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DIFFERENTIATION OF AN ADDITIVE INTERVAL MEASURE
WITH VALUES IN A CONJUGATE BANACH SPACE

Benedetto Bongiorno, Luisa Di Piazza, Kazimierz Musiał

Dedicated to Lech Drewnowski on
the occasion of his 70th birthday

Abstract: We present a complete characterization of finitely additive interval measures with
values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand in-
tegrals. If the range space has the weak Radon-Nikodým property (WRNP), then we precisely
describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.
Keywords: Kurzweil–Henstock integral, Pettis integral, variational measure.

1. Notations and preliminaries

Let [0, 1] be the unit interval of the real line equipped with the usual topology
and the Lebesgue measure λ. We denote by I the family of all nontrivial closed
subintervals of [0, 1], by L the family of all Lebesgue measurable subsets of [0, 1] and
by L+ the family of all Lebesgue measurable subsets of [0, 1] of positive measure.

If E ⊂ L, then its Lebesgue measure is denoted by |E| or λ(E). Throughout
X is a Banach space with its dual X∗. The closed unit ball of X is denoted by
B(X). A mapping ν : L → X is said to be an X-valued measure if ν is countably
additive in the norm topology of X. If µ is a positive measure on L or an X-valued
measure, then by µ � λ we mean that |E| = 0 implies µ(E) = 0. We say then
that µ is λ-continuous. The variation of an X-valued measure ν is denoted by |ν|.

τ(X∗, X) is the Mackey topology on X∗ and τc(X
∗, X) is the topology of

uniform convergence on compact subsets ofX. It is known (cf. [12]) that τc(X∗, X)
coincides on B(X∗) with the weak∗-topology σ(X∗, X).

A partition in [0, 1] is a finite collection of pairs P = {(I1, t1), . . . , (Ip, tp)},
where I1, . . . , Ip are non-overlapping subintervals of [0, 1] and ti ∈ Ii, for all i 6 p.
Given a subset E of [0, 1], we say that the partition P is anchored on E if ti ∈ E
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for each i = 1, ..., p. If ∪pi=1Ii = [0, 1] we say that P is a partition of [0, 1].
A gauge on E ⊂ [0, 1] is a positive function on E. For a given gauge δ, we say that
a partition {(I1, t1), . . . , (Ip, tp)} is δ-fine if Ii ⊂ (ti− δ(ti), ti + δ(ti)), i = 1, . . . , p.

Given two real numbers a, b, we denote by the symbol < a, b > the interval
[min{a, b},max{a, b}].

Definition 1.1. A function f : [0, 1] → R is said to be Henstock-Kurzweil inte-
grable, or simply HK-integrable, on [0, 1] if there exists w ∈ R with the following
property: for every ε > 0 there exists a gauge δ on [0, 1] such that∣∣∣∣∣

p∑
i=1

f(ti)|Ii| − w

∣∣∣∣∣ < ε ,

for each δ-fine partition P = {(I1, t1), . . . , (Ip, tp)} of [0, 1].
We set (HK)

∫ 1

0
fdλ := w. By HK[0, 1] is denoted the set of all HK-integrable

functions f : [0, 1]→ R.

It is well known that if f ∈ HK[0, 1] then f is HK-integrable on each I ∈ I.
We call the additive interval function F (I) := (HK)

∫
I
fdλ the HK-primitive of f .

Definition 1.2. A function f : [0, 1]→ X is said to be scalarly Henstock-Kurzweil
integrable if, for each x∗ ∈ X∗, the function x∗f is Henstock-Kurzweil inte-
grable. A scalarly Henstock-Kurzweil integrable function f is said to be Henstock-
Kurzweil-Pettis integrable (or simply HKP -integrable) if for each I ∈ I there exists
wI ∈ X such that

〈x∗, wI〉 =

∫
I

〈x∗, f(t)〉 dt , for every x∗ ∈ X∗.

We call wI the Henstock-Kurzweil-Pettis integral of f over I and we write
(HKP )

∫ b
a
f(t) dt := wI .

We denote by HKP ([0, 1], X) the set of all X-valued Henstock-Kurzweil-Pettis
integrable functions on [0, 1] (functions that are scalarly equivalent are identified).

Definition 1.3. A function f : [0, 1] → X∗ is said to be w∗-scalarly Henstock-
Kurzweil integrable if, for each x ∈ X, the function xf is Henstock-Kurzweil
integrable. A w∗-scalarly Henstock-Kurzweil integrable function f : [0, 1]→ X∗ is
said to be Henstock-Kurzweil-Gelfand integrable (or simply HKG-integrable) if, for
each interval I ∈ I, there exists a vector Ψ(I) ∈ X∗ such that for every x ∈ X

〈x,Ψ(I)〉 = (HK)

∫
I

〈x, f(t)〉 dt .

We call Ψ(I) the Henstock-Kurzweil-Gelfand integral of f over I and we write
(HKG)

∫
I
f(t) dt := Ψ(I). Ψ is called the HKG-primitive of f .
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Following the proof of [9, Theorem 3] (with suitable changes), it is easy to see
that a function f : [0, 1] → X∗ is HKG-integrable if and only if f is w∗-scalarly
Henstock-Kurzweil integrable.

Throughout, we identify a function Ψ : [0, 1] → X (resp. Ψ : [0, 1] → X∗)
with the additive interval function Ψ : I → X (resp. Ψ : I → X∗) defined by
Ψ(I) = Ψ(b) − Ψ(a), if I = [a, b]. And conversely, with each Ψ : I → X, (resp.
Ψ : I → X∗) we associate Ψ : [0, 1] → X (resp. Ψ : [0, 1] → X∗) by setting
Ψ(t) = Ψ([0, t]).

Definition 1.4. A function f : [0, 1] → X is said to be scalarly measurable
(scalarly integrable) if, for each x∗ ∈ X∗, the function x∗f is Lebesgue mea-
surable (integrable). A scalarly integrable function f : [0, 1] → X is said to be
Pettis integrable if, for each set A ∈ L there exists a vector νf (A) ∈ X such that
for every x∗ ∈ X∗

〈x∗, νf (A)〉 =

∫
A

〈x∗, f(t)〉 dt .

We call νf (A) the Pettis integral of f over A and we write (P )
∫
A
f(t) dt := νf (A).

It is known (see [15]) that νf : L → X is a measure of σ-finite variation.

Definition 1.5. A function f : [0, 1] → X∗ is said to be w∗-scalarly measurable
(resp. w∗-scalarly integrable) if, for each x ∈ X, the function xf is Lebesgue
measurable (resp. integrable). It is well known that each w∗-scalarly integrable
function f : [0, 1] → X∗ is Gelfand integrable, that is, for each set A ∈ L, there
exists a vector ν(A) ∈ X∗ such that

〈x, ν(A)〉 =

∫
A

〈x, f(t)〉 dt ,

for every x ∈ X.
We call the set function ν : L → X∗ the Gelfand integral of f on [0, 1] and we

write (G)
∫
A
f(t) dt := ν(A).

Definition 1.6. A function f : [0, 1] → X∗ is said to be weak∗-scalarly bounded
on E if

∃M > 0 ∀x ∈ B(X) |〈x, f〉| 6M a.e. on E.

A function f : [0, 1] → X is said to be scalarly bounded on E, if it is weak∗-
scalarly bounded, when considered as an X∗∗-valued function.

Definition 1.7. Let Φ : [0, 1] → X be a function. If there is a function Φ′p :
[0, 1]→ X such that for each x∗ ∈ X∗

lim
h→0

x∗(Φ < t, t+ h >)

|h|
= x∗(Φ′p(t)) ,

for almost all t ∈ [0, 1] (the exceptional sets depend on x∗), then Φ is said to be
pseudo-differentiable on [0, 1], with pseudo-derivative Φ′p (see [16], p. 300).
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Let Φ : [0, 1]→ X∗ be a function. If there is a function Φ′p : [0, 1]→ X∗ such
that for each x ∈ X

lim
h→0

x(Φ < t, t+ h >)

|h|
= x(Φ′p(t)) ,

for almost all t ∈ [0, 1] (the exceptional sets depend on x), then Φ is said to be
w∗-pseudo-differentiable on [0, 1], with w∗-pseudo-derivative Φ′p.

2. Variational measures

Definition 2.1. Given an additive interval function Φ : I → X, a gauge δ and
a set E ⊂ [0, 1] we define

Var(Φ, δ, E) = sup

{∑p
i=1 ||Φ(Ii)|| : {(Ii, ti) : i = 1, ..., p} δ−fine

partition anchored on E

}
if E 6= ∅ and Var(Φ, δ, ∅) = 0. Then we set

VΦ(E) = inf{Var(Φ, δ, E) : δ is a gauge on E}

if E 6= ∅ and VΦ(∅) = 0.
We call VΦ the variational measure generated by Φ. VΦ is known to be a metric

outer measure in [0, 1] (see [17]). In particular, VΦ restricted to Borel subsets of
[0, 1] is a measure. We say that VΦ is absolutely continuous with respect to λ (we
write then VΦ � λ), if λ(E) = 0 yields VΦ(E) = 0, for all E ∈ L. Notice that if
VΦ � λ, then given ε > 0 and ∅ 6= E ∈ L with |E| = 0, there exists a gauge δ
such that V ar(Φ, δ′, E) < ε, for every δ′ 6 δ.

If Φ is continuous, then VΦ(I) 6 |Φ|(I) for every I ∈ I, where

|Φ|(I) = sup

{
p∑
i=1

||Φ(Ii)|| : Ii are non-overlapping subintervals of I

}
.

We would like to remark that if Φ is discontinuous the inequality VΦ(I) 6 |Φ|(I)
may fail. As an example consider Φ on [0, 1] defined in the following way: Φ(t) = 1
for t ∈ [0, 1/2), Φ(t) = 0 for t ∈ [1/2, 1]. Φ is not continuous, and VΦ([1/2, 1]) =
1 > |Φ|([1/2, 1]) = 0 .

Moreover we say that a variational measure VΦ is σ-finite if there is a sequence
of (pairwise disjoint) sets Fn covering [0, 1] and such that VΦ(Fn) <∞, for every
n ∈ N.

By a result of Thomson (see [17, Theorem 3.15]) it follows that the sets Fn in
the previous definition can be taken from L.

We recall that a function Φ : [0, 1]→ X is said to be BV∗ on a set E ⊆ [0, 1] if
sup

∑n
i=1 ω(Φ(Ji)) < +∞, where the supremum is taken over all finite collections

{J1, ..., Jn} of non overlapping intervals in I with end-points in E, and the symbol
ω(Φ(J)) stands for sup{‖Φ(u) − Φ(z)‖ : u, z ∈ J}. The function Φ is said to be
BV G∗ on [0, 1] if [0, 1] =

⋃
nEn and Φ is BV∗ on each En.
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In the following we will use the following results proved in [2].

Proposition 2.2. Let Φ : I → X be an additive interval function.

1. If VΦ � λ, then Φ is continuous on [0, 1] and VΦ is σ-finite.
2. VΦ is σ-finite if and only if Φ is BV G∗ on [0, 1].

In case of a separable Banach space X and Φ being an HKP-integral we are
able to describe the variational measure VΦ more precisely. Our result generalizes
a well known fact for real valued functions.

Proposition 2.3. Assume that X is a separable Banach space, Φ : I → X is
additive and

Φ(I) = (HKP )

∫
I

f(t) dt .

If VΦ � λ, then

VΦ(E) =

∫
E

||f || dt , for every E ∈ L.

Proof. By Proposition 2.2, VΦ is σ-finite and so Φ is a BV G∗ function. Moreover,
by [13, Theorem 9], for each measurable set E, we have

VΦ(E) =

∫
E

|D|Φ(t) dt

where the symbol |D|Φ(t) denotes the upper absolute derivative of Φ in t, that is

|D|Φ(t) = lim sup
h→0

||Φ < t, t+ h > ||
|h|

.

Let us observe that since Φ is the HKP-primitive of f , then f is a pseudo-derivative
of Φ. Now, since X is separable, then by a result in an unpublished paper of
Gordon [11] (see also [13]), Φ is differentiable a.e. on [0, 1] with derivative f . So
|D|Φ(t) = ||f || a.e. on [0, 1] and this completes the proof. �

Question 2.4. Do we have always VΦ(E) =
∫
E
‖f(t)‖ dt or VΦ(E) 6

∫
E
‖f‖ dλ,

for every E ∈ L, if the function ‖f‖ is measurable?

Besides the above variational measure we define the following two outer mea-
sures, introduced for technical reasons only:

Ww
Φ (E) = sup

x∗∈B(X∗)

Vx∗Φ(E), if Φ : I → X

and
W ∗Φ(E) = sup

x∈B(X)

VxΦ(E), if Φ : I → X∗.
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In general, the two outer measures are not metric and not all Borel subsets of
[0, 1] are measurable with respect to them.

Let us observe that if Φ : I → X∗ is an additive interval function, then by the
definitions of variational measures, we have:

W ∗Φ(E) 6Ww
Φ (E) 6 VΦ(E) (1)

for every E ⊂ [0, 1]. In fact, for every I ∈ I, x∗∗ ∈ B(X∗∗) and x ∈ B(X),
we have: |x∗∗Φ(I)| 6 ||Φ(I)|| and |xΦ(I)| 6 ||Φ(I)||. So Vx∗∗Φ(E) 6 VΦ(E),
VxΦ(E) 6 VΦ(E) and inequalities (1) follow.

Definition 2.5. Let V be one of the above introduced outer measures and let
AV := {V (E)

|E| : |E| > 0} be the average range of V. We say that AV is locally
bounded if there are sets En ∈ L such that |

⋃
nEn| = 1 and V (En∩E) 6 n|En∩E|,

for every n ∈ N and E ∈ L.

Proposition 2.6. Let Φ : I → X. If VΦ � λ, then AVΦ is locally bounded.

Proof. By Proposition 2.2 we have that VΦ is σ-finite. Since VΦ|L is a measure,
applying the Radon-Nikodým Theorem, we conclude that AVΦ is locally bounded.

�

Remark 2.7. Assume that

Φ(I) = (HKP )

∫
I

f(t) dt .

In general VΦ is neither σ-finite nor absolutely continuous. In fact, if VΦ is σ-finite,
then by Proposition 2.2, Φ is a BV G∗ function. So, if X has the RNP, then Φ is
a.e. differentiable (see [1, Theorem 3.6]). But by a result in [5] we know that in
each infinite dimensional Banach space (in particular in a conjugate space with the
RNP) there exist strongly measurable Pettis (and then Henstok-Kurzweil-Pettis)
integrable functions whose Pettis integrals are nowhere differentiable. Each such
a function is HKP-integrable and induces a non-σ-finite variational measure VΦ.

In the general case the following characterization holds.

Proposition 2.8. A function Φ : [0, 1]→ X is an HKP -primitive (of a function f)
if and only if Ww

Φ � λ and Φ is pseudo-differentiable (with pseudo-derivative f).

Proof. The proof follows at once from the characterization of the primitives of
real valued HK-integrable functions (see [3]). �

3. Henstock-Kurzweil-Gelfand integral

The following result gives a full description ofX∗-valued additive interval measures
that can be represented as an HKG-integral.

Theorem 3.1. An additive function Φ : I → X∗ is an HKG-primitive if and
only if W ∗Φ � λ and AW ∗Φ is locally bounded.
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Proof. Assume first that f : [0, 1] → X∗ is HKG-integrable and let Φ(I) =
(HKG)

∫
I
f(t) dt, for every I ∈ I. Since xf ∈ HK[0, 1] for every x ∈ X, we

have VxΦ � λ, and so also W ∗Φ � λ. Moreover, according [14, Corollary 3.1] there
are pairwise disjoint sets En ∈ L such that

⋃
nEn = [0, 1] and |xfχEn | 6 n a.e.,

for each x ∈ B(X) (the exceptional sets depend on x). It follows that every fχEn
is Gelfand integrable.

According to [4] and [6] we have also

VxΦ(E ∩ En) =

∫
E∩En

|xf(t)| dt 6 n|E ∩ En|‖x‖

for every E ∈ L and n ∈ N. Hence W ∗Φ(E ∩ En) 6 n|E ∩ En| and consequently
AW ∗Φ is locally bounded.

Assume now that W ∗Φ � λ and AW ∗Φ is locally bounded. Then VxΦ � λ for
every x ∈ X. According to [3], for every x ∈ B(X), let fx ∈ HK[0, 1] be such that

〈x, Φ(I)〉 = (HK)

∫
I

fx(t) dt for every I ∈ I .

Let ρ be a lifting on L∞[0, 1]. Since AW ∗Φ is locally bounded, there are pairwise
disjoint sets En = ρ(En) ∈ L such that |

⋃
nEn| = 1 and

W ∗Φ(En ∩ E) 6 n|En ∩ E|, for every n ∈ N and E ∈ L. (2)

According to [4] and [6], then

VxΦ(E) =

∫
E

|fx(t)| dt for every E ∈ L and x ∈ X. (3)

In particular (3) holds true for measurable E ⊆ En. It follows from (2) and (3)
that for every n ∈ N and x ∈ B(X) we have |fx|χEn 6 nχEn , a.e. In particular

|ρ(fx)|(t)χEn(t) = ρ(|fx|)(t)χEn(t) 6 n for every t ∈ [0, 1] , x ∈ B(X) and n ∈ N.

Define now a function f : [0, 1]→ X∗ by setting for each x ∈ X

〈x, f(t)〉 =

{
ρ(fx)(t)χEn(t) if t ∈ En
0 if t /∈

⋃
nEn

For each t ∈ En the function x −→ 〈x, f(t)〉 is linear and |〈x, f(t)〉| 6 n‖x‖. If
t /∈
⋃
nEn, then f(t) = 0. It follows that f(t) ∈ X∗, for every t.

Since 〈x, f〉 a.e.= fx ∈ HK[0, 1], we get the representation

〈x, Φ(I)〉 = (HK)

∫
I

〈x, f(t)〉 dt for every I ∈ I . (4)

of Φ as an HKG-integral of f . �
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It follows from the construction of f that it is w∗-scalarly bounded, hence
Gelfand integrable on every En. It is a consequence of lifting measurability prop-
erties that ‖f‖ is measurable on every En, and so on [0, 1].

If X∗ has the WRNP, then according to [14, Proposition 12.3] and [14, Corol-
lary 3.1.], f is Pettis integrable and scalarly bounded on each En. Thus, we can
formulate the following consequence of the proof of Theorem 3.1:

Corollary 3.2. Assume that Φ : I → X∗ is an HKG-primitive. Then there exists
a function f : [0, 1]→ X∗ such that f is a weak∗-pseudo-derivative of Φ and there
exists a sequence of pairwise disjoint sets En ∈ L such that

⋃
nEn = [0, 1], f is

weak∗-scalarly bounded and Gelfand integrable on every En, n ∈ N, AW ∗Φ(En) <
∞ and ‖f‖ is measurable.

If X∗ has the WRNP, then f and the sets En n ∈ N can be taken in such a way
that f is Pettis integrable and scalarly bounded on each En.

If VΦ � λ, then by Proposition 2.6, AVΦ is locally bounded. Consequently,
in view of (1), AW ∗Φ is locally bounded. Thus, the following result is a direct
consequence of Theorem 3.1.

Proposition 3.3. Let Φ : I → X∗ be additive and such that VΦ � λ. Then Φ is
an HKG-primitive.

4. Henstock-Kurzweil-Pettis integral

We begin with the following characterization of Pettis integrability that holds true
in case of an arbitrary perfect measure in place of the Lebesgue one.

Proposition 4.1. For a scalarly integrable function f : [0, 1] → X the following
conditions are equivalent:

(i) f is Pettis integrable;
(ii) the mapping X∗ 3 x∗ −→ x∗f ∈ L1[0, 1] is τc(X∗, X)-norm continuous;
(iii) the mapping X∗ 3 x∗ −→ x∗f ∈ L1[0, 1] is τ(X∗, X)-norm continuous.

Proof. (i)⇒ (ii) Since f is Pettis integrable, the functional x∗ −→
∫
E
〈x∗, f(t)〉 dt

is, for each E ∈ L, weak∗-continuous (cf. [14]). Due to Stegall’s result [8], the

set νf (L) is norm relatively compact. Hence, if x∗α
τc(X

∗,X)−→ x∗0, then x∗α −→ x∗0
uniformly on νf (L). It follows that limα

∫ 1

0
|x∗αf(t)− x∗0f(t)| dt = 0.

(i)⇒ (iii) The proof is almost the same.

(iii) ⇒ (i) If x∗α
τ(X∗,X)−→ x∗0, then

∫
E
〈x∗α, f(t)〉 dt −→

∫
E
〈x∗0, f(t)〉 dt for each

E ∈ L. Thus, the functional x∗ −→
∫
E
〈x∗, f(t)〉 dt is, for each E ∈ L, weak∗-

continuous. Consequently, f is Pettis integrable (see [14]).

(ii)⇒ (i) The proof is the same, but now we assume that B(X∗) 3 x∗α
σ(X∗,X)−→

x∗0. We obtain now the weak∗ continuity of the functionals x∗ −→
∫
E
〈x∗, f(t)〉 dt

on B(X∗), but due to the Banach-Dieudonné Theorem (see [12, p. 154]) this yields
its weak∗ continuity. Consequently, f is Pettis integrable (see [14]). �
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In order to obtain a complete characterization of the HKP-primitive of func-
tions taking values in a dual space with the WRNP, we need some preliminary
results.

Proposition 4.2. Assume that Φ : I → X is of the form

Φ(I) = (HKP )

∫
I

f(t) dt , for each I ∈ I.

Then, for each I ∈ I, the mapping x∗ −→
∫
I
〈x∗, f(t)〉 dt is weak∗-continuous.

Moreover, there exists a partition [0, 1] =
⋃
kHk such that, for every k ∈ N, f is

Pettis integrable and scalarly bounded on Hk, AWw
Φ (Hk) < ∞ and the functional

x∗ −→ Vx∗Φ(Hk) is τc(X∗, X)-continuous.

Proof. The first continuity fact has been proven in [7]. Exactly as in the proof of
Theorem 3.1 one can obtain a sequence of pairwise disjoint sets En ∈ L such that
AWw

Φ (En) < ∞, for each n ∈ N. It follows also from [7, Corollary 1] that there
exists a decomposition [0, 1] =

⋃
k Fk into sets of positive measure such that f is

Pettis integrable and scalarly bounded on each Fk. Denote by {Hk : k ∈ N} the
collection of all intersections En ∩ Fm of positive measure. Then, by Proposition
4.1, for each k, the function x∗ −→ x∗f |Hk is τc(X∗, X)-norm continuous as a map
from X∗ to L1(λ|Hk), because f is Pettis integrable on Hk. Consequently, if

x∗α
τc(X

∗,X)−→ x∗0, then according to [4] and [6] we have

lim
α
V(x∗α−x∗0)Φ(Hk) = lim

α

∫
Hk

|x∗αf(t)− x∗0f(t)| dt = 0. �

Lemma 4.3 (see [1, Lemma 3.3]). Let Y be a Banach space and let ν : L → Y
be a λ-continuous measure of finite variation. If Φ : I → X is defined by Φ(I) :=
ν(I), for all I ∈ I, then VΦ is finite, VΦ � λ and VΦ(E) 6 |ν|(E), whenever
E ∈ L.

Theorem 4.4. Let X be a Banach space. Consider the following two properties
of an additive interval function Φ : I → X:
(k) Ww

Φ � λ and there exists a decomposition [0, 1] =
⋃
kHk of [0, 1] into sets

of positive measure such that for every k ∈ N the function x∗ −→ Vx∗Φ(Hk)
is τ(X∗, X)-continuous and AWw

Φ (Hk) <∞.
(kk) There is an HKP-integrable function f : [0, 1]→ X such that

〈x∗, Φ(I)〉 = (HK)

∫
I

〈x∗, f(t)〉 dt for every I ∈ I .

If (k)⇒ (kk) for every additive Φ : I → X, then X has the WRNP.

Proof. Let ν : L → X be a λ-continuous measure of finite variation. Define
Φ : I → X by Φ(I) := ν(I). It follows from Lemma 4.3 that VΦ � λ and VΦ is
finite. So Φ : I → X is an additive interval measure such that Vx∗Φ � λ for every
x∗ ∈ X∗. Moreover, Vx∗Φ(E) 6 |x∗ν|(E), for every E ∈ L. Let 〈x∗α〉 ⊂ B(X∗)
be a net of functionals that is τ(X∗, X)-convergent to 0. Since ν(L) is a weakly
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relatively compact subset of X, the net 〈x∗αν〉 is uniformly convergent to zero on
L. Hence, limα |x∗αν|[0, 1] = 0. By the inequality Vx∗αΦ(E) 6 |x∗αν|(E), for every
E ∈ L, we have also limα Vx∗αΦ[0, 1] = 0, what proves the weak∗-continuity of the
map x∗ → Vx∗Φ[0, 1].

We are going to prove yet the local boundedness of Ww
Φ . To do it notice that

the classical Radon-Nikodým Theorem yields the existence of a decomposition
[0, 1] =

⋃
kHk such that |ν|(E) 6 k|E|, for every measurable E ⊂ Hk. It follows

that
Vx∗Φ(E)

|E|
6
|x∗ν|(E)

|E|
6 k

and hence AWw
Φ (Hk) <∞.

Thus, condition (k) is satisfied. Hence, there is a Henstock-Kurzweil-Pettis
integrable function f : [0, 1]→ X such that

Φ(I) = (HKP )

∫
I

f(t) dt , for every I ∈ I.

Proceeding as in the proof of [2, Theorem 4.5 ] we see that f is also Pettis integrable
and ν is its indefinite Pettis integral. �

Proposition 4.5. Let X be an arbitrary Banach space and Φ : I → X be an
additive interval function such thatWw

Φ � λ. Assume that there is a decomposition
[0, 1] =

⋃
kHk into measurable sets of positive measure such that Vx∗Φ(Hk) < ∞

for every k ∈ N and every x∗ ∈ X∗ and, for every k ∈ N, the function x∗ →
Vx∗Φ(Hk) is sequentially weak∗-continuous.

If f : [0, 1]→X is a scalarly measurable function, then the set

K =

{
x∗ ∈ X∗ : x∗f ∈ HK [0, 1] and x∗Φ(I) = (HK)

∫
I

〈x∗, f(t)〉 dt, ∀ I ∈ I
}

is sequentially weak∗-closed.
If for every k ∈ N, the function x∗ → Vx∗Φ(Hk) is τ(X∗, X)-continuous and f

is Pettis integrable on Hk, then K is weak∗-closed.

Proof. It is obvious that K 6= ∅ and K is convex. Notice first that if x∗ ∈ K,
then (x∗Φ)′ = x∗f a.e. (see [10]). Let {x∗n} ⊂ K be such that x∗n → x∗0 in the
w∗-topology. We may assume, without loss of generality, that all x∗n, n = 0, 1, 2, ...
belong to B(X∗). By hypothesis Vx∗0Φ � λ, and so there exists g ∈ HK[0, 1] such
that x∗0Φ(I) = (HK)

∫
I
g(t) dt, for all I ∈ I (cf. [3]).

By the assumption and by [6, Corollary 3] we have, for each k ∈ N,

lim
n

∫
Hk

|x∗nf(t)− g(t)| dt = lim
n
V(x∗n−x∗0)Φ(Hk) = 0.

Hence, there is a subsequence {x∗k,nm}m of {x∗n} with limm x
∗
k,nm

f = g, a.e. on
Hk. It follows that g = x∗0f a.e. and so x∗0f ∈ HK[0, 1]. Moreover

lim
m

∫
I

〈x∗k,nm , f(t)〉 dt = lim
m
〈x∗k,nm , Φ(I)〉 = 〈x∗0, Φ(I)〉 =

∫
I

〈x∗0, f(t)〉 dt .

This yields x∗0 ∈ K and so K is weak∗ sequentially closed.
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Assume now that f is Pettis integrable on every Hk. We are going to prove
that K is weak∗-closed. We know that for each k ∈ N the function x∗ −→ x∗g|Hk
is τ(X∗, X)-norm continuous as a map from X∗ to L1(λ|Hk). Consequently, if

x∗α
τ(X∗,X)→ x∗0, then

lim
α

∫
Hk

|x∗αf(t)− x∗0f(t)| dt = 0.

By hypothesis Vx∗0Φ � λ, and so there exists g ∈ HK[0, 1] such that x∗0Φ(I) =
(HK)

∫
I
g(t) dt, for all I ∈ I and so [6, Corollary 3] we have

lim
α

∫
Hk

|x∗αf(t)− g(t)| dt = lim
α
V(x∗α−x∗0)Φ(Hk) = 0.

It follows that x∗0f = g ∈ HK[0, 1]. Moreover

lim
α

∫
I

〈x∗α, f(t)〉 dt = lim
α
〈x∗α, Φ(I)〉 = 〈x∗0, Φ(I)〉 =

∫
I

〈x∗0, f(t)〉 dt

and so x∗0 ∈ K. Thus, K is τ(X∗, X)-closed, and as it is convex, it is also weak∗-
closed. �

Now we are ready to prove the main result of this section.

Theorem 4.6. Let X be a Banach space such that X∗ has the WRNP and let
Φ : I → X∗ be an additive interval measure. Then the following two conditions
are equivalent:

(j) Ww
Φ � λ and there exists a decomposition [0, 1] =

⋃
kHk of [0, 1] into sets of

positive measure such that for every k ∈ N the function x∗∗ −→ Vx∗∗Φ(Hk)
is weak∗-continuous and AW ∗Φ(Hk) <∞.

(jj) There is an HKP-integrable function f : [0, 1]→ X∗ such that

〈x∗∗, Φ(I)〉 = (HK)

∫
I

〈x∗∗, f(t)〉 dt for every I ∈ I .

Moreover, f can be chosen in such a way that ‖f‖ is a measurable function.

Proof. The implication (jj)⇒ (j) is a particular case of Proposition 4.2. In order
to prove the implication (j)⇒ (jj), we may apply Theorem 3.1 to conclude that
there exists a function f : [0, 1]→ X∗ that is HKG-integrable on [0, 1] and Pettis
integrable on each Hk, k ∈ N. Proposition 4.5 yields the HKP-integrability of f
on [0, 1]. �

Remark 4.7. According to Remark 2.7 each strongly measurable Pettis integrable
(and hence also Henstok-Kurzweil-Pettis integrable) function with nowhere differ-
entiable Pettis integral satifies the conditions (j) and (jj) of Theorem 4.6 and has
non-σ-finite variational measure VΦ.
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