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ALGEBRAIC INDEPENDENCE RESULTS FOR VALUES
OF THETA-CONSTANTS

CARSTEN ELSNER

Abstract: Let 0(q) =1+2>°% q”2 denote the Thetanullwert of the Jacobi Zeta function

oo

(9(Z|’7'): Z eﬂiu2'r+27ri1/z.

v=—00

For algebraic numbers ¢ with 0 < |¢| < 1 we prove the algebraic independence over Q of the
numbers 0(q™) and 0(q) for n = 2,3,...,12 and furthermore for all n > 16 which are powers of
two. An application for n = 5 proves the transcendence of the number

i (D)

Similar results are obtained for numbers related to modular equations of degree 3, 5, and 7.

Keywords: algebraic independence, theta-constants, Nesterenko’s theorem, independence cri-
terion, modular equations.

1. Introduction and statement of results

Let 7 with §(7) > 0 denote a complex variable. The series

792(7-):22q(u+1/2)2, 193(7.):14_22(]1/2’ 194(7') :1+QZ(_1)uqy2
v=0 v=1 v=1

are known as theta-constants or Thetanullwerte, where ¢ = ¢™7. Sometimes it
is useful to write ¥2(q),V3(q), Y4(q) instead of ¥2(7),I5(7),¥4(7), respectively,
where ¢ belongs to the unit circle around 0 of the complex plane. The theta-
constants are modular forms of weight 1/2 for the principal congruence subgroup

of level 2. In particular, 6(q) := ¥3(q) is the Thetanullwert of the Jacobi zeta
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function O(z|7) => 07 T TH2Tiv: Lot > 3 denote an odd positive integer.
Set

hj(7) :=n? 1;‘42‘:) (=234, A== grs, ¢(n)::nH<1+%)7

where p runs through all primes dividing n. Also the function

A2=A+1)°

j(7) := 256 O 1)

is a modular function with respect to the group SL(2,Z) (cf. [5, ch.3,18]), for
which identities of the form ®,,(j(7),j(n7)) with polynomials ®,,(X,Y) € Z[X,Y]
are known (cf. [5, ch.5]). Yu.V.Nesterenko [8] proved the existence of integer
polynomials P,(X,Y) € Z[X,Y] such that P,(h;(7),R;(A(7))) = 0 holds for
7 = 2,3,4, odd integers n > 3, and a suitable rational function R, R3, or Ry,
respectively:

Theorem A ([8, Theorem 1.1, Corollary 3]). For any odd integer n > 3 there
exists a polynomial P,(X,Y) € Z[X Y], degyx P = ¢(n), such that

P, (hg(r), 16A(;\()T;1)

P, (h3 ), 16A(r))

P, <h4( )

The polynomials Ps, Ps, P7, Py, and P;; are listed in the appendix. P3 and
Ps are already given in [8], Pr, Py, and Pi; are the results of computer-assisted
computations of the author.

There are various algebraic relationships between the theta-constants and arith-
metic functions like Ramanujan’s Eisenstein series P(q), Q(q), R(q) (cf. [6]), the
Dedekind eta-function n(7) = e™7/*2[[>2_ | (1—e?7™"), and others. For instance, it
follows from Jacobi’s triple product identity that 0(—q) = n*(7)/n(27) for I(1) > 0
and g = e2™7. Therefore, under suitable circumstances, an algebraic independence
result for values of theta-constants can be transformed into an algebraic indepen-
dence result for functions which are expressed in terms of theta-constants. For
example, see [3] and Corollaryl.1 below.

In this paper we focus on the problem to decide on the algebraic independence
of 6(¢) and 6(q™) over Q for algebraic numbers ¢ and integers n > 1. We shall use
Theorem A in connection with an algebraic independence criterion (Lemma 2.1) to
settle the problem for the odd integers n = 3,5,7,9,11 and for three even numbers
n =6, n =10, and n = 12. The central point of the algebraic independence crite-
rion is the non-vanishing of a Jacobian determinant, which is hard to decide when
the involved polynomials are not given explicitly. Using the double-argument for-
mulae (3.1) for the theta-constants we construct suitable polynomials Pom (X,Y)

0,
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(Lemma 3.1). In this case the polynomials Pom (X,Y’) are given recursively such
that we can solve the problem of the algebraic independence of 6(q) and 9(q2m)
for arbitrary integers m > 1. But this method cannot be extended to decide
on the algebraic independence of 6(q) and 6(¢™) for arbitrary odd integers n by
Theorem A. So the main results of this paper are given by the following theorem.

Theorem 1.1. Let q be an algebraic number with 0 < |q| < 1. Let m > 1 be
an integer. Then, the two numbers 6(q) and 9(q2m) are algebraically independent
over Q as well as the two numbers 0(q) and 6(¢™) for n =3,5,6,7,9,10,11,12.

Let n > 3 be any odd integer. If the polynomial P, (X,Y") from Theorem A is
given explicitly, then by Theorem 4.1 in Section 4 one can decide on the algebraic
independence of 6(q) and 6(¢™) over Q for any algebraic number ¢ satisfying the
condition of Theorem 1.1.

The following identities are originally due to Ramanujan (cf. [1, §19, Entries 8
and 17]):

1+ Si(g) =1+ Z ( ) 1 —]qa‘ - 3(59(—(1)93(—615) —0°(—9)0(=¢")),

24 + 4085 (q) = 24 + 40 Z ( ) —259(61)93(q5)—

Jj= 1(2)
j

1—¢I

1+ 2S5(q )—1+2Zsj =0(q)0(q"),

j=1

where (j /5) denotes the Legendre symbol, and the cycle of coefficients
(€0,€1,---,€27) of length 28 is given by

(0717_15_171a_17170a1a151717_17_170a
1,1,-1,-1,-1,-1,0,—1,1,—1,1,1,-1).

) ) 7

Corollary 1.1. Let q be an algebraic number with 0 < |q| < 1. Then the numbers
S1(q), S2(q), and Ss5(q) are transcendental.

From Entry 3 and Entry 4 in [1, §19] analogous results can be obtained for
modular equations of degree 3.

2. Auxiliary results

A detailed discussion of theta-functions and theta-constants can be found in
[4, part2, ch.2] and [9, ch.10]. At first we point out some properties of the functions

4 nrt 2 nrt 4 T T
Xo(7) € {nzﬂgg(ﬂ),ﬁggm)} and  Yy(7) € {16192( ) Da )}.
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From the theory of modular forms it is well known that in the upper half plane
H = {z € C|¥(z) > 0} the theta-constants ¥o(7),93(7) and 94(7) are regular
functions for 7 € H. Moreover, J3(7) does not vanish in H. Therefore, X (7) and
Yo(7) are regular functions in H.

The most important tool to transfer the algebraic independence of a set of
m numbers to another set of m numbers, which all satisfy a system of algebraic
identities, is given by the following lemma. We call it an algebraic independence
criterion (AIC).

Lemma 2.1 (|2, Lemma 3.1]). Let x1,...,2,, € C be algebraically independent
over Q and let y1,...,ym € C satisfy the system of equations

fj('rla"'vxm7y17"'7ym):O (lgjém),

where fi(t1, ... tm, U1, .. Um) € Qt1, ... b, U1, U] (1< 5 < m). Assume
that

of;
det <8{Z (xh...,mm,yl,...,ym)) #0.

Then the numbers y1, ..., Yym are algebraically independent over Q.
We shall apply the AIC to the sets {x1,z2} = {U2(7),95(7)} and {z1,22} =

{¥3(7),94(7)}. For this purpose we have to know that these pairs of numbers are
algebraically independent.

Lemma 2.2 (|3, Lemma 4]). Let q be an algebraic number with ¢ = €™ and

(1) > 0. Then, the numbers in each of the sets

{02(7),95(7) }, {02(7),04(7)}, {05(7),04(7)}

are algebraically independent over Q.

This result can be derived from Yu.V.Nesterenko’s theorem [7] on the algebraic
independence of the values P(q), Q(q), R(q) of the Ramanujan functions P, Q, R
at a nonvanishing algebraic point q.

3. Preparation of the proof of Theorem 1.1

In this section, we prove the following lemmas which are required to prove Theo-
rem 1.1 when n is a power of two.

Lemma 3.1. For every integer m > 1 let n = 2™. There exists a polynomial
P, (X,Y) € Z[X,Y] such that

V3(nT) 9a(r)y _
P 92(7) ’193(7)> =0

with degy Po(X,Y) =1, and degy P, (X,Y) =2""2 for m > 2.
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Proof. For simplicity we introduce the notation ¥ := J3(7) and ¥4 := 94(7).
Then
219% (2T) = 19% - 19421a
20%(21) = 9% + 93, (3.1)
19?1(2T) = 193’(94.

For every integer m > 1 let

2 = 19%(717’),

20 1= (V3 + V4)°,
z3 = 193194
Note that z; depends on n = 2™, while 25 and z3 do not depend on n. First, we

compute the polynomials P,(X,Y) for n = 2,4,8.
n = 2: From (3.1) we have

203(27) — (93 + U4)° + 205094 = 221 — 25 + 225 = 0. (3.2)

Dividing by 93, it follows that

2(1931527))2 - (1 + %) 1ol .

Hence, P(X,Y) =2X — (14 Y)* +2V.
n = 4: In the second identity of (3.1) we replace 7 by 27 and then express
9¥2(27) and ¥3(27) on the right-hand side again by (3.1) in terms of 93 and 94:
492(47) — (93 + 04)% = 421 — 20 = 0. (3.3)

Dividing by 9%, it follows that

() () =

Hence, Py(X,Y) =4X — (1+Y)>.

n = 8: In (3.3) we replace 7 by 27. In order to express ¥3(27) and 94(27) in
terms of Y3 and 14, it becomes necessary to solve the identity for 93194 and square
the equation. After some straightforward computations it turns out that

0 = (892(87) — (V5 + 94)?)” — 8((D3 + 0a)° — 2039) O30,
= (821 — 22)2 — 8(22 — 22’3)23. (34)

Dividing by 93, we find that

PX,Y) = (8X — (1+Y)?) = 8((1+Y)* —2v)Y.
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The polynomials in terms of z1, 22,23 in (3.2 - 3.4) are homogeneous of degrees
1,1, and 2 respectively. Therefore, we try to prove the following statement by
induction with respect to m:

For every m > 1 there is a homogeneous polynomial T,,(t1,t2,t3) € Z[tl,tQ,t3]
of total degree X such that T, (21, 22, 23) = 0 with A = deg,, Ty, (t1,t2,t3) = 2™~
form >2 and A =1 when m = 1.

We have already shown the existence of T, Ty, and Tg. For Tg we have A = 2
by (3.4). So, let us assume that for some m > 3 such a homogeneous polynomial
Tom with A = 2™ 2 do exist. Then,

Tom (193(2’”7), (W5 + 947, 193194) =0, (3.5)

where
TQm tl» tQ, t3 Z G,Vt§1 tg2t (36)

say, with v = (v1,10,13) € N3, a, € Z, and vy + 1o +v3 = \ = degy, Tom (t1,t2,t3).
Here, N denotes the set of nonnegative integers. The leading term with respect to
t1 occurs once only for v = (A, 0,0). Next, in (3.5) we replace 7 by 27:

Tom (93(2717), (9(27) + 04(27))%, 95 (27)0a(27) ) = 0. (3.7)
Setting w := ¥3(27)94(27), we have, using (3.1),

(Va(27) +92(27))° = 2 + 2w

For m + 1 we set z; := 93(2™*'7) = ¥3((n+ 1)7). Then, (3.7) and (3.6) can be
expressed in terms of zq, 29, and w:

0="Tom (zh % + 2w,w)
= Zal, ( + 2w> 2w”3
_ Zb Zm u2wu3

with p = (1, po, p3) € N3, b, € Q, and pq + p2 + p3 = A. We separate the sum
on p = (u1, 42, 143) into two parts according to the parity of ps:

0= Z by Zﬂl #2wu3+ Z by Z#l #211/#3,

H=(p1,H2,13) n=(p1,H2,13)
©3=0 (mod 2) p3=1 (mod 2)
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where the leading term with respect to z; is b()‘7070)zf‘ # 0 occurring in the left-
hand sum. It follows that

( Z b2tz “zw“3)2 —w2( Z bzt ”2w”3_1)2 =0. (3.8)

p=(p1,p2,13) p=(p1,p2,13)
£3=0 (mod 2) n3=1 (mod 2)

Using (3.1) we express w? in terms of 2o and z3:

w? = §(z2 — 223)23

Substituting this expression into (3.8), we obtain

2
0= ( Z bﬂzf125227u3/2(22 - 223)H3/22§3/2)

u=(p1,p2,13)
p3=0 (mod 2)

1 _ .
- 5(zZ - 223),23( Z b 29— (ma=)/2 (5 90 (ke =1)/2 s 1)/2)

pw=(p1,p2,13)
p3=1 (mod 2)

— K1 K2 K3
= E Cr2y 2y 257,

2

where k = (k1,k2,k3) € N3, ¢, € Q, and k1 + K2 + k3 = 2\. The leading term
with respect to z; is 0(2/\,0,0)Z%>‘ # 0. The homogeneous polynomial Thm+1 €
Z[t1,t2,t3] \ {0} can be chosen by

Tymsr (1, ta, t5) 1= 222 Y~ cutPHH5245°.
K

For this polynomial we have 2\ = 2!, This completes the proof of the existence
of the homogeneous polynomials T, (t1, te, t3) for every integer m > 1 with n = 2™
satisfying T, (21, 22, 23) = 0. Let us consider a monomial of such a homogeneous
polynomial T;, of degree A given by (3.6). Then we have v; + vs + v3 = A. After
dividing T,, by 93*, the monomial takes the form

2 2yt = 192A (93(277)) ™ (93 + 94)* (9304)"

m 2uq 2vo V3
= (B0 () (5
=a, X" (14 Y)Yy

Qy,
192’\

with )
%@ty y .U

X =
92 Y3

Introducing the polynomial

P.(X,Y) Za,,X”l (1+Y)2y™ = T,(X,(1+ V)%, Y),

we finish the proof of Lemma 3.1. |
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The polynomials Ps, Py, Pg, P1g, and P3o are listed in the appendix. The proof
of the algebraic independence of ¥3(¢%") and 9¥3(q) over Q will require some more
information on the polynomials T}, (t1,%2,t3) introduced in the proof of the pre-
ceding lemma.

Lemma 3.2. For every integer m > 3 let n = 2™. Then there is a polynomial
Un(t1,t2,t3) € Q[t1,to,t3] such that the polynomial T, (t1,t2,t3) from (3.5) can be
written as

gm—2
Tn(tl,tg,tg) = (nt1 - tg) + thn(tl,tQ,tg) (39)

with 1
Un(ﬁ 1,0) = 92" 1, (3.10)

n

Proof. Lemma 3.2 is true for m = 3 and m = 4. We have
Ty(t1,ta,t3) = (81 — t2)2 — 8(ta — 2t3)ts,
Ug(thtg,tg) = —8(t2 — 2t3);
Ti6(ty, ta,ts) = (16t — )" +t3 (16(t2 — 2t3)(16t; — t2)? + 64(t2 — 2t3)°t3

t2 2
—1928(ts — 2t3)(8t1 + 5) ) (3.11)
U16(t1,t2,t3) = 16(t2 — 2t3)(16t1 — t2)2 + 64(t2 — 2t3)2t3

t 2
— 198ty — 2t3)(8t1 + 52) .

For m > 4 we prove a more precise result on the particular shape of the polynomials
Tom. We shall show the following. For every integer m > 4 we have

m—2
Tom (ty, ta, t3) = (241 — t3)°
ity > a(2Mt — 1) (ta — 2t) P

Vi,...,V5
v1>22Vrs>1
vo2>1
m—1 3 t 2m?
Cgn ey, 2t3)(2’”—1t1 + 52) ts.  (3.12)
Here, v = (v1,...,v5) € N°, and the numbers a,, are rationals. Only finitely many

a,, do not vanish. One can show that Tom (t1,ta,t3) is a polynomial with integer
coefficients, but we do not need this fact. We point out that the conditions on
the summation variables vq,...,vs read as follows: it is either 1 > 2 or v5 > 1
(or both), and we always have vy > 1. The second and third term on the right-
hand side of (3.12) form ¢3Uam (t1,t2,t3), which implies (3.9). In particular, for
t; =1/2™, ta = 1, and t3 = 0, we have

t
2Mt —ty =0, ty — 25 =1, om—1¢ 4 52 =1,
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such that
1 gm-1_1
U2m(27m71’0) == —2

proves (3.10) in Lemma 3.2.

Proof of (3.12). We proceed by induction on m. For m = 4 see (3.11). Next
let us assume that (3.12) holds for some integer m > 4. Following the lines in the
proof of Lemma 3.1, we construct step by step the new polynomial Thm+1(t1, ta, t3)
from (3.12).

Step 1: After substituting the new expressions
to
t1—>t1, t2—>§+2w, t3 = w

into (3.12), we see that the resulting term equals to zero. Hence,

27n—2

t
0= (2’% -2 - 2w)

t YL\ L (it v
+w Z aV(th1—£—2w> (—2) tf3(—2+2w) w"s

s 2 2 2
v122Vrs>1
l/2>1
o t 2m73_2t t 27n—3
92771 (52 + 2w) 52 (2’”_1751 + ZQ + w) w.

Using four times the binomial theorem, the above expression becomes

—2

t2 om—2 2m 2m_2 t2 2m,72_lu‘1
o=(u-3) + 3 (%, )Jeunlra-g) Mewr
p1=1
Y1 to\ V1 M2 to V2
o B w3 ()= ) e ) (5)
WS, a0
I/2>1
V4 to\ VATH3
« Vg (L2 (2w)“3 w"s
w3/ \ 2
p3=0
m—1 t2 277173722‘;2 t2 2m73
SETNG) Sl fae) e
m—3 m—
g [ D 2m B — 2 o\ e gy
—2 3 (7) u)* | 2
a1 Ha 2 2
m—1 t2 e
x (2 tl—l—z—kw w. (3.13)
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The last but one term on the right-hand side of (3.13) can be expanded by

2m—3

gm—1_1 (12 2m_372t2 1 m 2
U)oy ) w
m— m— m—: m— t 2
- s (3.14)
=2 T (4 2) w
27n73 m—3 2”71*3_
2711,—2 277173_1 2 m t2 e H5
ok u21< s )(2 h+3) oy e
-

Substituting (3.14) for the last but one term into (3.13), we summarize the terms
as follows.

t 2 :
0= (27nt1 _ 52) + bu(2m+1t1 — t2)/“‘6t/1‘7t58wug
H6,--s L9
o2V j1o 2 (3.15)

27n73

m— m—& t
422" 72 5*1<2mt1+52) w.

Here, we abbreviate by = (us, . - ., tt9), and the coefficients b,, are again rational
numbers.

Step 2: In (3.15) we separate the terms with an even power of w from those
with an odd power of w. This gives

m—2
t 2
(2mt1 a ;) * Z b (27 — )"t T th
K655 49
9 >22
19=0 (mod 2)
== D b2 — )T (3.16)
H6Ey-ees b9
He =2V g 22
po=1 (mod 2)
po=1
om=3

S A (th1 + %2) w.
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Step 8: Squaring (3.16), we obtain

t 2
(2mt1 - 52) + ( Z bu (27 — t2)”6tT7t58wM9>
H6s--s Ho
o >2
p9=0 (mod 2)
t2 27}’1,—2
+ 2(2mt1 — 5) S bu @y — ) Tt

H6 5.5 b9
o =2
19=0 (mod 2)

2
(X nen )

H6y--s 49
M6 22V g 22
no=1 (mod 2)
po=1
m—3
2m—2+1 om—3_1 tg +1 K6 7 1 1+
+2 t2 thl -+ 5 E b#<2m tl — tg) t17t28w o
K659
He 22V g 22
no=1 (mod 2)
Mo =1
27‘VL72
m—1 om-2_ to
+22" 42 2(2"%1 - 5) w?.

This identity can be summarized as follows.

m—

0= (2mt1 - tﬁ)

1
t2\"
5 + > cu<2mt1—§2) w2

SOV
1263 Vv
/u7>1 ~ (317)

et e to\2" 7
— 22 ltg *-2 <2mt1 + 3) ’LU2,

2
where v = (vg,...,19) and ¢, € Q.

Step 4: Multiplying (3.17) by 22""" and replacing w? by %(tg — 2t3)ts, the
right-hand side of (3.17) becomes the polynomial Tom+1 (1, ta,t3). Thus we obtain
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Qm—l

Tomi1(ty, ta,t3) = (2’”“151 t2)

m—1 t2 1
+ Y 2 (2"% —5) S (02— 2t) T ECE
Vo231 22
vr>1
27?’%7‘2 1
= (ty — 2t3)ts

_ 227n71+2m71t§m72_2 (2mt1 + tﬁ)
2 2 (3.18)

— m+1y !
={2 t1 —to

+ t3 Z dl/ (2m+1t1 _ t2)y6 (tg _ 2t3)y7t11/8ty9ﬁy10

Vg,--- V10
v 22Vri02>1

l/7>1

27n—2

m m— t
e A 2t3)(2mt1 + 52) ts,

where v = (vg,...,v10), and d, € Q. Hence, (3.18) corresponds to (3.12) with m
replaced by m + 1. This proves (3.12). |

4. Proof of Theorem 1.1

By Res; (f(t),9(t)) we denote the resultant of two polynomials f(t), g(t) with re-
spect to the variable ¢t. It is consistent with the notation of theta-constants to
write ¥3(q) and 93(7) instead of 6(q) and 6(7), respectively.

We divide the proof of Theorem 1.1 into several steps. The first step is an interim
result given by the following theorem.

Theorem 4.1. Let n be either an odd integer > 3 orn = 2™ with m > 1. Let q
be an algebraic number with ¢ = ™7 and (1) > 0. If the polynomial
0]
X,Y))
oy Dn(X.Y)

does not vanish identically, then the numbers ¥3(nt) and 93(7) are algebraically
independent over Q.

Resx (P (X,Y),

Proof. For any given odd integer n > 3 let

194(nT) 194(7')
Xo:=n?-3 Y =162
T IR T}
z1 = (), zo = 03(7),

y1 = U3(n7), Y2 1= xo = U3(7).

We know by Theorem A that P, (Xg,Ys) = 0, and by Lemma 2.2 and the conditions
of Theorem 4.1 that x; and x5 are algebraically independent over Q. Let

N M

V) =Y a,,X"Y", (4.1)

v=0 pu=0
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where a,,, are the integer coefficients of the polynomial P,. Consider the polyno-
mials

2,4 4
n°u; 16t
fi:= fi(ty, ta,ur,ue) t= téMuéNPn<Tla 71>

uj o3
_Zza AM, 4N(” u1) (16t4>u
v, puv2 u4 t4
v= Op, 0 2 2
_ Z Z 16“7121} 4ltt4(M w) 41/ 4(N v)

v=0 pu=0

foi= falty, ta, g, ug) 1= ug — to.

Note that f;(x1,22,91,y2) = 0 for j = 1,2. To prove the algebraic independence
of y; and yo using the AIC (Lemma 2.1) we have to show that the determinant

on oh

Ot1  Otg
A = det

on of

Ot1  Otg

does not vanish at (21, z2,y1,y2). Since
Ofs

of2 _
aitl =0 and 87152 = 17

the condition A # 0 is equivalent with the nonvanishing of the number

oh O (1 w2, 01, 12) = Af1(tr, b2, ur, u2)
at L2 I J2 8t1 (t1:xl,t2:m2,u1:y17u2:y2).
We have
of N M
! 4(M— 4(N—
oty ——(x1,T2,91,Y2) = ZZlG“nQVa,,HALMx‘W 1 2( ) 4Vy( )
v=0p=1
v 4\ #—1 3
= a3 NZZ%M( 1) u( zj) (64 )
v=0 p=1 2 5
OP, (n*y} 16z
= 64 4M 4, AN n 1 1 .
1‘1 Yo Y yg ) IE%

Since both, z1 and z2(= y2) do not vanish, it is clear that

0
i(xl,l’z;ylayQ) #0 <+

oP, (n%*y{ 16}
A#0 a0, 57 ( , ) #0. (4.2)

92 372
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By the hypothesis of Theorem 4.1 the polynomial

0

R= ResX( V(X Y), o

—Pa(X,Y)) € Z[Y]
does not vanish identically. For Y = Yy = 16x}/23 we have R € Q(z1,72), so
that the algebraic independence of x1, x5 proves R # 0. In particular, P,(X,Y)

and 8YP (X,Y) as polynomials in X have no common root for fixed Y = Yy =
1621 /23. Since P,(X,Y) vanishes at (Xo,Yy) = (n?yi/y3,1621/23), it follows

that
oP, n2y‘117 16;101 20
oY Yy T3

Thus, Theorem 4.1 for odd integers n > 3 follows from (4.2) and the AIC
(Lemma 2.1).
In the case n = 2™ (m > 1) we introduce the quantities

<

93 (nT)

Xp = , Yy 1= — T);
CTB) " da(n)

T = ’194(7'), To = 193(7'),

y1 := V3(nT), Yo = xo = U3(7).

Here, we have P, (Xy,Yp) = 0 by Lemma 3.1, and

2 N M
up b M— 2(N—
ity ta, s uz) 2= 5" 3N P, (%g) SO ay it N,
v=0 pu=0

M-1 2N6P ( 951)
312 X2

%(m T2,Y1,Y2) =Ty Y
atl 1,42, Y1, Y2 2 2 aY
fa(t,to, ur, uz) 1= ug — to.

Then,

apn y% x1
AA0 = (Ty(y*g’g)?éo'

Using similar arguments as above by considering the particular point (Xo, Yy) =
(y3/y3,x1/x2), the algebraic independence of ¥5(¢™) and ¥3(q) for n = 2™ can be
derived from the AIC. ]

First, using Theorem 4.1 we prove the algebraic independence of 9J3(g) and
93(q™) for n = 2,3,4,5,7,8,9,11 by computing the resultant of the polynomials
P,(X,Y) and OP,(X,Y)/0Y. We have to show that these resultants do not
vanish identically. So, it suffices to compute the values of the resultants at the
point Y =0 for n = 3,4,5,7,8,11 and at the point Y = 2 for n = 2,9. Note that
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Resx (Pu(X,Y), 22250 vanishes at Y = 0 for n = 2,9.

Resy (PQ(X,Q) %1;2 (X, 2)) _92,

Resx (Pg(X 0), %1;3 (X, 0)) — 91632,

Resx (P4(X 0), ‘fo (X, 0)) )

Resx (P5(X 0), %1;5 (X, 0)) — 960 . 310 52

Resx <P7(X 0), %1;7 (X, 0)) 142 gi4 72

Resx (Pg(X 0), ?;;8 (X, 0)) — 912,

Resx (Pg(X 2), ?;;9 (X, 2)) 9132 396 . 72 3721932 . 53872

X 36838321932 - 946863533232,

RBSX (Pu(X, 0) aY

Ty, O)) — 9336 322 £22 {2
Next we prove the algebraic independence of the numbers in each of the sets
{93(67),95(7)} and {93(107),93(7)}.

We shall not treat these two problems by the method shown before, but again
the AIC will play an important role. We first consider the numbers J5(67) and
¥3(7). Given any odd integer n > 3 one can deduce the algebraic independence of
93(2n7) and Y3(7) as follows. First we replace 7 by 27 in Theorem A. Then,

holds for

93(2nT) 953(27)
Yy =1 .
03(27) and 0:=105157

Next we express 95(27) and 93(27) in terms of ¥J3(7) and 94(7):

XO = n2

732r) = 3 (93() — 93,
942r) = 1 (93(r) + #()°.
Hence (4.3) holds for
An?94(2n) 16(33(r) — 93(7))”

Xo =

(93() + 93(7))’ " W%>+ﬂ%>f’
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Setting

x1 = U5(7), Xg = 4(7),
y1 := V3(2nT), yo = a1 = V3(7),

we know that (4.3) holds for
2
T IR e

o . (4.4)
(¥3 +23)? (23 +23)°

Beside (4.3) we have the identity yo — 1 = 0, and the numbers x1, x5 are known
to be algebraically independent over Q for any algebraic number g = ™" with
(1) > 0 by Lemma 2.2. Using

N M
Po(X,Y) =3 a,, XY,
v=1 pu=1

we now introduce the polynomials

An2u4 16(42 — 2 2
(t§+t§)2MPn< T 1606 — 1) ) (4.5)

2N
3 2
(3 +u3)”  (t +13)

fl(t17t27u17u2) = (tg + U%

fa(ta, to, ur, ua) := us — 1.

Using the AIC we have to show the nonvanishing of

ot oh
ot ot

Amaer| |08
of, 0f 2
8751 8t2

at (z1,x2,y1,y2). From now on we restrict the investigation to particular cases.

First, let n = 3. For P3(X,Y) we have N = 4 and M = 2 (cf. Appendix). We

now compute A = g—{;(xhxg,yl,yg), where f; is as in (4.5). Setting y2 = x1, we

get

A = 29 (23 + 22)° (344022y¢ 210 + 7536y w022 — 1993625y S
+ 3456025yS 22 — 103445y 2 — 186624ay1 223 + 920z y a5
+ 51840z 7y 25 + 3456027yS S + 8640yT s — 9331227y ? + 2102525
+ 16828210 + 84xtwl? + 16821025 + 84x122] + 2422 + 744212y}
+ 24272yt — 93312y1 x5 + 323° + 186624y, ® + 86402y} + 321° — 280y z3?).

To prove that A # 0 it suffices to consider the polynomial within the second
parentheses, since 72z (z3+ x%)g does not vanish by the algebraic independence



Algebraic independence results for values of theta-constants 23

of 1 and zs:
hy (w1, 2, y1) := 344023y 270 + 7536y v3°2T — 1993625y 2§
+ 345602 5y5 22 — 103442y las — 18662422y %23 + 92027y ah
+ 51840z 7y 25 + 34560z7y5 25 + 8640yF x5 — 9331221y 2
+ 2102825 + 16828230 + 84x7x3? + 1682125 + 84x1%x)
+ 242422 + 744212yt 4 242221 — 93312y 1228 + 3216
+ 186624y + 864025 yY + 321° — 280y 32

Let us assume that A = 0, hence hq(z1,22,41) = 0. From (4.5) we have
(22 + 22)° VM) py (X, Vo) = 0. Using ys = @1, it follows that

4
0 =9(x2 + 22) (=28 + 80y a2 ay — T2yia] — 4xal + 432y% — 28
— 6ryr] — 144yioies + 80z yias — dvSe? — T2ytas — 16yfad
— 1628y?)(—a5 — 80y?alay — T2yix] — dadal + 432y% — 2f — 6a32]
— 144yi2?x3 — 80z yias — 4alSat — T2yi w3 + 16yias + 1625y?).
The algebraic independence of 21,29 over Q shows that 9(z3 + x%)4 # 0, hence
the number

ha (w1, w2,y1) = (=5 + 80yfaiz; — 72y a1 — dada] + 4327 — af — 6aga)

— 144yfa?as + 80z yied — 4aSa? — T2yiay — 169725 — 1625y3)

x (=28 — 80y2alxs — T2ytat — 42228 + 4328 — 28 — 6t

— 144yta?as — 80z yied — daSa? — T2yixy + 16y72S + 1628y3)
vanishes. By the assumption h;y = 0 it follows that Res,, (hl(xl, 2, Y1),
hg(l‘l, o, yl)) = 0. We obtain

0 = 224037221608 (827 + 292222 4 2723)* (0 — 21) % (21 + 20) "2

X (x5 — 2w122 — 1) (23 + 22122 — 1) (23 + 7)™,

a contradiction to the algebraic independence of z1,25 over Q. Thus the AIC
proves the algebraic independence of J3(67) and J3(7) over Q.

Next, let n = 5. With N = 6, M = 4, and the polynomial P5(X,Y) listed in
the appendix, an analogous computation finally gives the identity
0 = 25925200,:32,:8(128212 — 8162523 4 6032525 + 57752725 + 756923 2:1°

+ 312525%)* (24323 — 358023222 — 31503427220 + 178025238 + 104009325 23°

+ 77492021%23* — 2001516212232 4 77492021230 + 104009321525

+ 178021325 — 315034225 — 358023223 + 24323M)8 (2% — 2129 — 23)*°

X (mf + 2x1x0 — x%)lﬁ(xl — x2)20(m1 + x2)20(x% + mg)%.
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The contradiction proves the algebraic independence of ¥3(107) and J3(7) over Q.
For the proof of the algebraic independence of ¥3(127) and ¥3(7) over Q we have to
modify the above formulae. From the double-argument formulae (3.1) we obtain

1

U5(47) = E(ﬂs - 194)4,
1

P3(4r) = £ (05 +d4)",

In Theorem A we replace 7 by 47 such that (4.3) holds with

n*93(4nt) 1607yt
05(47) (y2 + 22)"
1604(47)  16(zy — x2)"
Yo=—3 = 1
U3(47) (z1 + x9)

Xo =

where y; = 93(4n7). Finally, we replace (4.5) by

16n%u?  16(t; — t2)4)

4N aM
filty, te, ur, u2) = (t2 + us t1 +to Pn( )
( ) ) (ta +uz)*" (t1 + to)*

Setting n = 3, N =4, M = 2, and following the above lines of computations, we
deduce the following identity:
0 = 2576372288 (2} — 12032y — 122023 + 25 + 6:10%%%)16

x (3x7 + 16z7zs + 302323 + 327125 + 27x3)4(x1 — 29) (21 + 22) "

Here the contradiction proves the algebraic independence of J5(127) and ¥3(7)
over Q.
Finally, for Theorem 1.1 it remains to prove the algebraic independence of

93(¢>") and 93(q) over Q for any m > 3. Let n = 2™. By Theorem 4.1 it suffices
to show that the polynomial

Res (Pa(X,Y), a%Pn(X, Y)) eZ[Y]

does not vanish identically. We know from (3.9) in Lemma 3.2 that

m—

Po(X,Y)=To(X,(1+Y)%Y) = (nX — (1 + Y)2)2 : FYUL(X, (1+Y)Y).

Hence we obtain

2711,—2

Po(X,0) =T,(X,1,0) = (2"X — 1) , (4.6)

%i;(x, 0)=-2""1(2"X —1)

217172_1

+ Un(X,1,0). (4.7)
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On the one hand the polynomial P,(X,0) in (4.6) has a 2™~2-fold root X, at
Xo =1/2™. On the other hand we know by (4.7) and (3.10) in Lemma 3.2 that

oP, 1 Cgmeig
aT(XmO)*Un(ﬁalvO) = -2 #0

This shows that for Y = 0 the polynomials P,(X,Y) and 0P,(X,Y)/0Y have
no common root. Therefore, the resultant of both polynomials with respect to X
does not vanish identically. This completes the proof of Theorem 1.1. |

5. Appendix

The polynomials P3, Ps, P;, Py, and P listed below were derived from the proof
of Theorem 1.1 in [8].

Py=9—(28—16Y + Y3 X +30X2 — 12X3 + X4,

Ps =25 — (126 — 832Y + 308Y2 — 32Y3 + Y1) X + (255 4 1920Y — 120Y?) X2
+ (=260 + 320Y — 20Y?) X3 + 135X — 30X° + X6

P; =49 — (344 — 17568Y + 20554Y2 — 6528Y 3 + 844Y* — 48Y5 + Y6)X
+ (1036 + 156800Y + 88760Y % — 12320Y® + 385Y*) X2
— (1736 — 185024Y + 18732Y? — 896V 4 28Y*) X3
+ (1750 + 31360Y — 1960Y %) X* — (1064 — 2464Y + 154Y?) X°
+364X5 —56X7 4+ X8,

Py = 6561 — (60588 — 18652032Y + 56033208Y2 — 40036032Y 3 + 11743542Y*
— 1715904Y° + 1325165 — 5184Y 7 + 81Y®) X
+ (250146 + 427613184Y + 2083563072Y 2 + 86274432Y % — 57982860Y*
4 4249728Y° — 99288Y°® 4 576Y 7 — 9Y'®) X2
— (607420 — 1418904064Y + 2511615520Y2 — 353755456Y > + 19071754Y*
— 612736Y° + 13960Y° — 64Y7 + Y8) X3
+ (959535 + 856286208Y + 8468928Y 2 — 2145024Y 3 — 808488Y"*
+ 65664Y° — 1368Y %) X4
— (1028952 + 22899456Y + 1430352Y% — 505152Y > + 38826Y*
—1728Y° + 36Y %) X°
+ (757596 — 13138944Y + 4160448Y 2 — 417408Y> 4 13044Y*) X ©
— (378072 + 1138176Y + 16416Y? — 10944Y3 + 342Y*) X7
+ (122895 4 64512Y — 4032Y %) X® — (24060 — 11136Y + 696Y %) X
+ 2466 X1 — 108X + X112
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Py =121 — (1332 — 2214576Y + 15234219Y 2 — 21424896Y> + 11848792Y*

— 3309152Y° 4 522914Y6 — 48896Y7 + 2684Y® — 80Y? + Y1) X

+ (6666 + 111458688Y + 25328884242 4 2367855776Y > — 327773413y
— 99827207 4 3230480Y° — 16192077 4 2530Y%) X 2

— (20020 — 864654912Y + 12880909668 % — 5289254784Y 4- 744094076Y*
— 43914992Y° + 967461V °® — 2816Y " + 44Y®) X3

+ (40095 + 1748954240 — 175142088Y 2 + 372281536Y % — 68516998
+ 4266240Y° — 88880Y %) x4

— (56232 — 1061669664 + 132688050Y % — 10724736Y> + 715308Y*

— 28512Y° 4 594Y%) X5

+ (56364 + 211953280Y — 7454568Y 2 — 724064Y 3 + 22627Y*) X ©

— (40392 — 24140864Y + 2162116Y2 — 81664Y 3 + 2552Y ) X7

+ (20295 + 1448832Y — 90552Y %) X® — (6820 — 36784Y 4 2299Y %) X°

+ 1386 X1 — 132X 1! 4 X2,

The polynomials Py, Py, Pg, Pig, and P33 listed below were derived from the proof
of Lemma 3.1:

P,=2X-Y? -1,
Py =4X — (14Y)?,
Py =64X2 —16(1+Y)’X + (1 —Y)",

Pig = 65536 X% — 16384(1 + Y)*X® + 512(3Y* 4 4Y® + 18Y2 4 4Y + 3) X2

—64(1+Y) (Y +28Y2 +6Y2 +28Y + )X + (1 - V)5,

Pay = 210X% 931 4+ V)2 X7 + 252(7Y* + 20V + 42Y2 4 20Y + 7)X°©

—2B(14+Y)*(TY* +164Y° + 42Y2 4 164Y + 7)X°

+ 221(35Y8 + 552Y7 + 2260Y° + 3864Y° + 5010Y*

+ 3864Y° + 2260Y? + 552Y + 35) X4

— 2181+ V)*(TY® + 42477 4 7492Y° + 2968Y° + 150827

+2068Y 3 + 7492Y2 4 424Y + 7) X3

+212(7Y12 — 5924y 4 4174Y1° 4+ 33900Y° + 33161Y® + 36536Y "

+ 58436Y 5 + 36536Y° + 33161Y* + 339003 4 4174Y? — 5924Y + 7) X >
— B +Y)* (Y2 4660 +15170Y 0 4 68420Y " 4 121327Y®

+ 2125207 + 212380Y° + 212520Y° + 121327Y* + 68420

+15170Y2 + 660Y + 1)X + (1 — Y)'°.
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