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ALGEBRAIC INDEPENDENCE RESULTS FOR VALUES
OF THETA-CONSTANTS

Carsten Elsner

Abstract: Let θ(q) = 1 + 2
∑∞
ν=1 q

ν2 denote the Thetanullwert of the Jacobi Zeta function

θ(z|τ) =
∞∑

ν=−∞
eπiν

2τ+2πiνz .

For algebraic numbers q with 0 < |q| < 1 we prove the algebraic independence over Q of the
numbers θ(qn) and θ(q) for n = 2, 3, . . . , 12 and furthermore for all n > 16 which are powers of
two. An application for n = 5 proves the transcendence of the number

∞∑
j=1

(−1)j
( j

5

) jqj

1− qj
.

Similar results are obtained for numbers related to modular equations of degree 3, 5, and 7.

Keywords: algebraic independence, theta-constants, Nesterenko’s theorem, independence cri-
terion, modular equations.

1. Introduction and statement of results

Let τ with =(τ) > 0 denote a complex variable. The series

ϑ2(τ) = 2

∞∑
ν=0

q(ν+1/2)2 , ϑ3(τ) = 1 + 2

∞∑
ν=1

qν
2

, ϑ4(τ) = 1 + 2

∞∑
ν=1

(−1)
ν
qν

2

are known as theta-constants or Thetanullwerte, where q = eπiτ . Sometimes it
is useful to write ϑ2(q), ϑ3(q), ϑ4(q) instead of ϑ2(τ), ϑ3(τ), ϑ4(τ), respectively,
where q belongs to the unit circle around 0 of the complex plane. The theta-
constants are modular forms of weight 1/2 for the principal congruence subgroup
of level 2. In particular, θ(q) := ϑ3(q) is the Thetanullwert of the Jacobi zeta
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function θ(z|τ) =
∑∞
ν=−∞ eπiν

2τ+2πiνz. Let n > 3 denote an odd positive integer.
Set

hj(τ) := n2
ϑ4
j (nτ)

ϑ4
j (τ)

(j = 2, 3, 4), λ = λ(τ) :=
ϑ4

2(τ)

ϑ4
3(τ)

, ψ(n) := n
∏
p|n

(
1 +

1

p

)
,

where p runs through all primes dividing n. Also the function

j(τ) := 256
(λ2 − λ+ 1)

3

λ2(λ− 1)
2

is a modular function with respect to the group SL(2,Z) (cf. [5, ch.3,18]), for
which identities of the form Φn

(
j(τ), j(nτ)

)
with polynomials Φn(X,Y ) ∈ Z[X,Y ]

are known (cf. [5, ch.5]). Yu.V.Nesterenko [8] proved the existence of integer
polynomials Pn(X,Y ) ∈ Z[X,Y ] such that Pn

(
hj(τ), Rj(λ(τ))

)
= 0 holds for

j = 2, 3, 4, odd integers n > 3, and a suitable rational function R2, R3, or R4,
respectively:

Theorem A ([8, Theorem 1.1, Corollary 3]). For any odd integer n > 3 there
exists a polynomial Pn(X,Y ) ∈ Z[X,Y ], degX P = ψ(n), such that

Pn

(
h2(τ), 16

λ(τ)− 1

λ(τ)

)
= 0,

Pn
(
h3(τ), 16λ(τ)

)
= 0,

Pn

(
h4(τ), 16

λ(τ)

λ(τ)− 1

)
= 0.

The polynomials P3, P5, P7, P9, and P11 are listed in the appendix. P3 and
P5 are already given in [8], P7, P9, and P11 are the results of computer-assisted
computations of the author.

There are various algebraic relationships between the theta-constants and arith-
metic functions like Ramanujan’s Eisenstein series P (q), Q(q), R(q) (cf. [6]), the
Dedekind eta-function η(τ) = eπiτ/12

∏∞
n=1(1−e2πiτn), and others. For instance, it

follows from Jacobi’s triple product identity that θ(−q) = η2(τ)/η(2τ) for =(τ) > 0
and q = e2πiτ . Therefore, under suitable circumstances, an algebraic independence
result for values of theta-constants can be transformed into an algebraic indepen-
dence result for functions which are expressed in terms of theta-constants. For
example, see [3] and Corollary1.1 below.

In this paper we focus on the problem to decide on the algebraic independence
of θ(q) and θ(qn) over Q for algebraic numbers q and integers n > 1. We shall use
Theorem A in connection with an algebraic independence criterion (Lemma 2.1) to
settle the problem for the odd integers n = 3, 5, 7, 9, 11 and for three even numbers
n = 6, n = 10, and n = 12. The central point of the algebraic independence crite-
rion is the non-vanishing of a Jacobian determinant, which is hard to decide when
the involved polynomials are not given explicitly. Using the double-argument for-
mulae (3.1) for the theta-constants we construct suitable polynomials P2m(X,Y )
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(Lemma 3.1). In this case the polynomials P2m(X,Y ) are given recursively such
that we can solve the problem of the algebraic independence of θ(q) and θ(q2m)
for arbitrary integers m > 1. But this method cannot be extended to decide
on the algebraic independence of θ(q) and θ(qn) for arbitrary odd integers n by
Theorem A. So the main results of this paper are given by the following theorem.

Theorem 1.1. Let q be an algebraic number with 0 < |q| < 1. Let m > 1 be
an integer. Then, the two numbers θ(q) and θ(q2m) are algebraically independent
over Q as well as the two numbers θ(q) and θ(qn) for n = 3, 5, 6, 7, 9, 10, 11, 12.

Let n > 3 be any odd integer. If the polynomial Pn(X,Y ) from Theorem A is
given explicitly, then by Theorem 4.1 in Section 4 one can decide on the algebraic
independence of θ(q) and θ(qn) over Q for any algebraic number q satisfying the
condition of Theorem 1.1.

The following identities are originally due to Ramanujan (cf. [1, §19, Entries 8
and 17]):

1 + S1(q) = 1 +

∞∑
j=1

(−1)
j
( j

5

) jqj

1− qj
=

1

4

(
5θ(−q)θ3(−q5)− θ3(−q)θ(−q5)

)
,

24 + 40S2(q) = 24 + 40

∞∑
j=1
j≡1(2)

( j
5

) jqj

1 + qj
= 25θ(q)θ3(q5)− θ5(q)

θ(q5)
,

1 + 2S3(q) = 1 + 2

∞∑
j=1

εj
qj

1− qj
= θ(q)θ(q7),

where
(
j/5
)

denotes the Legendre symbol, and the cycle of coefficients
(ε0, ε1, . . . , ε27) of length 28 is given by(

0, 1,−1,−1, 1,−1, 1, 0, 1, 1, 1, 1,−1,−1, 0,

1, 1,−1,−1,−1,−1, 0,−1, 1,−1, 1, 1,−1
)
.

Corollary 1.1. Let q be an algebraic number with 0 < |q| < 1. Then the numbers
S1(q), S2(q), and S3(q) are transcendental.

From Entry 3 and Entry 4 in [1, §19] analogous results can be obtained for
modular equations of degree 3.

2. Auxiliary results

A detailed discussion of theta-functions and theta-constants can be found in
[4, part2, ch.2] and [9, ch.10]. At first we point out some properties of the functions

X0(τ) ∈
{
n2ϑ

4
3(nτ)

ϑ4
3(τ)

,
ϑ2

3(nτ)

ϑ2
3(τ)

}
and Y0(τ) ∈

{
16
ϑ4

2(τ)

ϑ4
3(τ)

,
ϑ4(τ)

ϑ3(τ)

}
.
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From the theory of modular forms it is well known that in the upper half plane
H = {z ∈ C|=(z) > 0} the theta-constants ϑ2(τ), ϑ3(τ) and ϑ4(τ) are regular
functions for τ ∈ H. Moreover, ϑ3(τ) does not vanish in H. Therefore, X0(τ) and
Y0(τ) are regular functions in H.

The most important tool to transfer the algebraic independence of a set of
m numbers to another set of m numbers, which all satisfy a system of algebraic
identities, is given by the following lemma. We call it an algebraic independence
criterion (AIC).

Lemma 2.1 ([2, Lemma 3.1]). Let x1, . . . , xm ∈ C be algebraically independent
over Q and let y1, . . . , ym ∈ C satisfy the system of equations

fj(x1, . . . , xm, y1, . . . , ym) = 0 (1 6 j 6 m),

where fj(t1, . . . , tm, u1, . . . , um) ∈ Q[t1, . . . , tm, u1, . . . , um] (1 6 j 6 m). Assume
that

det

(
∂fj
∂ti

(x1, . . . , xm, y1, . . . , ym)

)
6= 0.

Then the numbers y1, . . . , ym are algebraically independent over Q.

We shall apply the AIC to the sets {x1, x2} = {ϑ2(τ), ϑ3(τ)} and {x1, x2} =
{ϑ3(τ), ϑ4(τ)}. For this purpose we have to know that these pairs of numbers are
algebraically independent.

Lemma 2.2 ([3, Lemma 4]). Let q be an algebraic number with q = eπiτ and
=(τ) > 0. Then, the numbers in each of the sets{

ϑ2(τ), ϑ3(τ)
}
,

{
ϑ2(τ), ϑ4(τ)

}
,

{
ϑ3(τ), ϑ4(τ)

}
are algebraically independent over Q.

This result can be derived from Yu.V.Nesterenko’s theorem [7] on the algebraic
independence of the values P (q), Q(q), R(q) of the Ramanujan functions P , Q, R
at a nonvanishing algebraic point q.

3. Preparation of the proof of Theorem 1.1

In this section, we prove the following lemmas which are required to prove Theo-
rem 1.1 when n is a power of two.

Lemma 3.1. For every integer m > 1 let n = 2m. There exists a polynomial
Pn(X,Y ) ∈ Z[X,Y ] such that

Pn

(ϑ2
3(nτ)

ϑ2
3(τ)

,
ϑ4(τ)

ϑ3(τ)

)
= 0

with degX P2(X,Y ) = 1, and degX Pn(X,Y ) = 2m−2 for m > 2.
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Proof. For simplicity we introduce the notation ϑ3 := ϑ3(τ) and ϑ4 := ϑ4(τ).
Then

2ϑ2
2(2τ) = ϑ2

3 − ϑ2
4,

2ϑ2
3(2τ) = ϑ2

3 + ϑ2
4,

ϑ2
4(2τ) = ϑ3ϑ4.

 (3.1)

For every integer m > 1 let

z1 := ϑ2
3(nτ),

z2 := (ϑ3 + ϑ4)
2
,

z3 := ϑ3ϑ4.

Note that z1 depends on n = 2m, while z2 and z3 do not depend on n. First, we
compute the polynomials Pn(X,Y ) for n = 2, 4, 8.

n = 2: From (3.1) we have

2ϑ2
3(2τ)− (ϑ3 + ϑ4)

2
+ 2ϑ3ϑ4 = 2z1 − z2 + 2z3 = 0. (3.2)

Dividing by ϑ2
3, it follows that

2
(ϑ3(2τ)

ϑ3

)2

−
(

1 +
ϑ4

ϑ3

)2

+ 2
ϑ4

ϑ3
= 0.

Hence, P2(X,Y ) = 2X − (1 + Y )
2

+ 2Y .
n = 4: In the second identity of (3.1) we replace τ by 2τ and then express

ϑ2
3(2τ) and ϑ2

4(2τ) on the right-hand side again by (3.1) in terms of ϑ3 and ϑ4:

4ϑ2
3(4τ)− (ϑ3 + ϑ4)

2
= 4z1 − z2 = 0. (3.3)

Dividing by ϑ2
3, it follows that

4
(ϑ3(4τ)

ϑ3

)2

−
(

1 +
ϑ4

ϑ3

)2

= 0.

Hence, P4(X,Y ) = 4X − (1 + Y )
2.

n = 8: In (3.3) we replace τ by 2τ . In order to express ϑ3(2τ) and ϑ4(2τ) in
terms of ϑ3 and ϑ4, it becomes necessary to solve the identity for ϑ3ϑ4 and square
the equation. After some straightforward computations it turns out that

0 =
(
8ϑ2

3(8τ)− (ϑ3 + ϑ4)
2)2 − 8

(
(ϑ3 + ϑ4)

2 − 2ϑ3ϑ4

)
ϑ3ϑ4

= (8z1 − z2)
2 − 8(z2 − 2z3)z3. (3.4)

Dividing by ϑ4
3, we find that

P8(X,Y ) =
(
8X − (1 + Y )

2)2 − 8
(
(1 + Y )

2 − 2Y
)
Y.
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The polynomials in terms of z1, z2, z3 in (3.2 - 3.4) are homogeneous of degrees
1,1, and 2 respectively. Therefore, we try to prove the following statement by
induction with respect to m:

For every m > 1 there is a homogeneous polynomial Tn(t1, t2, t3) ∈ Z[t1, t2, t3]
of total degree λ such that Tn(z1, z2, z3) = 0 with λ = degt1 Tn(t1, t2, t3) = 2m−2

for m > 2 and λ = 1 when m = 1.

We have already shown the existence of T2, T4, and T8. For T8 we have λ = 2
by (3.4). So, let us assume that for some m > 3 such a homogeneous polynomial
T2m with λ = 2m−2 do exist. Then,

T2m

(
ϑ2

3(2mτ), (ϑ3 + ϑ4)
2
, ϑ3ϑ4

)
= 0, (3.5)

where
T2m(t1, t2, t3) =

∑
ν

aνt
ν1
1 t

ν2
2 t

ν3
3 , (3.6)

say, with ν = (ν1, ν2, ν3) ∈ N3, aν ∈ Z, and ν1 +ν2 +ν3 = λ = degt1 T2m(t1, t2, t3).
Here, N denotes the set of nonnegative integers. The leading term with respect to
t1 occurs once only for ν = (λ, 0, 0). Next, in (3.5) we replace τ by 2τ :

T2m

(
ϑ2

3(2m+1τ), (ϑ3(2τ) + ϑ4(2τ))
2
, ϑ3(2τ)ϑ4(2τ)

)
= 0. (3.7)

Setting w := ϑ3(2τ)ϑ4(2τ), we have, using (3.1),

(ϑ3(2τ) + ϑ4(2τ))
2

=
z2

2
+ 2w.

For m + 1 we set z1 := ϑ2
3(2m+1τ) = ϑ2

3

(
(n + 1)τ

)
. Then, (3.7) and (3.6) can be

expressed in terms of z1, z2, and w:

0 = T2m

(
z1,

z2

2
+ 2w,w

)
=
∑
ν

aνz
ν1
1

(z2

2
+ 2w

)ν2
wν3

=
∑
µ

bµz
µ1

1 zµ2

2 wµ3

with µ = (µ1, µ2, µ3) ∈ N3, bµ ∈ Q, and µ1 + µ2 + µ3 = λ. We separate the sum
on µ = (µ1, µ2, µ3) into two parts according to the parity of µ3:

0 =
∑

µ=(µ1,µ2,µ3)
µ3≡0 (mod 2)

bµz
µ1

1 zµ2

2 wµ3 +
∑

µ=(µ1,µ2,µ3)
µ3≡1 (mod 2)

bµz
µ1

1 zµ2

2 wµ3 ,
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where the leading term with respect to z1 is b(λ,0,0)z
λ
1 6≡ 0 occurring in the left-

hand sum. It follows that( ∑
µ=(µ1,µ2,µ3)
µ3≡0 (mod 2)

bµz
µ1

1 zµ2

2 wµ3

)2

− w2
( ∑
µ=(µ1,µ2,µ3)
µ3≡1 (mod 2)

bµz
µ1

1 zµ2

2 wµ3−1
)2

= 0. (3.8)

Using (3.1) we express w2 in terms of z2 and z3:

w2 =
1

2
(z2 − 2z3)z3.

Substituting this expression into (3.8), we obtain

0 =
( ∑
µ=(µ1,µ2,µ3)
µ3≡0 (mod 2)

bµz
µ1

1 zµ2

2 2−µ3/2(z2 − 2z3)
µ3/2z

µ3/2
3

)2

− 1

2
(z2 − 2z3)z3

( ∑
µ=(µ1,µ2,µ3)
µ3≡1 (mod 2)

bµz
µ1

1 zµ2

2 2−(µ3−1)/2(z2 − 2z3)
(µ3−1)/2

z
(µ3−1)/2
3

)2

=
∑
κ

cκz
κ1
1 zκ2

2 zκ3
3 ,

where κ = (κ1, κ2, κ3) ∈ N3, cκ ∈ Q, and κ1 + κ2 + κ3 = 2λ. The leading term
with respect to z1 is c(2λ,0,0)z

2λ
1 6≡ 0. The homogeneous polynomial T2m+1 ∈

Z[t1, t2, t3] \ {0} can be chosen by

T2m+1(t1, t2, t3) := 22λ
∑
κ

cκt
κ1
1 tκ2

2 tκ3
3 .

For this polynomial we have 2λ = 2m−1. This completes the proof of the existence
of the homogeneous polynomials Tn(t1, t2, t3) for every integer m > 1 with n = 2m

satisfying Tn(z1, z2, z3) = 0. Let us consider a monomial of such a homogeneous
polynomial Tn of degree λ given by (3.6). Then we have ν1 + ν2 + ν3 = λ. After
dividing Tn by ϑ2λ

3 , the monomial takes the form
aν
ϑ2λ

3

· zν11 zν22 zν33 =
aν
ϑ2λ

3

·
(
ϑ3(2mτ)

)2ν1
(ϑ3 + ϑ4)

2ν2(ϑ3ϑ4)
ν3

= aν

(ϑ3(2mτ)

ϑ3

)2ν1(
1 +

ϑ4

ϑ3

)2ν2(ϑ4

ϑ3

)ν3
= aνX

ν1(1 + Y )
2ν2Y ν3

with

X :=
ϑ2

3(2mτ)

ϑ2
3

and Y :=
ϑ4

ϑ3
.

Introducing the polynomial

Pn(X,Y ) :=
∑
ν

aνX
ν1(1 + Y )

2ν2Y ν3 = Tn
(
X, (1 + Y )

2
, Y
)
,

we finish the proof of Lemma 3.1. �
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The polynomials P2, P4, P8, P16, and P32 are listed in the appendix. The proof
of the algebraic independence of ϑ3(q2m) and ϑ3(q) over Q will require some more
information on the polynomials Tn(t1, t2, t3) introduced in the proof of the pre-
ceding lemma.

Lemma 3.2. For every integer m > 3 let n = 2m. Then there is a polynomial
Un(t1, t2, t3) ∈ Q[t1, t2, t3] such that the polynomial Tn(t1, t2, t3) from (3.5) can be
written as

Tn(t1, t2, t3) =
(
nt1 − t2

)2m−2

+ t3Un(t1, t2, t3) (3.9)

with
Un

( 1

n
, 1, 0

)
= −22m−1−1. (3.10)

Proof. Lemma 3.2 is true for m = 3 and m = 4. We have

T8(t1, t2, t3) = (8t1 − t2)
2 − 8(t2 − 2t3)t3,

U8(t1, t2, t3) = −8(t2 − 2t3);

T16(t1, t2, t3) = (16t1 − t2)
4

+ t3

(
16(t2 − 2t3)(16t1 − t2)

2
+ 64(t2 − 2t3)

2
t3

− 128(t2 − 2t3)
(

8t1 +
t2
2

)2)
, (3.11)

U16(t1, t2, t3) = 16(t2 − 2t3)(16t1 − t2)
2

+ 64(t2 − 2t3)
2
t3

− 128(t2 − 2t3)
(

8t1 +
t2
2

)2

.

Form > 4 we prove a more precise result on the particular shape of the polynomials
T2m . We shall show the following. For every integer m > 4 we have

T2m(t1, t2, t3) = (2mt1 − t2)
2m−2

+ t3
∑

ν1,...,ν5
ν1>2∨ν5>1

ν2>1

aν(2mt1 − t2)
ν1(t2 − 2t3)

ν2tν31 t
ν4
2 t

ν5
3

− 22m−1−1t2
m−3−2

2 (t2 − 2t3)
(

2m−1t1 +
t2
2

)2m−3

t3. (3.12)

Here, ν = (ν1, . . . , ν5) ∈ N5, and the numbers aν are rationals. Only finitely many
aν do not vanish. One can show that T2m(t1, t2, t3) is a polynomial with integer
coefficients, but we do not need this fact. We point out that the conditions on
the summation variables ν1, . . . , ν5 read as follows: it is either ν1 > 2 or ν5 > 1
(or both), and we always have ν2 > 1. The second and third term on the right-
hand side of (3.12) form t3U2m(t1, t2, t3), which implies (3.9). In particular, for
t1 = 1/2m, t2 = 1, and t3 = 0, we have

2mt1 − t2 = 0, t2 − 2t3 = 1, 2m−1t1 +
t2
2

= 1,



Algebraic independence results for values of theta-constants 15

such that

U2m

( 1

2m
, 1, 0

)
= −22m−1−1

proves (3.10) in Lemma 3.2.

Proof of (3.12). We proceed by induction on m. For m = 4 see (3.11). Next
let us assume that (3.12) holds for some integer m > 4. Following the lines in the
proof of Lemma 3.1, we construct step by step the new polynomial T2m+1(t1, t2, t3)
from (3.12).

Step 1: After substituting the new expressions

t1 → t1, t2 →
t2
2

+ 2w, t3 → w

into (3.12), we see that the resulting term equals to zero. Hence,

0 =
(

2mt1 −
t2
2
− 2w

)2m−2

+ w
∑

ν1,...,ν5
ν1>2∨ν5>1

ν2>1

aν

(
2mt1 −

t2
2
− 2w

)ν1( t2
2

)ν2
tν31

( t2
2

+ 2w
)ν4

wν5

− 22m−1−1
( t2

2
+ 2w

)2m−3−2 t2
2

(
2m−1t1 +

t2
4

+ w
)2m−3

w.

Using four times the binomial theorem, the above expression becomes

0 =
(

2mt1 −
t2
2

)2m−2

+

2m−2∑
µ1=1

(
2m−2

µ1

)
(−1)

µ1

(
2mt1 −

t2
2

)2m−2−µ1

(2w)
µ1

+ w
∑

ν1,...,ν5
ν1>2∨ν5>1

ν2>1

aν

(
ν1∑

µ2=0

(
ν1

µ2

)
(−1)

µ2

(
2mt1 −

t2
2

)ν1−µ2

(2w)
µ2

)( t2
2

)ν2
tν31

×

(
ν4∑

µ3=0

(
ν4

µ3

)( t2
2

)ν4−µ3

(2w)
µ3

)
wν5

− 22m−1−1
( t2

2

)2m−3−2 t2
2

(
2m−1t1 +

t2
4

+ w
)2m−3

w

− 22m−1−1

2m−3−2∑
µ4=1

(
2m−3 − 2

µ4

)( t2
2

)2m−3−2−µ4

(2w)
µ4

 t2
2

×
(

2m−1t1 +
t2
4

+ w
)2m−3

w. (3.13)
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The last but one term on the right-hand side of (3.13) can be expanded by

22m−1−1
( t2

2

)2m−3−2 t2
2
· 1

22m−3

(
2mt1 +

t2
2

+ 2w
)2m−3

w

= 22m−1−2m−3−2m−3−1−1+2t2
m−3−1

2

(
2mt1 +

t2
2

+ 2w
)2m−3

w

= 22m−2

t2
m−3−1

2

(
2mt1 +

t2
2

)2m−3

w

+ 22m−2

t2
m−3−1

2

2m−3∑
µ5=1

(
2m−3

µ5

)(
2mt1 +

t2
2

)2m−3−µ5

(2w)
µ5

w.

(3.14)

Substituting (3.14) for the last but one term into (3.13), we summarize the terms
as follows.

0 =
(

2mt1 −
t2
2

)2m−2

+
∑

µ6,...,µ9
µ6>2∨µ9>2

µ9>1

bµ(2m+1t1 − t2)
µ6
tµ7

1 tµ8

2 wµ9

+ 22m−2

t2
m−3−1

2

(
2mt1 +

t2
2

)2m−3

w.

(3.15)

Here, we abbreviate by µ = (µ6, . . . , µ9), and the coefficients bµ are again rational
numbers.

Step 2: In (3.15) we separate the terms with an even power of w from those
with an odd power of w. This gives

(
2mt1 −

t2
2

)2m−2

+
∑

µ6,...,µ9
µ9>2

µ9≡0 (mod 2)

bµ(2m+1t1 − t2)
µ6
tµ7

1 tµ8

2 wµ9

= −
∑

µ6,...,µ9
µ6>2∨µ9>2
µ9≡1 (mod 2)

µ9>1

bµ(2m+1t1 − t2)
µ6
tµ7

1 tµ8

2 wµ9

− 22m−2

t2
m−3−1

2

(
2mt1 +

t2
2

)2m−3

w.

(3.16)
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Step 3: Squaring (3.16), we obtain

(
2mt1 −

t2
2

)2m−1

+
( ∑

µ6,...,µ9
µ9>2

µ9≡0 (mod 2)

bµ(2m+1t1 − t2)
µ6
tµ7

1 tµ8

2 wµ9

)2

+ 2
(

2mt1 −
t2
2

)2m−2 ∑
µ6,...,µ9
µ9>2

µ9≡0 (mod 2)

bµ(2m+1t1 − t2)
µ6
tµ7

1 tµ8

2 wµ9

=
( ∑

µ6,...,µ9
µ6>2∨µ9>2
µ9≡1 (mod 2)

µ9>1

bµ(2m+1t1 − t2)
µ6
tµ7

1 tµ8

2 wµ9

)2

+ 22m−2+1t2
m−3−1

2

(
2mt1 +

t2
2

)2m−3 ∑
µ6,...,µ9

µ6>2∨µ9>2
µ9≡1 (mod 2)

µ9>1

bµ(2m+1t1 − t2)
µ6
tµ7

1 tµ8

2 w1+µ9

+ 22m−1

t2
m−2−2

2

(
2mt1 +

t2
2

)2m−2

w2.

This identity can be summarized as follows.

0 =
(

2mt1 −
t2
2

)2m−1

+
∑

ν6,...,ν9
ν6>2∨ν7>2

ν7>1

cν

(
2mt1 −

t2
2

)ν6
w2ν7tν81 t

ν9
2

− 22m−1

t2
m−2−2

2

(
2mt1 +

t2
2

)2m−2

w2,

(3.17)

where ν = (ν6, . . . , ν9) and cν ∈ Q.

Step 4: Multiplying (3.17) by 22m−1

and replacing w2 by 1
2 (t2 − 2t3)t3, the

right-hand side of (3.17) becomes the polynomial T2m+1(t1, t2, t3). Thus we obtain
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T2m+1(t1, t2, t3) =
(

2m+1t1 − t2
)2m−1

+
∑

ν6,...,ν9
ν6>2∨ν7>2

ν7>1

22m−1

cν

(
2mt1 −

t2
2

)ν6 1

2ν7
(t2 − 2t3)

ν7tν73 t
ν8
1 t

ν9
2

− 22m−1+2m−1

t2
m−2−2

2

(
2mt1 +

t2
2

)2m−2

1

2
(t2 − 2t3)t3

=
(

2m+1t1 − t2
)2m−1

+ t3
∑

ν6,...,ν10
ν6>2∨ν10>1

ν7>1

dν
(
2m+1t1 − t2

)ν6
(t2 − 2t3)

ν7tν81 t
ν9
2 t

ν10
3

− 22m−1t2
m−2−2

2 (t2 − 2t3)
(

2mt1 +
t2
2

)2m−2

t3,

(3.18)

where ν = (ν6, . . . , ν10), and dν ∈ Q. Hence, (3.18) corresponds to (3.12) with m
replaced by m+ 1. This proves (3.12). �

4. Proof of Theorem 1.1

By Rest
(
f(t), g(t)

)
we denote the resultant of two polynomials f(t), g(t) with re-

spect to the variable t. It is consistent with the notation of theta-constants to
write ϑ3(q) and ϑ3(τ) instead of θ(q) and θ(τ), respectively.
We divide the proof of Theorem 1.1 into several steps. The first step is an interim
result given by the following theorem.

Theorem 4.1. Let n be either an odd integer > 3 or n = 2m with m > 1. Let q
be an algebraic number with q = eπiτ and =(τ) > 0. If the polynomial

ResX
(
Pn(X,Y ),

∂

∂Y
Pn(X,Y )

)
does not vanish identically, then the numbers ϑ3(nτ) and ϑ3(τ) are algebraically
independent over Q.

Proof. For any given odd integer n > 3 let

X0 := n2ϑ
4
3(nτ)

ϑ4
3(τ)

, Y0 := 16
ϑ4

2(τ)

ϑ4
3(τ)

;

x1 := ϑ2(τ), x2 := ϑ3(τ),

y1 := ϑ3(nτ), y2 := x2 = ϑ3(τ).

We know by Theorem A that Pn(X0, Y0) = 0, and by Lemma 2.2 and the conditions
of Theorem 4.1 that x1 and x2 are algebraically independent over Q. Let

Pn(X,Y ) =

N∑
ν=0

M∑
µ=0

aν,µX
νY µ, (4.1)
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where aν,µ are the integer coefficients of the polynomial Pn. Consider the polyno-
mials

f1 := f1(t1, t2, u1, u2) := t4M2 u4N
2 Pn

(n2u4
1

u4
2

,
16t41
t42

)
=

N∑
ν=0

M∑
µ=0

aν,µt
4M
2 u4N

2

(n2u4
1

u4
2

)ν(16t41
t42

)µ

=

N∑
ν=0

M∑
µ=0

16µn2νaν,µt
4µ
1 t

4(M−µ)
2 u4ν

1 u
4(N−ν)
2 ,

f2 := f2(t1, t2, u1, u2) := u2 − t2.

Note that fj(x1, x2, y1, y2) = 0 for j = 1, 2. To prove the algebraic independence
of y1 and y2 using the AIC (Lemma 2.1) we have to show that the determinant

∆ := det


∂f1

∂t1

∂f1

∂t2

∂f2

∂t1

∂f2

∂t2


does not vanish at (x1, x2, y1, y2). Since

∂f2

∂t1
= 0 and

∂f2

∂t2
= −1,

the condition ∆ 6= 0 is equivalent with the nonvanishing of the number

∂f1

∂t1
(x1, x2, y1, y2) :=

∂f1(t1, t2, u1, u2)

∂t1

∣∣∣
(t1=x1,t2=x2,u1=y1,u2=y2)

.

We have

∂f1

∂t1
(x1, x2, y1, y2) =

N∑
ν=0

M∑
µ=1

16µn2νaν,µ4µx4µ−1
1 x

4(M−µ)
2 y4ν

1 y
4(N−ν)
2

= x4M
2 y4N

2

N∑
ν=0

M∑
µ=1

aν,µ

(
n2y4

1

y4
2

)ν
µ

(
16x4

1

x4
2

)µ−1(
64
x3

1

x4
2

)
= 64x3

1x
4M−4
2 y4N

2

∂Pn
∂Y

(
n2y4

1

y4
2

,
16x4

1

x4
2

)
.

Since both, x1 and x2(= y2) do not vanish, it is clear that

∆ 6= 0 ⇐⇒ ∂f1

∂t1
(x1, x2, y1, y2) 6= 0 ⇐⇒ ∂Pn

∂Y

(
n2y4

1

y4
2

,
16x4

1

x4
2

)
6= 0. (4.2)
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By the hypothesis of Theorem 4.1 the polynomial

R = ResX
(
Pn(X,Y ),

∂

∂Y
Pn(X,Y )

)
∈ Z[Y ]

does not vanish identically. For Y = Y0 = 16x4
1/x

4
2 we have R ∈ Q(x1, x2), so

that the algebraic independence of x1, x2 proves R 6= 0. In particular, Pn(X,Y )
and ∂

∂Y Pn(X,Y ) as polynomials in X have no common root for fixed Y = Y0 =
16x4

1/x
4
2. Since Pn(X,Y ) vanishes at (X0, Y0) =

(
n2y4

1/y
4
2 , 16x4

1/x
4
2

)
, it follows

that
∂Pn
∂Y

(
n2y4

1

y4
2

,
16x4

1

x4
2

)
6= 0.

Thus, Theorem 4.1 for odd integers n > 3 follows from (4.2) and the AIC
(Lemma 2.1).

In the case n = 2m (m > 1) we introduce the quantities

X0 :=
ϑ2

3(nτ)

ϑ2
3(τ)

, Y0 :=
ϑ4(τ)

ϑ3(τ)
;

x1 := ϑ4(τ), x2 := ϑ3(τ),

y1 := ϑ3(nτ), y2 := x2 = ϑ3(τ).

Here, we have Pn(X0, Y0) = 0 by Lemma 3.1, and

f1(t1, t2, u1, u2) := tM2 u2N
2 Pn

(u2
1

u2
2

,
t1
t2

)
=

N∑
ν=0

M∑
µ=0

aν,µt
µ
1 t
M−µ
2 u2ν

1 u
2(N−ν)
2 ,

∂f1

∂t1
(x1, x2, y1, y2) = xM−1

2 y2N
2

∂Pn
∂Y

(y2
1

y2
2

,
x1

x2

)
,

f2(t1, t2, u1, u2) := u2 − t2.

Then,

∆ 6= 0 ⇐⇒ ∂Pn
∂Y

(y2
1

y2
2

,
x1

x2

)
6= 0.

Using similar arguments as above by considering the particular point (X0, Y0) =(
y2

1/y
2
2 , x1/x2

)
, the algebraic independence of ϑ3(qn) and ϑ3(q) for n = 2m can be

derived from the AIC. �

First, using Theorem 4.1 we prove the algebraic independence of ϑ3(q) and
ϑ3(qn) for n = 2, 3, 4, 5, 7, 8, 9, 11 by computing the resultant of the polynomials
Pn(X,Y ) and ∂Pn(X,Y )/∂Y . We have to show that these resultants do not
vanish identically. So, it suffices to compute the values of the resultants at the
point Y = 0 for n = 3, 4, 5, 7, 8, 11 and at the point Y = 2 for n = 2, 9. Note that
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ResX
(
Pn(X,Y ), ∂Pn(X,Y )

∂Y

)
vanishes at Y = 0 for n = 2, 9.

ResX

(
P2(X, 2),

∂P2

∂Y
(X, 2)

)
= −22,

ResX

(
P3(X, 0),

∂P3

∂Y
(X, 0)

)
= 216 · 32,

ResX

(
P4(X, 0),

∂P4

∂Y
(X, 0)

)
= −2,

ResX

(
P5(X, 0),

∂P5

∂Y
(X, 0)

)
= 260 · 310 · 52,

ResX

(
P7(X, 0),

∂P7

∂Y
(X, 0)

)
= 2142 · 314 · 72,

ResX

(
P8(X, 0),

∂P8

∂Y
(X, 0)

)
= 212,

ResX

(
P9(X, 2),

∂P9

∂Y
(X, 2)

)
= 2132 · 396 · 72 · 372 · 1932 · 53872

× 36838321932 · 946863533232,

ResX

(
P11(X, 0),

∂P11

∂Y
(X, 0)

)
= 2336 · 322 · 522 · 112.

Next we prove the algebraic independence of the numbers in each of the sets{
ϑ3(6τ), ϑ3(τ)

}
and

{
ϑ3(10τ), ϑ3(τ)

}
.

We shall not treat these two problems by the method shown before, but again
the AIC will play an important role. We first consider the numbers ϑ3(6τ) and
ϑ3(τ). Given any odd integer n > 3 one can deduce the algebraic independence of
ϑ3(2nτ) and ϑ3(τ) as follows. First we replace τ by 2τ in Theorem A. Then,

Pn(X,Y ) = 0 (4.3)

holds for

X0 := n2ϑ
4
3(2nτ)

ϑ4
3(2τ)

and Y0 := 16
ϑ4

2(2τ)

ϑ4
3(2τ)

.

Next we express ϑ4
2(2τ) and ϑ4

3(2τ) in terms of ϑ3(τ) and ϑ4(τ):

ϑ4
2(2τ) =

1

4

(
ϑ2

3(τ)− ϑ2
4(τ)

)2
,

ϑ4
3(2τ) =

1

4

(
ϑ2

3(τ) + ϑ2
4(τ)

)2
.

Hence (4.3) holds for

X0 =
4n2ϑ4

3(2nτ)(
ϑ2

3(τ) + ϑ2
4(τ)

)2 and Y0 =
16
(
ϑ2

3(τ)− ϑ2
4(τ)

)2(
ϑ2

3(τ) + ϑ2
4(τ)

)2 .
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Setting

x1 := ϑ3(τ), x2 := ϑ4(τ),

y1 := ϑ3(2nτ), y2 := x1 = ϑ3(τ),

we know that (4.3) holds for

X0 =
4n2y4

1

(y2
2 + x2

2)
2 and Y0 =

16(x2
1 − x2

2)
2

(x2
1 + x2

2)
2 . (4.4)

Beside (4.3) we have the identity y2 − x1 = 0, and the numbers x1, x2 are known
to be algebraically independent over Q for any algebraic number q = eπiτ with
=(τ) > 0 by Lemma 2.2. Using

Pn(X,Y ) =

N∑
ν=1

M∑
µ=1

aν,µX
νY µ,

we now introduce the polynomials

f1(t1, t2, u1, u2) := (t22 + u2
2)

2N
(t21 + t22)

2M
Pn

(
4n2u4

1

(t22 + u2
2)

2 ,
16(t21 − t22)

2

(t21 + t22)
2

)
, (4.5)

f2(t1, t2, u1, u2) := u2 − t1.

Using the AIC we have to show the nonvanishing of

∆ := det


∂f1

∂t1

∂f1

∂t2

∂f2

∂t1

∂f2

∂t2

 =
∂f1

∂t2

at (x1, x2, y1, y2). From now on we restrict the investigation to particular cases.
First, let n = 3. For P3(X,Y ) we have N = 4 and M = 2 (cf. Appendix). We
now compute ∆ = ∂f1

∂t2
(x1, x2, y1, y2), where f1 is as in (4.5). Setting y2 = x1, we

get

∆ = 72x2(x2
2 + x2

1)
3(

3440x2
2y

4
1x

10
1 + 7536y4

1x
10
2 x

2
1 − 19936x6

1y
4
1x

6
2

+ 34560x6
1y

8
1x

2
2 − 10344x8

1y
4
1x

4
2 − 186624x2

1y
12
1 x2

2 + 920x4
1y

4
1x

8
2

+ 51840x4
1y

8
1x

4
2 + 34560x2

1y
8
1x

6
2 + 8640y8

1x
8
2 − 93312x4

1y
12
1 + 210x8

1x
8
2

+ 168x6
1x

10
2 + 84x4

1x
12
2 + 168x10

1 x
6
2 + 84x12

1 x
4
2 + 24x14

1 x
2
2 + 744x12

1 y
4
1

+ 24x2
1x

14
2 − 93312y12

1 x4
2 + 3x16

2 + 186624y16
1 + 8640x8

1y
8
1 + 3x16

1 − 280y4
1x

12
2

)
.

To prove that ∆ 6= 0 it suffices to consider the polynomial within the second
parentheses, since 72x2(x2

2+ x2
1)

3 does not vanish by the algebraic independence
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of x1 and x2:

h1(x1, x2, y1) := 3440x2
2y

4
1x

10
1 + 7536y4

1x
10
2 x

2
1 − 19936x6

1y
4
1x

6
2

+ 34560x6
1y

8
1x

2
2 − 10344x8

1y
4
1x

4
2 − 186624x2

1y
12
1 x2

2 + 920x4
1y

4
1x

8
2

+ 51840x4
1y

8
1x

4
2 + 34560x2

1y
8
1x

6
2 + 8640y8

1x
8
2 − 93312x4

1y
12
1

+ 210x8
1x

8
2 + 168x6

1x
10
2 + 84x4

1x
12
2 + 168x10

1 x
6
2 + 84x12

1 x
4
2

+ 24x14
1 x

2
2 + 744x12

1 y
4
1 + 24x2

1x
14
2 − 93312y12

1 x4
2 + 3x16

2

+ 186624y16
1 + 8640x8

1y
8
1 + 3x16

1 − 280y4
1x

12
2 .

Let us assume that ∆ = 0, hence h1(x1, x2, y1) = 0. From (4.5) we have
(x2

1 + x2
2)

2(N+M)
P3(X0, Y0) = 0. Using y2 = x1, it follows that

0 = 9(x2
2 + x2

1)
4
(−x8

2 + 80y2
1x

2
1x

4
2 − 72y4

1x
4
1 − 4x2

2x
6
1 + 432y8

1 − x8
1

− 6x4
2x

4
1 − 144y4

1x
2
1x

2
2 + 80x4

1y
2
1x

2
2 − 4x6

2x
2
1 − 72y4

1x
4
2 − 16y2

1x
6
2

− 16x6
1y

2
1)(−x8

2 − 80y2
1x

2
1x

4
2 − 72y4

1x
4
1 − 4x2

2x
6
1 + 432y8

1 − x8
1 − 6x4

2x
4
1

− 144y4
1x

2
1x

2
2 − 80x4

1y
2
1x

2
2 − 4x6

2x
2
1 − 72y4

1x
4
2 + 16y2

1x
6
2 + 16x6

1y
2
1).

The algebraic independence of x1, x2 over Q shows that 9(x2
2 + x2

1)
4 6= 0, hence

the number

h2(x1, x2, y1) := (−x8
2 + 80y2

1x
2
1x

4
2 − 72y4

1x
4
1 − 4x2

2x
6
1 + 432y8

1 − x8
1 − 6x4

2x
4
1

− 144y4
1x

2
1x

2
2 + 80x4

1y
2
1x

2
2 − 4x6

2x
2
1 − 72y4

1x
4
2 − 16y2

1x
6
2 − 16x6

1y
2
1)

× (−x8
2 − 80y2

1x
2
1x

4
2 − 72y4

1x
4
1 − 4x2

2x
6
1 + 432y8

1 − x8
1 − 6x4

2x
4
1

− 144y4
1x

2
1x

2
2 − 80x4

1y
2
1x

2
2 − 4x6

2x
2
1 − 72y4

1x
4
2 + 16y2

1x
6
2 + 16x6

1y
2
1)

vanishes. By the assumption h1 = 0 it follows that Resy1
(
h1(x1, x2, y1),

h2(x1, x2, y1)
)

= 0. We obtain

0 = 2240372x16
1 x

8
2(8x4

1 + 29x2
2x

2
1 + 27x4

2)4(x2 − x1)12(x1 + x2)12

× (x2
2 − 2x1x2 − x2

1)16(x2
2 + 2x1x2 − x2

1)16(x2
2 + x2

1)64,

a contradiction to the algebraic independence of x1, x2 over Q. Thus the AIC
proves the algebraic independence of ϑ3(6τ) and ϑ3(τ) over Q.

Next, let n = 5. With N = 6, M = 4, and the polynomial P5(X,Y ) listed in
the appendix, an analogous computation finally gives the identity

0 = 25925200x32
1 x

8
2(128x12

1 − 816x8
1x

4
2 + 603x6

1x
6
2 + 5775x4

1x
8
2 + 7569x2

1x
10
2

+ 3125x12
2 )4(243x24

2 − 3580x2
1x

22
2 − 315034x4

1x
20
2 + 1780x6

1x
18
2 + 1040093x8

1x
16
2

+ 774920x10
1 x

14
2 − 2001516x12

1 x
12
2 + 774920x14

1 x
10
2 + 1040093x16

1 x
8
2

+ 1780x18
1 x

6
2 − 315034x20

1 x
4
2 − 3580x22

1 x
2
2 + 243x24

1 )8(x2
1 − 2x1x2 − x2

2)16

× (x2
1 + 2x1x2 − x2

2)16(x1 − x2)20(x1 + x2)20(x2
1 + x2

2)96.
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The contradiction proves the algebraic independence of ϑ3(10τ) and ϑ3(τ) over Q.
For the proof of the algebraic independence of ϑ3(12τ) and ϑ3(τ) over Q we have to
modify the above formulae. From the double-argument formulae (3.1) we obtain

ϑ4
2(4τ) =

1

16

(
ϑ3 − ϑ4

)4
,

ϑ4
3(4τ) =

1

16

(
ϑ3 + ϑ4

)4
.

In Theorem A we replace τ by 4τ such that (4.3) holds with

X0 =
n2ϑ4

3(4nτ)

ϑ4
3(4τ)

=
16n2y4

1

(y2 + x2)
4 ,

Y0 =
16ϑ4

2(4τ)

ϑ4
3(4τ)

=
16(x1 − x2)

4

(x1 + x2)
4 ,

where y1 = ϑ3(4nτ). Finally, we replace (4.5) by

f1(t1, t2, u1, u2) =
(
t2 + u2

)4N(
t1 + t2

)4M
Pn

( 16n2u4
1

(t2 + u2)
4 ,

16(t1 − t2)
4

(t1 + t2)
4

)
.

Setting n = 3, N = 4, M = 2, and following the above lines of computations, we
deduce the following identity:

0 = 2376372x8
1x

8
2(x4

1 − 12x3
1x2 − 12x1x

3
2 + x4

2 + 6x2
1x

2
2)

16

× (3x4
1 + 16x3

1x2 + 30x2
1x

2
2 + 32x1x

3
2 + 27x4

2)
4
(x1 − x2)

32
(x1 + x2)

128
.

Here the contradiction proves the algebraic independence of ϑ3(12τ) and ϑ3(τ)
over Q.

Finally, for Theorem 1.1 it remains to prove the algebraic independence of
ϑ3(q2m) and ϑ3(q) over Q for any m > 3. Let n = 2m. By Theorem 4.1 it suffices
to show that the polynomial

ResX
(
Pn(X,Y ),

∂

∂Y
Pn(X,Y )

)
∈ Z[Y ]

does not vanish identically. We know from (3.9) in Lemma 3.2 that

Pn(X,Y ) = Tn
(
X, (1 + Y )

2
, Y
)

=
(
nX − (1 + Y )

2)2m−2

+ Y Un
(
X, (1 + Y )

2
, Y
)
.

Hence we obtain

Pn(X, 0) = Tn(X, 1, 0) =
(
2mX − 1

)2m−2

, (4.6)
∂Pn
∂Y

(X, 0) = −2m−1
(
2mX − 1

)2m−2−1
+ Un(X, 1, 0). (4.7)
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On the one hand the polynomial Pn(X, 0) in (4.6) has a 2m−2-fold root X0 at
X0 = 1/2m. On the other hand we know by (4.7) and (3.10) in Lemma 3.2 that

∂Pn
∂Y

(X0, 0) = Un

( 1

n
, 1, 0

)
= −22m−1−1 6= 0.

This shows that for Y = 0 the polynomials Pn(X,Y ) and ∂Pn(X,Y )/∂Y have
no common root. Therefore, the resultant of both polynomials with respect to X
does not vanish identically. This completes the proof of Theorem 1.1. �

5. Appendix

The polynomials P3, P5, P7, P9, and P11 listed below were derived from the proof
of Theorem 1.1 in [8].

P3 = 9− (28− 16Y + Y 2)X + 30X2 − 12X3 +X4,

P5 = 25− (126− 832Y + 308Y 2 − 32Y 3 + Y 4)X + (255 + 1920Y − 120Y 2)X2

+ (−260 + 320Y − 20Y 2)X3 + 135X4 − 30X5 +X6,

P7 = 49− (344− 17568Y + 20554Y 2 − 6528Y 3 + 844Y 4 − 48Y 5 + Y 6)X

+ (1036 + 156800Y + 88760Y 2 − 12320Y 3 + 385Y 4)X2

− (1736− 185024Y + 18732Y 2 − 896Y 3 + 28Y 4)X3

+ (1750 + 31360Y − 1960Y 2)X4 − (1064− 2464Y + 154Y 2)X5

+ 364X6 − 56X7 +X8,

P9 = 6561− (60588− 18652032Y + 56033208Y 2 − 40036032Y 3 + 11743542Y 4

− 1715904Y 5 + 132516Y 6 − 5184Y 7 + 81Y 8)X

+ (250146 + 427613184Y + 2083563072Y 2 + 86274432Y 3 − 57982860Y 4

+ 4249728Y 5 − 99288Y 6 + 576Y 7 − 9Y 8)X2

− (607420− 1418904064Y + 2511615520Y 2 − 353755456Y 3 + 19071754Y 4

− 612736Y 5 + 13960Y 6 − 64Y 7 + Y 8)X3

+ (959535 + 856286208Y + 8468928Y 2 − 2145024Y 3 − 808488Y 4

+ 65664Y 5 − 1368Y 6)X4

− (1028952 + 22899456Y + 1430352Y 2 − 505152Y 3 + 38826Y 4

− 1728Y 5 + 36Y 6)X5

+ (757596− 13138944Y + 4160448Y 2 − 417408Y 3 + 13044Y 4)X6

− (378072 + 1138176Y + 16416Y 2 − 10944Y 3 + 342Y 4)X7

+ (122895 + 64512Y − 4032Y 2)X8 − (24060− 11136Y + 696Y 2)X9

+ 2466X10 − 108X11 +X12,
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P11 = 121− (1332− 2214576Y + 15234219Y 2 − 21424896Y 3 + 11848792Y 4

− 3309152Y 5 + 522914Y 6 − 48896Y 7 + 2684Y 8 − 80Y 9 + Y 10)X

+ (6666 + 111458688Y + 2532888424Y 2 + 2367855776Y 3 − 327773413Y 4

− 9982720Y 5 + 3230480Y 6 − 161920Y 7 + 2530Y 8)X2

− (20020− 864654912Y + 12880909668Y 2 − 5289254784Y 3 + 744094076Y 4

− 43914992Y 5 + 967461Y 6 − 2816Y 7 + 44Y 8)X3

+ (40095 + 1748954240Y − 175142088Y 2 + 372281536Y 3 − 68516998Y 4

+ 4266240Y 5 − 88880Y 6)X4

− (56232− 1061669664Y + 132688050Y 2 − 10724736Y 3 + 715308Y 4

− 28512Y 5 + 594Y 6)X5

+ (56364 + 211953280Y − 7454568Y 2 − 724064Y 3 + 22627Y 4)X6

− (40392− 24140864Y + 2162116Y 2 − 81664Y 3 + 2552Y 4)X7

+ (20295 + 1448832Y − 90552Y 2)X8 − (6820− 36784Y + 2299Y 2)X9

+ 1386X10 − 132X11 +X12.

The polynomials P2, P4, P8, P16, and P32 listed below were derived from the proof
of Lemma 3.1:

P2 = 2X − Y 2 − 1,

P4 = 4X − (1 + Y )
2
,

P8 = 64X2 − 16(1 + Y )
2
X + (1− Y )

4
,

P16 = 65536X4 − 16384(1 + Y )
2
X3 + 512(3Y 4 + 4Y 3 + 18Y 2 + 4Y + 3)X2

− 64(1 + Y )
2
(Y 4 + 28Y 3 + 6Y 2 + 28Y + 1)X + (1− Y )

8
,

P32 = 240X8 − 238(1 + Y )
2
X7 + 232(7Y 4 + 20Y 3 + 42Y 2 + 20Y + 7)X6

− 228(1 + Y )
2
(7Y 4 + 164Y 3 + 42Y 2 + 164Y + 7)X5

+ 221(35Y 8 + 552Y 7 + 2260Y 6 + 3864Y 5 + 5010Y 4

+ 3864Y 3 + 2260Y 2 + 552Y + 35)X4

− 218(1 + Y )
2
(7Y 8 + 424Y 7 + 7492Y 6 + 2968Y 5 + 15082Y 4

+ 2968Y 3 + 7492Y 2 + 424Y + 7)X3

+ 212(7Y 12 − 5924Y 11 + 4174Y 10 + 33900Y 9 + 33161Y 8 + 36536Y 7

+ 58436Y 6 + 36536Y 5 + 33161Y 4 + 33900Y 3 + 4174Y 2 − 5924Y + 7)X2

− 28(1 + Y )
2
(Y 12 + 660Y 11 + 15170Y 10 + 68420Y 9 + 121327Y 8

+ 212520Y 7 + 212380Y 6 + 212520Y 5 + 121327Y 4 + 68420Y 3

+ 15170Y 2 + 660Y + 1)X + (1− Y )
16
.
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