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Abstract. A thin, flexible, one side-built-in rod under a concentrated terminal

force is studied in its elastic equilibrium configuration. In order to make the prob-

lem more tractable, a proper set of state variables is chosen, facing with a second

order, nonlinear, but autonomous boundary value problem, in the rotation ϕ(s)
pertaining to each s-section. The search of the free end rotation ϕ0, following the

isoperimetric assumption, leads to a numerical sub-problem inside the main BVP.

Furthermore, if x(s) and y(s) mean the elastica coordinates parametrized on the

arclength s, one obtains x′(s) and y′(s) as elliptic functions of s. Finally, some

minor changes have been shown in order to pass from a loading force to a more

general free-end load combination, consisting of a force and a couple.

1. Introduction

The bending of an elastic beam under various loads provided the first problem

of practical importance to theory of elasticity, and fed the initial development of

beam theory, due to the names of Jakob and Johann Bernoulli, Euler and La-

grange. One of the simplest ones to consider is the loaded beam rigidly supported

at one end only: a simple cantilever, whose exact shape is required when inflected

under terminal loads. Exact means: taking into account its exact curvature. Then

we wish to describe mathematically the shape assumed by a flexible rod built-

in at one end, and affected at its free end by a general co-planar load consisting

of a slender force and a bending couple. Such a cantilever is commonly treated

assuming an approximate curvature expression and obtaining a third order deflec-

tion curve; but our viewpoint is different, and aims at giving an exact solution to

the problem, assuming the exact curvature. As we told, such a problem is a very

old one: its birth preceded the existence of calculus tools capable of solving it.
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A Recent Literature’s Background

A historical problem’s outline can be read in [9]. Here it will be enough to re-

call that a completely different model dates back to G. Kirchhoff, Über das Gle-
ichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, 1859.

He had demonstrated [8] that under forces applied only to ends of a straight-linear

rod, that the same equilibrium equations can also describe the dynamics of a rigid

body around a fixed point (spinning top). Two recent papers stress the methods

of Kirchhoff analogy achieving a fairly complete classification of ideal elasticas

through a detailed comparison with the spinning top motions. In the first it is

shown [11] how to classify the shapes of Kirchhoff filaments based on the geome-

try of the spinning top solutions, pushing the Kirchhoff analogy to its extreme, and

obtaining properties of filaments. In the second [10], the configurations of twisted

elastic rods under applied end loads and clamped condition are investigated and

classified as authors claim all possible equilibrium states of straight rods by la-

belling them according to the number of critical points of the curvature along the

centre line. The tables put at the end, anyway do not seem to be completely ex-

haustive as declared. Finally we came to know of three further articles, [3], [5]

and [6], to be included in our literary outline on the large deflections of a can-

tilever, and of these [5] and [6] are issued in the same Journal. The oldest [3],

deals shortly with a clamped rod under a force parallel to the wall where the rod

is built in, and perpendicular to it: the elastica’s shape is not computed, but the

free end large deflection is evaluated through elliptic integrals of I and II kind. It

is then the less studied case because its loading condition, avoiding any complica-

tion, is also of a scarce utility. The second [5], treats the subject more generally,

aiming to a mathematical model for the flexible arms of compliant mechanisms

subjected to any loading. After the cantilever elastic model has been introduced,

the authors obtain the final horizontal and vertical position of the rod’s free end.

Their idea is that a “pseudorigid body model” can be accordingly developed and

used for providing parametric evaluations which best approximate the beam de-

flection and stiffness. The most recent paper [6], covers with greater details all

the topics of the previous one. The authors, following a path different from ours,

arrive at formulae similar to our x(ϕ) and y(ϕ) in Section 4, but the resemblance

stops here. In fact we chose to work with the arclength s as a state independent

variable, and tackling integrals consisting of rational combinations of Jacobian

elliptic functions, see formulæ (18) and (19). In such a way we obtain elastica

parametric equations, see formulæ (21) through s as: a linear term plus an elliptic

integral of III kind plus “sd” elliptic function. On the contrary, Kimball and Tsai
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go on with the angular deflection θ, and tackle the integration of

dθ
√

a + b sin θ + c cos θ
,

cos θdθ
√

a + b sin θ + c cos θ
,

sin θdθ
√

a + b sin θ + c cos θ

developing a long chain of transformations for their reduction to Legendre I and

II kind normal forms. In such a way they compute the final coordinates of the

free end (vertical and horizontal deflection), making a deep analysis in order to

distinguish when the line has an inflection point or not. All the pseudorigid body

modeling is improved, and a final optimization is added to find the model pa-

rameters which best approximate the deflections of the actual beam. Neither of

the articles, [3], [5] and [6] is concerned with the global solution to the two points

problem, or with the range of rodlenghts, e.g. like our (8), for which the solution’s

uniqueness is ensured. Then all the aspects for which uniqueness of the solution is

ensured to the Dirichlet boundary value problem were there completely ignored.

Paper Organization

As far as it concerns the strain, we will use the exact curvature formulation, as

done in our previous paper [9], devoted to the simply supported beam with flexure

induced by the axial compression. Let Ωxy be a reference system with origin Ω
at rod’s free end, the Ωx axis, superimposed to the unstrained rod, is oriented to-

wards the clamping, and Ωy downwards. Let y = y(x) be the unknown cartesian

equation of the planar elastica. If the rod’s free end is loaded by a slender force, its

axial component does induce at each transverse S− section a flexure of moment

Ma whose arm is depending on how S is deflected. On the contrary, the bend-

ing couple Mv due to the vertical load component, will depend on its x-distance

from S. The bending moment at S is therefore the addition of a endogenous one,

say Ma(y) dependent on size y of the strain itself, plus an endogenous one, say

Mv(x). The latter is responsible for the loss of autonomy of the ODE to y = y(x),
and then of its non-integrability. In other words, the traditional relationship pro-

viding the elastica’s curvature c(y′, y′′) as a ratio of the bending moment to the

flexural rigidity EJ

c
(
y′(x), y′′(x)

)
= ±

M

EJ
= ±

1

EJ
[Ma(y) + Mv(x)]

do not fit to our specific problem. Therefore we will go back to the vectorial for-

mulation, EVES, of course to be properly specialized. We will get a two point

boundary value problem whose unknown is the rotation ϕ(s) of a generic rod

cross section S as a function of its distance s along the strained centerline. The
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thin rod’s free end will rotate of an amount ϕ0 whose computing is compulsory in

order to carry out the integration. Such a ϕ0 computation allows a sub-numerical

problem to be solved inside the boundary value one. In such a way x′(s) and y′(s)
will come as functions of the curvilinear abscissa s and the integration is per-

formed through Jacobian elliptic functions. Such a planar problem is not treated

adequately in the relevant literature which describes, see [7], exact solutions to

the flexible cantilever under load parallel or normal to the unstrained centerline,

but never slender, as we do.

2. A 3D Rod Model

The main difficulties about elastica are: the curvature intrinsic nonlinearity under

non small displacements; geometric complexity of the unstressed configuration;

constraint effects such as isometry (non stretching); and finally boundary condi-

tions. The peculiarity of a thin rod under terminal forces and/or terminal couples,

is that it buckles rather than breaks: our experience tells us that a compressed rod

can buckle in any lateral direction. This is the strongest motivation for a spatial
modelling of it. The curvilinear abscissa along the 3D deflection curve Γ, is s ≥ 0
with s = 0 at Ω, and s > 0 at P (s).

Figure 1. Sketch of a 3D rod under a load �F : frame of reference Ωxyz,

elastica OPΩ, each s−section identified by vector (P − Ω) := �r.

We lay down the following assumptions:

A1 the rod is thin, initially straight, homogeneous, with uniform cross section

and uniform flexural rigidity. This last is the product EJ , where E is the

Young modulus, and J the cross section second moment of inertia about
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a “neutral” axis normal to the plane of bending and passing through the

central line;

A2 the rod is unloaded along all its body, and loaded by a force �F = constant at

its free end. Then all the strain is due to the loads’ bending moment whilst

the shearing stress effects are completely ignored;

A3 we are faced with linear elasticity, but transverse deformation is ignored.

Anyway the rod is not freely extendible: there is a isoperimetric constraint,

and L is the value of its invariant length;

A4 due to rest of static equilibrium, no rod element undergoes acceleration.

The EVES, see [7], for the deformed rod consists of two equations. The first is:

EJ
d

ds
(P − Ω) ×

d3

ds3
(P − Ω) = �F ×

d

ds
(P − Ω)

where × is the cross product in R
3. Putting (see Figure 1) (P − Ω) := �r, we have

EJ
d�r

ds
×

d3�r

ds3
= �F ×

d�r

ds
· (1)

The EVES second one (moment) is

EJ
d�r

ds
×

d2�r

ds2
= �M (2)

where �M is the external bending moment. Let us specialize both of them to

our elastic system depicted at Figure 2, where a one side built-in, L-long, thin,

straight-linear flexible rod is loaded by a force �F at its free end, and all the system

is planar. Recalling the Ωxy reference system feature, the increasing s is from Ω
to the wall, so that the tangent t to the elastica at a whichever point P (s), has its

positive sense towards the built-in end. Finally, Ωz is orthogonal to the elastica

plane. Let it be θ the angle of t with the oriented axis Ωy.

The picture shows the cantilever simultaneously loaded by a slender pushing force

and by a bending clockwise couple. The first one (Fx > 0, Fy > 0) induces a

global strain in the rod so that its free end-initially parallel to the wall, undergoes

a (positive) clockwise rotation. The same happens as a consequence of the couple

M0. Let then be ϕ0 > 0 the unknown total rotation of the free end. With a

straightforward calculation from (2) we find non-zero projections on Ωz only

Mz = −EJ
dθ

ds
(3)

while (1) gives

−EJ θ′′(s) + Fy sin θ − Fx cos θ = 0. (4)
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Figure 2. Sketch of a thin cantilever under a planar load: OΩ unstrained

rod whose elastica is OPΩ′, each s−section rotates of ϕ.

3. A Planar Boundary Value Problem

The vectorial scheme EVES generally provides six scalar equations, which in our

particular case are reduced to a planar system of two scalar decoupled differen-

tial equations. Their unknown functions are: the bending moment Mz (s) and the

flexion angle θ(s) between the oriented straightline Ωy and the local s−tangent

oriented in the sense of the growing arclengths. It is nevertheless of better conve-

nience to introduce the rotation ϕ which the s−section of the strained centerline

undergoes with respect to its original position: ϕ = θ − π/2. In such a way,

equation (4) becomes −EJ ϕ′′(s) + Fy cos ϕ + Fx sinϕ = 0. At the built-in end

s = L no rotation is allowed, and then ϕ = 0. At the free end s = 0 the bending

moment is zero, and therefore also ϕ′(s) shall be zero there. So we have to solve

the nonlinear two-points boundary value problem

−EJ ϕ′′(s) + Fy cos ϕ + Fx sinϕ = 0, ϕ′(0) = 0, ϕ(L) = 0 (5)

Equation (5) looks like that of pendulum, but with three important differences.

First, the independent variable is not time, but the arclength s ≥ 0 of the strained

centerline. Second: we are faced with a trinomial equation due to the simultaneous

presence of sinus and cosine with different weights according to which x or y load

component is prevailing. Finally, the third is that we do not have a initial value

problem (IVP, Cauchy), but a boundary value problem (BVP, Dirichlet), for being

the limiting conditions concerned with the ends s = 0 and s = L. Such a BVP

is of mixed type (II kind), because different variables are prescribed at the ends,
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namely the rotation at s = L and its derivative at s = 0. Looking to the following,

(5) is better written as

ϕ′′(s) =
1

2

(
βy cos ϕ(s) + βx sinϕ(s)

)
, ϕ′(0) = 0, ϕ(L) = 0 (6)

where βx = 2Fx/EJ and βy = 2Fy/EJ ∈ R should not be both zero simulta-

neously. The equation is still nonlinear, but autonomous: in such framework we

will be able to perform the explicit integration.

4. Elastica Integration

Elastica Equations x(ϕ), y(ϕ) Parametrized Via the Rotation

As we shall see not before long, the solution ϕ(s) of (6) is a strictly increasing

function whose derivative ϕ′(s) is given by

ϕ′(s) =
√

βy (sinϕ − sinϕ0) − βx (cos ϕ − cos ϕ0). (7)

Anyway, we shall integrate the equations x′(s) = cos ϕ(s), y′(s) = − sinϕ(s)
from s = 0 (free end rotates of ϕ0) to the generic s-section ϕ, and then

dx =
dϕ cosϕ

dϕ/ds
, dy = −

dϕ sin ϕ

dϕ/ds

so that:

x(ϕ) =

ϕ∫
ϕ0

cos φ dφ√
βy (sinφ − sinϕ0) − βx (cos φ − cos ϕ0)

y(ϕ) = −

ϕ∫
ϕ0

sinφ dφ√
βy (sinφ − sinϕ0) − βx (cos φ − cos ϕ0)

·

The above formulæ provide closed form expressions to elastica’s cartesian coor-

dinates as functions of the ϕ-rotation of the rod’s S-section. The relevant integrals

could be carried out through [4], formulæ 293.06 page 180, and 293.05 page 179.

Nevertheless the free end rotation ϕ0 requires a numerical approach and the rele-

vant value will affect heavily the integration. It is then better to detect the equation

to ϕ0, leaving to the above x(ϕ) and y(ϕ) expressions a numerical use for possible
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checks. In order to gain closed form expressions, first we will solve the bound-

ary value problem (6): in such a way, by ϕ(s) both x′(s) and y′(s) will come

as functions of s and a further integration will provide x and y through s. What

above, after having localized the free end rotation ϕ0, will allow to complete the

shooting, arriving to its analytical expression via a first kind elliptic integral.

The Strained Rod Arclength

First of all we ask what can be inferred about the strained rod R. If, for instance,

we take into account only shortening and extension effects on the rod (neglecting

shear) due to �F , the change |ΔLN | in arclength will be

|ΔLN | =
1

EA

∫
R

N(s)ds.

Figure 3 shows that at (s, ϕ) of elastica, the total normal stress N will be

Figure 3. Geometric elements for evaluating the axial stress at P (s, ϕ).

N(ϕ) = Fy sinϕ − Fx cos ϕ.

By Figure 2 we get: x′(s) = cos ϕ, x′(s) = − sinϕ, and then

ΔLN = −
1

EA
(FyyΩ′ + Fx (L0 − xΩ′)).

But the coordinates xΩ′ and yΩ′ of the free end “mapped” position Ω′ of R, are

unknown, and ΔLN , generally speaking, cannot be computed in easy way. Then

the rod isoperimetric constraint is assumed: while the rod’s shape is changing and

its the free end is pushed towards the wall, the rod’s arclength is kept constant

throughout all the elastic flow till to equilibrium.
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The Free End Rotation ϕ0

The problem requires to compute the free end equilibrium rotation ϕ(0) := ϕ0

of the (L, E, J) system under the load �F ≡ (Fx, Fy, 0) . From now on, we will

assume βx, βy > 0, what is not affecting the generality, the other cases being

tractable likewise. On the contrary, it is mandatory that the inequality

0 < L < 4

√
4

β2
x + β2

y

(8)

holds, as ensuring that (6) has one and only one solution, according to [2] theorem

6.1 page 93. As a matter of fact, problem (5) does not possess one solution if

whichever rod (L, E, J) is loaded by whichever �F . In fact, by the previous things

we argue that the force’s size cannot be willingly large, but shall admit the upper

bound

F <
EJ

L2
·

In order to face the BVP (6), one shall previously solve the auxiliary shooting

initial value problem

ϕ′′(s) =
1

2

(
βy cos ϕ(s) + βx sin ϕ(s)

)
ϕ(0) = ϕ0 ∈ [−π, π] , ϕ′(0) = 0

(9)

detecting which conditions shall be met by ϕ0 so that the solution to (9) is also

solution to (6) too. Notice that (9) is a Weierstraß equation, which, following [1],

pages 287-292, is brought to the quadratures putting

Φ(ϕ) = βy (sinϕ − sinϕ0) − βx (cos ϕ − cos ϕ0)
ϕ∫

ϕ0

ds = sign (βy cos ϕ0 + βx sinϕ0)

ϕ∫
ϕ0

dφ√
Φ(φ)

(10)

where Φ(ϕ) ≥ 0. Furthermore, due to initial condition rest point of the shooting

problem (9), it shall be Φ(ϕ0) = 0, and then ϕ0 is a stationary point (maximum or

minimum) for the solution to (9), solution which will either decrease or increase

till to the next (simple) root of Φ(ϕ), where the monotonicity reverses. That is

depending on the clear periodicity of the solutions to (9). It is therefore essential to

understand how the solutions of (9) really behave for different ϕ0 values, in order

to perform the ϕ0 choice capable of solving (6). For the purpose, the following

Lemma defines the range described by the solutions to (9) when the binomial

βy cos ϕ0 + βx sinϕ0 changes its sign. We will not provide the relevant proof

because this is a trivial and tedious sequence of goniometric inequalities.
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Figure 4. Solution of (9) case βy = 3, βx = 4, ϕ0 = −0.5

Lemma 1. Let it be ϕ(s) the solution to (9). Then, putting

r(βx, βy) =
βx√

β2
x + β2

y

we have that

1. if βx sinϕ0 + βy cos ϕ0 > 0 then for any s ∈ R

ϕ0 ≤ ϕ(s) ≤ 2 arccos [−r (βx, βy)] − ϕ0 (11)

2. if βx sinϕ0 + βy cos ϕ0 < 0 then, only one of the following holds

a) if −π ≤ ϕ0 < − arccos [r (βx, βy)] then

arccos [−r (βx, βy)] − 4π − ϕ0 ≤ ϕ(s) ≤ ϕ0

b) if arccos [−r (βx, βy)] < ϕ0 ≤ π then

2 arccos [−r (βx, βy)] − ϕ0 ≤ ϕ(s) ≤ ϕ0.

The case βx sinϕ0 +βy cosϕ0 = 0 is trivial: the solution of (9) is stationary, i.e.,
ϕ(s) = ϕ0 for any s ∈ R.

The above settles the free end rotation problem.

Remark 2. Let ϕ(s) be the solution to the initial value problem (9).

1. If βx sinϕ0 + βy cos ϕ0 > 0 and ϕ0 > 0, then ϕ(s) has no roots.
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2. If βx sin ϕ0 + βy cos ϕ0 > 0 and ϕ0 < 0, then ϕ(s) has one zero because

0 ∈ [ϕ0, 2 arccos [−r (βx, βy)] − ϕ0] .

3. If βx sin ϕ0 + βy cos ϕ0 < 0, then ϕ(s) has no roots, whatever is ϕ0.

We can then state:

Theorem 3. If ϕ0 is such that

βx sinϕ0 + βy cos ϕ0 > 0 (12)

−
π

2
< 2 arctan

⎛⎝βx −
√

β2
x + β2

y

βy

⎞⎠ < ϕ0 < 0 (13)

then, if L > 0 meets (8), then the solution to (9) will solve (6) also, if and only if
ϕ0 is a root of

L = 4

√
4

β2
x + β2

y

F (ψ(ϕ0), k(ϕ0)) (14)

with

ψ(ϕ0) = arccos

⎛⎝βy +
(
βx +

√
β2

x + β2
y

)
tanϕ0

2

βy +
(
βx −

√
β2

x + β2
y

)
tanϕ0

2

⎞⎠
k2(ϕ0) =

1

2
+

βx cosϕ0 − βy sinϕ0

2
√

β2
x + β2

y

·

Furthermore, the common solution to (9) and (6) is strictly increasing.

Proof: Let us start by noticing that assumptions (12) and (13) ensure the problem

to be well posed. Inequality (12) implies that solution (9) is increasing. Using

(10) and the boundary condition ϕ(L) = 0, we get

0∫
ϕ0

dϕ√
Φ(ϕ)

=

0∫
ϕ0

dϕ√
βx (sinϕ − sinϕ0) − βy (cos ϕ − cos ϕ0)

·

Instead of using formula 293.00 of [4] we will prefer rationalize our integral. If

we assume the isoperimetric relationship:

0∫
ϕ0

ds(ϕ) = L
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being L the originary rodlength, and put ϕ = 2arctan t, we obtain

L =
2√

−βx sinϕ0 + βy (1 + cos ϕ0)

0∫
a

dt√
(t − a) (t − b)(t2 + 1)

(15)

where

a = tan
ϕ0

2
, b =

βx + βytanϕ0

2

βxtanϕ0

2
− βy

·

It shall be emphasized that b < a : for the purpose it will be enough to check via

elementary calculus that the function

f(ξ) =
βx + βyξ

βxξ − βy

− ξ,
βy −

√
β2

x + β2
y

βx

< ξ ≤ 0

is decreasing and its range is a subset of [−βx/βy, 0). Then we can make use of

formula 260.00 pag 135 of [4], namely

y∫
a

dt√
(t − a) (t − b)(t2 + 1)

= gF (ψ, k)

where

A2 = a2 + 1, B2 = b2 + 1, g =
1

√
AB

k2 =
(A + B)2 − (a − b)2

4AB
, ψ = arccos

[
(A + B)y + aB − bA

(A + B)y − aB − bA

]
·

The thesis follows after long algebraic work by Mathematica R©. �

Remark 4. Figure 2 confirms that for the ϕ(s) solution to (6), the initial value

ϕ(0) is less than zero, as shown in Theorem 3: as a matter of fact the assumed

convention on the angle θ between the oriented tangents will provide certainly

0 < θ0 < π/2, and then ϕ0 < 0.

Corollary 5. If ϕ0 is a solution to (14), putting

N(s) = s
4

√
β2

x + β2
y

4
, k2 =

1

2
+

βy cos ϕ0 − βx sinϕ0

2
√

β2
x + β2

y
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the solution to (6) will be

ϕ(s) = 2 arctan
p(s)

q(s)
(16)

where

p(s) =
[√

β2
x + β2

y (1 − cos ϕ0cn(N(s)|k)) + βy cos ϕ0 (cn(N(s)|k) − 1)
]
βx

+ βy

(
βy −

√
β2

x + β2
y

)
cn(N(s)|k) sin ϕ0 + β2

x sin ϕ0

q(s) = [cos ϕ0cn(N(s)|k) + 1]β2
x − βy

(√
β2

x + β2
y − βy

)
(cos ϕ0 + 1)

+
[
(cn(N(s)|k) − 1)βy +

√
β2

x + β2
y

]
βx sinϕ0.

Proof: It is enough to replace the generic value ϕ(s) to zero at the upper bound

of integration in proving Theorem 3.

�

Elastica Equations x(s) and y(s) Parametrized Via the Arclength

The formula ruling ϕ(s) introduced in Corollary 5 will be used in order to inte-

grate the differential equations:

x′(s) = cos ϕ(s), y′(s) = − sinϕ(s). (17)

For, inserting (16) in (17), we get

x′(s) =
q2(s) − p2(s)

p2(s) + q2(s)
, y′(s) = −

2p(s) q(s)

p2(s) + q2(s)

and successively

x′(s) =
a0 + a1 cn (N(s) | k) + a2 cn2 (N(s) | k)

b0 + b2 cn2 (N(s) | k)
(18)

y′(s) =
c0 + c1 cn (N(s) | k) + c2 cn2 (N(s) | k)

d0 + d2 cn2 (N(s) | k)
(19)
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where

a0 =βx

[
−8β3

x cos4
ϕ0

2
+ 2β2

x

(
4
√

β2
x + β2

y cos4
ϕ0

2
+ (2 sin ϕ0 + sin 2ϕ0)βy

)
+ βxβy

(
(−4 cos ϕ0 + cos 2ϕ0 − 3)βy − 2(2 sinϕ0

+ sin 2ϕ0)
√

β2
x + β2

y

)
+ β2

y

(
4βy sin ϕ0 − (cos 2ϕ0 − 3)

√
β2

x + β2
y

)]
a1 = − 4βy(βx sinϕ0 + βy cos ϕ0)

[
(cos ϕ0 + 1)β2

x +
(√

β2
x + β2

y sinϕ0

+ βy

)
βy −

(√
β2

x + β2
y(cos ϕ0 + 1) + βy sinϕ0

)
βx

]
a2 =2βx (βx sin ϕ0 + βy cos ϕ0)

2
(
βx −

√
β2

x + β2
y

)
b0 =2

[
−4β4

x cos4
ϕ0

2
+
(
4
√

β2
x + β2

y cos4
ϕ0

2
+ (2 sin ϕ0 + βy sin 2ϕ0)

)
β3

x

− β2
xβy

(√
β2

x + β2
y (2 sinϕ0 + sin 2ϕ0) + (2 cos ϕ0 + 3)βy

)
+

1

2
βxβ2

y

(√
β2

x + β2
y (4 cos ϕ0 − cos 2ϕ0 + 3) + 2βy (2 sinϕ0 + sin 2ϕ0)

)
− β3

y

(
2
√

β2
x + β2

y sinϕ0 +
(
sin2 ϕ0 + 1

)
βy

)]
b2 = − 2 (βx sinϕ0 + βy cosϕ0)

2
(
β2

x + β2
y − βx

√
β2

x + β2
y

)
c0 =βy

(
−βx cos ϕ0 + βy sinϕ0 +

√
β2

x + β2
y

) [
(− cos ϕ0 − 1)β2

x

+
(
(cosϕ0+1)

√
β2

x+β2
y + βy sinϕ0

)
βx−βy

(√
β2

x + β2
y sinϕ0 + βy

)]
c1 = − 2βx(βx sinϕ0 + βy cos ϕ0)

[
(cos ϕ0 + 1)β2

x + βy

(√
β2

x + β2
y sinϕ0

+βy

)
−
(
(cos ϕ0 + 1)

√
β2

x + β2
y + βy sinϕ0

)
βx

]
c2 =βy (βx sinϕ0 + βy cos ϕ0)

2
(√

β2
x + β2

y − βx

)
d0 =4β4

x cos4
ϕ0

2
−
(
4
√

β2
x + β2

y cos4
ϕ0

2
+ (2 sinϕ0 + sin 2ϕ0)βy

)
β3

x

+ β2
xβy

(√
β2

x + β2
y (2 sinϕ0 + sin 2ϕ0) + (2 cos ϕ0 + 3)βy

)
+ β3

y

(
2
√

β2
x + β2

y sinϕ0 +
(
sin2 ϕ0 + 1

)
βy

)
−

1

2
βxβ2

y

(√
β2

x + β2
y (4 cos ϕ0 − cos 2ϕ0 + 3) + 2βy (2 sinϕ0 + sin 2ϕ0)

)
d2 =(βx sinϕ0 + βy cos ϕ0)

2
(
β2

x + β2
y − βx

√
β2

x + β2
y

)
.
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Notice that b0 and b2 are negative, while d0 and d2 are positive, and

d0

b0

=
d2

b2

= −
1

2
·

Moreover, the following fundamental relations hold

k2 =
b2

b0 + b2

=
d2

d0 + d2

· (20)

After this preliminaries, we can now integrate (18) and (19).

Theorem 6. The elastica parametric equations are

x(s) =
a2

b2

s +

√
2

(b0 + b2) 4

√
β2

x + β2
y

[
a0b2 − a2b0

b2

Π
(
k2, k, N(s)

)
+ a1sdN(s)

]
(21)

y(s) =
c2

d2

s +

√
2

(d0 + d2) 4

√
β2

x + β2
y

[
c0d2 − c2d0

d2

Π
(
k2, k, N(s)

)
+ c1sdN(s)

]
where Π is the third kind incomplete elliptic integral and, following Glaisher, we
mean

sdx =
snx

dnx
·

Proof: Both integrations in (21) are of the same nature, and we will consider

only the first one. Splitting in partial fractions, and omitting the modulus k, by

identities

a0 + a1z + a2z
2

b0 + b2z2
=

a2

b2

+

a0b2 − a2b0

b2

+ a1z

b0 + b2z2

b0 + b2 cn2σ = (b0 + b2)

(
1 −

b2

b0 + b2

sn2σ

)
one finds

x(s) =
a2

b2

s +

√
2

(b0 + b2) 4

√
β2

x + β2
y

[
a0b2 − a2b0

b2

Ix1(s) + a1Ix2(s)

]
with

Ix1(s) =

N(s)∫
0

dσ

1 − k2sn2σ
, Ix2(s) =

N(s)∫
0

cnσ dσ

1 − k2sn2σ
·
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The first integral is given by [4] formula 336.01: Ix1(s) = Π
(
k2, k, N(s)

)
. In

order to compute Ix2(s), putting sn2σ = w, we get: 2 snσ cnσ dnσ dσ = dw,

where dnσ is the Jacobi delta amplitude elliptic function dn2σ = 1− k2sn2σ. We

find out

Ix2(s) =
1

2

sn2N(s)∫
0

dw

(1 − k2w)
√

w (1 − k2w)
·

Putting z = 1

k

√
1−k2w

w
, we get Ix2(s) = sdN(s). �

A Generalization

The next step could be to establish what happens if a bending couple M0 is added

as a further load to the free end. One could think that our solution can cover the

free end simultaneously loaded by a force and a couple M0. Of course the couple

is not whichever, but its plane shall be parallel to that of rod and force. In such a

case (3) shall be replaced by

Mz(s) ± M0 = −EJ
dϕ(s)

ds

whilst ODE (5) in ϕ(s) is affected only at the free end boundary condition, which

becomes:
dϕ

ds
(0) =

∓M0

EJ
·

Then we will find a different ϕ(s). The ϕ0 evaluation is not involved by the M0

addition. On the contrary, the x and y functional expressions will be conditioned

by the new ϕ(s) only.

5. Conclusions

A thin, flexible cantilever is studied in its elastic equilibrium configuration under

a concentrated terminal load. In order to make the problem tractable, a proper set

of curvilinear state variables is chosen, facing with a second order, nonlinear, but

autonomous ODE to be solved to rotation ϕ(s) pertaining to each s-section. This

planar problem, even if relevant to linear elasticity, is a nonlinear one; and even if

ruled by a second order ODE it is not a Cauchy problem. Nevertheless its solution

depends in some extent on auxiliary Cauchy problem. The evaluation of the free
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end rotation ϕ0, following the isoperimetric assumption, leads to a numerical sub-

problem inside the main BVP, which is solved via the shooting approach starting

from an auxiliary, suitably chosen IVP. Furthermore, if x(s) and y(s) denote the

elastica coordinates parametrized by the arclength s, through a first integration

one obtains x′(s) and y′(s) as elliptic functions of s. Further, some minor changes

are shown in order to pass from a loading force to a more general free-end load

combination of a force and a couple. Anyway, performing the second integration,

the elastica parametric equations are obtained in closed form. It has been found

that x and y are consisting of the addition of three functional blocks:

1. the first is proportional to the arc itself

2. the second is proportional to the third kind elliptic integral, whose upper

bound is the arc itself

3. the third is the elliptic function sd of the arc.

The functional links are therefore quite tractable and on the contrary, the constants

involved have a so long formulation in terms of problem data, that we preferred

to provide for them directly the relevant output of our Mathematica R© computer

algebra package. Finally, the reader should be aware that all our symbolic for-

mulations have been tested affronting some sample problems and comparing the

outputs coming from our closed form solutions with the numerical ones from

high-reliability Runge-Kutta schemes.
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