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DIFFERENTIATION OF AN ADDITIVE INTERVAL MEASURE
WITH VALUES IN A CONJUGATE BANACH SPACE
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Abstract: We present a complete characterization of finitely additive interval measures with
values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand in-
tegrals. If the range space has the weak Radon-Nikodym property (WRNP), then we precisely
describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.
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1. Notations and preliminaries

Let [0,1] be the unit interval of the real line equipped with the usual topology
and the Lebesgue measure A. We denote by Z the family of all nontrivial closed
subintervals of [0, 1], by £ the family of all Lebesgue measurable subsets of [0, 1] and
by £ the family of all Lebesgue measurable subsets of [0, 1] of positive measure.

If E C L, then its Lebesgue measure is denoted by |E| or A(E). Throughout
X is a Banach space with its dual X*. The closed unit ball of X is denoted by
B(X). A mapping v: £ — X is said to be an X-valued measure if v is countably
additive in the norm topology of X. If u is a positive measure on £ or an X-valued
measure, then by p < A we mean that |E| = 0 implies u(E) = 0. We say then
that p is A-continuous. The variation of an X-valued measure v is denoted by |v/|.

7(X*, X) is the Mackey topology on X* and 7.(X*, X) is the topology of
uniform convergence on compact subsets of X. It is known (cf. [12]) that 7.(X*, X)
coincides on B(X*) with the weak*-topology o(X*, X).

A partition in [0,1] is a finite collection of pairs P = {(I1,t1),...,(Ip,tp)},
where I,. .., I, are non-overlapping subintervals of [0,1] and ¢; € I;, for all i < p.
Given a subset F of [0, 1], we say that the partition P is anchored on E if t; € E
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for each ¢ = 1,...,p. If UY_ I, = [0,1] we say that P is a partition of [0,1].
A gauge on E C [0,1] is a positive function on E. For a given gauge §, we say that
a partition {(I1,t1),...,(Ip,tp)} is 6-fineif I; C (t; —8(t;),t; +0(¢:)),i=1,...,p.

Given two real numbers a, b, we denote by the symbol < a,b > the interval
[min{a, b}, max{a, b}].

Definition 1.1. A function f: [0,1] — R is said to be Henstock-Kurzweil inte-
grable, or simply H K-integrable, on [0, 1] if there exists w € R with the following
property: for every e > 0 there exists a gauge ¢ on [0, 1] such that

p

> )L —w

i=1

<e,

for each d-fine partition P = {(I1,t1),..., (L, tp)} of [0,1].

We set (HK) fol fdx := w. By HK]J0,1] is denoted the set of all HK-integrable
functions f: [0,1] — R.

It is well known that if f € HK]0,1] then f is HK-integrable on each I € 7.
We call the additive interval function F(I) := (HK) [, fdX the HK -primitive of f.

Definition 1.2. A function f: [0,1] — X is said to be scalarly Henstock-Kurzweil
integrable if, for each x* € X*, the function z*f is Henstock-Kurzweil inte-
grable. A scalarly Henstock-Kurzweil integrable function f is said to be Henstock-
Kurzweil-Pettis integrable (or simply HKP-integrable) if for each I € T there exists
wy € X such that

(x*,wr)y = /(x*,f(t))dt, for every z* € X*.
I

We call wy the Henstock-Kurzweil-Pettis integral of f over I and we write
(HKP) [ f(t) dt :== wy.

We denote by HKP([0,1], X) the set of all X-valued Henstock-Kurzweil-Pettis
integrable functions on [0, 1] (functions that are scalarly equivalent are identified).

Definition 1.3. A function f: [0,1] — X* is said to be w*-scalarly Henstock-
Kurzweil integrable if, for each x € X, the function zf is Henstock-Kurzweil
integrable. A w*-scalarly Henstock-Kurzweil integrable function f: [0,1] — X* is
said to be Henstock-Kurzweil-Gelfand integrable (or simply HKG-integrable) if, for
each interval I € Z, there exists a vector U(I) € X* such that for every z € X

(. W(I)) = (HEK) / (. £(8)) dt

We call U(I) the Henstock-Kurzweil-Gelfand integral of f over I and we write
(HKG) [, f(t)dt := W(I). ¥ is called the HKG-primitive of f.
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Following the proof of [9, Theorem 3] (with suitable changes), it is easy to see
that a function f: [0,1] — X* is HKG-integrable if and only if f is w*-scalarly
Henstock-Kurzweil integrable.

Throughout, we identify a function ¥ : [0,1] — X (resp. ¥ : [0,1] — X*)
with the additive interval function ¥ : Z — X (resp. ¥ : Z — X*) defined by
U(I) = ¥(b) — V(a), if I = [a,b]. And conversely, with each ¥ : T — X, (resp.
U : 7 — X*) we associate ¥ : [0,1] — X (resp. ¥ : [0,1] — X™) by setting
U(t) = ¥([0,1)]).

Definition 1.4. A function f: [0,1] — X is said to be scalarly measurable
(scalarly integrable) if, for each z* € X* the function z*f is Lebesgue mea-
surable (integrable). A scalarly integrable function f: [0,1] — X is said to be
Pettis integrable if, for each set A € L there exists a vector vy(A) € X such that
for every z* € X*

(2, v (A)) = /A (2, (1)) dt.

We call vg(A) the Pettis integral of f over A and we write (P) [, f(t)dt := vs(A).
It is known (see [15]) that vy : £ — X is a measure of o-finite variation.

Definition 1.5. A function f: [0,1] — X* is said to be w*-scalarly measurable
(resp. w*-scalarly integrable) if, for each x € X, the function zf is Lebesgue
measurable (resp. integrable). It is well known that each w*-scalarly integrable
function f: [0,1] — X* is Gelfand integrable, that is, for each set A € L, there
exists a vector v(A) € X* such that

(2, v(A)) = /A (. f(£)) dt

for every z € X.
We call the set function v: £ — X* the Gelfand integral of f on [0, 1] and we
write (G) [, f(t) dt :== v(A).

Definition 1.6. A function f: [0,1] — X* is said to be weak*-scalarly bounded
on B if

M >0Vx € B(X) [z, f)| <M a.e. on E.

A function f:[0,1] — X is said to be scalarly bounded on E, if it is weak*-
scalarly bounded, when considered as an X **-valued function.

Definition 1.7. Let @ : [0,1] — X be a function. If there is a function @j, :
[0,1] — X such that for each z* € X*

.o (P<t,t+h>)
lim
h—0 ||

= 2" (1),

for almost all t € [0, 1] (the exceptional sets depend on z*), then @ is said to be
pseudo-differentiable on [0,1], with pseudo-derivative @), (see [16], p. 300).
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Let @ :[0,1] — X* be a function. If there is a function @}, : [0,1] — X* such
that for each z € X

. x(@<tt+h>)

for almost all ¢ € [0,1] (the exceptional sets depend on x), then & is said to be
w*-pseudo-differentiable on [0, 1], with w*-pseudo-derivative &j,.

2. Variational measures

Definition 2.1. Given an additive interval function ¢: 7 — X, a gauge ¢ and
a set E C [0,1] we define

p .
_ o)) {Uit) s i=1,...,p} d—fine
Var(®, 0, E) = sup { partition anchored on E

if £ # 0 and Var(®,6,0) = 0. Then we set
Vg (F) = inf{Var(®,0, F) : § is a gauge on E}

if £+ 0 and Vg(0) = 0.

We call Vg the variational measure generated by ®. Vg is known to be a metric
outer measure in [0,1] (see [17]). In particular, Vg restricted to Borel subsets of
[0,1] is a measure. We say that Vg is absolutely continuous with respect to A (we
write then Vg < A), if A(F) = 0 yields Vg(E) = 0, for all E € L. Notice that if
Ve < A, then given ¢ > 0 and ) # E € £ with |E| = 0, there exists a gauge ¢
such that Var(®,¢', F) < ¢, for every §' <.

If & is continuous, then Vg (I) < |@|(I) for every I € Z, where

P
|®|(I) = sup {Z |®(1;)| : I; are non-overlapping subintervals of I} .
i=1

We would like to remark that if ® is discontinuous the inequality Vg (1) < |@|(I)
may fail. As an example consider @ on [0, 1] defined in the following way: &(¢

1>|2|([1/2,1]) =0.

Moreover we say that a variational measure Vg is o-finite if there is a sequence
of (pairwise disjoint) sets F;, covering [0, 1] and such that Va(F,) < oo, for every
n € N.

By a result of Thomson (see [17, Theorem 3.15]) it follows that the sets F,, in
the previous definition can be taken from L.

We recall that a function @ : [0,1] — X is said to be BV, on a set E C [0,1] if
sup Y. w(P(J;)) < +00, where the supremum is taken over all finite collections

J1, ...y Jn } of non overlapping intervals in Z with end-points in E, and the symbol
w(@(J)) stands for sup{||@(u) — ®(2)| : u, z € J}. The function & is said to be
BVG, on [0,1] if [0,1] = {,, £ and @ is BV, on each E,,.
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In the following we will use the following results proved in [2].

Proposition 2.2. Let ®: T — X be an additive interval function.

1. If Vg < A, then @ is continuous on [0,1] and Vg is o-finite.
2. Vg is o-finite if and only if & is BVG, on [0, 1].

In case of a separable Banach space X and ® being an HKP-integral we are
able to describe the variational measure Vg more precisely. Our result generalizes
a well known fact for real valued functions.

Proposition 2.3. Assume that X is a separable Banach space, ® : T — X is
additive and

(1) = (HKP)/[f(t)dt.
If Vg < A, then

Vqs(E):/ [l f]ldt, for every E € L.
B

Proof. By Proposition 2.2, Vg is o-finite and so @ is a BV G* function. Moreover,
by [13, Theorem 9], for each measurable set E, we have

Va(E) = [ [Dle(t)
E
where the symbol |D|®(t) denotes the upper absolute derivative of @ in ¢, that is

— P <t,t+h
|D|®(t) = lim sup [@<ttth> ||
h—0 |h‘

Let us observe that since @ is the HKP-primitive of f, then f is a pseudo-derivative
of &. Now, since X is separable, then by a result in an unpublished paper of
Gordon [11] (see also [13]), @ is differentiable a.e. on [0,1] with derivative f. So
|D|®(t) = ||f|| a.e. on [0,1] and this completes the proof. |

Question 2.4. Do we have always Vo (E) = [ ||f(t)| dt or Va(E) < [, | f]l dA,
for every E € L, if the function || f|| is measurable?

Besides the above variational measure we define the following two outer mea-
sures, introduced for technical reasons only:

W (E)= sup Vpo(E), if :7 - X
z*€B(X*)

and

Wi(E) = sup Vis(E), if ¢:7 — X*.
r€B(X)
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In general, the two outer measures are not metric and not all Borel subsets of
[0,1] are measurable with respect to them.

Let us observe that if & : 7 — X* is an additive interval function, then by the
definitions of variational measures, we have:

Wa(E) < Wi (E) < Va(E) (1)

for every E C [0,1]. In fact, for every I € Z, 2™ € B(X**) and « € B
we have: |z**@(I)| < ||@(])|| and |z®(I)| < ||P(I)|]. So Vie(E) < Va(E),
Vze(E) < Vg(E) and inequalities (1) follow.

Definition 2.5. Let V be one of the above introduced outer measures and let

AV = {% : |[E| > 0} be the average range of V. We say that AV is locally
bounded if there are sets F,, € L such that || J,, En| =1 and V(E,NE) < n|E,NE]|,

for every n € Nand F € L.
Proposition 2.6. Let &: 7 — X. If Vg < A, then AV is locally bounded.

Proof. By Proposition 2.2 we have that Vg is o-finite. Since V3| is a measure,
applying the Radon-Nikodym Theorem, we conclude that AVg is locally bounded.
[ ]

Remark 2.7. Assume that
(1) = (HKP)/f(t)dt.
I

In general Vg is neither o-finite nor absolutely continuous. In fact, if Vg is o-finite,
then by Proposition 2.2, @ is a BV G, function. So, if X has the RNP, then @ is
a.e. differentiable (see [1, Theorem 3.6]). But by a result in [5] we know that in
each infinite dimensional Banach space (in particular in a conjugate space with the
RNP) there exist strongly measurable Pettis (and then Henstok-Kurzweil-Pettis)
integrable functions whose Pettis integrals are nowhere differentiable. Each such
a function is HKP-integrable and induces a non-o-finite variational measure V.

In the general case the following characterization holds.

Proposition 2.8. A function @ : [0,1] — X is an HKP-primitive (of a function f)
if and only if Wg < X and @ is pseudo-differentiable (with pseudo-derivative f).

Proof. The proof follows at once from the characterization of the primitives of

real valued HK-integrable functions (see [3]). |

3. Henstock-Kurzweil-Gelfand integral

The following result gives a full description of X *-valued additive interval measures
that can be represented as an HKG-integral.

Theorem 3.1. An additive function ® : T — X* is an HKG-primitive if and
only if Wi < X and AW is locally bounded.
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Proof. Assume first that f: [0,1] — X™* is HKG-integrable and let ¢(I) =
(HKQG) [, f(t)dt, for every I € I. Since zf € HK|0,1] for every z € X, we
have V,¢ < A, and so also W3 < X. Moreover, according [14, Corollary 3.1] there
are pairwise disjoint sets E,, € £ such that |J,, F,, = [0,1] and |zfxg,| < n a.e.,
for each x € B(X) (the exceptional sets depend on z). It follows that every fxg,
is Gelfand integrable.

According to [4] and [6] we have also

Vm(EnEn):/ ()] dt < n|E N Ey||]

ENE,

for every E € £ and n € N. Hence W3 (E N E,) < n|EN E,| and consequently
AW is locally bounded.

Assume now that W3 <« A and AW} is locally bounded. Then V,¢ < A for
every z € X. According to [3], for every x € B(X), let f, € HK]J0,1] be such that

(x,d(1)) = (HK)/Ifz(t) dt for every I € 7.

Let p be a lifting on Ly[0,1]. Since AW} is locally bounded, there are pairwise
disjoint sets E,, = p(E,) € L such that || J,, En| =1 and

W3(E, N E) < n|E,NE|, for every n €N and E € L. (2)

According to [4] and [6], then
Vio(E) = / fu()|dt  forevery E€ L and € X. 3)
E

In particular (3) holds true for measurable E C E,,. It follows from (2) and (3)
that for every n € N and « € B(X) we have |f.|xg, < nxg,, a.e. In particular

(o)l (O)xE, (8) = p(|f[)(O)xE, (t) <n for every t € [0,1] ;2 € B(X) and n € N.

Define now a function f : [0,1] — X* by setting for each z € X

p(fo)(O)xe, (t) if t € En

<x’f(t)>_{o it t¢U, E

For each ¢t € E, the function x — (z, f(t)) is linear and |(z, f(¢))| < n|lz|. If
t ¢, En, then f(t) = 0. It follows that f(t) € X*, for every t.
Since (z, f) =" f, € HK|0, 1], we get the representation

(z,@(I)) = (HK) /I<:v,f(t)> dt for every I €Z. (4)

of @ as an HKG-integral of f. |
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It follows from the construction of f that it is w*-scalarly bounded, hence
Gelfand integrable on every F,. It is a consequence of lifting measurability prop-
erties that || f|| is measurable on every E,, and so on [0, 1].

If X* has the WRNP, then according to [14, Proposition 12.3] and [14, Corol-
lary 3.1.], f is Pettis integrable and scalarly bounded on each E,. Thus, we can
formulate the following consequence of the proof of Theorem 3.1:

Corollary 3.2. Assume that @ : T — X* is an HKG-primitive. Then there exists
a function f :[0,1] — X* such that f is a weak*-pseudo-derivative of & and there
exists a sequence of pairwise disjoint sets E,, € L such that |J,, E,, = [0,1], f is
weak*-scalarly bounded and Gelfand integrable on every E,, n € N, AW3(E,) <
oo and || f]| is measurable.

If X* has the WRNP, then f and the sets E, n € N can be taken in such a way
that f is Pettis integrable and scalarly bounded on each E,, .

If Vo <« A, then by Proposition 2.6, AVs is locally bounded. Consequently,
in view of (1), AW} is locally bounded. Thus, the following result is a direct
consequence of Theorem 3.1.

Proposition 3.3. Let ¢ : T — X* be additive and such that Vg < X\. Then @ is
an H KG-primitive.

4. Henstock-Kurzweil-Pettis integral

We begin with the following characterization of Pettis integrability that holds true
in case of an arbitrary perfect measure in place of the Lebesgue one.

Proposition 4.1. For a scalarly integrable function f : [0,1] — X the following
conditions are equivalent:
(i) f is Pettis integrable;
(ii) the mapping X* > * — a* f € L1]0,1] is 7.(X™*, X)-norm continuous;
(iii) the mapping X* 3 x* — a*f € L1]0,1] is 7(X*, X)-norm continuous.

Proof. (i) = (ii) Since f is Pettis integrable, the functional 2* — [, (z*, f(t)) dt
is, for each E € L, weak*-continuous (cf. [14]). Due to Stegall’s result [8], the

. . . (X", X
set v¢(L) is norm relatively compact. Hence, if z, (XX x4, then xf, — xf

uniformly on v¢(L). It follows that lim, [, |27 f(t) — 2 f(1)| dt = 0.
(i) = (i7) The proof is almost the same.

(i) = (i) T an "2 @, then [ (a%, F(£))dt —> [ (x}, F(1)) dt for each

E € L. Thus, the functional 2* — [, (z*, f(t)) dt is, for each E € L, weak*-

continuous. Consequently, f is Pettis integrable (see [14]).

(73) = (i) The proof is the same, but now we assume that B(X™*) > z}, 7K

x5 We obtain now the weak* continuity of the functionals z* — [ (z*, f(t)) dt
on B(X™*), but due to the Banach-Dieudonné Theorem (see [12, p. 154]) this yields
its weak® continuity. Consequently, f is Pettis integrable (see [14]). |
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In order to obtain a complete characterization of the HKP-primitive of func-
tions taking values in a dual space with the WRNP, we need some preliminary
results.

Proposition 4.2. Assume that @ : T — X is of the form

@(I):(HKP)/If(t)dt, for each I €.

Then, for each I € I, the mapping x* — f1<w*,f(t)> dt is weak*-continuous.
Moreover, there exists a partition [0,1] = (J, Hy such that, for every k € N, f is
Pettis integrable and scalarly bounded on Hy, AWY (Hy) < oo and the functional
x* — Vg (Hy) is 7o(X*, X)-continuous.

Proof. The first continuity fact has been proven in [7]. Exactly as in the proof of
Theorem 3.1 one can obtain a sequence of pairwise disjoint sets E,, € L such that
AWF(E,) < oo, for each n € N. It follows also from [7, Corollary 1] that there
exists a decomposition [0,1] = |J, F} into sets of positive measure such that f is
Pettis integrable and scalarly bounded on each Fj. Denote by {Hj : k € N} the
collection of all intersections E, N F,, of positive measure. Then, by Proposition
4.1, for each k, the function z* — z* f| g, is 7.(X™*, X)-norm continuous as a map
from X* to Li(\|g,), because f is Pettis integrable on Hj. Consequently, if

xk (X0 xg, then according to [4] and [6] we have
i Vi ooy (Hi) = lim/ o £ (1) — i f (1)) dt = 0. n
« @ a S,

Lemma 4.3 (see [1, Lemma 3.3]). LetY be a Banach space and letv: L =Y
be a A-continuous measure of finite variation. If &: T — X is defined by ®(I) :=
v(I), for all I € I, then Vg is finite, Vo < X and Vu(E) < |v|(E), whenever
EelLl.

Theorem 4.4. Let X be a Banach space. Consider the following two properties
of an additive interval function ® : 7 — X:
(k) Wg < X and there exists a decomposition [0,1] = J, Hy of [0, 1] into sets
of positive measure such that for every k € N the function ©* — V+¢(Hy)
is T(X*, X)-continuous and AW (Hy) < oo.
(kk) There is an HKP-integrable function f :[0,1] — X such that

(", @(I)) = (HK)/I<x*,f(t)>dt for every I € T.

If (k) = (kk) for every additive ® : T — X, then X has the WRNP.

Proof. Let v : L — X be a A-continuous measure of finite variation. Define
&:7 = X by &(I) := v(I). Tt follows from Lemma 4.3 that Vg < A and Vg is
finite. So @ : 7 — X is an additive interval measure such that V,«g < A for every
x* € X*. Moreover, Vy«g(E) < |2*v|(E), for every E € L. Let (z}) C B(X*)
be a net of functionals that is 7(X™*, X)-convergent to 0. Since v(L) is a weakly
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relatively compact subset of X, the net (zv) is uniformly convergent to zero on
L. Hence, lim, |z},7|[0,1] = 0. By the inequality V,:¢(E) < |z},v|(E), for every
E € L, we have also lim, V;:¢[0, 1] = 0, what proves the weak*-continuity of the
map z* — V[0, 1].

We are going to prove yet the local boundedness of Wg'. To do it notice that
the classical Radon-Nikodym Theorem yields the existence of a decomposition
[0,1] = U, Hi such that |v|(E) < k|E|, for every measurable £ C Hy. It follows

that Vv 5 B
walB) _v(B) _,
|E| |E|

and hence AW} (Hy) < oc.
Thus, condition (k) is satisfied. Hence, there is a Henstock-Kurzweil-Pettis
integrable function f : [0,1] — X such that

(1) = (HKP)/If(t) dt, for every I €T.

Proceeding as in the proof of [2, Theorem 4.5 | we see that f is also Pettis integrable
and v is its indefinite Pettis integral. |

Proposition 4.5. Let X be an arbitrary Banach space and @ : T — X be an
additive interval function such that Wg < A. Assume that there is a decomposition
[0,1] = U, Hi into measurable sets of positive measure such that Vy-¢(Hy) < 0o
for every k € N and every x* € X* and, for every k € N, the function z* —
Vero (Hy) is sequentially weak™ -continuous.

If f:]0,1] = X is a scalarly measurable function, then the set

K = {x* € X*:2"f € HK[0,1] and z"®(I) = (HK)/(x*,f(t))dt, v IEI}

is sequentially weak*-closed.

If for every k € N, the function x* — Vyg(Hy) is 7(X*, X)-continuous and f
is Pettis integrable on Hy, then K is weak*-closed.
Proof. It is obvious that K # () and K is convex. Notice first that if z* € K,
then (z*®)" = z*f a.e. (see [10]). Let {z}} C K be such that 2 — ) in the
w*-topology. We may assume, without loss of generality, that all };, n =0,1,2, ...
belong to B(X*). By hypothesis Vase < A, and so there exists g € HK[0,1] such
that z{®(1) = (HK) [, g(t) dt, for all [ €7 (ct. [3]).

By the assumptlon and by [6, Corollary 3] we have, for each k € N,

hm/ |z f )|dt—hmV(x*,z so(Hy) = 0.

Hence, there is a subsequence {zj , },, of {z},} with lim,, 2}, f =g, a.e. on
Hy,. Tt follows that g = zff a.e. and so zjf € HK|[0,1]. Moreover

i [ (o £0)) 0t = (o, D) = (o (D) = [ i 10 .

I
This yields 2§ € K and so K is weak® sequentially closed.
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Assume now that f is Pettis integrable on every Hi. We are going to prove
that K is weak*-closed. We know that for each k € N the function * — z*g|#,

is 7(X*, X)-norm continuous as a map from X* to L;(\g,). Consequently, if

« T(XT,X)

*
x;, = x(, then

im [ LS (0) ~ s O]de =0

By hypothesis V;:¢ < A, and so there exists g € HK]I0,1] such that x5®(I) =
(HK) [, g(t)dt, for all I € T and so [6, Corollary 3] we have

lim/ |25 f(t) — g(t)| dt = 1lim V(s _pys(Hy) = 0.
e Hk (e} <
It follows that x§f = g € HK][0, 1]. Moreover

im [ (5 £(0)) i = (e #(0) = Gt #(D) = [ i 10

I

and so zj € K. Thus, K is 7(X*, X)-closed, and as it is convex, it is also weak*-
closed. |

Now we are ready to prove the main result of this section.

Theorem 4.6. Let X be a Banach space such that X* has the WRNP and let
@ : T — X* be an additive interval measure. Then the following two conditions
are equivalent:

(j) Wg < X and there exists a decomposition [0,1] = J, Hy of [0, 1] into sets of
positive measure such that for every k € N the function x** — Vg (Hy)
is weak* -continuous and AWg(Hy) < oo.

(ji) There is an HKP-integrable function f :[0,1] — X* such that

(z*,d(I)) = (HK) /I<x**,f(t)> dt for every I €T.

Moreover, f can be chosen in such a way that || f|| is a measurable function.

Proof. The implication (jj) = (j) is a particular case of Proposition 4.2. In order
to prove the implication (j) = (jj), we may apply Theorem 3.1 to conclude that
there exists a function f : [0,1] — X* that is HKG-integrable on [0, 1] and Pettis
integrable on each Hy, k € N. Proposition 4.5 yields the HKP-integrability of f
on [0, 1]. |

Remark 4.7. According to Remark 2.7 each strongly measurable Pettis integrable
(and hence also Henstok-Kurzweil-Pettis integrable) function with nowhere differ-
entiable Pettis integral satifies the conditions (j) and (jj) of Theorem 4.6 and has
non-o-finite variational measure V.
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