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Abstract. In 1691, James (Jacob) Bernoulli proposed a problem called elastica
problem: What shape of elastica, an ideal thin elastic rod on a plane, is allowed?

Daniel Bernoulli discovered its energy functional, Euler-Bernoulli energy func-
tion, and the minimal principle of the elastica. Using it, Euler essentially solved

the problem in 1744 by developing the variational method, elliptic integral the-

ory and so on. This article starts with a review of its mathematical meaning and

historical background. After that we present one of its extensions, statistical me-

chanics of elastica as a model of the DNA and the large polymers. We will call it

a quantized elastica, and show that it is connected with the modified Korteweg-de

Vries hierarchy, loop space, submanifold Dirac operators, moduli spaces of the real

hyperelliptic curves and so on. By reviewing the other extensions of the elastica

problem, We will see that elastica is in the center of mathematics even now.

1. Introduction

In a daily life, we encounter various shapes. Leonardo da Vinci (1452-1519)

observed these various shapes as an artist, a researcher of medicine, a scientist

and an engineer, and sketched them on his notes. His purpose might be to imitate

Creator’s works and sometimes to control them by understanding their mechanism

though we cannot know his net purpose exactly. A prototype of elastica, the main

subject of this article, also appeared in his note [72] where he roughly drew a bent

thin elastic beam, by considering what shape is obtained when an elastic beam

was bent. The drawing might be due to the motivation from applied science to

control bridges and beam in architecture. After then, the elastic beams is a theme

in mathematical science like a catenary (a curve of a chain in gravitational force

with its fixed endings) and Galileo Galilei (1564-1642) also dealt with them in his

famous book “Two New Sciences” published in 1638 [22]. Galileo investigated

the breaking of a beam by terminal load and the resistance force from the beam.

Following these studies, James (Jacob or Jacques) Bernoulli (1654-1705) pro-

posed the elastica problem: What shape we obtain when an elastica, an ideal
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infinitesimally thin elastic rod without stretching on a plane, is bent? Roughly

speaking, the problem is to find what shape a string of guitar on a plane has. It

should be noted that the elastica problem is not directly related to string in the

string theory [47]. This problem was essentially solved by Euler at 1744 but sim-

ilar problems have been still studied by several researchers even nowadays.

In this article, following the references [71, 72, 74], we will review the studies of

Bernoulli’s and Euler from a historical point of view and mention an attempt, a

quantization of elastica, that we step beyond their studies.

Some of the readers might have a question why we choose the topic from the sev-

enteenth and eighteenth centuries. It is not only due to personal preferences. One

of the reasons is that these studies of Bernoulli’s and Euler on elastica are proto-

types of harmonic map theory, nonlinear integrable theory, differential geometry,

algebraic geometry, elliptic function theory, theory of moduli of elliptic curves

and so on. For example, the studies of the nonlinear integrable differential equa-

tions, such as soliton equations, began in 1960’s whereas the modern studies of

the extrinsic geometries, which were considered as an extreme points of certain

energy functional, began in 1980’s. Both progress even now but their origin can

be found in the theory of elastica. In other words, studies of Bernoulli’s and Euler

do not rust even in the twenty-first century.

The second reason is that the studies of elastica are among the most important ex-

amples of a collaboration of many fields in mathematics including applied mathe-

matics and mathematical physics. The shape is a concerned object even nowadays.

In order to understand the shapes as a subject in applied mathematics, Bernoulli’s

and Euler started to study them and found the abstract concepts: description of

curves, i.e., primitive differential geometry, variational principle and method, har-

monic map theory, elliptic integral theory, i.e., beginning of algebraic geometry

and elliptic function theory, moduli of elliptic curves, classification of solution

space with topological number, and so on. They applied the abstract theories to

the elastica problem. Steps from the concrete to the abstract, and from the ab-

stract to the concrete were the style of their study. In order to solve a physical or

mathematical problem, if need, they created the mathematical tools and theories,

and assembled these tools and mathematics in different fields. Then they solved

the problem. We believe that such strategies are crucial even now.

In §2, we will review these studies on the elastica in detail. In §3, we will mention

an attempt to step beyond the studies of Bernoulli’s and Euler, which is related to

the shape of DNA. When we consider statistical mechanics of elastica in a heat

bath, we encounter a generalization of the elastica problem.
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The present author had studied the problem for two decades [44–55] with co-

authors [56, 57]. We have called it the quantized elastica problem, which needs

much wider fields of mathematics and physics, i.e., modified Korteweg-de Vries

hierarchy, hyperelliptic curves, Kleinian σ functions, loop spaces, functional inte-

grals, moduli space of hyperelliptic curves, cohomology of fibrations and so on.

Recently there appear nice reviews of Euler’s elastica [17, 26, 41, 66, 67]. One

of our purposes is to show the strategies of Euler and Bernoulli’s via the elastica

problem, which is partially overlapped with these reviews. However we have an-

other purpose which is to provide how the results of Euler’s elastica are connected

with modern mathematics, via quantized elastica. The connection is regarded as

the classical-quantum correspondence. In fact, every relation of Euler’s elastica in

this article is generalized to one in quantized elastica through the generalization of

elliptic curves to hyperelliptic curves. The quantized elastica gives classification

of the loop space of the two-sphere ΩS2 in category of regular analytic functions.

Elastica problem is still alive even nowdays and we would like to mention that we

should inherit the style of founders, at least to the quantized elastica problem.

In this article, C, R and Z denote the sets of complex numbers, real numbers and

integers respectively.

2. Euler’s Elastica

2.1. Geometry of the Plane Curve

Before entering into the history of elastica, we will prepare a primary differential

geometry. Let s be a parameter of a curve defined on a plane such that Z(s) =
X(s) +

√−1Y (s). When we measure the length of the arc by the measure of the

plane itself, i.e., the induced metric, the length is called arclength. The parameter

s is the arclength if and only if it satisfies the condition

|∂sZ| = 1 (1)

where ∂s := d/ds. Here ∂sZ is a tangential vector and can be expressed as

t := ∂sZ = e
√
−1φ using the tangential angle φ whereas the normal vector is

n =
√−1t. The Frenet-Serret relation(

∂s −k
k ∂s

)(
t

n

)
= 0 (2)

holds. Here k := ∂sφ is the curvature (the inverse of curvature radius) of the

curve.
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Figure 1. Elastica studied by James Bernoulli

2.2. James Bernoulli and Elastica

After James Bernoulli proposed the elastica problem, he discovered that the force

of the elastica is proportional to its curvature. Then he found that the arclength and

Y -component of the elastica having the shape illustrated in Fig.1 can be written

as elliptic integrals

s =

∫ 1

X

dX√
1 − X4

, Y =

∫ 1

X

X2dX√
1 − X4

· (3)

Roughly speaking, we refer to elliptic integrals [64,70,81] when the denominator

of their integrand are squire roots of polynomials of the third or the forth order

with respect to the integration variable, except some special cases. One should

note also that (3) is related to the lemniscate problem and that will be discussed

in Section 2.9.

2.3. Daniel Bernoulli and Elastica: Minimal Principle

After James Bernoulli left this world in 1705, his brother Johann Bernoulli (1667-

1748) succeeded his academic standing. As Euler’s father was a friend of Johann,

Euler and Johann’s son, Daniel (1700-1782) were pupils of Johann. More details

can be found in the books by Bell [2] and Fellmann [20].

Daniel Bernoulli wrote a letter to Euler that elastica is realized when the functional

of Z

E [Z] =

∫
k2ds (4)
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is minimized. Equation (4) is known as the Euler-Bernoulli energy functional due

to Euler’s contribution which will be mentioned below. There is no doubt that this

statement influenced the step from the least principle of optics by Fermat (1601-

1665) to the least principle of mechanics. In fact, when one regards s as a time

coordinate, k = ∂sφ could be considered as a velocity and then (4) corresponds

to the kinetic energy.

Further this idea is extended to the Dirichlet principle, due to Dirichlet (1805-

1859), which plays a crucial role in the discovery of Riemann surfaces in 1856

by Riemann (1826-1866) [35]. More directly, the Willmore functional is a natural

extension of the Euler-Bernoulli functional to a surface in the three dimensional

euclidean space E3 which is given by
∫

H2dvol, for the mean curvature H [82].

Both properties are quite similar, see e.g., [47, 62].

2.4. Euler and Elastica: Method

Euler wrote a book called “Methodus...” in 1744 [19]. There he formulated the

variational method and essentially solved the elastica problem in its Appendix,

De Curvis Elasticis. By solving the variational problems, he showed that every

elastica Z(s) := X(s) +
√−1Y (s) is given by

s =

∫ X λ2dX√
λ4 − (α + βX + γX2)2

, Y =

∫ X (α + βX + γX2)dX√
λ4 − (α + βX + γX2)2

(5)

and illustrated them as presented in Fig.2. The sketches were drawn by numerical

computations of elliptic integrals for representative points of the elastic curves.

By drawing the sketches, he completely classified the shapes of elastica into nine

classes. After giving the modern proof of (5) formulated here as Theorem 9, we

will add some comments on the nine classes in Section 2.8.

2.5. Derivation of Euler’s Elastica from a Modern Point of View I

In the following subsections 2.5 – 2.7, we will give the modern proof of Euler’s

formula (5) using the Goldstein-Petrich method [24]. In this subsection, using the

Goldstein-Petrich method, we have the static modified Korteweg-de Vries equa-

tion (SMKdV) and its relation to the elliptic curve. The infinitesimal variation of

elastica Z(s) is denoted by

Z ′ = Z + (U1t + U2n)δt. (6)
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Here δt is not the actual time but is considered as an infinitesimal mathemati-

cal deformation parameter. However by interpreting it as a mathematical time,

(U1, U2) behaves like a velocity. In other words, by regarding (Z ′ − Z)/δt as

∂Z/∂t, the above relation is rewritten as

∂tZ = (U1 +
√−1U2)e

√
−1φ. (7)

The variation which does not change its local arclength has the property

[∂t, ∂s] = 0

where [A, B] ≡ AB − BA. This property is called the non-stretching condition,

which is the same as the compatibility condition in the study of the nonlinear

integrable system [39].

The computation of [∂t, ∂s]Z = 0 proves that both

∂t∂sZ = ∂te
√
−1φ =

√−1∂tφ∂sZ

∂s∂tZ = ∂s((Ur +
√−1Ui)∂sZ)

= ((∂sUr − kUi) +
√−1(∂sUi + kUr))∂sZ

are equivalent as real functions. Thus the following lemma holds.

Lemma 1. The non-stretching condition (7) is reduced to

∂tφ = ∂sU2 + kU1, 0 = ∂sU1 − kU2. (8)

By differentiating the first relation in (8) with respect to s again and substitut-

ing the second relation into the first one, the formar is reduced to the following

proposition.

Proposition 2. For a deformation, ∂tZ = (U1+
√−1U2)e

√
−1φ, the non-stretching

condition means
∂tk = ∂s(k + ∂sk

−1∂s)U1. (9)

Here we have used ∂s∂tφ = ∂t∂sφ = ∂tk. Accordingly the deformation preserv-

ing the local arclength must satisfy (9).

Proposition 3. With the non-stretching condition, the variational problem for the
energy functional (4) is reduced to

− δE
δtU1(s)

= ∂s(k
2) + 2∂s

∂2
sk

k
= 0 (10)
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or

ak +
1

2
k3 + ∂2

sk = 0 (11)

where a is a real constant. More precisely the differential of equation (11) is
known as a static case of the modified Korteweg-de Vries (SMKdV) equation in
modern soliton theory.

Proof: The left hand side of (10) is equal to

lim
U(s)δt→0

E [Z ′] − E [Z]

δtU1(s)
= 0

and then we obtain the right hand side. By integrating the first equation again and

multiplying by k, it becomes (11). Due to the reality condition of φ, the parameter

a is a real constant number. �

Finally we have the governing equation of the elastica:

Proposition 4. For a real constant b, the elastica obeys the equation

(∂sk)2 +
1

4
k4 + ak2 + b = 0. (12)

Proof: By multiplying (11) by (∂sk) and integrating it, (11) becomes (12). Here

b is an integration constant. Due to the reality, b must be also real. �

Remark 5. When one regards (∂sk, k) as a point in (ξ, η)-plane, (12) corre-

sponds to an algebraic curve in (ξ, η)-plane

ξ2 = −1

4
η4 − aη2 − b. (13)

This curve is an elliptic curve and will be denoted by C ′
1 in this article.

2.6. Elliptic Functions

Here we will give some details about elliptic functions. Let us recall that the

coordinates of the point on a circle given by x2 + y2 = 1 can be expressed as

(x, y) = (cos θ, sin θ). Noting also that d cos θ/dθ = − sin θ, and we have the

relations

−y
dθ

dx
= 1,

d

dx
y

dθ

dx
= 0. (14)
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It should be noted that it is essential that the trigonometric function is interpreted

as the inverse function x(θ) of the solution θ(x, y) of the differential equations

(14). A generalization of this interpretation corresponds to elliptic functions and

elliptic integrals. For later convenience, instead of C ′
1, we introduce the elliptic

curve C1

C1 := {(x, y) ; y2 = x3 +λ2x
2 +λ1x+λ0 = (x−e1)(x−e2)(x−e3)}∪{∞}.

(15)

Similar to (14), we characterize the parameter u along the curve C1 by

2y
du

dx
= 1,

d

dx
y
du

dx
= 0. (16)

The solution of (16) is an elliptic integral of the first kind

u =

∫ x

∞

du, du =
dx

2y
≡ dx

2
√

x3 + λ2x2 + λ1x + λ0

(17)

and the inverse function x(u) of (17) is an elliptic function. If we make λ2 = 0
and y ≡ ȳ/2, x(u) is the so called Weierstrass ℘-function [81].

Here it should be noted that functional value of the elliptic function x is simply

the x-component of the graph (curve) C1 in the (x, y)-plane (affine plane) and

u is merely a solution of the linear differential equation (16). For example, the

derivative in u can be replaced with the algebraic differential x i.e.,

d

du
≡ 2y

d

dx
· (18)

Of course, it is quite useful to regard ℘ as an inverse function of an elliptic in-

tegral but it is important also to understand that many relations among elliptic

functions can be directly obtained as algebraic relations over the commutative

ring C[x, y]/(y2−x3−λ2x
2−λ1x−λ0) and various relations in the linear space

of (16).

For later convenience, we also introduce the Legendre relation and the differential

of the second kind, which is directly related to the Weierstrass ζ function. As the

trigonometric functions have a single period 2π, the elliptic functions, e.g., ℘ have

double periodicity (2ω′, 2ω′′)

ω′ :=

∫ (e1,0)

∞

du, ω′′ :=

∫ (e3,0)

∞

du

which are known as the complete elliptic integrals of the first kind. The differential

of the second kind is one form over C1 with a singularity and without any residual
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coefficient, whose normalized form is given by

dr =
xdx

2y

which also has a complete elliptic integral of the second kind

η′ =

∫ (e1,0)

∞

xdu, η′′ =

∫ (e3,0)

∞

xdu. (19)

By computing ∫
∂Co

1

rdu, r :=

∫ (x,y)

∞

dr

where Co
1 is a standard parallelogram expression of C1, we have the relation due

to Legendre (1752-1833), which can be considered as the symplectic structure on

the elliptic curve.

Proposition 6. (Legendre relation)

ω′η′′ − ω′′η′ =
π

2
·

As mentioned above, (℘(u), ∂u℘(u)/2) should be identified with (x, y) of u =∫ (x,y)
∞

du. There exists an entire function σ over C such that

ζ(u) =
∂

∂u
log σ(u), ℘(u) = − ∂2

∂u2
log σ(u). (20)

Here σ is the Weierstrass sigma function

σ(u) =
2ω′

2π
√−1

exp

(
η′u2

2ω′

)
θ1(u/ω′)

θ′1(0)
(21)

θ1(v) =
√−1

∞∑
n=−∞

exp
(√−1π

(
τ(n − 1/2)2 + (2n − 1)(v + 1)

))
.

We have an identity between ζ-function and an integral of the second kind

ζ(u) = −
∫ (x,y)

∞

dr = −
∫ (x,y)

∞

xdu.
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2.7. Derivation of Euler’s Elastica from a Modern Point of View II

Let us return to the derivation of Euler’s results of elastica. In other words, let us

consider a connection of (x, y) with the above elastic curve C ′
1. Let us identify u

and s.

Than

x :=
1

4

√−1∂sk +
1

8
k2 +

1

12
a

(22)

y :=
1

2
∂sx =

1

2

[√−1

(
1

8
k3 +

1

4
ak +

1

4

√−1k∂sk

)]
.

We note that the correspondence between x and k is known as the Miura trans-

formation [39] which connects the Korteweg-de Vries (KdV) equation and the

modified KdV (MKdV) equation. In this way equation (12) is reduced to

y2 =

(
x +

1

6
a

)(
x − 1

12
a − 1

4

√
b

)(
x − 1

12
a +

1

4

√
b

)
.

Let e1 = −1
6a, e2 = 1

12a+ 1
4

√
b, and e3 = 1

12a− 1
4

√
b. For later convenience, we

also assume that a2 − b = 16. We now identify the Weierstrass ℘ function and x
up to its origin, i.e., x(s) = ℘(u + s0) for s0 ∈ C, as mentioned above.

The relations (22) becomes

√−1k =
2y

x − e1
=

∂sx

x − e1

and lead us to the following theorem

Theorem 7. By choosing the origin of angle φ and s0 we have

∂sZ ≡ e
√
−1φ =

√−1(x(s) − e1) (23)

Z =
√−1(−ζ(s + s0) − e1s) + Z0. (24)

Proof: The tangential angle of the elastica is given by

φ(s) =
1√−1

log
(
x(s) − e1

)
+ φ0. (25)

It means that the tangential vector of elastica is represented by an elliptic function

and using the ζ function, we have an explicit formula of Z. In other words, it is

found that k ≡ ∂sφ in (22) satisfies (11) and (12) and vice versa. �
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Remark 8. We should note also that (23) means

dZ =
√−1

xdx

2y
−√−1e1

dx

2y
(26)

where the first term is regarded as the differential of the second kind and the sec-

ond term as the differential of the first kind. Using the Weierstrass sigma function,

we have the identity
√
−∂Z =

e−η′uσ(u + ω′)

σ(ω′)σ(u)
· (27)

Then we have the Euler’s expressions

Theorem 9. (Euler’s expression) By choosing its appropriate origin of Z, we
have

s =

∫ X λ2dX√
λ4 − (α + βX + γX2)2

, Y =

∫ X (α + βX + γX2)dX√
λ4 − (α + βX + γX2)2

·

Proof: We note the relation 1 = −(e3 − e1)(e2 − e1) since a2 − b = 16 or

|e1 − e2| = |e1 − e3| = 1. Let us employ the Euler representation, e
√
−1φ(s) =

cos φ(s) +
√−1 sinφ(s), i.e., (∂sX, ∂sY ) = (cos φ(s), sin φ(s)). We have iden-

tified x(s − s0) with ℘(s) for appropriate s0 ∈ C. The Weierstrass ℘(s) function

satisfies

℘(u − ω′) − e1 =
(e2 − e1)(e3 − e1)

(℘(u) − e1)

℘(u − ω′) − ℘(u) =
1

2

d

du

℘′(u)

(℘(u) − e1)
·

(28)

The former one is obtained due to duality between the zero and the pole and the

latter one is due to the addition theorem [81]. These formulas generate the relation

cos φ(s) = (
√−1(x − e1) + 1/

√−1(x − e1))/2 = ∂sk/4

which leads us to

X(u) = X0 +
1

4
k(u) (29)

for an appropriate origin X0 ∈ R. Hence this relation with (12) means fact that

(X(s), ∂sX(s)) satisfies the algebraic relation

(∂sX)2 = − (
4(X − X0)

4 + a(X − X0)
2 + b/16

)
. (30)
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The right hand side is equal to (a2 − b)/16− (2X2 + a/4)2 by letting X0 vanish.

Noting that a2 − b = 16, this equation implies that the arclength s is given by

s =

∫ X dX√
1 − (2X2 + a/4)2

·

The first relation in Theorem 9 is essentially proved. Further since we have

∂sZ − ∂sX =
√−1(x − e1) −

√−1
1

4
∂sk =

1

8
k2 +

1

4
a (31)

the Y -component is given by

Y =

∫ X (2(X)2 + a/4)dX√
1 − (2X2 + a/4)2

·

These essentially recover Euler’s results. �

By changing α, β, γ, and λ, Euler classified the elastica as shown in Fig.2. Cor-

responding to α, β, γ, and λ, the variation of a and b classifies the elastica with

the condition a2 − b = 16. It implies that the dimension of the parameter space is

one as shown in (32) for the classification with respect to similarity of shapes.

In the computation of elastica, the condition that φ and s are real is necessary. We

call the condition reality condition i.e., |∂sZ| = 1 and s is real.

Let us call the tangential period ω̂ of the (open) elastica that satisfies

∂sZ(s + ω̂) = ∂sZ(s).

Further we define an index of (open) elastica by

index(∂sZ) =
1

2π
√−1

(log ∂sZ(s + ω̂) − log ∂sZ(s)).

Here we give a formula of the Euler-Bernoulli energy function

Proposition 10. The Euler-Bernoulli energy of elastica with unit length as its
tangential period is given by

E = 8
ζ(ω̂)

ω̂
− 1

3
a = 8

ζ(ω̂)

ω̂
+ 2e1.

Proof:
1

2

∫
ω̂

k2ds = 4

∫
ω̂
(
1

8
k2ds +

1

4

√−1∂sk) = 4

∫
ω̂

xds − 1

3
aω̂.
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By considering the energy E = E(�) as a function of the length, we have the

relation
1

ω̂
E(ω̂) = E(1)

which gives the relation. �

The number τ := ω′′/ω′ is a complex number called modulus, which determines

the elliptic curve uniquely modulo trivial transformation, translation, dilatation

and so on, and also determine the shape of the elastica.

Due to the reality condition, we list the classification of elastica as follows, and

for proofs refer to [52, 60]

Proposition 11 (cf. [17, 52, 60, 66]) 1. For the case −4 < a ≤ 4, s0 = ω′′,

ω̂ = 4ω′ − 2ω′′ ∈ R, E = 8 2η′−η′′

2ω′−ω′′ +2e1, τ ∈ √−1R>0 ∪
(

1

2

)
and

index(∂sZ) vanishes.

2. For 4 < a, s0 = ω′′+ω′

2 , ω̂ = 2ω′′ ∈ R, E = 8 η′′

ω′′ + 2e1, τ ∈ √−1R>0,
and index(∂sZ) is equal to ±1.

Here R>0 is {x ∈ R ; x > 0}.

Due to the reality condition of the elastica, the moduli Λ of the elastica are given

by [60]

Λ :=
√−1R>0 ∪

(
1

2
+
√−1R>0

)
∪∞ modulo PSL(2, Z) (32)

as a subspace of the moduli of the elliptic curves, Λ ⊂ H/PSL(2, Z), where H is

the upper half plane, i.e., H := {z ∈ C ; Imz > 0}.

2.8. Classification of Euler’s Elastica From a Modern Point of View

Theorem 9 contains all possible shapes of the elastica. Further by extending its

coefficients to complex numbers X(s) contains all kinds (moduli) of elliptic func-

tions.

In respect to Euler’s sketches, we will mention the classification given in Propo-

sition 11, and the individual classes in Fig.2. It should be noted that in [17, 52],

the classification is the same as the solutions of the oscillating pendulum problem

and Sachkov recently gave more precise classifications of the elastica in [66].

1. Class 1 (a = −4): The first class corresponds to the straight line.
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Figure 3. The bifurcation sequences of elastic curves.

2. Class 2 (a ∈ (−4, 0)): The Class 2 is related to a bifurcations and a symme-
try breaking. When we push both sides of a thin elastic plate, we might meet

the shape in the Class 2. Depending on the forces and so on, there appear

two or three nodes and it swells to right or left hand side. Topologically this

picture is connected with the orientation of the curve, or homotopy group

π0(O(2, R)) = Z2 = {0, 1}. It means that elastica is a nice prototype of

such a bifurcation and a symmetry breaking, which is classified by the in-

teger ±n, n ≥ 0. Actually n + 1 is the number of crossing of y-axis for

n ≥ 1.

3. Class 3 (a = 0): The class 3 discovered by James Bernoulli, which is

closely related to lemniscate which will be discussed in Section 2.9. By let-

ting (s, X, Y ) in Theorem 9 be written as (s, X, Y )=:(ŝ/
√

2, X̂/
√

2, Ŷ/
√

2),
the formulas in Theorem 9 become that ones in (3).

4. Class 2, 3, 4 (a ∈ (−4, a∞)), a∞ := 2.60891826 · · · : We encounter sim-

ilar shapes of the class 2, 3, and 4, when we handle a paper tape, a carpet,

an electric line and so on. Of course, their actual shapes depend upon their

thickness and twist but sometimes are approximated by the shapes in these

classes. This fact comes from the naturalness of elliptic functions and inte-

grals [64, 70].

5. Class 5 (a = a∞): The Class 5 consists of the mysterious figure eight,

which is related to the lemniscate (see Section 2.9). The modulus of the

class 5 is τ = 0.704761 · · · × √−1 + 1/2. For a certain transformation,

we have another modulus τ̂ = (1 − 2τ)−1 = 0.70946 · · · × √−1. As

ω̂ = 4ω′ − 2ω′′ is the tangential period of the loop the closed condition is

Z(s + 2(2ω′ − ω′′)) = Z(s). For the eight shape figure, by choosing an

appropriate origin, we have Z(0) = −Z(2ω′−ω′′). It means that 2η′−η′′ =
e1(2ω′ − ω′′) because η′ = ζ(ω′) and η′′ = ζ(ω′′). Due to a kind of the



60 Shigeki Matsutani

Landen transformation

η∗′ = η′ + e1ω
′/2, ω∗′ = ω′/2, e∗3 = −2e1

we have η′ = ω′e1/2. Also we find that K = 2E if we make use the Jacobi

elliptic integrals because K = (e1 − e3)
1/2ω′ and E = (e1 − e3)

−1/2(η′ +

e1ω
′) [81]. As e−η′ω′−1u2/2 is the bilinear factor of the Weierstrass sigma

function, it becomes e−e2u2/2 for the figure eight case.

The shape of the Class 5 is realized by twisting of the circle in Class 9.

For example, we appropriately connect the ends of the string of the guitar

and twist it. What shape we obtain if we twist it again? Of course, the

actual string forms a strange shape which is not in the classification table of

elastica in a plane. In other words, there are only two type closed loops in

the classification table, which is closely related to the fact that we implicitly

deal with Z2-symmetry.

6. Classes 6, 7, 8 (a ∈ (a∞,∞)): These also appear as shape of electric lines

and loops like in Class 4. However it should be noticed that Classes 7 and

8 (a ∈ [4,∞)) have indices ±1 whereas the 6-th Class (a ∈ (a∞, 4)) has

vanishing index.

7. Class 7 (a = 4): We will comment on the 7-th Class and its relation to

the soliton theory later on. Here we will mention that this shape was re-

discovered as a loop soliton by Konno, Ichikawa and Wadati in 1979 [37]

by considering soliton equations, integrable nonlinear partial differential

equations. The loop soliton is given so that the half of its curvature satisfies

the MKdV equation [30]. It is known that all of shapes in Fig.2 can be

regarded as elliptic solutions of the loop soliton. When we play with a

rope or lasso, a twisted rope sometimes has a loop which moves along the

asymptotic direction of the center axis. Its shape is the loop soliton with the

shape, Class 7. The loop solitons are also closely related to the statistical

mechanics of elasticas as we see. All these means that the elastica problem

is a prototype of the soliton equations obtained in 1950’s-1980’s after two

hundred years passed since 1744.

8. Class 9 (a = ∞): Class 9 consists of the circle X2 + Y 2 = 1 whose index

is ±1.
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Figure 4. Lemniscate curve.

2.9. Lemniscate

Let us digress a little bit and give some comments on the lemniscate problem and

a history of elliptic functions [80]. The lemniscate curve drawn in Fig.4 was also

proposed by James Bernoulli, and can be presented as the algebraic relation

(X2 + Y 2)2 = X2 − Y 2. (33)

The arclength of the lemniscate is expressed by the formula (3) (see also [64]).

Now let us look at two figures eight, Fig.4 and Class 5 in Fig.2. Whereas the shape

of elastica is given by transcendental function ζ(s) the lemniscate is defined by

the algebraic relation. It is not clear whether James Bernoulli recognised or not

but both his proposed problems have contributed to the development of the elliptic

function theory.

Fagnano (1682-1766) had studied algebraic properties of some integrals since

1714 and in this way become interested in lemniscate. He found some “addi-

tive” relation of (3) and submitted a paper to the Academy. Euler received it as

a referee on December 23, 1751 and have extended Fagnano’s studies to more

general ones. In this connection Jacobi (1804-1851) stated that this day is the

birthday of the elliptic functions [81].

Gauss (1777-1855) called the inverse function of the integral (3) a lemniscate
function in 1796 and started its study in secret. He had found the addition formula

and so on for the lemniscate function [28, 35, 80]. Later on Abel (1802-1829)

and Hurwitz (1859-1919) have discovered other number theoretic properties of

the lemniscate function [29].

The lemniscate played the central roles in the history of the elliptic functions,

especially of their algebraic properties. However it should be noted that Houzel
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(p.473 in [28]) stated that Gauss would have considered the lemniscate function

by looking over the figures of Euler’s elasticas in Fig.2.

The transformation between the lemniscate and elastica of James Bernoulli Fig.1

are given by the relation between their tangential angles [44]

φlemn =
3

2
φelas.

Here both φ’s with accessory should be naturally interpreted. Since the tangential

angle in Fig.1 crosses perpendicularly with both the X and the Y -axes, (φelas,X =
π/2, φelas,Y = π), in the first quarter region, i.e., {(X, Y ) ; X ≥ 0, Y ≥ 0},

the correspondence means that the lemniscate curve should crosses the Y -axes at

5/4π, (φlemn,X = π/2, φlemn,Y = 5π/4), and recovers the relation

(φlemn,X − φlemn,Y ) = 3(φelas,X − φelas,Y )/2.

As the lemniscate curve in the first quarter region should be symmetrically con-

sidered, it must be closed. Since the manipulation does not have any effects on

the arclength, the arclength is given by the same formula.

It is also interesting because 3/2 reminds us about the spin of the supergravty.

Though it is not clear whether James Bernoulli recognised the relations among

the two figures-eight, he had considered both shapes and the same elliptic integral

as their arc lengths.

2.10. Euler’s Elastica from a Historical Point of View

First, we will emphasize that the X-component in Fig.2 is a periodic function

of the arclength s. As an inverse function of elliptic integral it is called elliptic
function [64, 70, 81] and the inverse function X(s) of the elliptic integral s(X) in

(5) is an elliptic function of the arclength s. This fact is very important from a

viewpoint of the history of elliptic functions.

As mentioned, before that Gauss have initiated the study of the lemniscate func-

tion. In 1824, the paper by Abel appeared where he stated that the inverse function

of the elliptic integral is important and leads to the introduction of the present day

elliptic functions. Of course, the works by Jacobi, Riemann, Weierstrass (1815-

1897) and so on were indispensable for establishments of the so-called elliptic

function theory. Ordinarily, from the viewpoint of importance of the inverse func-

tion, it is usually regarded that the date of discovery of the elliptic function is 1796

(Gauss) or 1824 (Abel) [28] contrary to the statement of Jacobi.
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Let us return to the elastica problem. When we look back at a historical event,

we should not interpret it without considering the historical background neither

analyze it using our modern common sense. However the first remarkable point is

that Euler gave illustrations and that the X-components are expressed by periodic

functions of the individual arclength s.

One can ask the question: Could Euler notice the fact? If he had done, it means

that he would have considered the inverse function of (5). In other words, it

implies that he would have looked elliptic functions fifty years before Gauss’s

discovery, thirteen years before the birth day Jacobi said. Houzel (p.473 in [28])

pointed out that Euler could not but, as mentioned above, Gauss would have con-

sidered the lemniscate function by looking over Euler’s figures.

Even though Houzel’s opinion is right, we should say that the studies of Euler

was beyond the studies of his time. He discovered the most of the results in the

elliptic function theory. In fact he also discovered the special case of the Legendre

relation in Proposition 6,

Height in Fig.1×Arclength of Fig.1 =

∫ 1

0

X2dX√
1 − X4

∫ 1

0

dX√
1 − X4

=
π

2
· (34)

Further he moved a point in the moduli of elliptic functions, which is the begin-

ning of the study of moduli of elliptic curves.

Of course the most important fact is that by discovery of the variational prin-

ciple, constructing the variational method and the theory of “elliptic function”,

the elastica problem was solved completely after about fifty years passed since it

had been proposed. “How should we choose the parameters to obtain a certain

shape?” “What shape of elastica can be allowed?” Euler basically answered these

inquiries. Behind the resolution, he potentially studied the variational problem,

a nonlinear differential equation, algebraic geometry of elliptic curve, differential

geometry of the plane curves, elliptic integral theory, classification of moduli and

so on, and he potentially understood them. (It should be remarkable that if he

had not understood the dimension and structure of moduli of elliptic functions,

he could not have classified the elastica.) With respect to elliptic function theory,

these potential discoveries are seventy years before the proper discoveries in his-

tory of elliptic functions. From the viewpoint of the nonlinear integrable theory

or soliton theory, Euler’s work is even earlier with two hundred years.

Here we should emphasize also that in the works which were started by James

Bernoulli, Euler and Bernoulli’s did not adhere to their own established meth-

ods and strategies. In those days, the theory of primary functions were well-

established in the practical meaning. Thus one can wonder if it was possible to
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apply the established tools to the elastica problem by peculiar approximation. In-

deed, even nowadays, we could find several strange papers on the elastica problem

and its variation in which each author use some strange approximations and ex-

cuses, and then gave different results from Euler’s. However for the purpose to

understand the shape of elastica, these studies not hesitate to offer a novel way and

strategies to recover the correct answers. Sometimes they produce new tools and

new theories to solve the problem. The tools and theories were so sophisticated

but they could be applied to many other problems.

2.11. Beyond Euler’s Elastica

As mentioned above, the elastica problem was solved in a certain sense. Of

course, the elastica problem does not finish at all. We will pick up some of its

related topics because behind them there exist so many works and studies con-

nected with various aspects of the elastica problem. Readers who are concerned

with some of the topics should check the references of the cited papers. According

to [41,73], Laplace (1749-1827) and Maxwell (1831-1879) investigated capillary

shape problem and have found its relation to the elastica. Kirchhoff (1824-87)

studied a generalized problem of elastica, i.e., the elastic rod in the three dimen-

sional space [34], elastic plane, and so on [73]. Born have studied elastic beam in

the three dimensional space in his PhD thesis [41]. Physically it is related to the

vortex filament in fluid dynamics. Hasimoto [27] discovered special solutions in-

cluding Euler’s elastica at least partially. Tsuru [75] had found special solutions of

elastic rods in three dimensional space. Recently, Fukumoto [21] investigated the

relations between vortex filaments and elastic rods. Nishinari [61] partially inves-

tigated the dynamics of elastic rod governed by the nonlinear integrable equations.

Generalization of embedded space from the euclidean space to more general space

was started by Langer and Singer [40,67]. Pinkall also studied it in the framework

of the differential geometry [62]. Kawakubo had found more general solutions in

several three dimensional spaces [31]. Watanabe considered the heat kernel with

Dirichlet and Neumann boundary conditions behind the Euler-Bernoulli energy

and its generalization [78].

Bryant and Griffiths [10] have investigated the elastica problem as a variational

problem and its generalization from kinematic viewpoints. Arroyo, Barros and

Garay [1, 25] defined generalized functionals of Euler-Bernoulli energy along the

line of the generalization of Chen-Willmore energy to Willmore energy [82], and

investigated associated variational problems as harmonic maps and their appli-

cation to the particle physics. On the other hand, following Maxwell’s inves-
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tigation of elastica, Sachkov considered more precise classification of original

elastica [66], which gives very beautiful results, and Vassilev, Djondjorov and

Mladenov [77] have studied the shapes of the fluid membranes where the pressure

term causes a generalization of Euler’s elastica. As recently the discretization is

essential in the nonlinear integrable system, discretization of elastica was done

by Sogo [68]. Other modern investigation of elastica was done by Djondjorov,

Hadzhilazova, Mladenov and Vassilev [17]. Mumford [60] recognized the elastica

as a problem in computer vision after he had extracted the essentials of elastica as

given in Proposition 11.

The loop space itself is still an open problem and Brylinski [11] had studied the

problem. Goldstein and Petrich [24] started to study the relations between dynam-

ics of a curve and nonlinear integrable systems in the way similar to Hasimoto’s

study of the vortex [27]. Following them, Previato investigated its relation to

algebraic geometrical objects in [65] and the present author had studied a general-

ization of the elastica problem in which elastica revives as a statistical mechanics

of elastica or quantized elastica.

3. Quantization of Elastica

3.1. Statistical Mechanics of Elasticas

DNA usually shrinks in a very small space whereas it sometimes enlarges on cell’s

splitting. The problem arises how it behaves depending upon the circumstances,

that is the problem of folding problem. We, of course, have to consider several

reasons, biochemical properties, electric properties and so on. However it is a

kind of shape problem like elastica. In order to find its complete solution, the

knowledge of the shape is necessary.

It is actually a problem how we understand, classify and account the shape of

large polymer, such as DNA. Fig.5 which is a picture of atomic force microscopy

(AFM) shows typical shape of the plasmid DNA samples at room temperature

[42]. They have the form of a helix with a large number of loops of size over

several 10 nm, which is called superhelix or supercoile. The size over several

10 nm should not be treated merely by chemical effects. In the polymer physics,

the entropy causes the crucial effects on the universal behaviour, which are less

influenced from micro-(quantum)-effects. The pictures read that there are weak

elastic force. However if they are elasticas in a plane, the shapes should be one in

the classification table of Euler but they are not.
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There are several considerable reasons why they do not belong to the classification

table of Euler in Fig. 2, e.g., chemical effects, polymer physics effects, stretching

effects, three dimensional effect, twist effect, and so on. Original elastica is a

model of non-stretching thin elastic rod in a plane, whose twist is negligible.

Here we will comment on the studies concerning the extension of elastica in a

plane to one in the three dimensional space with the same energy functional (4).

Then due to the consideration above, the obtained shapes must be expressed by

a rational function of elliptic and trigonometric functions. The obtained shapes

might be more complex than Euler’s because of the three dimensional effects but

they must repeat some simple patterns due to the double periodicity of elliptic

functions, which completely differ from those in Fig. 5.

Surely, we should consider effects by which a variety of shapes should be allowed

as in Fig. 5. As another effect, by studying such a thermal effect of non-stretching

polymers [46], because it is expected that the DNA might be influenced by the

temperature since its size is very small. The motivation comes from the fact that

as the shape of DNA is more complicated than the shape described by elliptic

functions. In fact, due to the thermal effect, we have various shapes and will de-

scribe this effect in detail below. Of course, the reason why DNA differs from

Euler’s might be due to chemical effects but it is very interesting how small elas-

tica is influenced by this. Considering the thermal effects is equivalent to the study

Figure 5. AFM picture of figures of the supercoiled DNA at room tempera-

ture.

of the partition function. The problem is to compute the partition function of the
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non-stretching loops at the temperature T := 1/β which is given by

Z[T ] =
∑

all shapes of Z

e−E[Z]/T . (35)

Here E is the Euler-Bernoulli energy functional (4). We will call this problem

statistical mechanical problem of elastica or quantized elastica problem due to

the resemblance between quantum mechanics and statistical mechanics.

The relations between DNA and elastica had been studied for more than four

decades (see [16, 32, 76] and references therein), though the partition function

(35) had not be considered explicitly. Kholodenko showed that these problems

are closely related to the modern mathematical physics including quantum field

theory [32]. Chirikjian attempted to estimate the excluded-volume effect in the

conformations.

If one does not impose the non-stretching condition, the statistical mechanical

problem becomes easier. This model is known as semiflexible polymer-chain

model and there are so many current studies though we will not touch these topics

in this article. However it should be noted that the variation with non-stretching

condition completely differs from imposition of non-stretching condition after the

variational calculus without non-stretching condition. Thus the model does not

recover the Euler-Bernoulli elastica when the temperature approaches to zero be-

cause the non-stretching condition in Euler’s elastica plays the crucial role in the

variational calculus. Thus the model is similar but quite different from elastica

and quantized elastica. We should emphasize that though elastica is very natural

as shown in 2.8, the model differs from elastica at zero temperature.

3.2. Quantized Elastica

Here we will comment on the motivation of studying the quantized elastica from

another point of view. It is known that Einstein gravitations, Yang-Mills gauge

fields, non-linear sigma model and so on, are classical objects governed by non-

linear equations. When we consider the quantum effect of these fields however

it is very difficult to deal with full quantum effect of such geometrical objects.

Elastica is the simplest geometrical object that can serve as a toy model which

obeys the non-linear equation, SMKdV equation and it is the simplest harmonic

problem or nonlinear sigma model. Our study is related to the problems how to

deal with the geometrical object in the heat bath and how to quantize it [46,55,56].

To solve the problem requires that we have to answer how to classify the geomet-

rical objects with energy but leaves the observation problem as in quantization of



68 Shigeki Matsutani

the geometry like Einstein gravity. It is believed that the quantized elastica prob-

lem must be one of prototypes of the quantization of geometry. Further we could

check the results using AFM [42].

In order to define the partition function (35) more precisely, we define its domain,

moduli of quantized elastica [56]

MC

elas := {Z : S1 → C ;

∮
dZ = 2π, |∂sZ| = 1}/ ∼

where ∼ means the euclidean motion. MC

elas has a spectrum decomposition

MC

elas :=
∐
E

MC

elas,E , MC

elas,E := {Z ∈ MC

elas ; E [Z] = E}.

It is the set of non-stretch loops in real analytic category. As the Dirichlet principle

works for the minimal principle [35], even in the loop space with measure and

energy given by (4), the principle works weakly. In other words, one can neglect

the effect coming from a loop with wild topological behaviour. Highly winding

loop does not contribute to the partition function.

Then the partition function (35) becomes [46, 56]

Z[β] =
∑
E

vol(MC

elas,E) exp(−βE)

which means that the problem to evaluate the partition function is reduced to

1. determination of the equi-energy flow (orbit)

2. evaluation of the volume of the flow (orbit), vol(MC

elas,E);

(log vol(MC

elas,E))/β corresponds to the entropy, and

3. determination of these distribution over {E} = R≥0, and their sum {E} =
R≥0.

Michor and Mumford recently studied the moduli of loops on a real plane in the

category of smooth functions in order to classify the shape of loops [58]. They

investigated the minimal points related to energy functional which is modified by

the Euler-Bernoulli functional (4). On the other hand, in the quantized elastica

problem, the moduli of loops in the category of regular functions are naturally

introduced and thus the flow is naturally given via the MKdV hierarchy as fol-

lows. In other words, we will mainly consider shape of the quantized elastica as a

function of S1 belonging to the set of the regular functions over S1, Cω(S1, R) or

Cω(S1, C). Further, using the topology induced from the measure with e−βE(Z),

we could treat wider class of function as extension of spaces Cω(S1, R) and

Cω(S1, C).
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3.3. Isometry Deformation: Goldstein-Petrich Scheme

In order to determine the equi-energy flow, we will also use the Goldstein-Petrich

scheme [24,46]. For a deformation parameter t and the arclength s, the non-stretch

(isometry) deformation means

[∂t, ∂s]Z = 0.

From Proposition 2, the non-stretch condition requires that the deformation must

be expressed by

∂tk = ΩUi, kUi = ∂sUr (36)

where

Ω := (∂2
s + ∂sk∂−1

s k)

is a pseudo-differential operator which is known as the recursion operator of the

MKdV hierarchy in the soliton theory [24].

On the other hand, since the deformation is treated as inner symmetry of the quan-

tized elastica, the deformation should contain the trivial non-stretch deformation,

which corresponds to freedom of choice of the origin of the arclength along the

loop

∂tφ = −∂sφ ≡ k, ∂tk = −∂sk.

This is the trivial U(1) action on every loop space, which, of course, preserves the

Euler-Bernoulli energy (4) of our quantized elastica.

Let us consider here the general case of non-stretching deformation which pre-

serves the Euler-Bernoulli energy (4). In general, the equi-energy condition for a

deformation means

∂t

∮
dsk2 = 2

∮
dsk∂tk = 0.

We have the following lemma and proposition:

Lemma 12 ([46, 56]) The non-stretching equi-energy deformation with respect to
deformation parameter t

∂tk = ΩUi =: f ∈ Cω(S1, R)

means that there exists a function g ∈ Cω(S1, R) such that

kf = ∂sg.
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Proof: Every h ∈ C∞(S1, R) satisfying
∮

dsh(s) = 0 is integrable, i.e., there

exists a ∈ C∞(S1, R) such that h = ∂sa. The above is confirmed by the relations

∂t

∮
k2ds = 2∂t

∮
k∂tkds = 2

∮
kfds =

∮
∂sgds = 0.

�

Proposition 13. The non-stretching equi-energy deformation ∂tZ induces another
non-stretching deformation ∂t′Z = (f +

√−1g)∂sZ (Ui, f and g are as in
Lemma 12)

∂t′k = Ωf = Ω∂tk = Ω2Ui.

Proof: This is obvious from Lemma 1 and (36). �

3.4. Quantized Elastica: MKdV Hierarchy

Let us consider the non-stretching equi-energy deformation (t1, t2, t3, . . .) which

includes the trivial U(1) action and all of the induced deformations described in

Proposition 13. It implies that we consider the deformation (t1, t2, t3, . . .) given

by

∂t�k = Ω∂t�−1
k = Ω�−1∂sk, � = 1, 2, 3, . . . (37)

where

∂t1k = −∂sk. (38)

This is the modified KdV hierarchy

∂t1k + ∂sk = 0

∂t2k +
3

2
k2∂sk + ∂3

sk = 0

∂t3k + 10k∂sk∂2
sk +

5

2
k2∂3

sk +
5

2
(∂sk)3 +

15

8
k4∂sk + ∂5

sk = 0

...

Here we should note that one can find a deformation that satisfies

∂tmk = 0, m > g.

In this case, (37) with (38) becomes essentially finite relations. We will call such

a deformation with finite g a finite-type deformation.
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Let us call the integrals of the relation (37) with (38) in MC

elas the flow of the
MKdV hierarchy or the MKdV flow. Then due to the integrability, the following

lemma is well-known

Lemma 14. The flow of the MKdV hierarchy preserve the energy functional

E [Z] :=

∮
k2ds

which is the Euler-Bernoulli energy (4).

As the equations of the MKdV hierarchy is an initial problem, the solutions space

contains every loop in the plane. Thus we have the proposition

Proposition 15. The MKdV flow acts on MC

elas,E and MC

elas,E is decomposed
into the orbits of the flow.

Remark 16. Here I will give a comment on the relation between quantized elas-

tica and the Schwarz derivative. For a loop Z, the Euler-Bernoulli energy func-

tional (4) has another expression

E [Z] =

∮
ds{Z, s}SD (39)

where {Z, s}SD is the Schwarz derivative

{Z, s}SD = ∂s

(
∂2

sZ

∂sZ

)
− 1

2

(
∂2

sZ

∂sZ

)2

= −√−1∂sk − 1

2
k2 (40)

which is basically the same as x in (22). It is known as the Miura transformation

[39] and the Schwarz derivative {Z, s}SD obeys the KdV hierarchy when k is

governed by the MKdV hierarchy.

As showed in [56], behind the quantized elastica problem we have a loop space

ΩS2 of S2, i.e., the moduli of loops in the two sphere S2 or the complex projective

space P1. As we consider the quantized elastica as a loop space in the regular

function category, we encounter the KdV flow and the moduli space is governed

by the solution space

(−∂2
s − 1

2
{Z, s}SD)ψ = 0 (41)

which was studied by Poincaré (1854-1912).
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Because it is well-known that the solution of the MKdV hierarchy is given by

the hyperelliptic curves including ∞ genus, it is worth to include the following

remark.

Remark 17. As the Euler’s elastica is related to the elliptic functions, the quan-

tized elastica is related to the hyperelliptic functions, and naturally contains the

Euler’s elastica. From Proposition 15, we can classify the quantized elastica

MC

elas using the solution space of the differential equations as in the classical

elastica problem. It is natural to deal with the moduli space of the solution space

of the MKdV hierarchy as Euler did for the classical elastica and the SMKdV

equation though treatment of the moduli space of solution space of the MKdV

hierarchy is very complicate.

Then we have our theorem:

Theorem 18 ([46, 56]) MC

elas,E is characterised by solution space of the MKdV

hierarchy and hyperelliptic curves.

3.5. Quantized Elastica: Solution Space of the MKdV Hierarchy

In this subsection, we will show the construction of the finite-type deformation

explicitly. For a natural number g (g = 1, 2, 3, · · · ) and a hyperelliptic curve Cg

y2 = x2g+1 + λ2gx
2g · · · + λ1x + λ0

(42)

= (x − e1)(x − e2)(x − e3) · · · (x − e2g+1).

We have showed that the solutions of the MKdV hierarchy is given by the tangen-

tial angle [50]

φ(s) =
1√−1

g∑
i=1

log
√−1(xi(s) − e1) (43)

where ((x1, y1), · · · , (xg, yg)) ∈ Sg(Cg) and

s = ug, uj =

g∑
i=1

∫ (xi,yi)

∞

duj , duj =
xj−1dx

y
, j = 1, · · · , g. (44)

Here Sg(Cg) is the symmetric product space of Cg. The reason why the sum over

g terms appear is due to the fact that the parameter u of the curve Cg is a solution

of the differential equation

dg

dxg

(
2y

du

dx

)
= 0. (45)
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Here we should remark also that (42), (43), (44) and (45) are interpreted as gen-

eralization of (15), (23), (17) and (16) respectively. The correspondence

u := (u1, · · · , ug) : Sg(Cg) −→ Cg

is called the Abel map. Speaking more precisely the left hand side should be

regarded as the abelian universal covering of the Sg(Cg) because the integral de-

pends upon the contour and winding numbers of the loop. The integral (44) is

known as the incomplete hyperelliptic integral of the first kind, whose complete

version gives the period of the hyperelliptic functions

ω′
i,j :=

∫ (e2i−1,0)

∞

duj , ω′′
i,j :=

∫ (e2i,0)

∞

duj .

Let Λ denote the lattice in Cg generated by (2ω′, 2ω′′). Using Λ, the Jacobi variety

Jg is defined by

κ : Cg → Jg = Cg/Λ.

Jg and Sg(Cg) are birational without depending upon the contours in the Abel

map. The unnormalised differentials of the second kind are defined by

drj :=
1

2y

2g−j∑
k=j

(k + 1 − j)λk+1+jx
kdx, j = 1, · · · , g

which lead also to the complete hyperelliptic integral, of the second kind

η′i,j =

∫ (e2i−1,0)

∞

drj , η′′i,j :=

∫ (e2i,0)

∞

drj .

Then the Legendre relation in Proposition 6 is generalized to

η′ω′′ − ω′η′′ =
π

2
·

Historically it is very interesting that this formula essentially appeared in a letter

of Galois (1811-1832) to Chevalier 1832 [23].

Corresponding to Weierstrass sigma function (21), it is convenient to introduce

the Klein’s sigma function [36] (see the references [7, 12, 13]). Let T = ω ′−1ω′′.

The theta function on Cg with modulus T and characteristics Ta + b is given by

θ

[
a
b

]
(z) = θ

[
a
b

]
(z; T)

=
∑
n∈Zg

exp

[
2πi

{
1

2
t(n + a)T(n + a) + t(n + a)(z + b)

}]
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for g-dimensional complex vectors a and b. The σ-function ( [3], p.336, [4, 5, 12,

13]), an entire function on the space Cg, is given by the formula

σ(u) = γ0 exp

{
−1

2
tuη′ω′−1

u

}
ϑ

[
δ′′

δ′

]
(
1

2
ω′−1

u; T)

where δ and δ′ are half-integer characteristics giving the vector of Riemann con-

stants with basepoint at ∞ and γ0 is a certain non-zero constant. The σ-function

vanishes only on κ−1(Wg−1), where Wk is the image of the Abelian map which

is restricted over Sk(Cg) (see for example [3], p.252). The Kleinian ℘ and ζ
functions are defined by

℘ij = − ∂2

∂ui∂uj
log σ(u), ζi =

∂

∂ui
log σ(u)

which correspond to (20).

Using these tools, the quantized elastica as a generalization of Theorem 7 is ob-

tained.

Theorem 19 ([50, 51]) Z ∈ MC

elas,E is given by s := ug + s0

1.

∂sZ = alr(u + s0)
2 = (er − x1)(er − x2) · · · (er − xg) (46)

where alr is the Weierstrass al-function defined by

alr(u) :=
√

(er − x1)(er − x2) · · · (er − xg) = γ′
0

e−ηruσ(u + ωr)

σ(ωr)σ(u)
·

Here ωr :=
∫ (er,0)
∞

du, ηr :=
∫ (er,0)
∞

dr and γ′
0 is a constant number.

2.

Z = eg
rs −

g∑
i=1

ζie
i−1
r .

3. Further MC

elas is decomposed to

MC

elas = ∪∞
g=0MC

elas,g

where MC

elas,g is a subspace of MC

elas whose elements are written by the
hyperelliptic functions of genus g.
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Remark 20. The hyperelliptic Weierstrass al-function alr should be interpreted

as a generalization of Jacobians sn, dn, cn functions [79] and related to Mumford’s

base [59]. The above expressions of ∂Z and Z in terms of the polynomial of x and

the Kleinian zeta function should be also regarded as a generalization of Theorem

7. The above expression of alr in terms of the Kleinian sigma functions is a

generalization of (27).

Z(u ∈ Jg) specifies the equi-energy flows which we obtain. As in elastica, the

reality condition |∂sZ| = 1 and s ∈ R is very important even in quantized elastica.

In [52], the reality condition is studied corresponding to Proposition 11.

Recently Calini and Ivey [15] showed more realistic shape of vortex filament in

three dimensional space. The solution structure of vortex filament is closely re-

lated to the quantized elastica [18].

Remark 21. Regarding various problems, i.e., 1) determination of the equi-energy

flow (orbit), 2) evaluation of the volume of the flow (orbit) vol(MC

elas,E), 3) de-

termination of these distributions over {E} = R≥0, and sum them {E} = R≥0,

we have shown that the equi-energy flow as MKdV hierarchy is obtained. It im-

plies that (1) is partially settled but the closed condition Z(s) = Z(s + ω) for a

certain ω ∈ R is not yet. Further (2) the evaluation of the volume of the flow (3)

determination of these distributions over {E} = R≥0, and sum them {E} = R≥0

remain. However it should be noted that the remaining problems are very dif-

ficult and, still, open. For example, the problem to evaluate the volume of the

equi-energy flows is reduced to the problem to investigate of the real part of hy-

perelliptic Jacobians and their moduli.

In order to solve the open problem, let us mention a few quite different ap-

proaches.

3.6. Frenet-Serret Relation and Dirac Operator: Fermionic Approach

In this subsection, we will describe the submanifold Dirac operator. It turns out

that the Frenet-Serret relation (2) can be regarded as one-dimensional submanifold

Dirac equation [53, 54, 57]

�D :=

(
∂s −v
v ∂s

)
, �D

( √
∂sZ√−1
√

∂sZ

)
= 0 (47)

where v = k/2. The Dirac operator is defined by the restriction to spinor over a

loop of the Dirac operator in the spin bundle over the plane C. The external field
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v comes from the normalisation of the Hilbert space and thus is not trivial from

the viewpoint [53, 54].

As mentioned above, behind the quantized elastica problem we have (41). The

quadratic reciprocity law in the number theory which Euler partially studied gives

the data of splitting law when we extend the integers Z to the Gauss integers

Z[
√−1]. For example, in Z[

√−1], the prime number 13 in Z is decomposed

as (3 + 2
√−1)(3 − 2

√−1). The Dirac operator appears when we extend the

scalar field to the spinor field which has several components. Probably the relation

between (41) and (47) could be interpreted via the theory of quadratic forms.

Here we will present only the list of the results from [45, 57].

Theorem 22 ([45, 57]) Assume that the curve Z is given.

1. The partition function of the fermionic field over Z

Zf [Z] =

∫
Dψ exp(−β

∫
Z

dsψ̄ �Dψ)

is reduced to
Zf [Z] = exp(−βE [Z]).

2. The eigenvalue preserving deformation of �D or deformation of Z is equal
to that the half of the curvature obeys the MKdV hierarchy. It is known as
the fact in the inverse scattering method.

3. The Atiyah-Singer index of �D is the winding number of the loop

index�D =

∫
ds∂sϕ.

The fermionic approach basically gives us every information, including the topo-

logical data and even analytic data. The solution of �Dψ = 0 is given by al-
function which is a ratio of σ-functions. Thus the analytic properties of the Dirac

operator is also directly connected with the Kleinian sigma functions and Weier-

strass al functions.

Some of these properties are generalized to those over every spin-submanifold

immersed in a spin-manifold [53, 54]. The anomaly or the local index theorem

for the Dirac operator over a conformal surface immersed in R3 gives the action

integral including that of the extrinsic Polyakov string [63] and the Willmore en-

ergy [49]. Then the quantized elastica is generalized to the quantization of the

Willmore energy [47]. These objects were also investigated well by Arroyo, Bar-

ros and Garay [1, 25], Kholodenko and Nesterenko [33], Konopelchenko [38],

Carroll [9] and Taimanov [69] and many others.
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3.7. Loop Space Cohomology

In this subsection, we will comment another topological data. The quantized elas-

tica problem requires that we characterise the singularities among elasticas related

to curves with different genus. To do so, we have to deal with the moduli of the

real hyperelliptic curves.

As a first step, we will consider the cohomological properties of the moduli space

MC

elas or the loop space in the category of regular functions [8, 11, 56]. Thus it is

naturally to mention that a cohomology ring of the moduli space MC

elas is a ring

isomorphic to that of loop space ΩS2 of S2 [8, 56]

Hq(MC

elas, R) = Hq(ΩS2, R) = R for q ≥ 0. (48)

It is very interesting that the generator of the cohomology ring over MC

elas corre-

sponds to the operator which jump from the genus g to g + 1 of the moduli of the

hyperelliptic curves [56]. Further (48) can be regarded as a categorical relation

because there is a natural forgetful functor from MC

elas to ΩS2.

If the quantized elastica problem is generalized to one over R3 [48], the relation

(48) can be also obtained over ΩS3. Besides the fermionic approach suggests the

way for the generalization to higher dimensional quantized elastica [43] via the

generalized MKdV equation, and it might be not difficult to have more generalized

relations.

3.8. Baby Quantized Elastica

Finally we should give a toy model on the partition function (35). In the partition

function (35), the winding effects should be also considered. When the curves in-

tersect at a point with infinite intersection degree in the analytic function category,

it means that the curves agree completely, and in the moduli space MC

elas, they are

multi-winding of a loop.

We can not compute the partition function itself in this stage but we can handle

its part, Z(g)[β], g = 0, 1 which consists only of the closed loop of each g = 0
and g = 1 with winding number effect. We know the closed loop solutions of

genus zero and one explicitly, which is given by disjoint types, i.e., a circle and

an figure-eight shape. Considering contributions of winding of the loop for each

g = 0 and g = 1, we obtain

Z(g)[β] =

∞∑
n=1

e−βn2Eg =
1

2

(
θ(
√−1βEg/π) − 1

)
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where E0 and E1 are the Euler-Bernoulli energies (39) of genera zero and one and

θ(z) is the elliptic theta function, θ(z) :=
∑

∞

n=−∞
e
√
−1πzn2

. Due to properties

of the elliptic theta function and Poisson sum formula

Z(g) [β] =

√
1

Egβ

∞∑
n=1

e−n2/Egβ +
1

2

(
1√
Egβ

− 1

)
.

As Z(g)
[
β + 2π

√−1/Eg

]
= Z(g) [β], it is clear that such Z(g) [β] has modular

properties.

When it is possible to approximate Z[β] by Z (g) [β] or Z(0,1)[β] :=
∑1

g=0 Z(g)[β]
in a certain sense and consider a perturbation of this model, we might encounter

a critical phenomena from the viewpoint of statistical physics, due to the modular

properties.

3.9. Final Remark on Quantized Elastica

The elastica problem rested on the great progress of mathematics and physics in

the eighteenth century and the quantized elastica problem also needs adequate

progress as well. Its goal is to evaluate the partition function and its related ex-

pectation values.

However we should emphasize that the quantized elastica belongs to the category

of the real analytic geometry, rather than categories of complex analytic geometry

and topology. In a scattering problem of quantum physics, the asymptotic behav-

iour can be expressed in terms of trigonometric functions. Thus soliton solutions,

which are given by trigonometric functions, more precisely hyperbolic functions,

and punctured Riemann surfaces play crucial roles there. The topological proper-

ties might determine the problem completely. However in the quantized elastica,

its topology is stronger than that of the scattering problems.

Of course, it is not an object in the category of topology though, of course, the

forgetful functor works like (48). However non-stretching condition is a stiff con-

dition and does not enable us to deal with perturbative approach. Topological

approach is necessary but it is not sufficient in the quantized elastica problem.

Further the reality condition of the quantized elastica requires the real analytic

treatment rather than complex one. Further, whereas the string theory is connected

with Riemann surfaces by regarding them as the strings themselves, quantized

elastica is expressed by hyperelliptic zeta functions with the reality condition. In

other words, whereas the string theory is purely algebro-geometrical over C, the

quantized elastica is a transcendental object over R.
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For approaching the goal, we need a deeper knowledge of the moduli of real

hyperelliptic curves, the behaviour of the hyperelliptic zeta functions, properties

of meromorphic functions related to the hyperelliptic Jacobian, differential geo-

metrical properties of loop space and so on. In the above theories, one makes

use of the theory of hyperelliptic function theory and its relation to integrable

systems which are based upon Baker’s works [3–5], Mumford’s theory in [59],

and works of Russian-Ukrainian groups – Belokolos, Bobenko, Enol’skii, Its, and

Matveev [7] and Buchstaber, Enolskii and Leykin [12,13]. For example, as Enol-

skii have pointed out, the unpublished corrected version of [12] gave also a rela-

tion which leads to more algebraic expression of the above results of Theorem 19

here or Theorem 2 in [50]. For the goal, we need the development of the novel hy-

perelliptic function theory based upon [12,13]. Especially in [14], Buchstaber and

Leykin have constructed a new theory of sigma functions including one related to

the hyperelliptic curves, which, hopefully will help us to solve the problem.

It is expected also that the fermionic approach, the cohomological approach, and

the results for the baby quantized elastica might give another way to the goal.

4. Discussion

The mathematics might be regarded as a language in the meaning of Barthes [6].

If it was a kind of a language or the ecriture, it might have dialects and some

constraints on the places where it could be used or not [6].

Using modern terminology, the works of Bernoulli’s and Euler on the elastica

problem are closely related to the harmonic map theory, differential geometry,

algebraic geometry, moduli of elliptic functions, loop space and so on. If one who

knows modern mathematics restricts himself with a single language (field) with a

dialog and limitations, he could not deeply understand the problem as Euler did.

In fact, the elastica problem came from the studies of strings and beams, which

have thickness, various cross sections and other individual characteristics. It is

difficult to give the definition from the first, following style in the modern pure

mathematics. Indeed, in the real scientific and physical problems, there are so

many undefined concepts generally, especially in the problems of the shape.

James Bernoulli introduces the elastica problem by extracting the essentials of

the above mentioned problems. However it is not within a single category as

Bernoulli’s and Euler studied it without persisting on such opinion and finally

created the theory of elastica. Their style of study is that they extracted the essen-
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tials, purified the discovered facts and tools as pure science, and using them, they

discovered surprising facts and solve the problem. Elastica problem is a prototype

of such approach.

In the beginning of the twentieth century, Klein (1849-1925) wrote “Diese Ten-

denz, die Wissenschaft nicht nur in immer zahlreichere Einzelkapitel zu zerlegen,

sondern Schulunterschiede nach der Art der Behandlung zu schaffen, würde, wenn

sie einseitig zur Geltung käme, den Tod der Wissenschaft herbeiführen” 1 [35,

p.327]. In spite of Klein’s concern, the studies in the twentieth century had devel-

oped by breaking to pieces.

When we look over the studies of Bernoulli’s and Euler from a viewpoint of math-

ematical science, we might feel their spirits, “When one expresses a (physical)

object in terms of mathematics, he must search the most proper language to rep-

resent it. If the language does not exist, he should construct a new language to

describe it without hesitating.” Even though only few persons can do it like Euler

and Bernoulli’s, we should inherit their spirit. Studying mathematics transver-

sally might enable us to revive the studies which died as in the statement of Klein.

At least, we hope that here we have showed that in order to solve the quantized

elastica problem, we need such studies.
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Euler’s Elastica and Beyond 81

Tsuru, Tetsuji Tokihiro, Kiyoshi Sogo, Shin Takagi, Hiroshi Kuratsuji, Norio

Konno, Hideo Mitsuhashi, Arkady Kholodenko, Shinsuke Watanabe, Junkichi

Satsuma, Kohtaro Watanabe, Katsuhiro Nishinari, Shingo Ishiwata, and to many

professors and peoples in the related universities, for their support. Due to them, I

could go on to study the integrable systems. This study started when Hideo Tsuru

pointed out to me the relation between elastica and DNA. The study of hyperel-

liptic function is due to discussions with Yoshihiro Ônishi, Victor Enoliskii, Chris

Eilbeck, and Emma Previato. I would like to mention also that I have learned

many things in mathematics, from the basic to the advanced one, from Kenichi

Tamano for two decades. I am also grateful to many colleagues over the world

- John McKay, Emma Previato, Yuji Kodama, Martin Guest, Franz Pedit, Boris

Konopelchenko, Iskander Taimanov, Robert Carroll, Yoshihiro Ohnita, Junichi

Yamashita, Mikio Nakahara, Yasuhide Fukumoto, Satoshi Kawakubo and Ivaïlo

Mladenov for their continious interest in this problem.

References

[1] Arroyo J., Barros M. and Garay O., Willmore-Chern Tubes on Tomogeneous
Spaces in Warped Product Spaces, Pacific. J. Math. 188 (1999) 201-207.

[2] Bell E., Men of Mathematics, Penguin Books Ltd., New York, 1937,

(translated to Japanese by Y. Tanaka and H. Ginbayashi, Tokyo-tosho, Tokyo

1976).

[3] Baker H., Abelian Functions – Abel’s Theorem and the Allied Theory In-
cluding the Theory of the Theta Functions, Cambridge Univ. Press, Cam-

bridge, 1897, reprinted in 1995.

[4] Baker H., On the Hyperelliptic Sigma Functions, Am. J. Math. 20 (1898)

301-384.

[5] Baker H., On a System of Differential Equations Leading to Periodic Func-
tions, Acta Math. 27 (1903) 135-156.

[6] Barthes R., Le degre zero de l’ecriture, French & European Pubns, Paris,

1953.

[7] Belokolos E., Bobenko A., Enol’skii V., Its A. and Matveev V., Algebro-
Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin,

1994.

[8] Bott R. and Tu L., Differential Forms in Algebraic Topology, Springer,

Berlin, 1986.



82 Shigeki Matsutani

[9] Carroll R., Quantum Theory, Deformation and Integrablility, North-

Holland, Amsterdam, 2000.

[10] Bryant R. and Griffiths P., Reduction for Constrained Variational Problems
and

∫
κ2

2 ds, Amer. J. Math. 108 (1986) 525-570.

[11] Brylinski J-L., Loop Spaces, Characteristic Classes and Geometric Quan-
tization, Birkhäuser, Boston, 1992.

[12] Buchstaber V., Enolskii V. and Leykin D., Kleinian Functions, Hyperellip-
tic Jacobians and Applications, Reviews in Mathematics and Mathematical

Physics (London), S. Novikov and I. Krichever (Eds), Gordon and Breach,

India, 1997, pp 1-125.

[13] Buchstaber V., Enolskii V. and Leykin D., Hyperelliptic Kleinian Functions
and Application, Amer. Math. Soc. Transl. 179 (1997) 1-33.

[14] Buchstaber V. and Leykin D., Addition Laws on Jacobian Varieties on Plane
Algebraic Curves, Proc. Steklov Inst. Math. 251 (2005) 1-72.

[15] Calini A. and Ivey T., Finite-gap Solutions of the Vortex Filament Equation:

Isoperiodic Deformations, J. Nonlinear Sci. 17 (2007) 527-567.

[16] Chirikjian G., The Stochastic Elastica and Excluded-Volume Perturbations
of DNA Conformational Ensembles, Int. J. Non-Linear Mech. 43 (2008)

1108-1120.

[17] Djondjorov P., Hadzhilazova M., Mladenov I. and Vassilev V., Explicit Pa-
rameterization of Euler’s Elastica, In: Proceedings of the Ninth Interna-

tional Conference on Geometry, Integrability and Quantization, I. Mladenov

(Ed), SOFTEX, Sofia 2008, pp 175-186.

[18] Eilbeck J., Enolskii V. and Kostov N., Quasiperiodic and Periodic Solutions
for Vector Nonlinear Schrödinger Equations, J. Math. Phys. 41 (2000)

8236-8254.

[19] Euler L., Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate
Gaudentes, 1744, Leonhardi Euleri Opera Omnia Ser. I vol. 14.

[20] Fellmann E., Leonhard Euler, Rowohlt Taschenbuch, 1995, (translated

into Japanese by Yamamoto A., Spinger-Tokyo, Tokyo 2002).

[21] Fukumoto Y., Analogy Between a Vortex-jet Filament and the Kirchhoff
Elastic Rod, Fluid Dyn. Res. 39 (2007) 511-520.

[22] Galilei G., Discorisi e Dimostrazioni Matematiche Intorne a due Nuove
Scienze, Elfevirii, 1638, (translated into Japanese by T. Konno and S. Hida,

Iwanami, Tokyo 1937).



Euler’s Elastica and Beyond 83

[23] Galois E., Œuvres Mathématiques d’Évariste Galois, J. de math. pures

et appliquées 11 (1846) 381-444, (tranlated into Japanese by Takase M,

Abel/Galois Elliptic Functions. Asakura-shoten, Tokyo, 1998).

[24] Goldstein R. and Petrich D., The Korteweg-de Vries Hierarchy as Dynamics
of Closed Curves in the Plane, Phys. Rev. Lett. 67 (1991) 3203-3206.

[25] Garay O., Extremals of the Generalized Euler-Bernoulli Energy and Appli-
cations, J. Geom. Symm. Phys. 12 (2008) 27-61.

[26] Goss V., The History of the Planar Elastica: Insights into Mechanics and
Scientific Method, Sci. & Educ. 18 (2009) 1057-1082.

[27] Hasimoto H., A Soliton on a Vortex Filament, J. Fluid Mech. 51 (1972)

477-485.

[28] Houzel C., Abrég’e d’histoire des mathématiques, vols. 1&2, J. Dieudonné

(Ed), Hermann, Paris, 1978 (translated into Japanese by K. Ueno, N.

Kaneko, Y. Namikawa, Y. Morita and J. Yamashita, Iwanami, Tokyo 1985).

[29] Hurwitz A., Üeber die entwicklungscoefficienten der lemniscratischen func-
tionen, Math. Ann. 51 (1899) 196-226.

[30] Isimori Y., On the Modified Korteweg-de Vries Soliton Equation and the
Loop Soliton, J. Phys. Soc. Japan 50 (1981) 2471-2472.

[31] Kawakubo S., Kirchhoff Elastic Rods in Three-Dimensional Space Forms,

J. Math. Soc. Japan 60 (2008) 551-582.

[32] Kholodenko A., Statistical Mechanics of Semiflexible Polymers: Yesterday,
Today and Tomorrow, J. Chem. Soc. Faraday Trans. 91 (1995) 2473-2482.

[33] Kholodenko A. and Nesterenko V., Classical Dynamics of the Rigid String
from the Willmore Functional, J. Geom. Phys. 16 (1995) 15-26.

[34] Kirchhoff G., Über das gleichgewicht und die bewegung einer elastischen
scheibe, J. für reine und angew. math. 40 (1850) 51-88.

[35] Klein F., Vorlesungen über die Entwicklung der Mathematik im 19 Jahrhun-
dert I, Springer, Berlin, 1926.

[36] Klein F., Über hyperelliptische sigmafunctionen, Math. Ann. 32 (1888)

351-380.

[37] Konno K., Ichikawa Y. and Wadati M., A Loop Soliton Propagating Along
a Streched Rope, J. Phys. Soc. Jpn. 50 (1981) 1025-1026.

[38] Konopelchenko B., Weierstrass Representations for Surfaces in 4D Spaces
and Thier Integrable Dynamics via the DS Hierarchy, Ann. Global Anal.

Geom. 18 (2000) 61-74.



84 Shigeki Matsutani

[39] Lamb G., Elements of Soliton Theory, John Wiley & Sons, New York,

1980.

[40] Langer J. and Singer D., The Total Squared Curvature of Closed Curves, J.

Diff. Geom. 20 (1984) 1-22.

[41] Levien R., The Elastica: A Mathematical History, EECS Depart-

ment, University of California, Berkeley, UCB/EECS-2008-103 2008

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.html.

[42] Lyubchenko Y., Shlyakhtenko L., Aki T. and Adhya S., Atomic Force Micro-
scopic Demonstration of DNA Looping GalR and HU, Nucl. Acids Research

25 (1997) 873-876.

[43] Matsutani S., On the Physical Relation Between the Dirac Equation and
the Generalized mKdV Equation on a Thin Elastic Rod, Phys. Lett. A 189
(1994) 27-31.

[44] Matsutani S., The Relation of Lemniscate and a Loop Soliton as 3/2 and
1 Spin Fields along the Modified Korteweg-de Vries Equation, Mod. Phys.

Lett. A 10 (1995) 717-721.

[45] Matsutani S., The Physical Realization of the Jimbo-Miwa Theory of the
Modified Korteweg-de Vries Equation on a Thin Elastic Rod: Fermionic
Theory, Int. J. Mod. Phys. A 10 (1995) 3091-3107.

[46] Matsutani S., Statistical Mechanics of Elastica on Plane: Origin of MKdV
Hierarchy, J. Phys. A Math. & Gen. 31 (1998) 2705-2725.

[47] Matsutani S., On Density of State of Quantized Willmore Surface: A Way to
a Quantized Extrinsic String in R3, J. Phys. A: Math. & Gen. 31 (1998)

3595-3606.

[48] Matsutani S., Statistical Mechanics of Non-stretching Elastica in Three Di-
mensional Space, J. Geom. Phys. 29 (1999) 243-259.

[49] Matsutani S., Immersion Anomaly of Dirac Operator on Surface in R3, Rev.

Math. Phys. 11 (1999) 171-186.

[50] Matsutani S., Hyperelliptic Loop Solitons with Genus g: Investigation of a
Quantized Elastica, J. Geom. Phys. 43 (2002) 146-162.

[51] Matsutani S., On a Relation of Weierstrass al-Functions, Int. J. Appl. Math.

11 (2002) 295-307.

[52] Matsutani S., Reality Conditions of Loop Solitons Genus g: Hyperelliptic
am Functions, Electron. J. Diff. Eqns. 2007 (2007) 1-12.

[53] Matsutani, S., Generalized Weierstrass Relations and Frobenius Reci-
procity, Math. Phys. Anal. Geom. 9 (2007) 353-369.



Euler’s Elastica and Beyond 85

[54] Matsutani S., Generalized Weierstrass Relation for a Submanifold Sk in
En Coming From Submanifold Dirac Operator, Advanced Studies in Pure

Mathematics 51 (2008) 259-283.

[55] Matsutani S., Relations in a Quantized Elastica, J. Phys. A: Math.& Theor.

41 (2008) 075201 (12pp).

[56] Matsutani S. and Ônishi Y., On the Moduli of a Quantized Elastica in P

and KdV Flows: Study of Hyperelliptic Curves as an Extension of Euler’s
Perspective of Elastica I, Rev. Math. Phys. 15 (2003) 559-628.

[57] Matsutani S. and Tsuru H., Physical Relation between Quantum Mechanics
and Soliton on a Thin Elastic Rod, Phys. Rev. A 46 (1992) 1144-1147.

[58] Michor P. and Mumford D., Riemannian Geometries on Spaces of Plane
Curves., J. Eur. Math. Soc. 8 (2006) 1-48.

[59] Mumford D., Tata Lecture on Theta II, Birkhauser, Boston, 1984.

[60] Mumford D., Elastica and Computer Vision, In: Algebraic Geometry and

its Applications, C. Bajaj (Ed), Springer, Berlin, 1993 pp 507-518.

[61] Nishinari K., Nonlinear Dynamics of Solitary Waves in an Extensible Rod,

Proc. R. Soc. Lond. A 453 (1997) 817-833.

[62] Pinkall U., Hopf Tori in S3, Invent. Math. 81 (1985) 379-386.

[63] Polyakov A., Gauge Fields and Strings, Harwood, London, 1987.

[64] Prasolov V. and Solovyev Y., Elliptic Functions and Elliptic Integrals,
Amer. Math. Soc., New York, 1993.

[65] Previato E., Geometry of the Modified KdV Equation, In: Geometric and

Quantum Aspects of Integrable System, Lecture Notes in Physics vol. 424
pp.43-65, Springer, Berlin, 1993.

[66] Sachkov Y., Maxwell Strata in the Euler Elastic Problem, J. Dynamical and

Control Systems 14 (2008) 169-234.

[67] Singer D., Lectures on Elastic Curves and Rods, In: Curvature and Vari-

ational Modeling in Physics and Biophysics, AIP Conference Proceedings

1002 (2008) pp 3-32.

[68] Sogo K., Variational Discretization of Euler’s Elastica Problem, J. Phys.

Soc. Japan 75 (2006) 064007.

[69] Taimanov I., Two-Dimensional Dirac Operator and the Theory of Surfaces,

Russian Math. Suveys 61 (2006) 79-159.

[70] Toda M., Introduction to Elliptic Functions (in Japanese), Nihon-hyouron-

sha, Tokyo, 1976.



86 Shigeki Matsutani

[71] Truesdell C., The Rational Mechanics of Flexible or Elastic Bodies 1638-
1788, Leonhardi Euleri Opera Omnia Ser. II vol. 11 Part 2, Orell Füssli,

Zürich, 1960.

[72] Truesdell C., Essays in the History of Mechanics, Springer, New York,

1968.

[73] Truesdell C., History of Classical Mechanics Part II the 19th and 20th Cen-
turies, Die Naturwissenschaften 63 (1976) 119-130.

[74] Truesdell C., The Influence of Elasticity on Analysis: The Classic Heritage,

Bull. Amer. Math. Soc. 9 (1983) 293-310.

[75] Tsuru H., Equilibrium Shapes and Vibrations of Thin Elastic Rod, J. Phys.

Soc. Japan 56 (1987) 2309-2324.

[76] Tsuru H. and Wadati M., Elastic Model of Highly Supercoiled DNA,

Biopolymers 25 (1986) 2083-2096.

[77] Vassilev V., Djondjorov P. and Mladenov I., Cylindrical Equilibrium Shapes
of Fluid Membranes, J. Phys. A 41 (2008) 435201(16pp).

[78] Watanabe K, Plane Domains which are Spectrally Determined, Ann.

Global. Anal. Geom. 18 (2000) 447-475.

[79] Weierstrass K., Zur theorie der Abel’schen functionen, Aus dem

Crelle’schen Journal 47 (1854) in Mathematische Werke I, Mayer und

Müller, Berlin, 1894.

[80] Weil A., Number Theory, An Approach Through History From Hammurapi
To Legendre, Birkhauser, Boston, 1983.

[81] Whittaker E. and Watson G., A Course of Modern Analysis, 4th ed. Cam-

bridge Univ. Press, Cambridge, 1927.

[82] Willmore T., Riemannian Geometry, Oxford Univ. Press, Oxford, 1993.

Shigeki Matsutani

8-21-1 Higashi-Linkan Sagamihara

228-0811, Japan

E-mail address: rxb01142@nifty.com


