) when α
changes from α = −π to α = π trace a Cassini oval with Cartesian equation

[(x+ x̊)2 + y2] [(x− x̊)2 + y2] = v̊4 (10)

or equivalently
(x2 + y2)2 − 2x̊2(x2 − y2) = v̊4 − x̊4 (11)

and polar equation
r4 − 2x̊2 r2 cos 2θ = v̊4 − x̊4. (12)

This Cassini oval sits symmetrically inside the ellipse of safety. In particular, when
x̊ = v̊ the locus of the foci is Bernoulli’s lemniscate with Cartesian equation

(x2 + y2)2 = 2x̊2(x2 − y2) (13)

and polar equation

r2 = 2x̊2 cos 2θ, −π
4
≤ θ ≤ π

4
· (14)

Moreover, in this case α = 2θ, where θ is the polar angle. Thus equation (13)
becomes

r2 = 2x̊2 cosα, −π
2
≤ α ≤ π

2
· (15)

Remark 2. This result seems to be new. The Cassini ovals were discovered exper-
imentally by the second author while studying the ellipses of safety.

Remark 3. Although in equation (15) cosα is only non-negative, allowing the
polar radius in this equation to be negative we obtain the entire lemniscate.

Remark 4. As stated in the theorem, when v̊ = x̊ the Cassini oval is a lemniscate.
The other two cases v̊ < x̊ and v̊ > x̊ provide two-pieces and one-piece ovals
correspondingly. All three cases of Cassini ovals are presented in Figs. 3, 5 and 6
below. In these figures A = (−x̊, 0) and B = (̊x, 0) are the foci of the enveloping
ellipse and also the foci of the Cassini ovals. The points F1 and F2 are the foci
and also the endpoints of the degenerated ellipse-segment [−a, a], a =

√
x̊2 + v̊2

occurring for α = 0. These are the only two common points for the Cassini ovals
and the enveloping ellipse.
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Remark 5. Because of the symmetry with respect to the x-axis, rotation around
this axis will generate Cassini surfaces of revolution. For example, the three-
dimensional locus of foci in the case of lemniscates will be the surface in Fig.4.

Notice that equation (10) is a bipolar equation expressing the fact that if F (x, y) is
a point on the Cassini oval, the product of its distances to A and B is v̊2.

Good references for Cassini ovals are Lawrence [1], Mladenov [2], Teixeira [4]
and Yates [5].

Proof of the theorem. We first give a proof for the most interesting case x̊ = v̊. For
this case it is easy to write explicit parametric equations for the trajectory of the
foci. The proof of the general case will be different.

When x̊ = v̊ and ω = 1 equations (4) become

x = x̊(cos t+ cosα sin t), y = x̊ sinα sin t. (16)

From this we compute

r2 = x2 + y2 = x̊2 (cos2 t+ sin2 t cos2 α+ sin2 t sin2 α+ cosα sin 2t).

That is
r2 = x̊2 (1 + cosα sin 2t). (17)

Figure 3. Lemniscate, v̊ = x̊. Figure 4. Surface of revolution for the lemniscate.

Assume first −π
2 ≤ α ≤ π

2 , so that cosα ≥ 0. The maximal and minimal values
of r2 are the squares of the big axis a and the small axis b of the ellipse (16). They
are obtained when sin 2t = ±1 ( t = π

4 ,
3π
4 , ... ). Thus

a2 = x̊2 (1 + cosα), b2 = x̊2 (1− cosα). (18)

For the focal distance c we have c2 = a2 − b2, so that

c2 = 2x̊2 cosα. (19)
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The vertex of the ellipse in the first quadrant happens when t = π
4 and the coordi-

nates of this vertex are (from (16))

V

(
x̊(1 + cosα)√

2
,
x̊ sinα√

2

)
. (20)

Multiplying by c/a these coordinates we find the coordinates of the focus in the
first quadrant as functions of α

x = x̊
√

cosα (1 + cosα), y =
x̊ sinα

√
cosα√

1 + cosα
· (21)

From here x2 + y2 = 2x̊2 cosα confirming (19) and also

x2 − y2 = 2x̊2 cos2 α. (22)

Equation (13) follows immediately from here. The restriction cosα ≥ 0 is not
essential, because equation (13) extends by symmetry to all quadrants.

Let now θ be the polar angle and x = r cos θ, y = r sin θ the standard polar
relations. Then

x2 − y2 = r2(cos2 θ − sin2 θ) = r2 cos 2θ

and comparing this to (22) and (20) for the coordinates of the focus we find that
cosα = cos 2θ and thus α = 2θ. The proof is completed.

For a dynamic illustration of this motion see the GeoGebra applet at

https://ggbm.at/xQbfBxwY

Remark 6. Notice that the vertex V in (20) traces a semicircle for −π
2
≤ α ≤ π

2

with radius
x̊√
2

and center
( x̊√

2
, 0
)

. The vertex cannot complete the whole circle

when α moves beyond ±π
2

, because at α = ±π
2

the ellipse (16) becomes a circle
with a = b and the next moment the two axes a and b change places. The second

half of the circle is centered at
(
− x̊√

2
, 0
)

, see Fig.2.

Proof of the theorem in the case v̊ 6= x̊. When v̊ < x̊ the Cassini curve consists of
two ovals, as shown in Fig.5. When v̊ > x̊ the Cassini oval consists of one piece
(see Fig. 6). We need to prove equation (10). When v̊ 6= x̊ we compute from (4)

r2 = x2 + y2 = x̊2 cos2 t+ v̊2 sin2 t+ 2x̊̊v cosα sin t cos t
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which can be written as

r2 =
1

2
(̊x2 + v̊2) +

1

2
(̊x2 − v̊2) cos 2t+ x̊̊v cosα sin 2t. (23)

Maximal and minimal values occur when

tan2t =
2x̊̊v cosα

x̊2 − v̊2
·

If maximum occurs for some t , then the next extremum, the minimum, will happen
for t +

π

2
as tan2t is the same. Thus for the two semi axes a and b of the ellipse

(4) we have

a2 = 1
2 (̊x2 + v̊2) + 1

2 (̊x2 − v̊2) cos 2t+ x̊̊v cosα sin 2t

b2 = 1
2 (̊x2 + v̊2)− 1

2 (̊x2 − v̊2) cos 2t− x̊̊v cosα sin 2t

and from here we obtain the remarkable equation

a2 + b2 = x̊2 + v̊2. (24)

Figure 5. Two Cassini ovals, v̊ < x̊. Figure 6. Cassini oval with v̊ > x̊.

We use now the construction in Fig.2 with an arbitrary elliptical orbit.

As before, A = (−x̊, 0), B = (̊x, 0). The quadrilateral AF2BF1 is a paral-
lelogram – note that the diagonals AB and F1F2 cut each other in half. Thus
AF2 = BF1 and AF1 = BF2. From the parallelogram law we have

AB2 + F1F
2
2 = 2(F1B

2 + F2B
2).

Note that AB = 2x̊ and F1F
2
2 = 4(a2 − b2), so that

F1B
2 + F2B

2 = 2OF 2
1 + 2x̊2. (25)
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At the same time, using the property of the ellipse

4a2 = (F1A+ F1B)2 = F1A
2 + F1B

2 + 2F1AF1B.

Therefore, with the help of (25) and using that F1A = F2B

2F1AF1B = 4a2−F2B
2−F1B

2 = 4a2− 2(a2− b2)− 2x̊2 = 2(a2 + b2)− 2x̊2

and now using (24)
F1AF1B = v̊2

which is equation (10).

Figure 7. An important parallelogram.

Remark 7. In Fig.7, a = OV and b = OP . Equation (24) shows that the segment
PV has constant length

√
x̊2 + v̊2 for all elliptical orbits. This quantity is exactly

the large radius of the enveloping ellipse (9) when ω = 1.Moreover, the enveloping
ellipse and all Cassini ovals have the same foci A and B.
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